101
|
Lamm N, Maoz K, Bester AC, Im MM, Shewach DS, Karni R, Kerem B. Folate levels modulate oncogene-induced replication stress and tumorigenicity. EMBO Mol Med 2016. [PMID: 26197802 PMCID: PMC4568948 DOI: 10.15252/emmm.201404824] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chromosomal instability in early cancer stages is caused by replication stress. One mechanism by which oncogene expression induces replication stress is to drive cell proliferation with insufficient nucleotide levels. Cancer development is driven by alterations in both genetic and environmental factors. Here, we investigated whether replication stress can be modulated by both genetic and non-genetic factors and whether the extent of replication stress affects the probability of neoplastic transformation. To do so, we studied the effect of folate, a micronutrient that is essential for nucleotide biosynthesis, on oncogene-induced tumorigenicity. We show that folate deficiency by itself leads to replication stress in a concentration-dependent manner. Folate deficiency significantly enhances oncogene-induced replication stress, leading to increased DNA damage and tumorigenicity in vitro. Importantly, oncogene-expressing cells, when grown under folate deficiency, exhibit a significantly increased frequency of tumor development in mice. These findings suggest that replication stress is a quantitative trait affected by both genetic and non-genetic factors and that the extent of replication stress plays an important role in cancer development.
Collapse
Affiliation(s)
- Noa Lamm
- Department of Genetics, The Alexander Silberman Institute of Life Sciences Edmond J. Safra Campus The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Karin Maoz
- Department of Genetics, The Alexander Silberman Institute of Life Sciences Edmond J. Safra Campus The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Assaf C Bester
- Department of Genetics, The Alexander Silberman Institute of Life Sciences Edmond J. Safra Campus The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael M Im
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Donna S Shewach
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Rotem Karni
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Batsheva Kerem
- Department of Genetics, The Alexander Silberman Institute of Life Sciences Edmond J. Safra Campus The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
102
|
Lau DT, Flemming CL, Gherardi S, Perini G, Oberthuer A, Fischer M, Juraeva D, Brors B, Xue C, Norris MD, Marshall GM, Haber M, Fletcher JI, Ashton LJ. MYCN amplification confers enhanced folate dependence and methotrexate sensitivity in neuroblastoma. Oncotarget 2016; 6:15510-23. [PMID: 25860940 PMCID: PMC4558167 DOI: 10.18632/oncotarget.3732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 03/10/2015] [Indexed: 12/12/2022] Open
Abstract
MYCN amplification occurs in 20% of neuroblastomas and is strongly related to poor clinical outcome. We have identified folate-mediated one-carbon metabolism as highly upregulated in neuroblastoma tumors with MYCN amplification and have validated this finding experimentally by showing that MYCN amplified neuroblastoma cell lines have a higher requirement for folate and are significantly more sensitive to the antifolate methotrexate than cell lines without MYCN amplification. We have demonstrated that methotrexate uptake in neuroblastoma cells is mediated principally by the reduced folate carrier (RFC; SLC19A1), that SLC19A1 and MYCN expression are highly correlated in both patient tumors and cell lines, and that SLC19A1 is a direct transcriptional target of N-Myc. Finally, we assessed the relationship between SLC19A1 expression and patient survival in two independent primary tumor cohorts and found that SLC19A1 expression was associated with increased risk of relapse or death, and that SLC19A1 expression retained prognostic significance independent of age, disease stage and MYCN amplification. This study adds upregulation of folate-mediated one-carbon metabolism to the known consequences of MYCN amplification, and suggests that this pathway might be targeted in poor outcome tumors with MYCN amplification and high SLC19A1 expression.
Collapse
Affiliation(s)
- Diana T Lau
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Claudia L Flemming
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | | | - Giovanni Perini
- Department of Biology, University of Bologna, Bologna, Italy
| | - André Oberthuer
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne and Centre for Molecular Medicine Cologne, Cologne, Germany
| | - Matthias Fischer
- Children's Hospital, Department of Pediatric Oncology and Hematology, University of Cologne and Centre for Molecular Medicine Cologne, Cologne, Germany
| | - Dilafruz Juraeva
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Chengyuan Xue
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Lesley J Ashton
- Faculty of Medicine, School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.,Research Portfolio, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
103
|
Xiong XD, Ren X, Cai MY, Yang JW, Liu X, Yang JM. Long non-coding RNAs: An emerging powerhouse in the battle between life and death of tumor cells. Drug Resist Updat 2016; 26:28-42. [PMID: 27180308 DOI: 10.1016/j.drup.2016.04.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 12/12/2022]
Abstract
Long non-coding RNAs (lncRNAs) represent a class of non-protein coding transcripts longer than 200 nucleotides that have aptitude for regulating gene expression at the transcriptional, post-transcriptional or epigenetic levels. In recent years, lncRNAs, which are believed to be the largest transcript class in the transcriptomes, have emerged as important players in a variety of biological processes. Notably, the identification and characterization of numerous lncRNAs in the past decade has revealed a role for these molecules in the regulation of cancer cell survival and death. It is likely that this class of non-coding RNA constitutes a critical contributor to the assorted known or/and unknown mechanisms of intrinsic or acquired drug resistance. Moreover, the expression of lncRNAs is altered in various patho-physiological conditions, including cancer. Therefore, lncRNAs represent potentially important targets in predicting or altering the sensitivity or resistance of cancer cells to various therapies. Here, we provide an overview on the molecular functions of lncRNAs, and discuss their impact and importance in cancer development, progression, and therapeutic outcome. We also provide a perspective on how lncRNAs may alter the efficacy of cancer therapy and the promise of lncRNAs as novel therapeutic targets for overcoming chemoresistance. A better understanding of the functional roles of lncRNA in cancer can ultimately translate to the development of novel, lncRNA-based intervention strategies for the treatment or prevention of drug-resistant cancer.
Collapse
Affiliation(s)
- Xing-Dong Xiong
- Department of Biochemistry and Molecular Biology, Institute of Aging Research, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China; Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| | - Xingcong Ren
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Meng-Yun Cai
- Department of Biochemistry and Molecular Biology, Institute of Aging Research, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Jay W Yang
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | - Xinguang Liu
- Department of Biochemistry and Molecular Biology, Institute of Aging Research, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, China
| | - Jin-Ming Yang
- Department of Pharmacology and The Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine and Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
104
|
Kaur J, Kaur S, Singh P. Rational modification of the lead molecule: Enhancement in the anticancer and dihydrofolate reductase inhibitory activity. Bioorg Med Chem Lett 2016; 26:1936-40. [PMID: 26979156 DOI: 10.1016/j.bmcl.2016.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/26/2016] [Accepted: 03/07/2016] [Indexed: 10/22/2022]
Abstract
By using molecular docking studies, the practice of fragment based drug discovery is conceptualized by introducing oxindole and iso-propanol moieties in our previous lead molecule 1. The resulting compound 2 exhibited competitive inhibition and favorable Ka and Ki for hDHFR. The screening of compound 2 at 60 cell line panel of human tumor cell lines showed its considerably better efficacy than compound 1 and hence put the candidature of 2 on stronghold for further studies.
Collapse
Affiliation(s)
- Jagroop Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Sukhmeet Kaur
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Palwinder Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
105
|
Wojtuszkiewicz A, Assaraf YG, Hoekstra M, Sciarrillo R, Jansen G, Peters GJ, Pieters R, Sonneveld E, Escherich G, Kaspers GJL, Cloos J. The association of aberrant folylpolyglutamate synthetase splicing with ex vivo methotrexate resistance and clinical outcome in childhood acute lymphoblastic leukemia. Haematologica 2016; 101:e291-4. [PMID: 27036162 DOI: 10.3324/haematol.2016.142794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Anna Wojtuszkiewicz
- Dept of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands Dept. of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- Dept. of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mirthe Hoekstra
- Dept of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rocco Sciarrillo
- Dept of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands Dept. of Hematology, VU University Medical Center, Amsterdam, The Netherlands Dept. of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Dept. of Rheumatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Dept. of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Rob Pieters
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Edwin Sonneveld
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| | - Gabriele Escherich
- Clinic of Pediatric Hematology/Oncology, University Medical Center Eppendorf, Hamburg, Germany
| | - Gertjan J L Kaspers
- Dept of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Dept of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands Dept. of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
106
|
Almqvist H, Axelsson H, Jafari R, Dan C, Mateus A, Haraldsson M, Larsson A, Martinez Molina D, Artursson P, Lundbäck T, Nordlund P. CETSA screening identifies known and novel thymidylate synthase inhibitors and slow intracellular activation of 5-fluorouracil. Nat Commun 2016; 7:11040. [PMID: 27010513 PMCID: PMC4820820 DOI: 10.1038/ncomms11040] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/15/2016] [Indexed: 02/06/2023] Open
Abstract
Target engagement is a critical factor for therapeutic efficacy. Assessment of compound binding to native target proteins in live cells is therefore highly desirable in all stages of drug discovery. We report here the first compound library screen based on biophysical measurements of intracellular target binding, exemplified by human thymidylate synthase (TS). The screen selected accurately for all the tested known drugs acting on TS. We also identified TS inhibitors with novel chemistry and marketed drugs that were not previously known to target TS, including the DNA methyltransferase inhibitor decitabine. By following the cellular uptake and enzymatic conversion of known drugs we correlated the appearance of active metabolites over time with intracellular target engagement. These data distinguished a much slower activation of 5-fluorouracil when compared with nucleoside-based drugs. The approach establishes efficient means to associate drug uptake and activation with target binding during drug discovery.
Collapse
Affiliation(s)
- Helena Almqvist
- Laboratories for Chemical Biology, Karolinska Institutet, Science for Life Laboratory Stockholm, Division of Translational Medicine &Chemical Biology, Department of Medical Biochemistry &Biophysics, Karolinska Institutet, Tomtebodavägen 23A, Solna 171 65, Sweden
| | - Hanna Axelsson
- Laboratories for Chemical Biology, Karolinska Institutet, Science for Life Laboratory Stockholm, Division of Translational Medicine &Chemical Biology, Department of Medical Biochemistry &Biophysics, Karolinska Institutet, Tomtebodavägen 23A, Solna 171 65, Sweden
| | - Rozbeh Jafari
- Department of Medical Biochemistry &Biophysics, Division of Biophysics, Karolinska Institutet, Scheeles väg 2, Stockholm 171 77, Sweden
| | - Chen Dan
- School of Biological Sciences, Nanyang Technological University, 61 Biopolis Drive (Proteos), Singapore 138673, Singapore
| | - André Mateus
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden
| | - Martin Haraldsson
- Laboratories for Chemical Biology, Karolinska Institutet, Science for Life Laboratory Stockholm, Division of Translational Medicine &Chemical Biology, Department of Medical Biochemistry &Biophysics, Karolinska Institutet, Tomtebodavägen 23A, Solna 171 65, Sweden
| | - Andreas Larsson
- School of Biological Sciences, Nanyang Technological University, SBS-04s-45, 60 Nanyang Drive, Singapore 639798, Singapore
| | - Daniel Martinez Molina
- Department of Medical Biochemistry &Biophysics, Division of Biophysics, Karolinska Institutet, Scheeles väg 2, Stockholm 171 77, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Uppsala University Drug Optimization and Pharmaceutical Profiling Platform (UDOPP), Department of Pharmacy, Uppsala University, BMC, Box 580, Uppsala SE-751 23, Sweden.,Science for Life Laboratory Drug Discovery and Development platform, Uppsala University, Uppsala SE-751 23, Sweden
| | - Thomas Lundbäck
- Laboratories for Chemical Biology, Karolinska Institutet, Science for Life Laboratory Stockholm, Division of Translational Medicine &Chemical Biology, Department of Medical Biochemistry &Biophysics, Karolinska Institutet, Tomtebodavägen 23A, Solna 171 65, Sweden
| | - Pär Nordlund
- Department of Medical Biochemistry &Biophysics, Division of Biophysics, Karolinska Institutet, Scheeles väg 2, Stockholm 171 77, Sweden.,School of Biological Sciences, Nanyang Technological University, 61 Biopolis Drive (Proteos), Singapore 138673, Singapore.,Institute of Cellular and Molecular Biology, ASTAR, 61 Biopolis Drive (Proteos), Singapore 138673, Singapore
| |
Collapse
|
107
|
Could drugs inhibiting the mevalonate pathway also target cancer stem cells? Drug Resist Updat 2016; 25:13-25. [PMID: 27155373 DOI: 10.1016/j.drup.2016.02.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 12/12/2015] [Accepted: 01/28/2016] [Indexed: 02/07/2023]
Abstract
Understanding the connection between metabolic pathways and cancer is very important for the development of new therapeutic approaches based on regulatory enzymes in pathways associated with tumorigenesis. The mevalonate cascade and its rate-liming enzyme HMG CoA-reductase has recently drawn the attention of cancer researchers because strong evidences arising mostly from epidemiologic studies, show that it could promote transformation. Hence, these studies pinpoint HMG CoA-reductase as a candidate proto-oncogene. Several recent epidemiological studies, in different populations, have proven that statins are beneficial for the treatment-outcome of various cancers, and may improve common cancer therapy strategies involving alkylating agents, and antimetabolites. Cancer stem cells/cancer initiating cells (CSC) are key to cancer progression and metastasis. Therefore, in the current review we address the different effects of statins on cancer stem cells. The mevalonate cascade is among the most pleiotropic, and highly interconnected signaling pathways. Through G-protein-coupled receptors (GRCP), it integrates extra-, and intracellular signals. The mevalonate pathway is implicated in cell stemness, cell proliferation, and organ size regulation through the Hippo pathway (e.g. Yap/Taz signaling axis). This pathway is a prime preventive target through the administration of statins for the prophylaxis of obesity-related cardiovascular diseases. Its prominent role in regulation of cell growth and stemness also invokes its role in cancer development and progression. The mevalonate pathway affects cancer metastasis in several ways by: (i) affecting epithelial-to-mesenchymal transition (EMT), (ii) affecting remodeling of the cytoskeleton as well as cell motility, (iii) affecting cell polarity (non-canonical Wnt/planar pathway), and (iv) modulation of mesenchymal-to-epithelial transition (MET). Herein we provide an overview of the mevalonate signaling network. We then briefly highlight diverse functions of various elements of this mevalonate pathway. We further discuss in detail the role of elements of the mevalonate cascade in stemness, carcinogenesis, cancer progression, metastasis and maintenance of cancer stem cells.
Collapse
|
108
|
Ceramide Synthase 6 Is a Novel Target of Methotrexate Mediating Its Antiproliferative Effect in a p53-Dependent Manner. PLoS One 2016; 11:e0146618. [PMID: 26783755 PMCID: PMC4718595 DOI: 10.1371/journal.pone.0146618] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/18/2015] [Indexed: 01/28/2023] Open
Abstract
We previously reported that ceramide synthase 6 (CerS6) is elevated in response to folate stress in cancer cells, leading to enhanced production of C16-ceramide and apoptosis. Antifolate methotrexate (MTX), a drug commonly used in chemotherapy of several types of cancer, is a strong inhibitor of folate metabolism. Here we investigated whether this drug targets CerS6. We observed that CerS6 protein was markedly elevated in several cancer cell lines treated with MTX. In agreement with the enzyme elevation, its product C16-ceramide was also strongly elevated, so as several other ceramide species. The increase in C16-ceramide, however, was eliminated in MTX-treated cells lacking CerS6 through siRNA silencing, while the increase in other ceramides sustained. Furthermore, the siRNA silencing of CerS6 robustly protected A549 lung adenocarcinoma cells from MTX toxicity, while the silencing of another ceramide synthase, CerS4, which was also responsive to folate stress in our previous study, did not interfere with the MTX effect. The rescue effect of CerS6 silencing upon MTX treatment was further confirmed in HCT116 and HepG2 cell lines. Interestingly, CerS6 itself, but not CerS4, induced strong antiproliferative effect in several cancer cell lines if elevated by transient transfection. The effect of MTX on CerS6 elevation was likely p53 dependent, which is in agreement with the hypothesis that the protein is a transcriptional target of p53. In line with this notion, lometrexol, the antifolate inducing cytotoxicity through the p53-independent mechanism, did not affect CerS6 levels. We have also found that MTX induces the formation of ER aggregates, enriched with CerS6 protein. We further demonstrated that such aggregation requires CerS6 and suggests that it is an indication of ER stress. Overall, our study identified CerS6 and ceramide pathways as a novel MTX target.
Collapse
|
109
|
Davenport KR, Smith CA, Hofstetter H, Horn JR, Hofstetter O. Site-directed immobilization of a genetically engineered anti-methotrexate antibody via an enzymatically introduced biotin label significantly increases the binding capacity of immunoaffinity columns. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1021:114-121. [PMID: 26809205 DOI: 10.1016/j.jchromb.2016.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
Abstract
In this study, the effect of random vs. site-directed immobilization techniques on the performance of antibody-based HPLC columns was investigated using a single-domain camelid antibody (VHH) directed against methotrexate (MTX) as a model system. First, the high flow-through support material POROS-OH was activated with disuccinimidyl carbonate (DSC), and the VHH was bound in a random manner via amines located on the protein's surface. The resulting column was characterized by Frontal Affinity Chromatography (FAC). Then, two site-directed techniques were explored to increase column efficiency by immobilizing the antibody via its C-terminus, i.e., away from the antigen-binding site. In one approach, a tetra-lysine tail was added, and the antibody was immobilized onto DSC-activated POROS. In the second site-directed approach, the VHH was modified with the AviTag peptide, and a biotin-residue was enzymatically incorporated at the C-terminus using the biotin ligase BirA. The biotinylated antibody was subsequently immobilized onto NeutrAvidin-derivatized POROS. A comparison of the FAC analyses, which for all three columns showed excellent linearity (R(2)>0.999), revealed that both site-directed approaches yield better results than the random immobilization; the by far highest efficiency, however, was determined for the immunoaffinity column based on AviTag-biotinylated antibody. As proof of concept, all three columns were evaluated for quantification of MTX dissolved in phosphate buffered saline (PBS). Validation using UV-detection showed excellent linearity in the range of 0.04-12μM (R(2)>0.993). The lower limit of detection (LOD) and lower limit of quantification (LLOQ) were found to be independent of the immobilization strategy and were 40nM and 132nM, respectively. The intra- and inter-day precision was below 11.6%, and accuracy was between 90.7% and 112%. To the best of our knowledge, this is the first report of the AviTag-system in chromatography, and the first application of immunoaffinity chromatography for the analysis of MTX.
Collapse
Affiliation(s)
- Kaitlynn R Davenport
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115-2862, USA
| | - Christopher A Smith
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115-2862, USA
| | - Heike Hofstetter
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115-2862, USA
| | - James R Horn
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115-2862, USA
| | - Oliver Hofstetter
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115-2862, USA.
| |
Collapse
|
110
|
Ferreira JA, Peixoto A, Neves M, Gaiteiro C, Reis CA, Assaraf YG, Santos LL. Mechanisms of cisplatin resistance and targeting of cancer stem cells: Adding glycosylation to the equation. Drug Resist Updat 2016; 24:34-54. [DOI: 10.1016/j.drup.2015.11.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 02/06/2023]
|
111
|
Sobot D, Mura S, Couvreur P. How can nanomedicines overcome cellular-based anticancer drug resistance? J Mater Chem B 2016; 4:5078-5100. [DOI: 10.1039/c6tb00900j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the mechanisms of anticancer drug resistance according to its cellular level of action and outlines the nanomedicine-based strategies adopted to overcome it.
Collapse
Affiliation(s)
- Dunja Sobot
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Simona Mura
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| | - Patrick Couvreur
- Institut Galien Paris-Sud
- UMR 8612
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
| |
Collapse
|
112
|
Lysosomes as mediators of drug resistance in cancer. Drug Resist Updat 2016; 24:23-33. [DOI: 10.1016/j.drup.2015.11.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 11/23/2022]
|
113
|
Zhitomirsky B, Assaraf YG. Lysosomal sequestration of hydrophobic weak base chemotherapeutics triggers lysosomal biogenesis and lysosome-dependent cancer multidrug resistance. Oncotarget 2015; 6:1143-56. [PMID: 25544758 PMCID: PMC4359223 DOI: 10.18632/oncotarget.2732] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/09/2014] [Indexed: 01/13/2023] Open
Abstract
Multidrug resistance (MDR) is a primary hindrance to curative cancer chemotherapy. In this respect, lysosomes were suggested to play a role in intrinsic MDR by sequestering protonated hydrophobic weak base chemotherapeutics away from their intracellular target sites. Here we show that intrinsic resistance to sunitinib, a hydrophobic weak base tyrosine kinase inhibitor known to accumulate in lysosomes, tightly correlates with the number of lysosomes accumulating high levels of sunitinib in multiple human carcinoma cells. Furthermore, exposure of cancer cells to hydrophobic weak base drugs leads to a marked increase in the number of lysosomes per cell. Non-cytotoxic, nanomolar concentrations, of the hydrophobic weak base chemotherapeutics doxorubicin and mitoxantrone triggered rapid lysosomal biogenesis that was associated with nuclear translocation of TFEB, the dominant transcription factor regulating lysosomal biogenesis. This resulted in increased lysosomal gene expression and lysosomal enzyme activity. Thus, treatment of cancer cells with hydrophobic weak base chemotherapeutics and their consequent sequestration in lysosomes triggers lysosomal biogenesis, thereby further enhancing lysosomal drug entrapment and MDR. The current study provides the first evidence that drug-induced TFEB-associated lysosomal biogenesis is an emerging determinant of MDR and suggests that circumvention of lysosomal drug sequestration is a novel strategy to overcome this chemoresistance.
Collapse
Affiliation(s)
- Benny Zhitomirsky
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Dept. of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
114
|
Wojtuszkiewicz A, Raz S, Stark M, Assaraf YG, Jansen G, Peters GJ, Sonneveld E, Kaspers GJL, Cloos J. Folylpolyglutamate synthetase splicing alterations in acute lymphoblastic leukemia are provoked by methotrexate and other chemotherapeutics and mediate chemoresistance. Int J Cancer 2015; 138:1645-56. [PMID: 26547381 DOI: 10.1002/ijc.29919] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/19/2015] [Accepted: 10/27/2015] [Indexed: 01/22/2023]
Abstract
Methotrexate (MTX), a folate antagonist which blocks de novo nucleotide biosynthesis and DNA replication, is an anchor drug in acute lymphoblastic leukemia (ALL) treatment. However, drug resistance is a primary hindrance to curative chemotherapy in leukemia and its molecular mechanisms remain poorly understood. We have recently shown that impaired folylpolyglutamate synthetase (FPGS) splicing possibly contributes to the loss of FPGS activity in MTX-resistant leukemia cell line models and adult leukemia patients. However, no information is available on the possible splicing alterations in FPGS in pediatric ALL. Here, using a comprehensive PCR-based screen we discovered and characterized a spectrum of FPGS splicing alterations including exon skipping and intron retention, all of which proved to frequently emerge in both pediatric and adult leukemia patient specimens. Furthermore, an FPGS activity assay revealed that these splicing alterations resulted in loss of FPGS function. Strikingly, pulse-exposure of leukemia cells to antifolates and other chemotherapeutics markedly enhanced the prevalence of several FPGS splicing alterations in antifolate-resistant cells, but not in their parental antifolate-sensitive counterparts. These novel findings suggest that an assortment of deleterious FPGS splicing alterations may constitute a mechanism of antifolate resistance in childhood ALL. Our findings have important implications for the rational overcoming of drug resistance in individual leukemia patients.
Collapse
Affiliation(s)
- Anna Wojtuszkiewicz
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department Of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Shachar Raz
- Department Of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- Department Of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- Department Of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerrit Jansen
- Department Of Rheumatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department Of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Edwin Sonneveld
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VU University Medical Center, Amsterdam, The Netherlands.,Department Of Hematology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
115
|
Inside the biochemical pathways of thymidylate synthase perturbed by anticancer drugs: Novel strategies to overcome cancer chemoresistance. Drug Resist Updat 2015; 23:20-54. [PMID: 26690339 DOI: 10.1016/j.drup.2015.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 10/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Our current understanding of the mechanisms of action of antitumor agents and the precise mechanisms underlying drug resistance is that these two processes are directly linked. Moreover, it is often possible to delineate chemoresistance mechanisms based on the specific mechanism of action of a given anticancer drug. A more holistic approach to the chemoresistance problem suggests that entire metabolic pathways, rather than single enzyme targets may better explain and educate us about the complexity of the cellular responses upon cytotoxic drug administration. Drugs, which target thymidylate synthase and folate-dependent enzymes, represent an important therapeutic arm in the treatment of various human malignancies. However, prolonged patient treatment often provokes drug resistance phenomena that render the chemotherapeutic treatment highly ineffective. Hence, strategies to overcome drug resistance are primarily designed to achieve either enhanced intracellular drug accumulation, to avoid the upregulation of folate-dependent enzymes, and to circumvent the impairment of DNA repair enzymes which are also responsible for cross-resistance to various anticancer drugs. The current clinical practice based on drug combination therapeutic regimens represents the most effective approach to counteract drug resistance. In the current paper, we review the molecular aspects of the activity of TS-targeting drugs and describe how such mechanisms are related to the emergence of clinical drug resistance. We also discuss the current possibilities to overcome drug resistance by using a molecular mechanistic approach based on medicinal chemistry methods focusing on rational structural modifications of novel antitumor agents. This paper also focuses on the importance of the modulation of metabolic pathways upon drug administration, their analysis and the assessment of their putative roles in the networks involved using a meta-analysis approach. The present review describes the main pathways that are modulated by TS-targeting anticancer drugs starting from the description of the normal functioning of the folate metabolic pathway, through the protein modulation occurring upon drug delivery to cultured tumor cells as well as cancer patients, finally describing how the pathways are modulated by drug resistance development. The data collected are then analyzed using network/netwire connecting methods in order to provide a wider view of the pathways involved and of the importance of such information in identifying additional proteins that could serve as novel druggable targets for efficacious cancer therapy.
Collapse
|
116
|
Galassi R, Oumarou CS, Burini A, Dolmella A, Micozzi D, Vincenzetti S, Pucciarelli S. A study on the inhibition of dihydrofolate reductase (DHFR) from Escherichia coli by gold(i) phosphane compounds. X-ray crystal structures of (4,5-dichloro-1H-imidazolate-1-yl)-triphenylphosphane-gold(i) and (4,5-dicyano-1H-imidazolate-1-yl)-triphenylphosphane-gold(i). Dalton Trans 2015; 44:3043-56. [PMID: 25567238 DOI: 10.1039/c4dt01542h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented study on the inhibitory activities of a class of phosphane gold(i) complexes on E. coli dihydrofolate reductase (DHFR) is reported. The gold(i) complexes considered in this work consist of azolate or chloride ligands and phosphane as co-ligands. The ligands have been functionalized with polar groups (-COOH, -COO(-), NO2, Cl, CN) to obtain better solubility in polar media. Neutral, anionic and cationic gold(i) complexes have been tested as DHFR inhibitors by means of a continuous direct spectrophotometric method. X-ray structural characterizations were performed on ((triphenylphosphine)-gold(i)-(4,5-dicyanoimidazolyl-1H-1yl) and on the analog (triphenylphosphine)-gold(i)-(4,5-dichloroimidazolyl-1H-1yl). The inhibition constants obtained from the enzyme tests range from 20 μM to 63 nM (auranofin) and are conducive to promoting these compounds as potential DHFR inhibitors.
Collapse
Affiliation(s)
- Rossana Galassi
- School of Science and Technology, Chemistry Division, University of Camerino, Via S. Agostino, 1, 62032 Camerino, Italy.
| | | | | | | | | | | | | |
Collapse
|
117
|
Taylor S, Spugnini EP, Assaraf YG, Azzarito T, Rauch C, Fais S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist Updat 2015; 23:69-78. [PMID: 26341193 DOI: 10.1016/j.drup.2015.08.004] [Citation(s) in RCA: 179] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/27/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022]
Abstract
Despite the major progresses in biomedical research and the development of novel therapeutics and treatment strategies, cancer is still among the dominant causes of death worldwide. One of the crucial challenges in the clinical management of cancer is primary (intrinsic) and secondary (acquired) resistance to both conventional and targeted chemotherapeutics. Multiple mechanisms have been identifiedthat underlie intrinsic and acquired chemoresistance: these include impaired drug uptake, increased drug efflux, deletion of receptors, altered drug metabolism, quantitative and qualitative alterations in drug targets, increased DNA damage repair and various mechanisms of anti-apoptosis. The fast efflux of anticancer drugs mediated by multidrug efflux pumps and the partial or complete reversibility of chemoresistance combined with the absence of genetic mutations suggests a multifactorial process. However, a growing body of recent evidence suggests that chemoresistance is often triggered by the highly acidic microenvironment of tumors. The vast majority of drugs, including conventional chemotherapeutics and more recent biological agents, are weak bases that are quickly protonated and neutralized in acidic environments, such as the extracellular microenvironment and the acidic organelles of tumor cells. It is therefore essential to develop new strategies to overcome the entrapment and neutralization of weak base drugs. One such strategy is the use of proton pump inhibitors which can enhance tumor chemosensitivity by increasing the pH of the tumor microenvironment. Recent clinical trials in animals with spontaneous tumors have indicated that patient alkalization is capable of reversing acquired chemoresistance in a large percentage of tumors that are refractory to chemotherapy. Of particular interest was the benefit of alkalization for patients undergoing metronomic regimens which are becoming more widely used in veterinary medicine. Overall, these results provide substantial new evidence that altering the acidic tumor microenvironment is an effective, well tolerated and low cost strategy for the overcoming of anticancer drug resistance.
Collapse
Affiliation(s)
- Sophie Taylor
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK
| | | | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tommaso Azzarito
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy
| | - Cyril Rauch
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Nottingham LE12 5RD, UK.
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
118
|
Khodursky A, Guzmán EC, Hanawalt PC. Thymineless Death Lives On: New Insights into a Classic Phenomenon. Annu Rev Microbiol 2015; 69:247-63. [PMID: 26253395 DOI: 10.1146/annurev-micro-092412-155749] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The primary mechanisms by which bacteria lose viability when deprived of thymine have been elusive for over half a century. Early research focused on stalled replication forks and the deleterious effects of uracil incorporation into DNA from thymidine-deficient nucleotide pools. The initiation of the replication cycle and origin-proximal DNA degradation during thymine starvation have now been quantified via whole-genome microarrays and other approaches. These advances have fostered innovative models and informative experiments in bacteria since this topic was last reviewed. Given that thymineless death is similar in mammalian cells and that certain antibacterial and chemotherapeutic drugs elicit thymine deficiency, a mechanistic understanding of this phenomenon might have valuable biomedical applications.
Collapse
Affiliation(s)
- Arkady Khodursky
- Biotechnology Institute and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota 55108;
| | - Elena C Guzmán
- Departamento de Bioquímica Biología Molecular y Genética, Universidad de Extremadura, 06071 Badajoz, Spain;
| | - Philip C Hanawalt
- Department of Biology, Stanford University, Stanford, California 94305;
| |
Collapse
|
119
|
Raz S, Stark M, Assaraf YG. Binding of a Smad4/Ets-1 complex to a novel intragenic regulatory element in exon12 of FPGS underlies decreased gene expression and antifolate resistance in leukemia. Oncotarget 2015; 5:9183-98. [PMID: 25229333 PMCID: PMC4253427 DOI: 10.18632/oncotarget.2399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Polyglutamylation of antifolates catalyzed by folylpoly-γ-glutamate synthetase (FPGS) is essential for their intracellular retention and cytotoxic activity. Hence, loss of FPGS expression and/or function results in lack of antifolate polyglutamylation and drug resistance. Members of the TGF-β/Smad signaling pathway are negative regulators of hematopoiesis and deregulation of this pathway is considered a major contributor to leukemogenesis. Here we show that FPGS gene expression is inversely correlated with the binding of a Smad4/Ets-1 complex to exon12 of FPGS in both acute lymphoblastic leukemia cells and acute myeloid leukemia blast specimens. We demonstrate that antifolate resistant leukemia cells harbor a heterozygous point mutation in exon12 of FPGS which disrupts FPGS activity by abolishing ATP binding, and alters the binding pattern of transcription factors to the genomic region of exon12. This in turn results in the near complete silencing of the wild type allele leading to a 97% loss of FPGS activity. We show that exon12 is a novel intragenic transcriptional regulator, endowed with the ability to drive transcription in vitro, and is occupied by transcription factors and chromatin remodeling agents (e.g. Smad4/Ets-1, HP-1 and Brg1) in vivo. These findings bear important implications for the rational overcoming of antifolate resistance in leukemia.
Collapse
Affiliation(s)
- Shachar Raz
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Michal Stark
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
120
|
Inhibition of proteasome deubiquitinase activity: a strategy to overcome resistance to conventional proteasome inhibitors? Drug Resist Updat 2015; 21-22:20-9. [DOI: 10.1016/j.drup.2015.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 06/22/2015] [Accepted: 06/27/2015] [Indexed: 11/19/2022]
|
121
|
Acetylenic antifolates as anticancer agents. Pteridines 2015. [DOI: 10.1515/pterid-2015-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Folates are crucial cofactors involved in the de novo generation of purine and deoxythymidine monophosphate, which are essential for DNA synthesis. Antifolates are structural analogues of folate derivatives that act as inhibitors of folate-dependent enzymes and constitute the oldest antimetabolite class of anticancer agents. This review focuses on antifolates with remarkable anticancer activities that include a terminal alkyne function in their molecular structure. The properties of CB3717, a tremendous inhibitor of thymidylate synthase, are described, and the development of raltitrexed and pralatrexate, a dihydrofolate reductase inhibitor approved by the U.S. Food and Drug Administration (FDA) as the first drug for the treatment of relapsed and refractory peripheral T cell lymphoma are presented.
Collapse
|
122
|
1,3,4-Oxadiazoles: An emerging scaffold to target growth factors, enzymes and kinases as anticancer agents. Eur J Med Chem 2015; 97:124-41. [DOI: 10.1016/j.ejmech.2015.04.051] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 12/13/2022]
|
123
|
Wojtuszkiewicz A, Peters GJ, van Woerden NL, Dubbelman B, Escherich G, Schmiegelow K, Sonneveld E, Pieters R, van de Ven PM, Jansen G, Assaraf YG, Kaspers GJL, Cloos J. Methotrexate resistance in relation to treatment outcome in childhood acute lymphoblastic leukemia. J Hematol Oncol 2015; 8:61. [PMID: 26022503 PMCID: PMC4455979 DOI: 10.1186/s13045-015-0158-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/19/2015] [Indexed: 12/14/2022] Open
Abstract
Background Methotrexate (MTX) eradicates leukemic cells by disrupting de novo nucleotide biosynthesis and DNA replication, resulting in cell death. Since its introduction in 1947, MTX-containing chemotherapeutic regimens have proven instrumental in achieving curative effects in acute lymphoblastic leukemia (ALL). However, drug resistance phenomena pose major obstacles to efficacious ALL chemotherapy. Moreover, clinically relevant molecular mechanisms underlying chemoresistance remain largely obscure. Several alterations in MTX metabolism, leading to impaired accumulation of this cytotoxic agent in tumor cells, have been classified as determinants of MTX resistance. However, the relation between MTX resistance and long-term clinical outcome of ALL has not been shown previously. Methods We have collected clinical data for 235 childhood ALL patients, for whom samples taken at the time of diagnosis were also broadly characterized with respect to MTX resistance. This included measurement of concentrations of MTX polyglutamates in leukemic cells, mRNA expression of enzymes involved in MTX metabolism (FPGS, FPGH, RFC, DHFR, and TS), MTX sensitivity as determined by the TS inhibition assay, and FPGS activity. Results Herein we demonstrate that higher accumulation of long-chain polyglutamates of MTX is strongly associated with better overall (10-year OS: 90.6 vs 64.1 %, P = 0.008) and event-free survival (10-year EFS: 81.2 vs 57.6 %, P = 0.029) of ALL patients. In addition, we assessed both the association of several MTX resistance-related parameters determined in vitro with treatment outcome as well as clinical characteristics of pediatric ALL patients treated with MTX-containing combination chemotherapy. High MTX sensitivity was associated with DNA hyperdiploid ALL (P < 0.001), which was linked with increased MTX accumulation (P = 0.03) and elevated reduced folate carrier (RFC) expression (P = 0.049) in this subset of ALL patients. TEL-AML1 fusion was associated with increased MTX resistance (P = 0.023). Moreover, a low accumulation of MTX polyglutamates was observed in MLL-rearranged and TEL-AML1 rearranged ALL (P < 0.05). Conclusions These findings emphasize the central role of MTX in ALL treatment thereby expanding our understanding of the molecular basis of clinical differences in treatment response between ALL individuals. In particular, the identification of patients that are potentially resistant to MTX at diagnosis may allow for tailoring novel treatment strategies to individual leukemia patients. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0158-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Wojtuszkiewicz
- Department of Pediatric Oncology/Hematology, VUmc Cancer Center Amsterdam, VU University Medical Center, Room CCA 4.28, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Godefridus J Peters
- Department of Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Nicole L van Woerden
- Department of Pediatric Oncology/Hematology, VUmc Cancer Center Amsterdam, VU University Medical Center, Room CCA 4.28, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Boas Dubbelman
- Department of Pediatric Oncology/Hematology, VUmc Cancer Center Amsterdam, VU University Medical Center, Room CCA 4.28, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Gabriele Escherich
- Department of Pediatric Hematology/Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kjeld Schmiegelow
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Edwin Sonneveld
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands
| | - Rob Pieters
- Dutch Childhood Oncology Group (DCOG), The Hague, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Peter M van de Ven
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam, The Netherlands
| | - Gerrit Jansen
- Department of Rheumatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Yehuda G Assaraf
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology/Hematology, VUmc Cancer Center Amsterdam, VU University Medical Center, Room CCA 4.28, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Pediatric Oncology/Hematology, VUmc Cancer Center Amsterdam, VU University Medical Center, Room CCA 4.28, De Boelelaan 1117, 1081HV, Amsterdam, The Netherlands. .,Department of Hematology, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
124
|
De Mattia E, Cecchin E, Toffoli G. Pharmacogenomics of intrinsic and acquired pharmacoresistance in colorectal cancer: Toward targeted personalized therapy. Drug Resist Updat 2015; 20:39-70. [DOI: 10.1016/j.drup.2015.05.003] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/11/2015] [Accepted: 05/14/2015] [Indexed: 02/07/2023]
|
125
|
Bulatović Ćalasan M, Vastert SJ, Scholman RC, Verweij F, Klein M, Wulffraat NM, Prakken BJ, van Wijk F. Methotrexate treatment affects effector but not regulatory T cells in juvenile idiopathic arthritis. Rheumatology (Oxford) 2015; 54:1724-34. [PMID: 25877908 DOI: 10.1093/rheumatology/kev101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The balance between Treg and effector T cells (Teff) is crucial for immune regulation in JIA. How MTX, the cornerstone treatment in JIA, influences this balance in vivo is poorly elucidated. The aim of this study was to investigate quantitative and qualitative effects of MTX on Treg and Teff in JIA patients during MTX treatment. METHODS Peripheral blood samples were obtained from JIA patients at the start of MTX and 3 and 6 months thereafter. Treg numbers and phenotypes were determined by flow cytometry and suppressive function in allogeneic suppression assays. Teff proliferation upon stimulation with anti-CD3, activation status and intracellular cytokine production were determined by flow cytometry. Effector cell responsiveness to suppression was investigated in autologous suppression assays. Effector cell cytokines in supernatants of proliferation and suppression assays and in plasma were measured by cytokine multiplex assay. RESULTS MTX treatment in JIA did not affect Treg phenotype and function. Instead, MTX treatment enhanced, rather than diminished, CD4(+) and CD8(+) T cell proliferation of JIA patients after 6 months of therapy, independent of clinical response. Effector cells during MTX treatment were equally responsive to Treg-mediated suppression. MTX treatment did not attenuate Teff activation status and their capacity to produce IL-13, IL-17, TNF-α and IFN-γ. Similarly to Teff proliferation, plasma IFN-γ concentrations after 6 months were increased. CONCLUSION This study provides the novel insight that MTX treatment in JIA does not attenuate Teff function but, conversely, enhances T cell proliferation and IFN-γ plasma concentrations in JIA patients.
Collapse
Affiliation(s)
- Maja Bulatović Ćalasan
- Center for Molecular and Cellular Intervention, Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sebastiaan J Vastert
- Center for Molecular and Cellular Intervention, Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Rianne C Scholman
- Center for Molecular and Cellular Intervention, Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Frederik Verweij
- Center for Molecular and Cellular Intervention, Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Mark Klein
- Center for Molecular and Cellular Intervention, Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Nico M Wulffraat
- Center for Molecular and Cellular Intervention, Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Berent J Prakken
- Center for Molecular and Cellular Intervention, Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Femke van Wijk
- Center for Molecular and Cellular Intervention, Department of Pediatric Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
126
|
Joyce H, McCann A, Clynes M, Larkin A. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opin Drug Metab Toxicol 2015; 11:795-809. [PMID: 25836015 DOI: 10.1517/17425255.2015.1028356] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Chemotherapy involving the use of anticancer drugs remains an important strategy in the overall management of patients with metastatic cancer. Acquisition of multidrug resistance remains a major impediment to successful chemotherapy. Drug transporters in cell membranes and intracellular drug metabolizing enzymes contribute to the resistance phenotype and determine the pharmacokinetics of anticancer drugs in the body. AREAS COVERED ATP-binding cassette (ABC) transporters mediate the transport of endogenous metabolites and xenobiotics including cytotoxic drugs out of cells. Solute carrier (SLC) transporters mediate the influx of cytotoxic drugs into cells. This review focuses on the substrate interaction of these transporters, on their biology and what role they play together with drug metabolizing enzymes in eliminating therapeutic drugs from cells. EXPERT OPINION The majority of anticancer drugs are substrates for the ABC transporter and SLC transporter families. Together, these proteins have the ability to control the influx and the efflux of structurally unrelated chemotherapeutic drugs, thereby modulating the intracellular drug concentration. These interactions have important clinical implications for chemotherapy because ultimately they determine therapeutic efficacy, disease progression/relapse and the success or failure of patient treatment.
Collapse
Affiliation(s)
- Helena Joyce
- Dublin City University, National Institute for Cellular Biotechnology (NICB) , Glasnevin, Dublin 9 , Ireland +353 1 7005700 ; +353 1 7005484 ;
| | | | | | | |
Collapse
|
127
|
Neradil J, Pavlasova G, Sramek M, Kyr M, Veselska R, Sterba J. DHFR-mediated effects of methotrexate in medulloblastoma and osteosarcoma cells: the same outcome of treatment with different doses in sensitive cell lines. Oncol Rep 2015; 33:2169-75. [PMID: 25739012 PMCID: PMC4391593 DOI: 10.3892/or.2015.3819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 01/21/2015] [Indexed: 11/18/2022] Open
Abstract
Although methotrexate (MTX) is the most well-known antifolate included in many standard therapeutic regimens, substantial toxicity limits its wider use, particularly in pediatric oncology. Our study focused on a detailed analysis of MTX effects in cell lines derived from two types of pediatric solid tumors: medulloblastoma and osteosarcoma. The main aim of this study was to analyze the effects of treatment with MTX at concentrations comparable to MTX plasma levels in patients treated with high-dose or low-dose MTX. The results showed that treatment with MTX significantly decreased proliferation activity, inhibited the cell cycle at S-phase and induced apoptosis in Daoy and Saos-2 reference cell lines, which were found to be MTX-sensitive. Furthermore, no difference in these effects was observed following treatment with various doses of MTX ranging from 1 to 40 μM. These findings suggest the possibility of achieving the same outcome with the application of low-dose MTX, an extremely important result, particularly for clinical practice. Another important aspect of treatment with high-dose MTX in clinical practice is the administration of leucovorin (LV) as an antidote to reduce MTX toxicity in normal cells. For this reason, the combined application of MTX and LV was also included in our experiments; however, this application of MTX together with LV did not elicit any detectable effect. The expression analysis of genes involved in the mechanisms of resistance to MTX was a final component of our study, and the results helped us to elucidate the mechanisms of the various responses to MTX among the cell lines included in our study.
Collapse
Affiliation(s)
- Jakub Neradil
- Department of Experimental Biology, School of Science, Masaryk University, Brno, Czech Republic
| | - Gabriela Pavlasova
- Department of Experimental Biology, School of Science, Masaryk University, Brno, Czech Republic
| | - Martin Sramek
- Department of Experimental Biology, School of Science, Masaryk University, Brno, Czech Republic
| | - Michal Kyr
- Department of Pediatric Oncology, University Hospital Brno and School of Medicine, Masaryk University, Brno, Czech Republic
| | - Renata Veselska
- Department of Experimental Biology, School of Science, Masaryk University, Brno, Czech Republic
| | - Jaroslav Sterba
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
128
|
Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidines as potential nonclassical antifolates targeting both thymidylate and purine nucleotide biosynthesis. Eur J Med Chem 2015; 93:142-55. [PMID: 25668494 DOI: 10.1016/j.ejmech.2015.01.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 01/26/2015] [Accepted: 01/27/2015] [Indexed: 11/20/2022]
Abstract
A novel series of 2-amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidines were designed and synthesized as potential nonclassical antifolates targeting both thymidylate and purine nucleotide biosynthesis. Condensation of 2,4-diamino-6-hydroxypyrimidine with ethyl-4-chloroacetoacetate and subsequent hydrolysis afforded the key intermediate, 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidin-6-yl-acetic acid. Coupling with various amino acid methyl esters followed by saponification and condensation with 3-(aminomethyl)pyridine provided target compounds 1-9. The new compounds exhibited micromolar to submicromolar antiproliferative potencies against a panel of tumor cell lines including KB, A549 and HepG2. Growth inhibition of compound 2 toward KB cells resulted in cytotoxicity and G1/G2-phase accumulation, and was partially protected by excess thymidine and adenosine, but was completely reversed in the combination of thymidine and adenosine, indicating both thymidylate and de novo purine nucleotide synthesis as the targeted pathway. However, 5-aminoimidazole-4-carboxamide (AICA) protection was incomplete, suggesting inhibition of both glycinamide ribonucleotide formyltransferase (GARFTase) and AICA ribonucleotide formyltransferase (AICARFTase). The results of the docking studies show that 2 could bind and inhibit both thymidylate synthase (TS) and the two folate-dependent purine biosynthetic enzymes (GARFTase and AICARFTase), which is consistent with the results of in vitro metabolic assays. Our studies establish that compound 2 is an excellent lead analog as a multitargeted antifolate for further structure optimization.
Collapse
|
129
|
γ-Glutamyl hydrolase modulation significantly influences global and gene-specific DNA methylation and gene expression in human colon and breast cancer cells. GENES AND NUTRITION 2014; 10:444. [PMID: 25502219 DOI: 10.1007/s12263-014-0444-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/17/2014] [Indexed: 10/24/2022]
Abstract
γ-Glutamyl hydrolase (GGH) plays an important role in folate homeostasis by catalyzing hydrolysis of polyglutamylated folate into monoglutamates. Polyglutamylated folates are better substrates for several enzymes involved in the generation of S-adenosylmethionine, the primary methyl group donor, and hence, GGH modulation may affect DNA methylation. DNA methylation is an important epigenetic determinant in gene expression, in the maintenance of DNA integrity and stability, and in chromatin modifications, and aberrant or dysregulation of DNA methylation has been mechanistically linked to the development of human diseases including cancer. Using a recently developed in vitro model of GGH modulation in HCT116 colon and MDA-MB-435 breast cancer cells, we investigated whether GGH modulation would affect global and gene-specific DNA methylation and whether these alterations were associated with significant gene expression changes. In both cell lines, GGH overexpression decreased global DNA methylation and DNA methyltransferase (DNMT) activity, while GGH inhibition increased global DNA methylation and DNMT activity. Epigenomic and gene expression analyses revealed that GGH modulation influenced CpG promoter DNA methylation and gene expression involved in important biological pathways including cell cycle, cellular development, and cellular growth and proliferation. Some of the observed altered gene expression appeared to be regulated by changes in CpG promoter DNA methylation. Our data suggest that the GGH modulation-induced changes in total intracellular folate concentrations and content of long-chain folylpolyglutamates are associated with functionally significant DNA methylation alterations in several important biological pathways.
Collapse
|
130
|
Kathawala RJ, Gupta P, Ashby CR, Chen ZS. The modulation of ABC transporter-mediated multidrug resistance in cancer: a review of the past decade. Drug Resist Updat 2014; 18:1-17. [PMID: 25554624 DOI: 10.1016/j.drup.2014.11.002] [Citation(s) in RCA: 536] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/17/2014] [Accepted: 11/20/2014] [Indexed: 12/13/2022]
Abstract
ATP-binding cassette (ABC) transporters represent one of the largest and oldest families of membrane proteins in all extant phyla from prokaryotes to humans, which couple the energy derived from ATP hydrolysis essentially to translocate, among various substrates, toxic compounds across the membrane. The fundamental functions of these multiple transporter proteins include: (1) conserved mechanisms related to nutrition and pathogenesis in bacteria, (2) spore formation in fungi, and (3) signal transduction, protein secretion and antigen presentation in eukaryotes. Moreover, one of the major causes of multidrug resistance (MDR) and chemotherapeutic failure in cancer therapy is believed to be the ABC transporter-mediated active efflux of a multitude of structurally and mechanistically distinct cytotoxic compounds across membranes. It has been postulated that ABC transporter inhibitors known as chemosensitizers may be used in combination with standard chemotherapeutic agents to enhance their therapeutic efficacy. The current paper reviews the advance in the past decade in this important domain of cancer chemoresistance and summarizes the development of new compounds and the re-evaluation of compounds originally designed for other targets as transport inhibitors of ATP-dependent drug efflux pumps.
Collapse
Affiliation(s)
- Rishil J Kathawala
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
131
|
Choi JH, Yates Z, Veysey M, Heo YR, Lucock M. Contemporary issues surrounding folic Acid fortification initiatives. Prev Nutr Food Sci 2014; 19:247-60. [PMID: 25580388 PMCID: PMC4287316 DOI: 10.3746/pnf.2014.19.4.247] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/07/2014] [Indexed: 12/20/2022] Open
Abstract
The impact of folate on health and disease, particularly pregnancy complications and congenital malformations, has been extensively studied. Mandatory folic acid fortification therefore has been implemented in multiple countries, resulting in a reduction in the occurrence of neural tube defects. However, emerging evidence suggests increased folate intake may also be associated with unexpected adverse effects. This literature review focuses on contemporary issues of concern, and possible underlying mechanisms as well as giving consideration the future direction of mandatory folic acid fortification. Folate fortification has been associated with the presence of unmetabolized folic acid (PteGlu) in blood, masking of vitamin B12 deficiency, increased dosage for anti-cancer medication, photo-catalysis of PteGlu leading to potential genotoxicity, and a role in the pathoaetiology of colorectal cancer. Increased folate intake has also been associated with twin birth and insulin resistance in offspring, and altered epigenetic mechanisms of inheritance. Although limited data exists to elucidate potential mechanisms underlying these issues, elevated blood folate level due to the excess use of PteGlu without consideration of an individual's specific phenotypic traits (e.g. genetic background and undiagnosed disease) may be relevant. Additionally, the accumulation of unmetabolized PteGlu may lead to inhibition of dihydrofolate reductase and other enzymes. Concerns notwithstanding, folic acid fortification has achieved enormous advances in public health. It therefore seems prudent to target and carefully monitor high risk groups, and to conduct well focused further research to better understand and to minimize any risk of mandatory folic acid fortification.
Collapse
Affiliation(s)
- Jeong-Hwa Choi
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
- Human Economics Research Institute, Chonnam National University, Gwangju 500-757, Korea
| | - Zoe Yates
- Biomedical Sciences and Pharmacy, University of Newcastle, Ourimbah, NSW 2258, Australia
| | - Martin Veysey
- Teaching and Research Unit, Central Coast Local Health District, Gosford, NSW 2250, Australia
| | - Young-Ran Heo
- Department of Food and Nutrition, Chonnam National University, Gwangju 500-757, Korea
| | - Mark Lucock
- School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW 2258, Australia
| |
Collapse
|
132
|
Assessment of Folate Receptor-α and Epidermal Growth Factor Receptor Expression in Pemetrexed-Treated Non–Small-Cell Lung Cancer Patients. Clin Lung Cancer 2014; 15:320-30.e1-3. [DOI: 10.1016/j.cllc.2014.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/08/2014] [Accepted: 05/19/2014] [Indexed: 11/21/2022]
|
133
|
Kotze AC, Bagnall NH, Ruffell AP, Pearson R. Cloning, recombinant expression and inhibitor profiles of dihydrofolate reductase from the Australian sheep blow fly, Lucilia cuprina. MEDICAL AND VETERINARY ENTOMOLOGY 2014; 28:297-306. [PMID: 24417268 DOI: 10.1111/mve.12041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/21/2013] [Accepted: 08/01/2013] [Indexed: 06/03/2023]
Abstract
While dihydrofolate reductase (DHFR) is an important drug target in mammals, bacteria and protozoa, no inhibitors of this enzyme have been developed as commercial insecticides. We therefore examined the potential of this enzyme as a drug target in an important ectoparasite of livestock, the Australian sheep blow fly, Lucilia cuprina (Diptera: Calliphoridae) (Wiedemann). The non-specific DHFR inhibitors aminopterin and methotrexate significantly inhibited the growth of L. cuprina larvae, with IC50 values at µg levels. Trimethoprim and pyrimethamine were 5-30-fold less active. Relative IC50 values for the inhibition of recombinant L. cuprina DHFR by various inhibitors were in accordance with their relative effects on larval growth. The active-site amino acid residues of L. cuprina DHFR differed by between 34% and 50% when compared with two mammalian species, as well as two bacteria and two protozoa. There were significant charge and size differences in specific residues between the blow fly and human DHFR enzymes, notably the L. cuprina Asn21, Lys31 and Lys63 residues. This study provides bioassay evidence to highlight the potential of blow fly DHFR as an insecticide target, and describes differences in active site residues between blow flies and other organisms which could be exploited in the design of blow fly control chemicals.
Collapse
Affiliation(s)
- A C Kotze
- CSIRO Animal, Food and Health Sciences, Brisbane, Queensland, Australia
| | | | | | | |
Collapse
|
134
|
Bulatović Ćalasan M, Wulffraat NM. Methotrexate in juvenile idiopathic arthritis: towards tailor-made treatment. Expert Rev Clin Immunol 2014; 10:843-54. [DOI: 10.1586/1744666x.2014.916617] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
135
|
Chen S, Cai J, Zhang W, Zheng X, Hu S, Lu J, Xing J, Dong Y. Proteomic identification of differentially expressed proteins associated with the multiple drug resistance in methotrexate-resistant human breast cancer cells. Int J Oncol 2014; 45:448-58. [PMID: 24736981 DOI: 10.3892/ijo.2014.2389] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 03/28/2014] [Indexed: 11/06/2022] Open
Abstract
Methotrexate (MTX), as a chemotherapeutic drug, is widely used in the therapy of several cancer types. The efficiency of drug treatment is compromised by the appearance of multidrug resistance (MDR), and the underlying molecular mechanisms remain incompletely understood. We investigated the mechanism of MDR in the MTX-induced breast cancer MCF-7 cells (MCF-7/MTX) using proteomic analysis. MCF-7 drug-sensitive cells (MCF-7/S) were exposed in progressively increasing concentrations of MTX to establish the drug-resistant cell line MCF-7/MTX. The biological characteristics of the cells were analyzed by MTT, flow cytometry, quantitative PCR, western blotting and the global protein profiles of MCF-7/MTX and MCF-7/S were compared using a proteomic approach. The resistance factor of MCF-7/MTX cells was 64, and it possessed significant MDR. Seventeen differentially expressed proteins between MCF-7/MTX and MCF-7/S cells were identified, seven proteins were upregulated and 10 proteins were downregulated in MCF-7/MTX cells. We verified that the protein levels of nucleophosmin (NPM), α-enolase (ENO1) and vimentin (VIM) were upregulated, and heterogeneous nuclear ribonucleoprotein (hnRNP C1/C2), phosphoglycerate mutase 1 (PGAM1) and proteasome subunit α type-2 (PSMA2) were downregulated in MCF-7/MTX cells. The mRNA levels of NPM, VIM, hnRNP C1/C2, PGAM1 and PSMA2 were consistent with the protein expressions, but the gene expression of ENO1 was slightly downregulated. Surprisingly, knockdown of NPM by siRNA sensitized MCF-7/MTX cells to MTX and attenuated the multidrug resistance. The proteins identified, particularly NPM provides new insights into the mechanism of MDR and is expected to become a crucial molecular target for breast cancer treatment.
Collapse
Affiliation(s)
- Siying Chen
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiangxia Cai
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Weipeng Zhang
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaowei Zheng
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Sasa Hu
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Lu
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jianfeng Xing
- Department of Pharmacy, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
136
|
Takeuchi S, Seike M, Noro R, Soeno C, Sugano T, Zou F, Uesaka H, Nishijima N, Matsumoto M, Minegishi Y, Kubota K, Gemma A. Significance of osteopontin in the sensitivity of malignant pleural mesothelioma to pemetrexed. Int J Oncol 2014; 44:1886-94. [PMID: 24714722 DOI: 10.3892/ijo.2014.2370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/10/2014] [Indexed: 11/05/2022] Open
Abstract
Pemetrexed (PEM) is currently recommended as one of the standard anticancer drugs for malignant pleural mesothelioma (MPM). However, the mechanism of the sensitivity of MPM to PEM remains unclear. We analyzed the antitumor effects of PEM in six MPM cell lines by MTS assay. To identify genes associated with drug sensitivity, we conducted gene expression profiling on the same set of cell lines using GeneChips and pathway analysis. Three cell lines were sensitive to PEM. A total fo 18 transcripts and 14 genes identified by GeneChips were significantly correlated with sensitivity to PEM. Pathway analysis revealed that osteopontin (SPP1/OPN) was an important target in PEM sensitivity. Overexpression of SPP1/OPN was observed in the sensitive cells by quantitative PCR and western blot analysis. Introduction of SPP1/OPN by lentiviral vector significantly enhanced the invasion activities of MPM cells. PEM treatment with SPP1/OPN knockdown inhibited the PEM-induced cell growth-inhibitory effect in PEM-sensitive cells. Expression of SPP1/OPN and AKT phosphorylation significantly decreased after PEM treatment of the PEM-sensitive cells. High immunohistochemical expression of SPP1/OPN was observed in two of three MPM patients who had a partial response to PEM-based chemotherapy. PEM has antitumor effects in MPM cells dependent on SPP1/OPN overexpression resulting in AKT activation. Our results suggest that SPP1 may be used as a single predictive biomarker of the effectiveness of PEM treatment in MPM.
Collapse
Affiliation(s)
- Susumu Takeuchi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Chie Soeno
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Teppei Sugano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Fenfei Zou
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | | | - Nobuhiko Nishijima
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Yuji Minegishi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo 113-8603, Japan
| |
Collapse
|
137
|
The issue of studies evaluating biomarkers which predict outcome after pemetrexed-based chemotherapy in malignant pleural mesothelioma. J Thorac Oncol 2014; 8:e80-2. [PMID: 23857409 DOI: 10.1097/jto.0b013e31829b1cf9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
138
|
Moran DM, Trusk PB, Pry K, Paz K, Sidransky D, Bacus SS. KRAS mutation status is associated with enhanced dependency on folate metabolism pathways in non-small cell lung cancer cells. Mol Cancer Ther 2014; 13:1611-24. [PMID: 24688052 DOI: 10.1158/1535-7163.mct-13-0649] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
KRAS gene mutation is linked to poor prognosis and resistance to therapeutics in non-small cell lung cancer (NSCLC). In this study, we have explored the possibility of exploiting inherent differences in KRAS-mutant cell metabolism for treatment. This study identified a greater dependency on folate metabolism pathways in KRAS mutant compared with KRAS wild-type NSCLC cell lines. Microarray gene expression and biologic pathway analysis identified higher expression of folate metabolism- and purine synthesis-related pathways in KRAS-mutant NSCLC cells compared with wild-type counterparts. Moreover, pathway analysis and knockdown studies suggest a role for MYC transcriptional activity in the expression of these pathways in KRAS-mutant NSCLC cells. Furthermore, KRAS knockdown and overexpression studies demonstrated the ability of KRAS to regulate expression of genes that comprise folate metabolism pathways. Proliferation studies demonstrated higher responsiveness to methotrexate, pemetrexed, and other antifolates in KRAS-mutant NSCLC cells. Surprisingly, KRAS gene expression is downregulated in KRAS wild-type and KRAS-mutant cells by antifolates, which may also contribute to higher efficacy of antifolates in KRAS-mutant NSCLC cells. In vivo analysis of multiple tumorgraft models in nude mice identified a KRAS-mutant tumor among the pemetrexed-responsive tumors and also demonstrated an association between expression of the folate pathway gene, methylenetetrahydrofolate dehydrogenase 2 (MTHFD2), and antifolate activity. Collectively, we identify altered regulation of folate metabolism in KRAS-mutant NSCLC cells that may account for higher antifolate activity in this subtype of NSCLC.
Collapse
Affiliation(s)
- Diarmuid M Moran
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - Patricia B Trusk
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - Karen Pry
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - Keren Paz
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - David Sidransky
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, MarylandAuthors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| | - Sarah S Bacus
- Authors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, MarylandAuthors' Affiliations: Translational R&D Oncology Group, Quintiles, Westmont; Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois; Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland; and Champions Oncology, Inc., Hackensack, New Jersey and Baltimore, Maryland
| |
Collapse
|
139
|
Dondi A, Bari A, Pozzi S, Ferri P, Sacchi S. The potential of pralatrexate as a treatment of peripheral T-cell lymphoma. Expert Opin Investig Drugs 2014; 23:711-8. [PMID: 24661228 DOI: 10.1517/13543784.2014.902050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Peripheral T-cell lymphomas (PTCLs) are a group of rare malignancies originating from clonal proliferation of mature, post-thymic T cells that represent 10 - 15% of all non-Hodgkin's lymphomas with poor prognosis and median survival of 1 - 3 years. The standard treatment for PTCL has not yet been identified. Many patients with PTCL are refractory to first-line therapy. The complete response rate ranges from 36 to 66% according to different PTCL subtypes. Furthermore, those who reached a complete or partial response often have a shorter progression-free survival. AREAS COVERED This paper discusses the potential of pralatrexate , a methotrexate analogue, as a treatment of PTCL. The authors report on the efficacy and safety data of controlled studies and describe the end points of ongoing trials. Pralatrexate was the first drug to obtain FDA approval for the treatment of patients with relapsed or refractory PTCL. However, the European Medicines Agency has refused marketing authorization. EXPERT OPINION None of the treatments commonly used today have given satisfactory results. Pralatrexate seems to be one of the most promising agents in the treatment of patients with PTCL. Future efforts should be focused on better understanding the molecular pathogenesis of PTCL and on specific trials for different PTCL subtypes using rational drug combinations that include pralatrexate.
Collapse
Affiliation(s)
- Alessandra Dondi
- University of Modena and Reggio Emilia, Medical Oncology, Department of Diagnostic, Clinical and Public Health Medicine , Modena , Italy
| | | | | | | | | |
Collapse
|
140
|
Abstract
INTRODUCTION The folate biosynthetic pathway, responsible for the de novo synthesis of thymidine and other key cellular components, is essential in all life forms and is especially critical in rapidly proliferating cells. As such, druggable targets along this pathway offer opportunities to impact many disease states such as cancer, infectious disease and autoimmune disease. In this article, recent progress on the development of antifolate compounds is reviewed. AREAS COVERED The evaluation of the patent literature during the period 2010 - 2013 focused on any compounds inhibiting recognized targets on the folate biosynthetic pathway. EXPERT OPINION The folate pathway constitutes a well-validated and well-characterized set of targets; this pathway continues to elicit considerable enthusiasm for new drug discovery from both academic and industrial pharmaceutical research groups. Within the pathway, the enzymes dihydrofolate reductase and thymidylate synthase persist as the most attractive targets for new drug discovery for the treatment of cancer and infectious disease. Importantly, new potential targets for antifolates such as those on the purine biosynthetic pathway have been recently explored. The use of structure-based drug design is a major aspect in modern approaches to these drug targets.
Collapse
Affiliation(s)
- Amy C Anderson
- University of Connecticut, Department of Pharmaceutical Sciences , 69 N. Eagleville Road, Storrs, CT 06269 , USA
| | | |
Collapse
|
141
|
Raz S, Sheban D, Gonen N, Stark M, Berman B, Assaraf YG. Severe hypoxia induces complete antifolate resistance in carcinoma cells due to cell cycle arrest. Cell Death Dis 2014; 5:e1067. [PMID: 24556682 PMCID: PMC3944254 DOI: 10.1038/cddis.2014.39] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/14/2014] [Indexed: 02/08/2023]
Abstract
Antifolates have a crucial role in the treatment of various cancers by inhibiting key enzymes in purine and thymidylate biosynthesis. However, the frequent emergence of inherent and acquired antifolate resistance in solid tumors calls for the development of novel therapeutic strategies to overcome this chemoresistance. The core of solid tumors is highly hypoxic due to poor blood circulation, and this hypoxia is considered to be a major contributor to drug resistance. However, the cytotoxic activity of antifolates under hypoxia is poorly characterized. Here we show that under severe hypoxia, gene expression of ubiquitously expressed key enzymes and transporters in folate metabolism and nucleoside homeostasis is downregulated. We further demonstrate that carcinoma cells become completely refractory, even at sub-millimolar concentrations, to all hydrophilic and lipophilic antifolates tested. Moreover, tumor cells retained sensitivity to the proteasome inhibitor bortezomib and the topoisomerase II inhibitor doxorubicin, which are independent of cell cycle. We provide evidence that this antifolate resistance, associated with repression of folate metabolism, is a result of the inability of antifolates to induce DNA damage under hypoxia, and is attributable to a hypoxia-induced cell cycle arrest, rather than a general anti-apoptotic mechanism. Our findings suggest that solid tumors harboring a hypoxic core of cell cycle-arrested cells may display antifolate resistance while retaining sensitivity to the chemotherapeutics bortezomib and doxorubicin. This study bears important implications for the molecular basis underlying antifolate resistance under hypoxia and its rational overcoming in solid tumors.
Collapse
Affiliation(s)
- S Raz
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - D Sheban
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - N Gonen
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - M Stark
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - B Berman
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Y G Assaraf
- Department of Biology, The Fred Wyszkowski Cancer Research Laboratory, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
142
|
Yu Z, Li XM, Liu SH, Liu B, Gao CH, Hou X. Downregulation of both EGFR and ErbB3 improves the cellular response to pemetrexed in an established pemetrexed‑resistant lung adenocarcinoma A549 cell line. Oncol Rep 2014; 31:1818-24. [PMID: 24549863 DOI: 10.3892/or.2014.3027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 02/06/2014] [Indexed: 11/05/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and ErbB3 (HER3) play important roles in the regulation of cell proliferation, differentiation, anti-apoptosis and chemoresistance; however, their dysregulation in pemetrexed (PEM) resistance remains unclear. The aim of the present study was to clarify the relationship between PEM resistance and gene expression of EGFR and ErbB3, by establishing the PEM-resistant lung adenocarcinoma A549 cell line, A549/PEM. Compared with A549 cells, the A549/PEM cells were significantly more resistant to PEM (P=0.0024). The downregulation of S phase and arrest at G1 stage were detected in the A549/PEM cell line when compared to the A549 cells (P<0.05). The apoptosis rate of A549/PEM cells was much lower than that of the A549 cells after a 24 h continuous exposure to PEM (P<0.001). Real-time PCR and western blotting demonstrated the overexpression of EGFR and ErbB3 in A549/PEM cells. However, downregulation of EGFR or ErbB3 by lentiviral delivered shRNAs in A549/PEM cells showed no significant correlation with PEM sensitivity while silencing both EGFR and ErbB3 increased the cellular response to PEM in the A549/PEM cells and significantly decreased phosphorylation of STAT3, AKT and ERK. Together, these data suggest that either high expression of EGFR or ErbB3 plays a critical role in the cellular response to PEM in human lung adenocarcinoma cells though EGFR/ErbB3-dependent pathways.
Collapse
Affiliation(s)
- Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Xiu-Mei Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Shi-Hai Liu
- Central Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Bing Liu
- Department of Medicine, The Commercial Workers' Hospital of Qingdao, Qingdao 266011, P.R. China
| | - Cai-Hong Gao
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| | - Xin Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao 266003, P.R. China
| |
Collapse
|
143
|
Ćalasan MB, den Boer E, de Rotte MCFJ, Vastert SJ, Kamphuis S, de Jonge R, Wulffraat NM. Methotrexate polyglutamates in erythrocytes are associated with lower disease activity in juvenile idiopathic arthritis patients. Ann Rheum Dis 2013; 74:402-7. [PMID: 24288013 DOI: 10.1136/annrheumdis-2013-203723] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To determine association of erythrocyte methotrexate polyglutamates (MTX-PG) with disease activity and adverse effects in a prospective juvenile idiopathic arthritis (JIA) cohort. METHODS One hundred and thirteen JIA patients were followed from MTX start until 12 months. Erythrocyte MTX-PGs with 1-5 glutamate residues were measured at 3 months with tandem mass spectrometry. The outcomes were Juvenile Arthritis Disease Activity Score (JADAS)-27 and adverse effects. To determine associations of MTX-PGs with JADAS-27 at 3 months and during 1 year of MTX treatment, linear regression and linear mixed-model analyses were used. To determine associations of MTX-PGs with adverse effects during 1 year of MTX treatment, logistic regression was used. Analyses were corrected for JADAS-27 at baseline and co-medication. RESULTS Median JADAS-27 decreased from 12.7 (IQR: 7.8-18.2) at baseline to 2.9 (IQR: 0.1-6.5) at 12 months. Higher concentrations of MTX-PG3 (β: -0.006, p=0.005), MTX-PG4 (β: -0.015, p=0.004), MTX-PG5 (β: -0.051, p=0.011) and MTX-PG3-5 (β: -0.004, p=0.003) were associated with lower disease activity at 3 months. Higher concentrations of MTX-PG3 (β: -0.005, p=0.028), MTX-PG4 (β: -0.014, p=0.014), MTX-PG5 (β: -0.049, p=0.023) and MTX-PG3-5 (β: -0.004, p=0.018) were associated with lower disease activity over 1 year. None of the MTX-PGs was associated with adverse effects. CONCLUSIONS In the first prospective study in JIA, long-chain MTX-PGs were associated with lower JADAS-27 at 3 months and during 1 year of MTX treatment. Erythrocyte MTX-PG could be a plausible candidate for therapeutic drug monitoring of MTX in JIA.
Collapse
Affiliation(s)
- Maja Bulatović Ćalasan
- Department of Paediatric Immunology, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Ethan den Boer
- Department of Clinical Chemistry, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maurits C F J de Rotte
- Department of Clinical Chemistry, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sebastiaan J Vastert
- Department of Paediatric Immunology, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Sylvia Kamphuis
- Department of Paediatric Rheumatology, Erasmus University Medical Centre Rotterdam, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Robert de Jonge
- Department of Clinical Chemistry, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nico M Wulffraat
- Department of Paediatric Immunology, University Medical Centre Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| |
Collapse
|
144
|
Role of topoisomerase I and thymidylate synthase expression in sporadic colorectal cancer: associations with clinicopathological and molecular features. Pathol Res Pract 2013; 210:111-7. [PMID: 24332575 DOI: 10.1016/j.prp.2013.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 09/23/2013] [Accepted: 11/06/2013] [Indexed: 12/14/2022]
Abstract
Topoisomerase I (Topo I) and thymidylate synthase (TS) are essential enzymes for the replication, transcription and repair of DNA, and are potential biomarkers in colorectal cancer (CRC). The aim of the study was to correlate the tissue expression of Topo I and TS in sporadic CRCs with relevant pathological and molecular features and patients' outcome. Topo I and TS expression was assessed by immunostaining in 112 consecutive primary CRCs. Increased expression of Topo I was found in 36% of tumors, preferentially rectal (50%) and with not otherwise specified (NOS) histology (44%). Topo I expression was associated with 18q allelic loss (LOH), (p=0.013), microsatellite stable phenotype (p=0.002) and normal expression of mismatch proteins hMLH1 and hMSH2 (p=0.0012 and p=0.02, respectively). High TS expression was found in 60% of tumors, more frequently in distal sites (62%) and with NOS histology (66%); no association with microsatellite instability was observed. Topo I seems to be involved in the chromosomal instability pathway of sporadic CRCs. Conversely, high TS expression is unlikely to affect the clinical behavior of microsatellite unstable CRCs.
Collapse
|
145
|
Yanagimachi M, Goto H, Kaneko T, Naruto T, Sasaki K, Takeuchi M, Tanoshima R, Kato H, Yokosuka T, Kajiwara R, Fujii H, Tanaka F, Goto S, Takahashi H, Mori M, Kai S, Yokota S. Influence of pre-hydration and pharmacogenetics on plasma methotrexate concentration and renal dysfunction following high-dose methotrexate therapy. Int J Hematol 2013; 98:702-7. [DOI: 10.1007/s12185-013-1464-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Revised: 11/02/2013] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
|
146
|
Singh R, Avliyakulov NK, Braga M, Haykinson MJ, Martinez L, Singh V, Parveen M, Chaudhuri G, Pervin S. Proteomic identification of mitochondrial targets of arginase in human breast cancer. PLoS One 2013; 8:e79242. [PMID: 24223914 PMCID: PMC3818427 DOI: 10.1371/journal.pone.0079242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 09/20/2013] [Indexed: 11/19/2022] Open
Abstract
We have previously reported arginase expression in human breast cancer cells and demonstrated that the inhibition of arginase by Nω hydroxy L-arginine (NOHA) in MDA-MB-468 cells induces apoptosis. However, arginase expression and its possible molecular targets in human breast tumor samples and potential clinical implications have not been fully elucidated. Here, we demonstrate arginase expression in human breast tumor samples, and several established breast cancer cell lines, in which NOHA treatment selectively inhibits cell proliferation. The over-expression of Bcl2 in MDA-MB-468 cells abolished NOHA-induced apoptosis, suggesting that the mitochondria may be the main site of NOHA’s action. We, therefore, undertook a proteomics approach to identify key mitochondrial targets of arginase in MDA-MB-468 cells. We identified 54 non-mitochondrial and 13 mitochondrial proteins that were differentially expressed in control and NOHA treated groups. Mitochondrial serine hydroxymethyltransferase (mSHMT) was identified as one of the most promising targets of arginase. Both arginase II (Arg II) and mSHMT expressions were higher in human breast tumor tissues compared to the matched normal and there was a strong correlation between Arg II and mSHMT protein expression. MDA-MB-468 xenografts had significant upregulation of Arg II expression that preceded the induction of mSHMT expression. Small inhibitory RNA (siRNA)-mediated inhibition of Arg II in MDA-MB-468 and HCC-1806 cells led to significant inhibition of both the mSHMT gene and protein expression. As mSHMT is a key player in folate metabolism, our data provides a novel link between arginine and folate metabolism in human breast cancer, both of which are critical for tumor cell proliferation.
Collapse
Affiliation(s)
- Rajan Singh
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- * E-mail:
| | - Nuraly K. Avliyakulov
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Melissa Braga
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
| | - Michael J. Haykinson
- Department of Biological Chemistry, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Luis Martinez
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
| | - Vikash Singh
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
| | - Meher Parveen
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Shehla Pervin
- Internal Medicine, Charles Drew University of Medicine and Science, Los Angeles, California, United States of America
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| |
Collapse
|
147
|
Livney YD, Assaraf YG. Rationally designed nanovehicles to overcome cancer chemoresistance. Adv Drug Deliv Rev 2013; 65:1716-30. [PMID: 23954781 DOI: 10.1016/j.addr.2013.08.006] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 08/08/2013] [Indexed: 02/07/2023]
Abstract
Drug resistance is a primary hindrance towards curative cancer chemotherapy. Nanotechnology holds great promise in establishing efficacious and innovative strategies to overcome chemoresistance, and markedly facilitate complementary treatments and cancer diagnostics. Various nanomedical devices are being introduced and evaluated, demonstrating encouraging results. While stealth liposomes serve as a benchmark, astonishing progress is witnessed in polymeric nanovehicles, sometimes combined with low molecular weight surfactants, some of which inhibit drug resistance in addition to solubilizing drugs. Cutting edge multifunctional or quadrugnostic nanoparticles currently developed offer simultaneous targeted delivery of chemotherapeutics and chemosensitizers or drug-resistance gene silencing cargo, along with diagnostic imaging agents, like metallic NPs. Viral and cellular components offer exciting new routes for cancer targeting and treatment. Targeting intracellular compartments is another challenging frontier spawning pioneering approaches and results. To further enhance rational design of nanomedicine for overcoming drug resistance, we review the latest thoughts and accomplishments in recent literature.
Collapse
|
148
|
von Stechow L, Ruiz-Aracama A, van de Water B, Peijnenburg A, Danen E, Lommen A. Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells. PLoS One 2013; 8:e76476. [PMID: 24146875 PMCID: PMC3797786 DOI: 10.1371/journal.pone.0076476] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 08/29/2013] [Indexed: 11/19/2022] Open
Abstract
The chemotherapeutic compound, cisplatin causes various kinds of DNA lesions but also triggers other pertubations, such as ER and oxidative stress. We and others have shown that treatment of pluripotent stem cells with cisplatin causes a plethora of transcriptional and post-translational alterations that, to a major extent, point to DNA damage response (DDR) signaling. The orchestrated DDR signaling network is important to arrest the cell cycle and repair the lesions or, in case of damage beyond repair, eliminate affected cells. Failure to properly balance the various aspects of the DDR in stem cells contributes to ageing and cancer. Here, we performed metabolic profiling by mass spectrometry of embryonic stem (ES) cells treated for different time periods with cisplatin. We then integrated metabolomics with transcriptomics analyses and connected cisplatin-regulated metabolites with regulated metabolic enzymes to identify enriched metabolic pathways. These included nucleotide metabolism, urea cycle and arginine and proline metabolism. Silencing of identified proline metabolic and catabolic enzymes indicated that altered proline metabolism serves as an adaptive, rather than a toxic response. A group of enriched metabolic pathways clustered around the metabolite S-adenosylmethionine, which is a hub for methylation and transsulfuration reactions and polyamine metabolism. Enzymes and metabolites with pro- or anti-oxidant functions were also enriched but enhanced levels of reactive oxygen species were not measured in cisplatin-treated ES cells. Lastly, a number of the differentially regulated metabolic enzymes were identified as target genes of the transcription factor p53, pointing to p53-mediated alterations in metabolism in response to genotoxic stress. Altogether, our findings reveal interconnecting metabolic pathways that are responsive to cisplatin and may serve as signaling modules in the DDR in pluripotent stem cells.
Collapse
Affiliation(s)
- Louise von Stechow
- Department of Toxicology, LACDR, Leiden University, Leiden, The Netherlands
- Netherlands Toxicogenomics Center, Maastricht, The Netherlands
| | - Ainhoa Ruiz-Aracama
- RIKILT - Institute of Food Safety, Wageningen, The Netherlands
- Netherlands Toxicogenomics Center, Maastricht, The Netherlands
| | - Bob van de Water
- Department of Toxicology, LACDR, Leiden University, Leiden, The Netherlands
| | - Ad Peijnenburg
- RIKILT - Institute of Food Safety, Wageningen, The Netherlands
| | - Erik Danen
- Department of Toxicology, LACDR, Leiden University, Leiden, The Netherlands
- * E-mail: (AL); (ED)
| | - Arjen Lommen
- RIKILT - Institute of Food Safety, Wageningen, The Netherlands
- * E-mail: (AL); (ED)
| |
Collapse
|
149
|
Kingsley K. Potential effects of dietary folate supplementation on oral carcinogenesis, development and progression. J Diet Suppl 2013; 7:51-9. [PMID: 22435573 DOI: 10.3109/19390210903535019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Folates are associated with a variety of human health benefits, while folate deficiency has been identified as a potential risk factor for many health problems and cancers, due to its role in dysregulation of DNA synthesis, repair and methylation. The US Food and Drug Administration adopted requirements for folate fortification in some food products, which has resulted in an increase in mean dietary folate intake and a concomitant reduction in the incidence of adverse health effects associated with folate deficiency. This includes a significant reduction in the incidence of folate deficiency-associated birth defects, such as spina bifida.
Collapse
Affiliation(s)
- Karl Kingsley
- University of Nevada, Las Vegas, School of Dental Medicine, 1001 Shadow Lane, B315, Las Vegas, NV 89106, USA.
| |
Collapse
|
150
|
Bienemann K, Staege MS, Howe SJ, Sena-Esteves M, Hanenberg H, Kramm CM. Targeted expression of human folylpolyglutamate synthase for selective enhancement of methotrexate chemotherapy in osteosarcoma cells. Cancer Gene Ther 2013; 20:514-20. [PMID: 23949282 DOI: 10.1038/cgt.2013.48] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/19/2013] [Indexed: 11/09/2022]
Abstract
The antifolate methotrexate (MTX) is an important chemotherapeutic agent for treatment of osteosarcoma. This drug is converted intracellularly into polyglutamate derivates by the enzyme folylpolyglutamate synthase (FPGS). MTX polyglutamates show an enhanced and prolonged cytotoxicity in comparison to the monoglutamate. In the present study, we proved the hypothesis that transfer of the human fpgs gene into osteosarcoma cells may augment their MTX sensitivity. For this purpose, we employed the human osteocalcin (OC) promoter, which had shown marked osteosarcoma specificity in promoter studies using different luciferase assays in osteosarcoma and non-osteosarcoma cell lines. A recombinant lentiviral vector was generated with the OC promoter driving the expression of fpgs and the gene for enhanced green fluorescent protein (egfp), which was linked to fpgs by an internal ribosomal entry site (IRES). As the vector backbone contained only a self-inactivating viral LTR promoter, any interference of the OC promoter by unspecific promoter elements was excluded. We tested the expression of FPGS and enhanced green fluorescent protein (EGFP) after lentiviral transduction in various osteosarcoma cell lines (human MG-63 cells and TM 791 cells; rat osteosarcoma (ROS) 17/2.8 cells) and non-osteogenic tumor cell lines (293T human embryonic kidney cells, HeLa human cervix carcinoma cells). EGFP expression and MTX sensitivity were assessed in comparison with non-transduced controls. Whereas the OC promoter failed to enhance MTX sensitivity via FPGS expression in non-osteogenic tumor cell lines, the OC promoter mediated a markedly increased MTX cytotoxicity in all osteosarcoma cell lines after lentiviral transduction. The present chemotherapy-enhancing gene therapy system may have great potential to overcome in future MTX resistance in human osteosarcomas.
Collapse
Affiliation(s)
- K Bienemann
- 1] Department of Pediatric Oncology, Hematology and Immunology, University Children's Hospital, Heinrich Heine University, Duesseldorf, Germany [2] Department of Pediatrics and Adolescent Medicine, Elisabeth Hospital, Essen, Germany
| | | | | | | | | | | |
Collapse
|