101
|
Pochechueva T, Chinarev A, Schoetzau A, Fedier A, Bovin NV, Hacker NF, Jacob F, Heinzelmann-Schwarz V. Blood Plasma-Derived Anti-Glycan Antibodies to Sialylated and Sulfated Glycans Identify Ovarian Cancer Patients. PLoS One 2016; 11:e0164230. [PMID: 27764122 PMCID: PMC5072665 DOI: 10.1371/journal.pone.0164230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/21/2016] [Indexed: 12/11/2022] Open
Abstract
Altered levels of naturally occurring anti-glycan antibodies (AGA) circulating in human blood plasma are found in different pathologies including cancer. Here the levels of AGA directed against 22 negatively charged (sialylated and sulfated) glycans were assessed in high-grade serous ovarian cancer (HGSOC, n = 22) patients and benign controls (n = 31) using our previously developed suspension glycan array (SGA). Specifically, the ability of AGA to differentiate between controls and HGSOC, the most common and aggressive type of ovarian cancer with a poor outcome was determined. Results were compared to CA125, the commonly used ovarian cancer biomarker. AGA to seven glycans that significantly (P<0.05) differentiated between HGSOC and control were identified: AGA to top candidates SiaTn and 6-OSulfo-TF (both IgM) differentiated comparably to CA125. The area under the curve (AUC) of a panel of AGA to 5 glycans (SiaTn, 6-OSulfo-TF, 6-OSulfo-LN, SiaLea, and GM2) (0.878) was comparable to CA125 (0.864), but it markedly increased (0.985) when combined with CA125. AGA to SiaTn and 6-OSulfo-TF were also valuable predictors for HGSOC when CA125 values appeared inconclusive, i.e. were below a certain threshold. AGA-glycan binding was in some cases isotype-dependent and sensitive to glycosidic linkage switch (α2-6 vs. α2-3), to sialylation, and to sulfation of the glycans. In conclusion, plasma-derived AGA to sialylated and sulfated glycans including SiaTn and 6-OSulfo-TF detected by SGA present a valuable alternative to CA125 for differentiating controls from HGSOC patients and for predicting the likelihood of HGSOC, and may be potential HGSOC tumor markers.
Collapse
Affiliation(s)
- Tatiana Pochechueva
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Alexander Chinarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. MIklukho-Maklaya, 16/10, 117997, Moscow, Russian Federation
| | - Andreas Schoetzau
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - André Fedier
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Nicolai V. Bovin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. MIklukho-Maklaya, 16/10, 117997, Moscow, Russian Federation
| | - Neville F. Hacker
- Royal Hospital for Women, Gynecological Cancer Centre, School of Women’s and Children’s Health, University of New South Wales, NSW 2031, Sydney, Australia
| | - Francis Jacob
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
| | - Viola Heinzelmann-Schwarz
- Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031, Basel, Switzerland
- Hospital for Women, Department of Gynecology and Gynecological Oncology, University Hospital Basel and University of Basel, Spitalstrasse 21, 4021, Basel, Switzerland
- * E-mail:
| |
Collapse
|
102
|
Multiple Roles for B-Lymphocytes in Sjogren's Syndrome. J Clin Med 2016; 5:jcm5100087. [PMID: 27740602 PMCID: PMC5086589 DOI: 10.3390/jcm5100087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/28/2016] [Accepted: 09/29/2016] [Indexed: 12/22/2022] Open
Abstract
Sjogren’s syndrome (SS) is a complex heterogeneous autoimmune disease resulting in loss of salivary gland and lacrimal gland function that may include multiple systemic manifestations including lymphoma. Multiple cell types participate in disease pathogenesis. This review discusses evidence for abnormal B cell subpopulations in patients with SS, critical roles of B cells in SS and the status of B cell–directed therapies in the management of patients with SS.
Collapse
|
103
|
Abstract
Numerous risk alleles for systemic lupus erythematosus (SLE) have now been identified. Analysis of the expression of genes with risk alleles in cells of hematopoietic origin demonstrates them to be most abundantly expressed in B cells and dendritic cells (DCs), suggesting that these cell types may be the drivers of the inflammatory changes seen in SLE. DCs are of particular interest as they act to connect the innate and the adaptive immune response. Thus, DCs can transform inflammation into autoimmunity, and autoantibodies are the hallmark of SLE. In this review, we focus on mechanisms of tolerance that maintain DCs in a non‐activated, non‐immunogenic state. We demonstrate, using examples from our own studies, how alterations in DC function stemming from either DC‐intrinsic abnormalities or DC‐extrinsic regulators of function can predispose to autoimmunity.
Collapse
Affiliation(s)
- Myoungsun Son
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Diseases, Manhasset, NY, USA
| | - Sun Jung Kim
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Diseases, Manhasset, NY, USA
| | - Betty Diamond
- The Feinstein Institute for Medical Research, Center for Autoimmune and Musculoskeletal Diseases, Manhasset, NY, USA
| |
Collapse
|
104
|
Späth PJ, Schneider C, von Gunten S. Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations. Arch Immunol Ther Exp (Warsz) 2016; 65:215-231. [DOI: 10.1007/s00005-016-0422-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/31/2016] [Indexed: 12/22/2022]
|
105
|
Moh ESX, Lin CH, Thaysen-Andersen M, Packer NH. Site-Specific N-Glycosylation of Recombinant Pentameric and Hexameric Human IgM. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1143-1155. [PMID: 27038031 DOI: 10.1007/s13361-016-1378-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 06/05/2023]
Abstract
Glycosylation is known to play an important role in IgG antibody structure and function. Polymeric IgM, the largest known antibody in humans, displays five potential N-glycosylation sites on each heavy chain monomer. IgM can exist as a pentamer with a connecting singly N-glycosylated J-chain (with a total of 51 glycosylation sites) or as a hexamer (60 glycosylation sites). In this study, the N-glycosylation of recombinant pentameric and hexameric IgM produced by the same human cell type and culture conditions was site-specifically profiled by RP-LC-CID/ETD-MS/MS using HILIC-enriched tryptic and GluC glycopeptides. The occupancy of all putative N-glycosylation sites on the pentameric and hexameric IgM were able to be determined. Distinct glycosylation differences were observed between each of the five N-linked sites on the IgM heavy chains. While Asn171, Asn332, and Asn395 all had predominantly complex type glycans, differences in glycan branching and sialylation were observed between the sites. Asn563, a high mannose-rich glycosylation site that locates in the center of the IgM polymer, was only approximately 60% occupied in both the pentameric and hexameric IgM forms, with a difference in relative abundance of the glycan structures between the pentamer and hexamer. This study highlights the information obtained by characterization of the site-heterogeneity of a highly glycosylated protein of high molecular mass with quaternary structure, revealing differences that would not be seen by global glycan or deglycosylated peptide profiling. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Edward S X Moh
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Chi-Hung Lin
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- ARC Centre of Excellence in Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
- ARC Centre of Excellence in Nanoscale BioPhotonics, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
106
|
|
107
|
Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep 2016; 6:24072. [PMID: 27044888 PMCID: PMC4820712 DOI: 10.1038/srep24072] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
Abstract
Intestinal dysbiosis, characterized by a reduced Firmicutes/Bacteroidetes ratio, has been reported in systemic lupus erythematosus (SLE) patients. In this study, in vitro cultures revealed that microbiota isolated from SLE patient stool samples (SLE-M) promoted lymphocyte activation and Th17 differentiation from naïve CD4+ lymphocytes to a greater extent than healthy control-microbiota. Enrichment of SLE-M with Treg-inducing bacteria showed that a mixture of two Clostridia strains significantly reduced the Th17/Th1 balance, whereas Bifidobacterium bifidum supplementation prevented CD4+ lymphocyte over-activation, thus supporting a possible therapeutic benefit of probiotics containing Treg-inducer strains in order to restore the Treg/Th17/Th1 imbalance present in SLE. In fact, ex vivo analyses of patient samples showed enlarged Th17 and Foxp3+ IL-17+ populations, suggesting a possible Treg-Th17 trans-differentiation. Moreover, analyses of fecal microbiota revealed a negative correlation between IL-17+ populations and Firmicutes in healthy controls, whereas in SLE this phylum correlated directly with serum levels of IFNγ, a Th1 cytokine slightly reduced in patients. Finally, the frequency of Synergistetes, positively correlated with the Firmicutes/Bacteroidetes ratio in healthy controls, tended to be reduced in patients when anti-dsDNA titers were increased and showed a strong negative correlation with IL-6 serum levels and correlated positively with protective natural IgM antibodies against phosphorylcholine.
Collapse
|
108
|
Wang H, Coligan JE, Morse HC. Emerging Functions of Natural IgM and Its Fc Receptor FCMR in Immune Homeostasis. Front Immunol 2016; 7:99. [PMID: 27014278 PMCID: PMC4791374 DOI: 10.3389/fimmu.2016.00099] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/29/2016] [Indexed: 01/02/2023] Open
Abstract
Most natural IgM antibodies are encoded by germline Ig sequences and are produced in large quantities by both mice and humans in the absence of intentional immunization. Natural IgM are reactive with many conserved epitopes, including those shared by microorganisms and autoantigens. As a result, these antibodies play important roles in clearing intruding pathogens, as well as apoptotic/necrotic cells and otherwise damaged tissues. While natural IgM binds to target structures with low affinity due to a lack of significant selection by somatic hypermutation, its pentameric structure with 10 antigen-binding sites enables these antibodies to bind multivalent target antigens with high avidity. Opsonization of antigen complexed with IgM is mediated by cell surface Fc receptors. While the existence of Fc alpha/mu receptor has been known for some time, only recently has the Fc receptor specific for IgM (FCMR) been identified. In this review, we focus on our current understandings of how natural IgM and FCMR regulate the immune system and maintain homeostasis under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hongsheng Wang
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| | - John E Coligan
- Receptor Cell Biology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| | - Herbert C Morse
- Virology and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| |
Collapse
|
109
|
Chruscinski A, Huang FYY, Nguyen A, Lioe J, Tumiati LC, Kozuszko S, Tinckam KJ, Rao V, Dunn SE, Persinger MA, Levy GA, Ross HJ. Generation of Antigen Microarrays to Screen for Autoantibodies in Heart Failure and Heart Transplantation. PLoS One 2016; 11:e0151224. [PMID: 26967734 PMCID: PMC4788148 DOI: 10.1371/journal.pone.0151224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022] Open
Abstract
Autoantibodies directed against endogenous proteins including contractile proteins and endothelial antigens are frequently detected in patients with heart failure and after heart transplantation. There is evidence that these autoantibodies contribute to cardiac dysfunction and correlate with clinical outcomes. Currently, autoantibodies are detected in patient sera using individual ELISA assays (one for each antigen). Thus, screening for many individual autoantibodies is laborious and consumes a large amount of patient sample. To better capture the broad-scale antibody reactivities that occur in heart failure and post-transplant, we developed a custom antigen microarray technique that can simultaneously measure IgM and IgG reactivities against 64 unique antigens using just five microliters of patient serum. We first demonstrated that our antigen microarray technique displayed enhanced sensitivity to detect autoantibodies compared to the traditional ELISA method. We then piloted this technique using two sets of samples that were obtained at our institution. In the first retrospective study, we profiled pre-transplant sera from 24 heart failure patients who subsequently received heart transplants. We identified 8 antibody reactivities that were higher in patients who developed cellular rejection (2 or more episodes of grade 2R rejection in first year after transplant as defined by revised criteria from the International Society for Heart and Lung Transplantation) compared with those who did have not have rejection episodes. In a second retrospective study with 31 patients, we identified 7 IgM reactivities that were higher in heart transplant recipients who developed antibody-mediated rejection (AMR) compared with control recipients, and in time course studies, these reactivities appeared prior to overt graft dysfunction. In conclusion, we demonstrated that the autoantibody microarray technique outperforms traditional ELISAs as it uses less patient sample, has increased sensitivity, and can detect autoantibodies in a multiplex fashion. Furthermore, our results suggest that this autoantibody array technology may help to identify patients at risk of rejection following heart transplantation and identify heart transplant recipients with AMR.
Collapse
Affiliation(s)
- Andrzej Chruscinski
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
- * E-mail:
| | - Flora Y. Y. Huang
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Albert Nguyen
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jocelyn Lioe
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Laura C. Tumiati
- Division of Cardiac Surgery, University Health Network, Toronto, Ontario, Canada
| | - Stella Kozuszko
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Kathryn J. Tinckam
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Vivek Rao
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Cardiac Surgery, University Health Network, Toronto, Ontario, Canada
| | - Shannon E. Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Toronto General Research Institute, Toronto, Ontario, Canada
- Women’s College Research Institute, Toronto, Ontario, Canada
| | - Michael A. Persinger
- Behavioral Neuroscience, Biomolecular Sciences and Human Studies Programs, Laurentian University, Sudbury, Ontario, Canada
| | - Gary A. Levy
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Heather J. Ross
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
110
|
Huck DM, Okello E, Mirembe G, Ssinabulya I, Zidar DA, Silverman GJ, Getu L, Nowacki AS, Calabrese LH, Salata RA, Longenecker CT. Role of Natural Autoantibodies in Ugandans With Rheumatic Heart Disease and HIV. EBioMedicine 2016; 5:161-6. [PMID: 27077123 PMCID: PMC4816839 DOI: 10.1016/j.ebiom.2016.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/28/2016] [Accepted: 02/03/2016] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Rheumatic heart disease (RHD) and HIV are prevalent diseases in sub-Saharan Africa, but little is known about their potential interrelationships. The objective of this study was to assess the prevalence of protective natural autoantibodies among patients with RHD in Uganda, and to determine whether the levels of these autoantibodies are affected by HIV status. METHODS Participants were grouped according to RHD and HIV status. The three control groups (RHD - HIV -, RHD - HIV +, RHD + HIV -) were age-matched to the RHD + HIV + participants. All participants underwent HIV testing and echocardiography to evaluate for RHD. Natural autoantibody levels reactive with phosphorylcholine (PC) and malondialdehyde (MDA) were measured. FINDINGS We enrolled 220 participants; 21 with both RHD and HIV. Ages ranged from 10 to 60 years, with female predominance (144/220, 65%). After adjusting for age and gender, HIV infection and RHD were each associated with low IgM anti-PC (HIV: p < 0.0001 and RHD: p = 0.01). A distinct HIV ∗ RHD interaction was identified (p = 0.045) with increased IgG anti-MDA levels in HIV infected subjects without RHD, whereas IgG anti-MDA levels were decreased in HIV infected subjects with RHD. INTERPRETATION We found that HIV and RHD are associated with alterations in natural autoantibody responses previously linked to an increased risk for atherosclerosis and autoimmune inflammatory disease.
Collapse
Affiliation(s)
- Daniel M Huck
- Cleveland Clinic Lerner College of Medicine, at Case Western Reserve School of Medicine, 9980 Carnegie Ave, Cleveland, OH 44195, United States
| | - Emmy Okello
- Uganda Heart Institute, Mulago Hospital, Kampala Binaisa Road, Kampala, Uganda
| | - Grace Mirembe
- Joint Clinical Research Centre, Kampala Lubiri Ring Rd, Kampala, Uganda
| | - Isaac Ssinabulya
- Uganda Heart Institute, Mulago Hospital, Kampala Binaisa Road, Kampala, Uganda
| | - David A Zidar
- Harrington Heart and Vascular Institute, University Hospitals, 11100 Euclid Ave, Cleveland, OH 44106, United States
| | - Gregg J Silverman
- Medicine and Pathology, NYU School of Medicine, 462 First Avenue, New York City, NY 10016, United States
| | - Lelise Getu
- Medicine and Pathology, NYU School of Medicine, 462 First Avenue, New York City, NY 10016, United States
| | - Amy S Nowacki
- Quantitative Health Sciences, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
| | - Leonard H Calabrese
- Rheumatic and Immunological Diseases, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, United States
| | - Robert A Salata
- Infectious Diseases, University Hospitals, 11100 Euclid Ave, Cleveland, OH 44106, United States
| | - Chris T Longenecker
- Harrington Heart and Vascular Institute, University Hospitals, 11100 Euclid Ave, Cleveland, OH 44106, United States
| |
Collapse
|
111
|
Geherin SA, Gómez D, Glabman RA, Ruthel G, Hamann A, Debes GF. IL-10+ Innate-like B Cells Are Part of the Skin Immune System and Require α4β1 Integrin To Migrate between the Peritoneum and Inflamed Skin. THE JOURNAL OF IMMUNOLOGY 2016; 196:2514-2525. [PMID: 26851219 DOI: 10.4049/jimmunol.1403246] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 01/04/2016] [Indexed: 02/07/2023]
Abstract
The skin is an important barrier organ and frequent target of autoimmunity and allergy. In this study, we found innate-like B cells that expressed the anti-inflammatory cytokine IL-10 in the skin of humans and mice. Unexpectedly, innate-like B1 and conventional B2 cells showed differential homing capacities with peritoneal B1 cells preferentially migrating into the inflamed skin of mice. Importantly, the skin-homing B1 cells included IL-10-secreting cells. B1 cell homing into the skin was independent of typical skin-homing trafficking receptors and instead required α4β1-integrin. Moreover, B1 cells constitutively expressed activated β1 integrin and relocated from the peritoneum to the inflamed skin and intestine upon innate stimulation, indicating an inherent propensity to extravasate into inflamed and barrier sites. We conclude that innate-like B cells migrate from central reservoirs into skin, adding an important cell type with regulatory and protective functions to the skin immune system.
Collapse
Affiliation(s)
- Skye A Geherin
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Daniela Gómez
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Raisa A Glabman
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Alf Hamann
- Deutsches Rheumaforschungszentrum (DRFZ), Berlin, Germany
| | - Gudrun F Debes
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
112
|
Breen LD, Pučić-Baković M, Vučković F, Reiding K, Trbojević-Akmačić I, Šrajer Gajdošik M, Cook MI, Lopez MJ, Wuhrer M, Camara LM, Andjelković U, Dupuy DE, Josić D. IgG and IgM glycosylation patterns in patients undergoing image-guided tumor ablation. Biochim Biophys Acta Gen Subj 2016; 1860:1786-94. [PMID: 26827872 DOI: 10.1016/j.bbagen.2016.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/01/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND Image-guided tumor ablation is a technique whereby needle-like applicators are placed directly into solid tumors under guidance typically with computed tomography or ultrasound. Changes in IgG and IgM antibody glycosylation were studied during ablation-induced immune response to cancer, and the use of glycosylation as a biomarker for diagnosis, prognosis and disease treatment was examined. METHODS Plasma from 27 tumor patients was collected immediately before, after and for 6 months following ablation. IgG and IgM antibodies were isolated by use high-throughput chromatography, and analyzed by hydrophilic liquid chromatography. Thorough identification of glycan structures in each chromatography peak was performed by nano-liquid chromatography electrospray ionization mass spectrometry. RESULTS Although antibody glycosylation was found to vary with cancer type, discernable patterns of change based on the successful treatment of tumors by ablation were not identified. One patient with renal clear cell carcinoma and poor disease outcome had unexpectedly high amount of oligomannose IgG glycans during the whole period of monitoring. In contrast, IgM antibodies did not follow the same pattern. CONCLUSIONS These findings suggest that glycosylation patterns are indicative of an immune system that is unable to prevent different types of cancer, rather than products of the immunostimulatory response to the ablation of tumor itself. Analyses of the outcome effect suggested that IgG glycosylation and IgM glycosylation are not associated with tumor ablation. GENERAL SIGNIFICANCE Present work opens a new way for parallel determination of glycosylation changes of both IgG and IgM antibodies by use of high-throughput methods, and their future use as biomarkers for disease diagnosis and prognosis. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Lucas D Breen
- Proteomics Core, COBRE CCRD, Rhode Island Hospital, Providence, RI, USA
| | | | - Frano Vučković
- Genos Ltd., Glycobiology Research Laboratory, Zagreb, Croatia
| | - Karli Reiding
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | | | | | - Madeleine I Cook
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Michael J Lopez
- Center for Statistical Sciences, Brown University, Providence, RI, USA
| | - Manfred Wuhrer
- Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands; VU University Amsterdam, Division of BioAnalytical Chemistry, Amsterdam, The Netherlands
| | - L M Camara
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | | | - Damian E Dupuy
- Department of Diagnostic Imaging, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| | - Djuro Josić
- Department of Biotechnology, University of Rijeka, Croatia; Department of Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| |
Collapse
|
113
|
Kolhatkar NS, Brahmandam A, Thouvenel CD, Becker-Herman S, Jacobs HM, Schwartz MA, Allenspach EJ, Khim S, Panigrahi AK, Luning Prak ET, Thrasher AJ, Notarangelo LD, Candotti F, Torgerson TR, Sanz I, Rawlings DJ. Altered BCR and TLR signals promote enhanced positive selection of autoreactive transitional B cells in Wiskott-Aldrich syndrome. ACTA ACUST UNITED AC 2015; 212:1663-77. [PMID: 26371186 PMCID: PMC4577851 DOI: 10.1084/jem.20150585] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/11/2015] [Indexed: 12/29/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency disorder frequently associated with systemic autoimmunity, including autoantibody-mediated cytopenias. WAS protein (WASp)-deficient B cells have increased B cell receptor (BCR) and Toll-like receptor (TLR) signaling, suggesting that these pathways might impact establishment of the mature, naive BCR repertoire. To directly investigate this possibility, we evaluated naive B cell specificity and composition in WASp-deficient mice and WAS subjects (n = 12). High-throughput sequencing and single-cell cloning analysis of the BCR repertoire revealed altered heavy chain usage and enrichment for low-affinity self-reactive specificities in murine marginal zone and human naive B cells. Although negative selection mechanisms including deletion, anergy, and receptor editing were relatively unperturbed, WASp-deficient transitional B cells showed enhanced proliferation in vivo mediated by antigen- and Myd88-dependent signals. Finally, using both BCR sequencing and cell surface analysis with a monoclonal antibody recognizing an intrinsically autoreactive heavy chain, we show enrichment in self-reactive cells specifically at the transitional to naive mature B cell stage in WAS subjects. Our combined data support a model wherein modest alterations in B cell-intrinsic, BCR, and TLR signals in WAS, and likely other autoimmune disorders, are sufficient to alter B cell tolerance via positive selection of self-reactive transitional B cells.
Collapse
Affiliation(s)
- Nikita S Kolhatkar
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Archana Brahmandam
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Christopher D Thouvenel
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Shirly Becker-Herman
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Holly M Jacobs
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Marc A Schwartz
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Eric J Allenspach
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195
| | - Socheath Khim
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Anil K Panigrahi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104
| | - Adrian J Thrasher
- Molecular Immunology Unit, Section of Molecular and Cellular Immunology, Centre for Immunodeficiency, University College London Institute of Child Health, London WC1N 1EH, England, UK
| | | | - Fabio Candotti
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Troy R Torgerson
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Ignacio Sanz
- Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322 Lowance Center for Human Immunology and Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA 30322
| | - David J Rawlings
- Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Department of Immunology and Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98195 Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| |
Collapse
|
114
|
Abstract
IgM in the blood of normal individuals consists mainly of 'natural' polyreactive antibodies. Natural IgM is thought to provide an initial defense against infection and to promote the healing of wounded cells. Yet, as Panzer and colleagues show, these benefits can be eclipsed when the IgM binds to damaged cells of the glomerulus, activating complement. IgM in glomeruli thus signifies cellular damage and may warn that the pace of that damage exceeds the capacity for repair.
Collapse
Affiliation(s)
- Jeffrey L Platt
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marilia Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
115
|
Rodriguez-Zhurbenko N, Rabade-Chediak M, Martinez D, Griñan T, Hernandez AM. Anti-NeuGcGM3 reactivity: a possible role of natural antibodies and B-1 cells in tumor immunosurveillance. Ann N Y Acad Sci 2015. [DOI: 10.1111/nyas.12827] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nely Rodriguez-Zhurbenko
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| | - Maura Rabade-Chediak
- Chimeric Proteins Group, Immunobiology Division; Center of Molecular Immunology; Havana Cuba
| | - Darel Martinez
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| | - Tania Griñan
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| | - Ana Maria Hernandez
- Natural Antibodies Group, Tumor Immunology Division; Center of Molecular Immunology; Havana Cuba
| |
Collapse
|
116
|
Bello-Gil D, Manez R. Exploiting natural anti-carbohydrate antibodies for therapeutic purposes. BIOCHEMISTRY (MOSCOW) 2015; 80:836-45. [DOI: 10.1134/s0006297915070044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
117
|
Ochs RL, Mahler M, Basu A, Rios-Colon L, Sanchez TW, Andrade LE, Fritzler MJ, Casiano CA. The significance of autoantibodies to DFS70/LEDGFp75 in health and disease: integrating basic science with clinical understanding. Clin Exp Med 2015; 16:273-93. [PMID: 26088181 PMCID: PMC4684813 DOI: 10.1007/s10238-015-0367-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022]
Abstract
Antinuclear autoantibodies (ANAs) displaying the nuclear dense fine speckled immunofluorescence (DFS-IIF) pattern in HEp-2 substrates are commonly observed in clinical laboratory referrals. They target the dense fine speckled autoantigen of 70 kD (DFS70), most commonly known as lens epithelium-derived growth factor p75 (LEDGFp75). Interesting features of these ANAs include their low frequency in patients with systemic autoimmune rheumatic diseases (SARD), elevated prevalence in apparently healthy individuals, IgG isotype, strong trend to occur as the only ANA specificity in serum, and occurrence in moderate to high titers. These autoantibodies have also been detected at varied frequencies in patients with diverse non-SARD inflammatory and malignant conditions such as atopic diseases, asthma, eye diseases, and prostate cancer. These observations have recently stimulated vigorous research on their clinical and biological significance. Some studies have suggested that they are natural, protective antibodies that could serve as biomarkers to exclude a SARD diagnosis. Other studies suggest that they might be pathogenic in certain contexts. The emerging role of DFS70/LEDGFp75 as a stress protein relevant to human acquired immunodeficiency syndrome, cancer, and inflammation also points to the possibility that these autoantibodies could be sensors of cellular stress and inflammation associated with environmental factors. In this comprehensive review, we integrate our current knowledge of the biology of DFS70/LEDGFp75 with the clinical understanding of its autoantibodies in the contexts of health and disease.
Collapse
Affiliation(s)
- Robert L Ochs
- Ventana Medical, Roche Tissue Diagnostics, Tucson, AZ, USA
| | - Michael Mahler
- Department of Research, Inova Diagnostics, Inc., San Diego, CA, USA
| | - Anamika Basu
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA
| | - Leslimar Rios-Colon
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA
| | - Tino W Sanchez
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA
| | - Luis E Andrade
- Rheumatology Division, Universidade Federal de Sao Paulo, and Immunology Division, Fleury Medicine and Health Laboratories, São Paulo, Brazil
| | | | - Carlos A Casiano
- Department of Basic Sciences, Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Mortensen Hall 142, 11085 Campus St, Loma Linda, CA, 92350, USA.
- Department of Medicine, Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
118
|
Affiliation(s)
- L Temmerman
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Debyelaan 25, Maastricht 6229 HX, The Netherlands
| | - E A L Biessen
- Experimental Vascular Pathology, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Debyelaan 25, Maastricht 6229 HX, The Netherlands
| |
Collapse
|
119
|
Makkar S, Rath NC, Packialakshmi B, Huff WE, Huff GR. Nutritional effects of egg shell membrane supplements on chicken performance and immunity. Poult Sci 2015; 94:1184-9. [PMID: 25840966 DOI: 10.3382/ps/pev098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 12/26/2022] Open
Abstract
Eggshell membranes (ESM) contain a variety of proteins and peptides which help in the development of embryo and provide protection to it. Many of the peptides and proteins associated with ESM have antimicrobial, immune-modulatory, and adjuvant properties. We hypothesized that the membrane byproducts from egg, provided as posthatch nutritional supplements to chickens, may improve their performance and immunity. To explore its effect, we fed 3 groups of broiler chicks with feed containing 0, 0.2, and 0.4% ESM from d 1 posthatch through 14 d and regular feed thereafter. The birds were individually weighed at the onset of the study and at weekly intervals until the termination at third wk when they were bled and euthanized. The relative weights of liver, spleen, bursa, and heart, hematology profiles, and clinical chemistry variables including serum IgM, IgG, and corticosterone concentrations were measured. The chickens in the ESM treated groups showed a statistically significant increase in BW with no impact on relative organ weights. Compared with controls, the WBC and lymphocyte percentage increased in chickens fed 0.4% ESM whereas the monocyte percentage decreased at both levels of ESM. Except for the serum protein which increased in ESM fed birds no other metabolic clinical chemistry variables showed any significant change. Both IgM and IgG(Y) levels were elevated and corticosterone levels reduced in chickens fed ESM supplemented diets. Our results suggest that ESM supplements during the early phases of growth may improve immunity and stress variables, and enhance their growth performance without any detrimental effect on other physiological parameters.
Collapse
Affiliation(s)
- S Makkar
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701
| | - N C Rath
- USDA/Agricultural Research Service, University of Arkansas, Fayetteville, AR 72701
| | - B Packialakshmi
- Poultry Science Center, Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR
| | - W E Huff
- USDA/Agricultural Research Service, University of Arkansas, Fayetteville, AR 72701
| | - G R Huff
- USDA/Agricultural Research Service, University of Arkansas, Fayetteville, AR 72701
| |
Collapse
|
120
|
Kearney JF, Patel P, Stefanov EK, King RG. Natural antibody repertoires: development and functional role in inhibiting allergic airway disease. Annu Rev Immunol 2015; 33:475-504. [PMID: 25622195 DOI: 10.1146/annurev-immunol-032713-120140] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this review we discuss the effects of microbial exposure on the B cell repertoire. Neonatal exposure to conserved bacterial carbohydrates and phospholipids permanently reprograms the natural antibody repertoire directed toward these antigens by clonal expansion, alterations in clonal dominance, and increased serum antibody levels. These epitopes are present not only in bacterial cell walls, but also in common environmental allergens. Neonatal immunization with bacterial polysaccharide vaccines results in attenuated allergic airway responses to fungi-, house dust mite-, and cockroach-associated allergens in mouse models. The similarities between mouse and human natural antibody repertoires suggest that reduced microbial exposure in children may have the opposite effect, providing a potential mechanistic explanation for the hygiene hypothesis. We propose that understanding the effects of childhood infections on the natural antibody repertoire and the mechanisms of antibody-mediated immunoregulation observed in allergy models will lead to the development of prevention/interventional strategies for treatment of allergic asthma.
Collapse
Affiliation(s)
- John F Kearney
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294;
| | | | | | | |
Collapse
|