101
|
Barthel L, Hadamitzky M, Dammann P, Schedlowski M, Sure U, Thakur BK, Hetze S. Glioma: molecular signature and crossroads with tumor microenvironment. Cancer Metastasis Rev 2021; 41:53-75. [PMID: 34687436 PMCID: PMC8924130 DOI: 10.1007/s10555-021-09997-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
In patients with glioblastoma, the average survival time with current treatments is short, mainly due to recurrences and resistance to therapy. This insufficient treatment success is, in large parts, due to the tremendous molecular heterogeneity of gliomas, which affects the overall prognosis and response to therapies and plays a vital role in gliomas’ grading. In addition, the tumor microenvironment is a major player for glioma development and resistance to therapy. Active communication between glioma cells and local or neighboring healthy cells and the immune environment promotes the cancerogenic processes and contributes to establishing glioma stem cells, which drives therapy resistance. Besides genetic alterations in the primary tumor, tumor-released factors, cytokines, proteins, extracellular vesicles, and environmental influences like hypoxia provide tumor cells the ability to evade host tumor surveillance machinery and promote disease progression. Moreover, there is increasing evidence that these players affect the molecular biological properties of gliomas and enable inter-cell communication that supports pro-cancerogenic cell properties. Identifying and characterizing these complex mechanisms are inevitably necessary to adapt therapeutic strategies and to develop novel measures. Here we provide an update about these junctions where constant traffic of biomolecules adds complexity in the management of glioblastoma.
Collapse
Affiliation(s)
- Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany. .,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Cancer Exosome Research Lab, Department of Pediatric Hematology and Oncology, University Hospital Essen, 45147, Essen, Germany
| | - Susann Hetze
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
102
|
Khan S, Mahalingam R, Sen S, Martinez-Ledesma E, Khan A, Gandy K, Lang FF, Sulman EP, Alfaro-Munoz KD, Majd NK, Balasubramaniyan V, de Groot JF. Intrinsic Interferon Signaling Regulates the Cell Death and Mesenchymal Phenotype of Glioblastoma Stem Cells. Cancers (Basel) 2021; 13:cancers13215284. [PMID: 34771447 PMCID: PMC8582372 DOI: 10.3390/cancers13215284] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Interferon signaling is mostly studied in the context of immune cells. However, its role in glioma cancer cells is unclear. This study aimed to investigate the role of cancer-cell-intrinsic IFN signaling in tumorigenesis in glioblastoma (GBM). We found that GSCs and GBM tumors exhibited differential cell-intrinsic type I and type II IFN signaling, and the high IFN/STAT1 signaling was associated with mesenchymal phenotype and poor survival in glioma patients. IFN-β exposure induced cell death in GSCs with intrinsically high IFN/STAT1 signaling, and this effect was abolished by inhibition of IFN/STAT1 signaling. A subset of GBM patients with high IFN/STAT1 may benefit from the IFN-β therapy. Abstract Interferon (IFN) signaling contributes to stemness, cell proliferation, cell death, and cytokine signaling in cancer and immune cells; however, the role of IFN signaling in glioblastoma (GBM) and GBM stem-like cells (GSCs) is unclear. Here, we investigated the role of cancer-cell-intrinsic IFN signaling in tumorigenesis in GBM. We report here that GSCs and GBM tumors exhibited differential cell-intrinsic type I and type II IFN signaling, and high IFN/STAT1 signaling was associated with mesenchymal phenotype and poor survival outcomes. In addition, chronic inhibition of IFN/STAT1 signaling decreased cell proliferation and mesenchymal signatures in GSCs with intrinsically high IFN/STAT1 signaling. IFN-β exposure induced apoptosis in GSCs with intrinsically high IFN/STAT1 signaling, and this effect was abolished by the pharmacological inhibitor ruxolitinib and STAT1 knockdown. We provide evidence for targeting IFN signaling in a specific sub-group of GBM patients. IFN-β may be a promising candidate for adjuvant GBM therapy.
Collapse
Affiliation(s)
- Sabbir Khan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Rajasekaran Mahalingam
- Department of Symptom Research, MD Anderson Cancer Center, The University of Texas, Houston, TX 770030, USA;
| | - Shayak Sen
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Ave. Morones Prieto 3000, Monterrey 64710, Mexico
| | - Arshad Khan
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Kaitlin Gandy
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Frederick F. Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA;
| | - Erik P. Sulman
- Department of Radiation Oncology, New York University, New York, NY 10016, USA;
| | - Kristin D. Alfaro-Munoz
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Nazanin K. Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
| | - Veerakumar Balasubramaniyan
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
- Correspondence: (V.B.); (J.F.d.G.)
| | - John F. de Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; (S.K.); (S.S.); (E.M.-L.); (K.G.); (K.D.A.-M.); (N.K.M.)
- Department of Neuro-Oncology, University of California, San Francisco, CA 94143, USA
- Correspondence: (V.B.); (J.F.d.G.)
| |
Collapse
|
103
|
Persano S, Vicini F, Poggi A, Fernandez JLC, Rizzo GMR, Gavilán H, Silvestri N, Pellegrino T. Elucidating the Innate Immunological Effects of Mild Magnetic Hyperthermia on U87 Human Glioblastoma Cells: An In Vitro Study. Pharmaceutics 2021; 13:1668. [PMID: 34683961 PMCID: PMC8537446 DOI: 10.3390/pharmaceutics13101668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 10/01/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer immunotherapies have been approved as standard second-line or in some cases even as first-line treatment for a wide range of cancers. However, immunotherapy has not shown clinically relevant success in glioblastoma (GBM). This is principally due to the brain's "immune-privileged" status and the peculiar tumor microenvironment (TME) of GBM characterized by a lack of tumor-infiltrating lymphocytes and the establishment of immunosuppressive mechanisms. Herein, we explore a local mild thermal treatment, generated via cubic-shaped iron oxide magnetic nanoparticles (size ~17 nm) when exposed to an external alternating magnetic field (AMF), to induce immunogenic cell death (ICD) in U87 glioblastoma cells. In accordance with what has been observed with other tumor types, we found that mild magnetic hyperthermia (MHT) modulates the immunological profile of U87 glioblastoma cells by inducing stress-associated signals leading to enhanced phagocytosis and killing of U87 cells by macrophages. At the same time, we demonstrated that mild magnetic hyperthermia on U87 cells has a modulatory effect on the expression of inhibitory and activating NK cell ligands. Interestingly, this alteration in the expression of NK ligands in U87 cells upon MHT treatment increased their susceptibility to NK cell killing and enhanced NK cell functionality. The overall findings demonstrate that mild MHT stimulates ICD and sensitizes GBM cells to NK-mediated killing by inducing the upregulation of specific stress ligands, providing a novel immunotherapeutic approach for GBM treatment, with potential to synergize with existing NK cell-based therapies thus improving their therapeutic outcomes.
Collapse
Affiliation(s)
- Stefano Persano
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Francesco Vicini
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (A.P.); (J.L.C.F.)
| | | | - Giusy Maria Rita Rizzo
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Helena Gavilán
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Niccolo Silvestri
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| | - Teresa Pellegrino
- Nanomaterials for Biomedical Applications Department, Istituto Italiano di Tecnologia (IIT), via Morego 30, 16163 Genoa, Italy; (F.V.); (G.M.R.R.); (H.G.); (N.S.)
| |
Collapse
|
104
|
Intermittent radiotherapy as alternative treatment for recurrent high grade glioma: a modeling study based on longitudinal tumor measurements. Sci Rep 2021; 11:20219. [PMID: 34642366 PMCID: PMC8511136 DOI: 10.1038/s41598-021-99507-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/20/2021] [Indexed: 12/30/2022] Open
Abstract
Recurrent high grade glioma patients face a poor prognosis for which no curative treatment option currently exists. In contrast to prescribing high dose hypofractionated stereotactic radiotherapy (HFSRT, [Formula: see text] Gy [Formula: see text] 5 in daily fractions) with debulking intent, we suggest a personalized treatment strategy to improve tumor control by delivering high dose intermittent radiation treatment (iRT, [Formula: see text] Gy [Formula: see text] 1 every 6 weeks). We performed a simulation analysis to compare HFSRT, iRT and iRT plus boost ([Formula: see text] Gy [Formula: see text] 3 in daily fractions at time of progression) based on a mathematical model of tumor growth, radiation response and patient-specific evolution of resistance to additional treatments (pembrolizumab and bevacizumab). Model parameters were fitted from tumor growth curves of 16 patients enrolled in the phase 1 NCT02313272 trial that combined HFSRT with bevacizumab and pembrolizumab. Then, iRT +/- boost treatments were simulated and compared to HFSRT based on time to tumor regrowth. The modeling results demonstrated that iRT + boost(- boost) treatment was equal or superior to HFSRT in 15(11) out of 16 cases and that patients that remained responsive to pembrolizumab and bevacizumab would benefit most from iRT. Time to progression could be prolonged through the application of additional, intermittently delivered fractions. iRT hence provides a promising treatment option for recurrent high grade glioma patients for prospective clinical evaluation.
Collapse
|
105
|
Lim TX, Ahamed M, Reutens DC. The aryl hydrocarbon receptor: A diagnostic and therapeutic target in glioma. Drug Discov Today 2021; 27:422-435. [PMID: 34624509 DOI: 10.1016/j.drudis.2021.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/29/2021] [Accepted: 09/29/2021] [Indexed: 12/19/2022]
Abstract
Glioblastoma multiforme (GBM) is a deadly disease; 5-year survival rates have shown little improvement over the past 30 years. In vivo positron emission tomography (PET) imaging is an important method of identifying potential diagnostic and therapeutic molecular targets non-invasively. The aryl hydrocarbon receptor (AhR) is a transcription factor that regulates multiple genes involved in immune response modulation and tumorigenesis. The AhR is an attractive potential drug target and studies have shown that its activation by small molecules can modulate innate and adaptive immunity beneficially and prevent AhR-mediated tumour promotion in several cancer types. In this review, we provide an overview of the role of the AhR in glioma tumorigenesis and highlight its potential as an emerging biomarker for glioma therapies targeting the tumour immune response and PET diagnostics.
Collapse
Affiliation(s)
- Ting Xiang Lim
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Muneer Ahamed
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - David C Reutens
- ARC Centre for Innovation in Biomedical Imaging Technology, Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
106
|
Yang C, Xu C, Li X, Zhang Y, Zhang S, Zhang T, Zhang Y. Could Camrelizumab Plus Chemotherapy Improve Clinical Outcomes in Advanced Malignancy? A Systematic Review and Network Meta-Analysis. Front Oncol 2021; 11:700165. [PMID: 34485135 PMCID: PMC8415159 DOI: 10.3389/fonc.2021.700165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/22/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Camrelizumab is a novel programmed cell death 1 (PD-1) inhibitor. To determine the efficacy and safety of the combination treatment of camrelizumab+chemotherapy and camrelizumab monotherapy, and determine which is the most suitable malignancy type to be treated with camrelizumab, we performed a systematic review and network meta-analysis. Methods We searched PubMed, Embase, and the Cochrane Library for published clinical trials from database inception until April 2021. Studies that compared camrelizumab+chemotherapy and camrelizumab monotherapy in patients with advanced malignancy were included. We estimated odds ratios (ORs) with credible intervals (CIs) using network meta-analysis with random effects. Results We included four clinical trials with 946 advanced malignancy patients. In terms of the efficacy evaluation of the objective response rate and progression-free survival, camrelizumab treatment for Hodgkin lymphoma (HL), camrelizumab treatment for esophageal squamous cell carcinoma (OSCC), and camrelizumab+chemo treatment for HL always ranked first. In terms of safety evaluation from leukocytopenia, hypothyroidism, and asthenia, camrelizumab treatment for OSCC and chemo always ranked first. This study was registered with PROSPERO, number CRD42021249193. Conclusions Patients with advanced OSCC should be treated with camrelizumab. Patients with severely relapsed/refractory HL could use camrelizuma+chemo for combination treatment when they can tolerate adverse reactions. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=249193, PROSPERO (identifier, CRD42021249193).
Collapse
Affiliation(s)
- Chao Yang
- Department of Ethnic Culture and Vocational Education, Liaoning National Normal College, Shenyang, China
| | - Chang Xu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiang Li
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yaowen Zhang
- The Chemical Laboratory, Liaoning Institute for Drug Control, Shenyang, China
| | - Simeng Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Tongyu Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingshi Zhang
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
107
|
Lu X, Li C, Xu W, Wu Y, Wang J, Chen S, Zhang H, Huang H, Huang H, Liu W. Malignant Tumor Purity Reveals the Driven and Prognostic Role of CD3E in Low-Grade Glioma Microenvironment. Front Oncol 2021; 11:676124. [PMID: 34557404 PMCID: PMC8454269 DOI: 10.3389/fonc.2021.676124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/02/2021] [Indexed: 12/23/2022] Open
Abstract
The tumor microenvironment (TME) contributes to the initiation and progression of many neoplasms. However, the impact of low-grade glioma (LGG) purity on carcinogenesis remains to be elucidated. We selected 509 LGG patients with available genomic and clinical information from the TCGA database. The percentage of tumor infiltrating immune cells and the tumor purity of LGG were evaluated using the ESTIMATE and CIBERSORT algorithms. Stromal-related genes were screened through Cox regression, and protein-protein interaction analyses and survival-related genes were selected in 487 LGG patients from GEO database. Hub genes involved in LGG purity were then identified and functionally annotated using bioinformatics analyses. Prognostic implications were validated in 100 patients from an Asian real-world cohort. Elevated tumor purity burden, immune scores, and stromal scores were significantly associated with poor outcomes and increased grade in LGG patients from the TCGA cohort. In addition, CD3E was selected with the most significant prognostic value (Hazard Ratio=1.552, P<0.001). Differentially expressed genes screened according to CD3E expression were mainly involved in stromal related activities. Additionally, significantly increased CD3E expression was found in 100 LGG samples from the validation cohort compared with adjacent normal brain tissues. High CD3E expression could serve as an independent prognostic indicator for survival of LGG patients and promotes malignant cellular biological behaviors of LGG. In conclusion, tumor purity has a considerable impact on the clinical, genomic, and biological status of LGG. CD3E, the gene for novel membrane immune biomarker deeply affecting tumor purity, may help to evaluate the prognosis and develop individual immunotherapy strategies for LGG patients. Evaluating the ratio of differential tumor purity and CD3E expression levels may provide novel insights into the complex structure of the LGG microenvironment and targeted drug development.
Collapse
Affiliation(s)
- Xiuqin Lu
- Department of Nursing and Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Chuanyu Li
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Wenhao Xu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical University, Fudan University, Shanghai, China
| | - Yuanyuan Wu
- Department of Gastroenterology, Naval Medical Center of People’s Liberation Army (PLA) of China, Naval Military Medical University, Shanghai, China
| | - Jian Wang
- Department of Transplantation, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuxian Chen
- Department of Oncology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai Medical University, Fudan University, Shanghai, China
| | - Huadong Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Haineng Huang
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| | - Wangrui Liu
- Department of Nursing and Health Management, Shanghai University of Medicine & Health Sciences, Shanghai, China
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
108
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
109
|
Lefranc F. Transient Receptor Potential (TRP) Ion Channels Involved in Malignant Glioma Cell Death and Therapeutic Perspectives. Front Cell Dev Biol 2021; 9:618961. [PMID: 34458247 PMCID: PMC8388852 DOI: 10.3389/fcell.2021.618961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/29/2021] [Indexed: 01/22/2023] Open
Abstract
Among the most biologically, thus clinically, aggressive primary brain tumors are found malignant gliomas. Despite recent advances in adjuvant therapies, which include targeted and immunotherapies, after surgery and radio/chemotherapy, the tumor is recurrent and always lethal. Malignant gliomas also contain a pool of initiating stem cells that are highly invasive and resistant to conventional treatment. Ion channels and transporters are markedly involved in cancer cell biology, including glioma cell biology. Transient receptor potential (TRP) ion channels are calcium-permeable channels implicated in Ca2+ changes in multiple cellular compartments by modulating the driving force for Ca2+ entry. Recent scientific reports have shown that these channels contribute to the increase in glioblastoma aggressiveness, with glioblastoma representing the ultimate level of glioma malignancy. The current review focuses on each type of TRP ion channel potentially involved in malignant glioma cell death, with the ultimate goal of identifying new therapeutic targets to clinically combat malignant gliomas. It thus appears that cannabidiol targeting the TRPV2 type could be such a potential target.
Collapse
Affiliation(s)
- Florence Lefranc
- Department of Neurosurgery, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
110
|
Tian YH, Jia LW, Liu ZF, Chen YH. LINC01087 inhibits glioma cell proliferation and migration, and increases cell apoptosis via miR-384/Bcl-2 axis. Aging (Albany NY) 2021; 13:20808-20819. [PMID: 34459789 PMCID: PMC8436897 DOI: 10.18632/aging.203478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/02/2021] [Indexed: 01/22/2023]
Abstract
BACKGROUND Long non-coding RNA (LncRNA) is associated with disease progression. It is reported that LINC01087 is highly expressed in cancer and participates in tumorigenesis. However, whether it regulates the development of glioma has not been studied. So, the goal of this research is to determine the role of LINC01087 in gliomas and to provide potential targets for clinical treatment. METHODS The gene expression was detected by quantitative reverse transcriptase polymerase chain reaction (QRT-PCR) and Western blotting (WB). Cell proliferation was analyzed by CCK8 and colony formation test, and apoptosis was detected by flow cytometry. Luciferase report experiment and RNA Binding Protein Immunoprecipitation confirmed the interaction between LINC01087, miR-384 and Bcl-2. The effect of regulating LINC01087 on the growth of glioma was confirmed in vitro. RESULTS The LINC01087 expression was up-regulated in clinical glioma samples (n = 35). Furthermore, LINC01087 silencing can obviously suppress the proliferation of glioma cells and induce apoptosis. Mechanically, we found that LINC01087 was the molecular sponge of miR-384. LINC01087 could inhibit the miR-384 expression and boost the Bcl-2 expression through sponge expression of miR-384. The repair of Bcl-2 effectively saved the proliferation and apoptosis of glioma cells lacking LINC01087. CONCLUSION LINC01087 is highly expressed in glioma and can participate in the growth of glioma through miR-384/Bcl-2 axis. So, it is a potential therapeutic target.
Collapse
Affiliation(s)
- Yao-Hui Tian
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Lin-Wei Jia
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Zhi-Feng Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| | - Yong-Han Chen
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei Province, China
| |
Collapse
|
111
|
Technical choices significantly alter the adaptive immune response against immunocompetent murine gliomas in a model-dependent manner. J Neurooncol 2021; 154:145-157. [PMID: 34432197 DOI: 10.1007/s11060-021-03822-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Due to the recent rise in immunotherapy research to treat glioblastoma (GBM), immunocompetent mouse models have become increasingly crucial. However, the character and kinetics of the immune response against the most prevalent immunocompetent GBM models, GL261 and CT2A, have not been well studied, nor has the impact of commonly-used marker proteins and foreign antigens. METHODS In this study, we compared the immune response in these models using flow cytometry and immunohistochemistry as well as investigated several factors that influence the immune response, including kinetics, tumor size, and expression of commonly-used marker proteins and foreign antigens. We hypothesize that these factors influence the immune response enough to warrant consideration when studying new immunotherapeutic approaches for GBM. RESULTS CT2A-Luc, but not GL261-Luc2, drastically increased the number of T cells in the brain compared with wild-type controls, and significantly altered CT2A's responsiveness to anti-PD-1 antibody therapy. Additionally, a larger cell inoculum size in the GL261 model increased the T cell response's magnitude at day 28 post-injection. CT2A and GL261 models both stimulate a peak T cell immune response at day 21 post-injection. CONCLUSIONS Our results suggest that the impact of foreign proteins like luciferase on the intracranial immune response is dependent upon the model, with CT2A being more sensitive to added markers. In particular, luciferase expression in CT2A could lead to meaningful misinterpretations of results from immune checkpoint inhibitor (ICI) studies.
Collapse
|
112
|
Borch JDS, Haslund-Vinding J, Vilhardt F, Maier AD, Mathiesen T. Meningioma-Brain Crosstalk: A Scoping Review. Cancers (Basel) 2021; 13:4267. [PMID: 34503077 PMCID: PMC8428351 DOI: 10.3390/cancers13174267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Background: In recent years, it has become evident that the tumoral microenvironment (TME) plays a key role in the pathogenesis of various cancers. In meningiomas, however, the TME is poorly understood, and it is unknown if glia cells contribute to meningioma growth and behaviour. Objective: This scoping review investigates if the literature describes and substantiates tumour-brain crosstalk in meningiomas and summarises the current evidence regarding the role of the brain parenchyma in the pathogenesis of meningiomas. Methods: We identified studies through the electronic database PubMed. Articles describing glia cells and cytokines/chemokines in meningiomas were selected and reviewed. Results: Monocytes were detected as the most abundant infiltrating immune cells in meningiomas. Only brain-invasive meningiomas elicited a monocytic response at the tumour-brain interface. The expression of cytokines/chemokines in meningiomas has been studied to some extent, and some of them form autocrine loops in the tumour cells. Paracrine interactions between tumour cells and glia cells have not been explored. Conclusion: It is unknown to what extent meningiomas elicit an immune response in the brain parenchyma. We speculate that tumour-brain crosstalk might only be relevant in cases of invasive meningiomas that disrupt the pial-glial basement membrane.
Collapse
Affiliation(s)
- Josefine de Stricker Borch
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (J.d.S.B.); (A.D.M.); (T.M.)
| | - Jeppe Haslund-Vinding
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (J.d.S.B.); (A.D.M.); (T.M.)
| | - Frederik Vilhardt
- Department of Cellular and Molecular Medicine, Panum Institute, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Andrea Daniela Maier
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (J.d.S.B.); (A.D.M.); (T.M.)
- Department of Pathology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Tiit Mathiesen
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark; (J.d.S.B.); (A.D.M.); (T.M.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
113
|
Comba A, Faisal SM, Varela ML, Hollon T, Al-Holou WN, Umemura Y, Nunez FJ, Motsch S, Castro MG, Lowenstein PR. Uncovering Spatiotemporal Heterogeneity of High-Grade Gliomas: From Disease Biology to Therapeutic Implications. Front Oncol 2021; 11:703764. [PMID: 34422657 PMCID: PMC8377724 DOI: 10.3389/fonc.2021.703764] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastomas (GBM) are the most common and aggressive tumors of the central nervous system. Rapid tumor growth and diffuse infiltration into healthy brain tissue, along with high intratumoral heterogeneity, challenge therapeutic efficacy and prognosis. A better understanding of spatiotemporal tumor heterogeneity at the histological, cellular, molecular, and dynamic levels would accelerate the development of novel treatments for this devastating brain cancer. Histologically, GBM is characterized by nuclear atypia, cellular pleomorphism, necrosis, microvascular proliferation, and pseudopalisades. At the cellular level, the glioma microenvironment comprises a heterogeneous landscape of cell populations, including tumor cells, non-transformed/reactive glial and neural cells, immune cells, mesenchymal cells, and stem cells, which support tumor growth and invasion through complex network crosstalk. Genomic and transcriptomic analyses of gliomas have revealed significant inter and intratumoral heterogeneity and insights into their molecular pathogenesis. Moreover, recent evidence suggests that diverse dynamics of collective motion patterns exist in glioma tumors, which correlate with histological features. We hypothesize that glioma heterogeneity is not stochastic, but rather arises from organized and dynamic attributes, which favor glioma malignancy and influences treatment regimens. This review highlights the importance of an integrative approach of glioma histopathological features, single-cell and spatially resolved transcriptomic and cellular dynamics to understand tumor heterogeneity and maximize therapeutic effects.
Collapse
Affiliation(s)
- Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed M Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Todd Hollon
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Wajd N Al-Holou
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Yoshie Umemura
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Felipe J Nunez
- Laboratory of Molecular and Cellular Therapy, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Sebastien Motsch
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
114
|
Kim YJ, Kim K, Seo SY, Yu J, Kim IH, Kim HJ, Park CK, Lee KH, Choi J, Song MS, Kim JH. Time-sequential change in immune-related gene expression after irradiation in glioblastoma: next-generation sequencing analysis. Anim Cells Syst (Seoul) 2021; 25:245-254. [PMID: 34408813 PMCID: PMC8366673 DOI: 10.1080/19768354.2021.1954550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The time-sequential change in immune-related gene expression of the glioblastoma cell line after irradiation was evaluated to speculate the effect of combined immunotherapy with radiotherapy. The U373 MG glioblastoma cell line was irradiated with 6 Gy single dose. Next-generation sequencing (NGS) transcriptome data was generated before irradiation (control), and at 6, 24, and 48 h post-irradiation. Immune-related pathways were analyzed at each time period. The same analyses were also performed for A549 lung cancer and U87 MG glioblastoma cell lines. Western blotting confirmed the programmed death-ligand 1 (PD-L1) expression levels over time. In the U373 MG cell line, neutrophil-mediated immunity, type I interferon signaling, antigen cross-presentation to T cell, and interferon-γ signals began to increase significantly at 24 h and were upregulated until 48 h after irradiation. The results were similar to those of the A549 and U87 MG cell lines. Without T cell infiltration, PD-L1 did not increase even with upregulated interferon-γ signaling in cancer cells. In conclusions, in the glioblastoma cell line, immune-related signals were significantly upregulated at 24 and 48 h after irradiation. Therefore, the time interval between daily radiotherapy might not be enough to expect full immune responses by combined immune checkpoint inhibitors and newly infiltrating immune cells after irradiation.
Collapse
Affiliation(s)
- Yi-Jun Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Convergence Medicine, Ewha Womans University Mokdong Hospital, Seoul, Republic of Korea
| | - Kwangsoo Kim
- Transdisciplinary Department of Medicine & Advanced Technology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Soo Yeon Seo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Juyeon Yu
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Il Han Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Hak Jae Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kye Hwa Lee
- Department of Information Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Junjeong Choi
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, Republic of Korea
| | - Myung Seon Song
- Department of Psychiatry, Keyo Hospital, Uiwang, Republic of Korea
| | - Jin Ho Kim
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
115
|
Ozawa T, Rodriguez M, Zhao G, Yao TW, Fischer WN, Jandeleit B, Koller K, Nicolaides T. A Novel Blood-Brain Barrier-Permeable Chemotherapeutic Agent for the Treatment of Glioblastoma. Cureus 2021; 13:e17595. [PMID: 34646647 PMCID: PMC8482806 DOI: 10.7759/cureus.17595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 02/04/2023] Open
Abstract
Introduction The standard treatment for glioblastoma (GBM) patients is surgical tumor resection, followed by radiation and chemotherapy with temozolomide (TMZ). Unfortunately, 60% of newly diagnosed GBM patients express high levels of the DNA repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) and are TMZ-resistant, and all patients eventually become refractory to treatment. The blood-brain barrier (BBB) is an obstacle to the delivery of chemotherapeutic agents to GBM, and BBB-permeable agents that are efficacious in TMZ-resistant and refractory patients are needed. The large amino acid transporter 1 (LAT1) is expressed on the BBB and in GBM and is detected at much lower levels in normal brain tissue. A LAT1-selective therapeutic would potentially target brain tumors while avoiding uptake by healthy tissue. Methods We report a novel chemical entity (QBS10072S) that combines a potent cytotoxic chemotherapeutic domain (tertiary N-bis(2-chloroethyl)amine) with the structural features of a selective LAT1 substrate and tested it against GBM models in vitro and in vivo. For in vitro studies, DNA damage was assessed with a gamma H2A.X antibody and cell viability was assessed by WST-1 assay and/or CellTiter-Glo assay. For in vivo studies, QBS10072S (with or without radiation) was tested in orthotopic glioblastoma xenograft models, using overall survival and tumor size (as measured by bioluminescence), as endpoints. Results QBS10072S is 50-fold more selective for LAT1 vs. LAT2 in transport assays and demonstrates significant growth suppression in vitro of LAT1-expressing GBM cell lines. Unlike TMZ, QBS10072S is cytotoxic to cells with both high and low levels of MGMT expression. In orthotopic GBM xenografts, QBS10072S treatment significantly delayed tumorigenesis and prolonged animal survival compared to the vehicle without adverse effects. Conclusion QBS10072S is a novel BBB-permeable chemotherapeutic agent with the potential to treat TMZ-resistant and recurrent GBM as monotherapy or in combination with radiation treatment.
Collapse
Affiliation(s)
- Tomoko Ozawa
- Neurological Surgery, University of California San Francisco, San Francisco, USA
| | | | - Guisheng Zhao
- Pediatric Hematology-Oncology, New York University (NYU), New York, USA
| | | | | | | | | | | |
Collapse
|
116
|
Alphones S, Chatterjee U, Singh A, Das A, Zameer L, Achari R, Bhattacharya A, Roy P. Immunohistochemical screening for mismatch repair protein deficiency in paediatric high-grade gliomas - institutional experience and review of literature. Childs Nerv Syst 2021; 37:2521-2530. [PMID: 34097097 DOI: 10.1007/s00381-021-05229-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Immunohistochemical (IHC) testing for mismatch repair (MMR) deficiency (MMRD) is used as a screening tool to identify microsatellite instability in various cancers (especially colon). This not only identifies hereditary cancer syndromes like Lynch and constitutional mismatch repair deficiency (CMMRD) but also aids in prognostication and prediction of sensitivity to checkpoint inhibitor drugs. There are very few reported studies on MMRD status of pediatric high-grade gliomas (pHGG) and none from the Indian subcontinent. The aim of this study is to evaluate the frequency of MMRD in pHGG and to assess if there is a need for universal screening with immunohistochemistry. METHODS Paraffin blocks of consecutive cases of pHGG (< 18 years) were retrieved from 2 centres, and IHC with four MMR antibodies - MLH1, PMS2, MSH2 and MSH6 - was performed using tissue microarray-based technique. RESULTS Three out of nine cases (33%) studied showed loss of staining. One case had loss of MSH2 and MSH6 confirmed by gene sequencing. Eight of the cases were glioblastoma. One case of IDH1-mutated anaplastic astrocytoma showed loss of MLH1 and PMS2 staining. Isolated PMS2 loss was noted in 1 case, where the non-tumour cells also showed loss of staining, indicative CMMRD syndrome. This patient had prior colon cancer with isolated PMS2 loss and responded to check-point inhibitor therapy with nivolumab. CONCLUSION Our study shows that the frequency of MMRD to be about one-third of pHGG. Universal IHC screening for MMRD in all pHGGs may benefit early diagnosis and play a role in therapeutic decisions. A larger multi-institutional study will help better assess the prevalence and treatment implications in MMRD tumours.
Collapse
Affiliation(s)
- Sheena Alphones
- Department of Pathology, Tata Medical Center, Kolkata, India
| | | | - Angad Singh
- Department of Pathology, Tata Medical Center, Kolkata, India
| | - Anirban Das
- Department of Pediatric Oncology, Tata Medical Center, Kolkata, India
| | - Lateef Zameer
- Department of Pathology, Tata Medical Center, Kolkata, India
| | - Rimpa Achari
- Department of Radiation Oncology, Tata Medical Center, Kolkata, India
| | | | - Paromita Roy
- Department of Pathology, Tata Medical Center, Kolkata, India.
| |
Collapse
|
117
|
Roy PK, Rajesh Y, Mandal M. Therapeutic targeting of membrane-associated proteins in central nervous system tumors. Exp Cell Res 2021; 406:112760. [PMID: 34339674 DOI: 10.1016/j.yexcr.2021.112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/28/2021] [Accepted: 07/28/2021] [Indexed: 12/09/2022]
Abstract
The activity of the most complex system, the central nervous system (CNS) is profoundly regulated by a huge number of membrane-associated proteins (MAP). A minor change stimulates immense chemical changes and the elicited response is organized by MAP, which acts as a receptor of that chemical or channel enabling the flow of ions. Slight changes in the activity or expression of these MAPs lead to severe consequences such as cognitive disorders, memory loss, or cancer. CNS tumors are heterogeneous in nature and hard-to-treat due to random mutations in MAPs; like as overexpression of EGFRvIII/TGFβR/VEGFR, change in adhesion molecules α5β3 integrin/SEMA3A, imbalance in ion channel proteins, etc. Extensive research is under process for developing new therapeutic approaches using these proteins such as targeted cytotoxic radiotherapy, drug-delivery, and prodrug activation, blocking of receptors like GluA1, developing viral vector against cell surface receptor. The combinatorial approach of these strategies along with the conventional one might be more potential. Henceforth, our review focuses on in-depth analysis regarding MAPs aiming for a better understanding for developing an efficient therapeutic approach for targeting CNS tumors.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Yetirajam Rajesh
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
118
|
Maio M, Lahn M, Di Giacomo AM, Covre A, Calabrò L, Ibrahim R, Fox B. A vision of immuno-oncology: the Siena think tank of the Italian network for tumor biotherapy (NIBIT) foundation. J Exp Clin Cancer Res 2021; 40:240. [PMID: 34301276 PMCID: PMC8298945 DOI: 10.1186/s13046-021-02023-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/18/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The yearly Think Tank Meeting of the Italian Network for Tumor Biotherapy (NIBIT) Foundation, brings together in Siena, Tuscany (Italy), experts in immuno-oncology to review the learnings from current immunotherapy treatments, and to propose new pre-clinical and clinical investigations in selected research areas. MAIN: While immunotherapies in non-small cell lung cancer and melanoma led to practice changing therapies, the same therapies had only modest benefit for patients with other malignancies, such as mesothelioma and glioblastoma. One way to improve on current immunotherapies is to alter the sequence of each combination agent. Matching the immunotherapy to the host's immune response may thus improve the activity of the current treatments. A second approach is to combine current immunotherapies with novel agents targeting complementary mechanisms. Identifying the appropriate novel agents may require different approaches than the traditional laboratory-based discovery work. For example, artificial intelligence-based research may help focusing the search for innovative and most promising combination partners. CONCLUSION Novel immunotherapies are needed in cancer patients with resistance to or relapse after current immunotherapeutic drugs. Such new treatments may include targeted agents or monoclonal antibodies to overcome the immune-suppressive tumor microenvironment. The mode of combining the novel treatments, including vaccines, needs to be matched to the patient's immune status for achieving the maximum benefit. In this scenario, specific attention should be also paid nowadays to the immune intersection between COVID-19 and cancer.
Collapse
Affiliation(s)
- Michele Maio
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy.
- Italian Network for Tumor Bio-Immunotherapy Foundation Onlus, Siena, Italy.
| | - Michael Lahn
- iOnctura SA, Avenue Secheron 15, Geneva, Switzerland
| | - Anna Maria Di Giacomo
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy
- Italian Network for Tumor Bio-Immunotherapy Foundation Onlus, Siena, Italy
| | - Alessia Covre
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy
| | - Luana Calabrò
- Center for Immuno-Oncology, Medical Oncology and Immunotherapy, University Hospital of Siena, Viale Mario Bracci, 16, Siena, Italy
| | - Ramy Ibrahim
- Parker Institute for Cancer Immunotherapy, 1 Letterman Drive, San Francisco, 94012, USA
| | - Bernard Fox
- Earle A. Chiles Research Institute at the Robert W. Franz Cancer Center, 4805 NE Glisan St. Suite 2N35, Portland, OR, 97213, USA
| |
Collapse
|
119
|
Tagde P, Tagde P, Tagde S, Bhattacharya T, Garg V, Akter R, Rahman MH, Najda A, Albadrani GM, Sayed AA, Akhtar MF, Saleem A, Altyar AE, Kaushik D, Abdel-Daim MM. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme. Biomed Pharmacother 2021; 141:111928. [PMID: 34323701 DOI: 10.1016/j.biopha.2021.111928] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/03/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma multiforme is one of the most deadly malignant tumors, with more than 10,000 cases recorded annually in the United States. Various clinical analyses and studies show that certain chronic diseases, including cancer, interact between cell-reactive radicals rise and pathogenesis. Reactive oxygen and nitrogenous sources include endogenous (physiological processes), and exogenous sources contain reactive oxygen and nitrogen (xenobiotic interaction). The cellular oxidation/reduction shifts to oxidative stress when the regulation mechanisms of antioxidants are surpassed, and this raises the ability to damage cellular lipids, proteins, and nucleic acids. OBJECTIVE: This review is focused on how phytochemicals play crucial role against glioblastoma multiforme and to combat these, bioactive molecules and their derivatives are either used alone, in combination with anticancer drugs or as nanomedicine formulations for better cancer theranostics over the conventional approach. CONCLUSION: Bioactive molecules found in seeds, vegetables, and fruits have antioxidant, anti-inflammatory, and anticancer properties that may help cancer survivors feel better throughout chemotherapy or treatment. However, incorporating them into the nanocarrier-based drug delivery for the treatment of GBMs, which could be a promising therapeutic strategy for this tumor entity, increasing targeting effectiveness, increasing bioavailability, and reducing side effects with this target-specificity, drug internalization into cells is significantly improved, and off-target organ aggregation is reduced.
Collapse
Affiliation(s)
- Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal, Madhya Pradesh, India; PRISAL Foundation (Pharmaceutical Royal International Society), India.
| | - Pooja Tagde
- Practice of Medicine Department, Govt. Homeopathy College, Bhopal, Madhya Pradesh, India
| | - Sandeep Tagde
- PRISAL Foundation (Pharmaceutical Royal International Society), India
| | - Tanima Bhattacharya
- School of Chemistry & Chemical Engineering, Hubei University, Wuhan, China; Department of Science & Engineering, Novel Global Community Educational Foundation, Australia
| | - Vishal Garg
- Jaipur School of Pharmacy, Maharaj Vinayak Global University, Jaipur, Rajasthan, India
| | - Rokeya Akter
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh; Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, South Korea
| | - Md Habibur Rahman
- Department of Global Medical Science, Yonsei University Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, South Korea; Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Agnieszka Najda
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh.
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Amany A Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed E Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia
| | - Deepak Kaushik
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Mohamed M Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
120
|
Characterization of ferroptosis signature to evaluate the predict prognosis and immunotherapy in glioblastoma. Aging (Albany NY) 2021; 13:17655-17672. [PMID: 34244461 PMCID: PMC8312442 DOI: 10.18632/aging.203257] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/19/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common type of brain cancer with poor survival outcomes and unsatisfactory response to current therapeutic strategies. Recent studies have demonstrated that ferroptosis-related genes (FRGs) are linked with the occurrence and development of GBM and may become promising biological indicators in GBM therapy. METHODS We systematically assessed the relationship between FRGs expression profiles and prognosis in glioma patients based on the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets to establish a risk score model according to the gene signature of multiple survival-associated DEGs. Further, the differences between the tumor microenvironment score, immune cell infiltration, immune checkpoint expression levels, and drug sensitivity in the high- and low-risk group are analyzed through a variety of algorithms in R software. RESULTS GBM patients were divided into two subgroups (high- and low-risk) according to the established risk score model. Patients in the high-risk group showed significantly reduced overall survival compared with those in the low-risk group. Also, we found that the high-risk group showed higher ImmuneScore and StromalScore, while different subgroups have significant differences in immune cell infiltration, immune checkpoint expression levels, and drug sensitivity. In summary, we developed and validated an FRGs risk model, which served as an independent prognostic indicator for GBM. Besides, the two subgroups divided by the model have significant differences, which provides novel insights for further studies as well as the personalized treatment of patients.
Collapse
|
121
|
Patel V, Shah J. The current and future aspects of glioblastoma: Immunotherapy a new hope? Eur J Neurosci 2021; 54:5120-5142. [PMID: 34107127 DOI: 10.1111/ejn.15343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most perilous and highly malignant in all the types of brain tumor. Regardless of the treatment, the diagnosis of the patients in GBM is very poor. The average survival rate is only 21 months after multimodal combinational therapies, which include chemotherapy, radiation, and surgery. Due to the intrusive and infiltrative nature of GBM, it requires elective therapy for specific targeting of tumor cells. Tumor vaccine in a form of immunotherapy has potential to address this need. Nanomedicine-based immunotherapies have clutch the trigger of systemic and specific immune response against tumor cells, which might be the approach to eliminating the unrelieved cancer. In this mechanism, combination of immunomodulators with specific target and appropriate strategic vaccines can stifle tumor anti-immune defense system and/or increase the capabilities of the body to move up immunity against the tumor. Here, we explore the different types of immunotherapies and vaccines for brain tumor treatment and their clinical trials, which bring the feasibility of the future of personalized vaccine of nanomedicine-based immunotherapies for the brain tumor. We believe that immunotherapy could result in a significantly more stable reaction in GBM patients.
Collapse
Affiliation(s)
- Vimal Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
122
|
Tumor-associated hematopoietic stem and progenitor cells positively linked to glioblastoma progression. Nat Commun 2021; 12:3895. [PMID: 34162860 PMCID: PMC8222381 DOI: 10.1038/s41467-021-23995-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Brain tumors are typically immunosuppressive and refractory to immunotherapies for reasons that remain poorly understood. The unbiased profiling of immune cell types in the tumor microenvironment may reveal immunologic networks affecting therapy and course of disease. Here we identify and validate the presence of hematopoietic stem and progenitor cells (HSPCs) within glioblastoma tissues. Furthermore, we demonstrate a positive link of tumor-associated HSPCs with malignant and immunosuppressive phenotypes. Compared to the medullary hematopoietic compartment, tumor-associated HSPCs contain a higher fraction of immunophenotypically and transcriptomically immature, CD38- cells, such as hematopoietic stem cells and multipotent progenitors, express genes related to glioblastoma progression and display signatures of active cell cycle phases. When cultured ex vivo, tumor-associated HSPCs form myeloid colonies, suggesting potential in situ myelopoiesis. In experimental models, HSPCs promote tumor cell proliferation, expression of the immune checkpoint PD-L1 and secretion of tumor promoting cytokines such as IL-6, IL-8 and CCL2, indicating concomitant support of both malignancy and immunosuppression. In patients, the amount of tumor-associated HSPCs in tumor tissues is prognostic for patient survival and correlates with immunosuppressive phenotypes. These findings identify an important element in the complex landscape of glioblastoma that may serve as a target for brain tumor immunotherapies. A deeper knowledge of the immune cell profile within the brain cancer tumor microenvironment (TM) could identify targets to improve immunotherapy efficacy. Here, in glioblastoma, the authors find haematopoietic stem and progenitor cells in the TM, which are associated with poor prognosis and increased immunosuppression.
Collapse
|
123
|
Upadhyayula PS, Higgins DM, Argenziano MG, Spinazzi EF, Wu CC, Canoll P, Bruce JN. The Sledgehammer in Precision Medicine: Dexamethasone and Immunotherapeutic Treatment of Glioma. Cancer Invest 2021; 40:554-566. [PMID: 34151678 DOI: 10.1080/07357907.2021.1944178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding dexamethasone's effect on the immune microenvironment in glioma patients is of key importance. We performed a comprehensive literature review using the NCBI PubMed database for all articles meeting the following search criteria. ((dexamethasone[All Fields]) AND (glioma or glioblastoma)[Title/Abstract]) AND (immune or T cell or B cell or monocyte or neutrophil or macrophage). Forty-three manuscripts were deemed relevant to the topic at hand. Multiple clinical studies have linked dexamethasone use to decreased overall survival while preclinical studies in murine glioma models have demonstrated decreased tumor-infiltrating lymphocytes after dexamethasone administration.
Collapse
Affiliation(s)
- Pavan S Upadhyayula
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Dominique M Higgins
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Michael G Argenziano
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Eleonora F Spinazzi
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia Irving University Medical Center, Manhattan, NY, USA
| | - Peter Canoll
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, Manhattan, NY, USA
| | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia Irving University Medical Center, Manhattan, NY, USA
| |
Collapse
|
124
|
Zaman N, Dass SS, DU Parcq P, Macmahon S, Gallagher L, Thompson L, Khorashad JS, LimbÄck-Stanic C. The KDR (VEGFR-2) Genetic Polymorphism Q472H and c-KIT Polymorphism M541L Are Associated With More Aggressive Behaviour in Astrocytic Gliomas. Cancer Genomics Proteomics 2021; 17:715-727. [PMID: 33099473 DOI: 10.21873/cgp.20226] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/AIM Better diagnostic and prognostic markers are required for a more accurate diagnosis and an earlier detection of glioma progression and for suggesting better treatment strategies. This retrospective study aimed to identify actionable gene variants to define potential markers of clinical significance. MATERIALS AND METHODS 56 glioblastomas (GBM) and 44 grade 2-3 astrocytomas were profiled with next generation sequencing (NGS) as part of routine diagnostic workup and bioinformatics analysis was used for the identification of variants. CD34 immunohistochemistry (IHC) was used to measure microvessel density (MVD) and Log-rank test to compare survival and progression in the presence or absence of these variants. RESULTS Bioinformatic analysis highlighted frequently occurring variants in genes involved in angiogenesis regulation (KDR, KIT, TP53 and PIK3CA), with the most common ones being KDR (rs1870377) and KIT (rs3822214). The KDR variant was associated with increased MVD and shorter survival in GBM. We did not observe any correlation between the KIT variant and MVD; however, there was an association with tumour grade. CONCLUSION This study highlights the role of single-nucleotide variants (SNVs) that may be considered non-pathogenic and suggests the prognostic significance for survival of KIT rs3822214 and KDR rs1870377 and potential importance in planning new treatment strategies for gliomas.
Collapse
Affiliation(s)
- Niyaz Zaman
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, U.K
| | - Serena Santhana Dass
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, U.K
| | - Persephone DU Parcq
- Department of Cell Pathology, Imperial College Healthcare NHS Trust, London, U.K
| | - Suzanne Macmahon
- Clinical Genomics, The Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, London, U.K
| | - Lewis Gallagher
- Clinical Genomics, The Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, London, U.K
| | - Lisa Thompson
- Clinical Genomics, The Centre for Molecular Pathology, The Royal Marsden NHS Foundation Trust, London, U.K
| | - Jamshid S Khorashad
- Department of Immunology and Inflammation, Imperial College London, London, U.K
| | - Clara LimbÄck-Stanic
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, U.K. .,Department of Cell Pathology, Imperial College Healthcare NHS Trust, London, U.K
| |
Collapse
|
125
|
Yang F, He Z, Duan H, Zhang D, Li J, Yang H, Dorsey JF, Zou W, Nabavizadeh SA, Bagley SJ, Abdullah K, Brem S, Zhang L, Xu X, Byrne KT, Vonderheide RH, Gong Y, Fan Y. Synergistic immunotherapy of glioblastoma by dual targeting of IL-6 and CD40. Nat Commun 2021; 12:3424. [PMID: 34103524 PMCID: PMC8187342 DOI: 10.1038/s41467-021-23832-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 05/17/2021] [Indexed: 01/20/2023] Open
Abstract
Immunologically-cold tumors including glioblastoma (GBM) are refractory to checkpoint blockade therapy, largely due to extensive infiltration of immunosuppressive macrophages (Mϕs). Consistent with a pro-tumor role of IL-6 in alternative Mϕs polarization, we here show that targeting IL-6 by genetic ablation or pharmacological inhibition moderately improves T-cell infiltration into GBM and enhances mouse survival; however, IL-6 inhibition does not synergize PD-1 and CTLA-4 checkpoint blockade. Interestingly, anti-IL-6 therapy reduces CD40 expression in GBM-associated Mϕs. We identify a Stat3/HIF-1α-mediated axis, through which IL-6 executes an anti-tumor role to induce CD40 expression in Mϕs. Combination of IL-6 inhibition with CD40 stimulation reverses Mϕ-mediated tumor immunosuppression, sensitizes tumors to checkpoint blockade, and extends animal survival in two syngeneic GBM models, particularly inducing complete regression of GL261 tumors after checkpoint blockade. Thus, antibody cocktail-based immunotherapy that combines checkpoint blockade with dual-targeting of IL-6 and CD40 may offer exciting opportunities for GBM and other solid tumors.
Collapse
Affiliation(s)
- Fan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhenqiang He
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oncology in South China, Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hao Duan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- State Key Laboratory of Oncology in South China, Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Duo Zhang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Juehui Li
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Huijuan Yang
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay F Dorsey
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Zou
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - S Ali Nabavizadeh
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Bagley
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Kalil Abdullah
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Steven Brem
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Zhang
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katelyn T Byrne
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert H Vonderheide
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yanqing Gong
- Division of Human Genetics and Translational Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
126
|
Quintarelli C, Camera A, Ciccone R, Alessi I, Del Bufalo F, Carai A, Del Baldo G, Mastronuzzi A, De Angelis B. Innovative and Promising Strategies to Enhance Effectiveness of Immunotherapy for CNS Tumors: Where Are We? Front Immunol 2021; 12:634031. [PMID: 34163465 PMCID: PMC8216238 DOI: 10.3389/fimmu.2021.634031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are several immunotherapy approaches for the treatment of Central Nervous System (CNS) tumors under evaluation, currently none of these approaches have received approval from the regulatory agencies. CNS tumors, especially glioblastomas, are tumors characterized by highly immunosuppressive tumor microenvironment, limiting the possibility of effectively eliciting an immune response. Moreover, the peculiar anatomic location of these tumors poses relevant challenges in terms of safety, since uncontrolled hyper inflammation could lead to cerebral edema and cranial hypertension. The most promising strategies of immunotherapy in neuro-oncology consist of the use of autologous T cells redirected against tumor cells through chimeric antigen receptor (CAR) constructs or genetically modified T-cell receptors. Trials based on native or genetically engineered oncolytic viruses and on vaccination with tumor-associated antigen peptides are also under evaluation. Despite some sporadic complete remissions achieved in clinical trials, the outcome of patients with CNS tumors treated with different immunotherapeutic approaches remains poor. Based on the lessons learned from these unsatisfactory experiences, novel immune-therapy approaches aimed at overcoming the profound immunosuppressive microenvironment of these diseases are bringing new hope to reach the cure for CNS tumors.
Collapse
Affiliation(s)
- Concetta Quintarelli
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy.,Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Antonio Camera
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Roselia Ciccone
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Iside Alessi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Del Bufalo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Giada Del Baldo
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| | - Biagio De Angelis
- Department Onco-Hematology, Cell and Gene Therapy, IRCCS, Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
127
|
Dorrell MI, Kast-Woelbern HR, Botts RT, Bravo SA, Tremblay JR, Giles S, Wada JF, Alexander M, Garcia E, Villegas G, Booth CB, Purington KJ, Everett HM, Siles EN, Wheelock M, Silva JA, Fortin BM, Lowey CA, Hale AL, Kurz TL, Rusing JC, Goral DM, Thompson P, Johnson AM, Elson DJ, Tadros R, Gillette CE, Coopwood C, Rausch AL, Snowbarger JM. A novel method of screening combinations of angiostatics identifies bevacizumab and temsirolimus as synergistic inhibitors of glioma-induced angiogenesis. PLoS One 2021; 16:e0252233. [PMID: 34077449 PMCID: PMC8172048 DOI: 10.1371/journal.pone.0252233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
Tumor angiogenesis is critical for the growth and progression of cancer. As such, angiostasis is a treatment modality for cancer with potential utility for multiple types of cancer and fewer side effects. However, clinical success of angiostatic monotherapies has been moderate, at best, causing angiostatic treatments to lose their early luster. Previous studies demonstrated compensatory mechanisms that drive tumor vascularization despite the use of angiostatic monotherapies, as well as the potential for combination angiostatic therapies to overcome these compensatory mechanisms. We screened clinically approved angiostatics to identify specific combinations that confer potent inhibition of tumor-induced angiogenesis. We used a novel modification of the ex ovo chick chorioallantoic membrane (CAM) model that combined confocal and automated analyses to quantify tumor angiogenesis induced by glioblastoma tumor onplants. This model is advantageous due to its low cost and moderate throughput capabilities, while maintaining complex in vivo cellular interactions that are difficult to replicate in vitro. After screening multiple combinations, we determined that glioblastoma-induced angiogenesis was significantly reduced using a combination of bevacizumab (Avastin®) and temsirolimus (Torisel®) at doses below those where neither monotherapy demonstrated activity. These preliminary results were verified extensively, with this combination therapy effective even at concentrations further reduced 10-fold with a CI value of 2.42E-5, demonstrating high levels of synergy. Thus, combining bevacizumab and temsirolimus has great potential to increase the efficacy of angiostatic therapy and lower required dosing for improved clinical success and reduced side effects in glioblastoma patients.
Collapse
Affiliation(s)
- Michael I. Dorrell
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States of America
- * E-mail:
| | - Heidi R. Kast-Woelbern
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Ryan T. Botts
- Department of Mathematical, Information, and Computer Sciences, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Stephen A. Bravo
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jacob R. Tremblay
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Sarah Giles
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jessica F. Wada
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - MaryAnn Alexander
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Eric Garcia
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Gabriel Villegas
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Caylor B. Booth
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Kaitlyn J. Purington
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Haylie M. Everett
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Erik N. Siles
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Michael Wheelock
- Department of Mathematical, Information, and Computer Sciences, Dr. Ryan Bott’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jordan A. Silva
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Bridget M. Fortin
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Connor A. Lowey
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Allison L. Hale
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Troy L. Kurz
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jack C. Rusing
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Dawn M. Goral
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Paul Thompson
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Alec M. Johnson
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Daniel J. Elson
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Roujih Tadros
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Charisa E. Gillette
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Carley Coopwood
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Amy L. Rausch
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| | - Jeffrey M. Snowbarger
- Department of Biology, Dr. Michael Dorrell’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
- Department of Biology, Dr. Heidi R. Kast-Woelbern’s Lab, Point Loma Nazarene University, San Diego, CA, United States of America
| |
Collapse
|
128
|
Qiu X, Tian Y, Xu J, Jiang X, Liu Z, Qi X, Chang X, Zhao J, Huang J. Development and Validation of an Immune-Related Long Non-coding RNA Prognostic Model in Glioma. J Cancer 2021; 12:4264-4276. [PMID: 34093827 PMCID: PMC8176429 DOI: 10.7150/jca.53831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Long non-coding RNAs (lncRNAs) play an important role in the immune processes of glioma. Immune related lncRNAs (IRlncRs) may be a critical prognosis in patients with glioma. The current study aimed to construct a glioma immune-related prognosis model by IRlncRs. Methods: Transcriptome RNA-sequencing data of glioma were obtained from The Cancer Genome Atlas (TCGA) and an immune‑related risk score (IRRS) model was constructed by Lasso and multivariate Cox regression analysis. Receiver Operating Characteristic (ROC) curves were used to assess the sensitivity and specificity of the prognosis on IRRS. A predictive nomogram and a time-dependent ROC curve was performed in training and validation cohort. We explored the relationships between survival‑related IRlncRs (sIRlncRs) and clinicopathologic parameters. Functional annotation of the sIRlncRs was investigated by gene set enrichment analysis (GSEA) and principal component analysis (PCA). The relationships between IRRS model and immune cell infiltration and co-expression network analysis among the sIRlncRs were performed for molecular mechanism study. Results: A total of 10 sIRlncRs were enrolled to build IRRS model. The IRRS was identified as an independent prognostic factor and correlated with the overall survival (AUC =0.880). The nomogram was constructed successfully with IRRS, age and grade as variables. Immune cell infiltration analysis indicated that B cells, neutrophil, dendritic and macrophage cells were positively correlated with IRRS. PCA and GSEA illustrated that the lncRNA signature enrolled the IRRS model was closely related to immune status. Additionally, co-expression network showed that there was a strong correlation between 10 sIRlncRs at the transcriptional level. Conclusion: We successfully constructed a remarkable clinical model of sIRlncRs with potential prognostic value for glioma patients, which provides an insight into immunological research and treatment strategies of glioma.
Collapse
Affiliation(s)
- Xiaowei Qiu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Yehong Tian
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China.,Institute of Acupuncture and Moxibustion, Shaanxi University of Chinese Medicine, Shaanxi, China
| | - Jingnan Xu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xin Jiang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Zeyu Liu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xuewei Qi
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Xin Chang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jianxin Zhao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| | - Jinchang Huang
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, China
| |
Collapse
|
129
|
Lara-Velazquez M, Shireman JM, Lehrer EJ, Bowman KM, Ruiz-Garcia H, Paukner MJ, Chappell RJ, Dey M. A Comparison Between Chemo-Radiotherapy Combined With Immunotherapy and Chemo-Radiotherapy Alone for the Treatment of Newly Diagnosed Glioblastoma: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:662302. [PMID: 34046356 PMCID: PMC8144702 DOI: 10.3389/fonc.2021.662302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022] Open
Abstract
Background Immunotherapy for GBM is an emerging field which is increasingly being investigated in combination with standard of care treatment options with variable reported success rates. Objective To perform a systematic review of the available data to evaluate the safety and efficacy of combining immunotherapy with standard of care chemo-radiotherapy following surgical resection for the treatment of newly diagnosed GBM. Methods A literature search was performed for published clinical trials evaluating immunotherapy for GBM from January 1, 2000, to October 1, 2020, in PubMed and Cochrane using PICOS/PRISMA/MOOSE guidelines. Only clinical trials with two arms (combined therapy vs. control therapy) were included. Outcomes were then pooled using weighted random effects model for meta-analysis and compared using the Wald-type test. Primary outcomes included 1-year overall survival (OS) and progression-free survival (PFS), secondary outcomes included severe adverse events (SAE) grade 3 or higher. Results Nine randomized phase II and/or III clinical trials were included in the analysis, totaling 1,239 patients. The meta-analysis revealed no statistically significant differences in group’s 1-year OS [80.6% (95% CI: 68.6%–90.2%) vs. 72.6% (95% CI: 65.7%–78.9%), p = 0.15] or in 1-year PFS [37% (95% CI: 26.4%–48.2%) vs. 30.4% (95% CI: 25.4%–35.6%) p = 0.17] when the immunotherapy in combination with the standard of care group (combined therapy) was compared to the standard of care group alone (control). Severe adverse events grade 3 to 5 were more common in the immunotherapy and standard of care group than in the standard of care group (47.3%, 95% CI: 20.8–74.6%, vs 43.8%, 95% CI: 8.7–83.1, p = 0.81), but this effect also failed to reach statistical significance. Conclusion Our results suggests that immunotherapy can be safely combined with standard of care chemo-radiotherapy without significant increase in grade 3 to 5 SAE; however, there is no statistically significant increase in overall survival or progression free survival with the combination therapy.
Collapse
Affiliation(s)
- Montserrat Lara-Velazquez
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Jack M Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kelsey M Bowman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Henry Ruiz-Garcia
- Department of Neurosurgery and Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mitchell J Paukner
- Department of Statistics, Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Richard J Chappell
- Department of Statistics, Biostatistics and Medical Informatics, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
130
|
Frederico SC, Hancock JC, Brettschneider EES, Ratnam NM, Gilbert MR, Terabe M. Making a Cold Tumor Hot: The Role of Vaccines in the Treatment of Glioblastoma. Front Oncol 2021; 11:672508. [PMID: 34041034 PMCID: PMC8141615 DOI: 10.3389/fonc.2021.672508] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
The use of immunotherapies for the treatment of brain tumors is a topic that has garnered considerable excitement in recent years. Discoveries such as the presence of a glymphatic system and immune surveillance in the central nervous system (CNS) have shattered the theory of immune privilege and opened up the possibility of treating CNS malignancies with immunotherapies. However, despite many immunotherapy clinical trials aimed at treating glioblastoma (GBM), very few have demonstrated a significant survival benefit. Several factors for this have been identified, one of which is that GBMs are immunologically "cold," implying that the cancer does not induce a strong T cell response. It is postulated that this is why clinical trials using an immune checkpoint inhibitor alone have not demonstrated efficacy. While it is well established that anti-cancer T cell responses can be facilitated by the presentation of tumor-specific antigens to the immune system, treatment-related death of GBM cells and subsequent release of molecules have not been shown to be sufficient to evoke an anti-tumor immune response effective enough to have a significant impact. To overcome this limitation, vaccines can be used to introduce exogenous antigens at higher concentrations to the immune system to induce strong tumor antigen-specific T cell responses. In this review, we will describe vaccination strategies that are under investigation to treat GBM; categorizing them based on their target antigens, form of antigens, vehicles used, and pairing with specific adjuvants. We will review the concept of vaccine therapy in combination with immune checkpoint inhibitors, as it is hypothesized that this approach may be more effective in overcoming the immunosuppressive milieu of GBM. Clinical trial design and the need for incorporating robust immune monitoring into future studies will also be discussed here. We believe that the integration of evolving technologies of vaccine development, delivery, and immune monitoring will further enhance the role of these therapies and will likely remain an important area of investigation for future treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Stephen C. Frederico
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| | - John C. Hancock
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| | - Emily E. S. Brettschneider
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Nivedita M. Ratnam
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| | - Mark R. Gilbert
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| | - Masaki Terabe
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
131
|
Renner O, Burkard M, Michels H, Vollbracht C, Sinnberg T, Venturelli S. Parenteral high‑dose ascorbate - A possible approach for the treatment of glioblastoma (Review). Int J Oncol 2021; 58:35. [PMID: 33955499 PMCID: PMC8104923 DOI: 10.3892/ijo.2021.5215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
For glioblastoma, the treatment with standard of care therapy comprising resection, radiation, and temozolomide results in overall survival of approximately 14-18 months after initial diagnosis. Even though several new therapy approaches are under investigation, it is difficult to achieve life prolongation and/or improvement of patient's quality of life. The aggressiveness and progression of glioblastoma is initially orchestrated by the biological complexity of its genetic phenotype and ability to respond to cancer therapy via changing its molecular patterns, thereby developing resistance. Recent clinical studies of pharmacological ascorbate have demonstrated its safety and potential efficacy in different cancer entities regarding patient's quality of life and prolongation of survival. In this review article, the actual glioblastoma treatment possibilities are summarized, the evidence for pharmacological ascorbate in glioblastoma treatment is examined and questions are posed to identify current gaps of knowledge regarding accessibility of ascorbate to the tumor area. Experiments with glioblastoma cell lines and tumor xenografts have demonstrated that high-dose ascorbate induces cytotoxicity and oxidative stress largely selectively in malignant cells compared to normal cells suggesting ascorbate as a potential therapeutic agent. Further investigations in larger cohorts and randomized placebo-controlled trials should be performed to confirm these findings as well as to improve delivery strategies to the brain, through the inherent barriers and ultimately to the malignant cells.
Collapse
Affiliation(s)
- Olga Renner
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Holger Michels
- Pascoe Pharmazeutische Praeparate GmbH, D‑35394 Giessen, Germany
| | | | - Tobias Sinnberg
- Department of Dermatology, University Hospital Tuebingen, D‑72076 Tuebingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| |
Collapse
|
132
|
Precilla DS, Kuduvalli SS, Purushothaman M, Marimuthu P, Ramachandran MA, Anitha TS. Wnt/β-catenin Antagonists: Exploring New Avenues to Trigger Old Drugs in Alleviating Glioblastoma Multiforme. Curr Mol Pharmacol 2021; 15:338-360. [PMID: 33881978 DOI: 10.2174/1874467214666210420115431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/24/2020] [Accepted: 01/30/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Glioblastoma multiforme is one of the most heterogenous primary brain tumor with high mortality. Nevertheless, of the current therapeutic approaches, survival rate remains poor with 12 to 15 months following preliminary diagnosis, this warrants the need for effective treatment modality. Wnt/β-catenin pathway is presumably the most noteworthy pathway up-regulated in almost 80% GBM cases contributing to tumor-initiation, progression and survival. Therefore, therapeutic strategies targeting key components of Wnt/β-catenin cascade using established genotoxic agents like temozolomide and pharmacological inhibitors would be an effective approach to modulate Wnt/β-catenin pathway. Recently, drug repurposing by means of effective combination therapy has gained importance in various solid tumors including GBM, by targeting two or more proteins in a single pathway, thereby possessing the ability to overcome the hurdle implicated by chemo-resistance in GBM. OBJECTIVE In this context, by employing computational tools, an attempt has been carried out to speculate the novel combinations against Wnt/β-catenin signaling pathway. METHODS We have explored the binding interactions of three conventional drugs namely temozolomide, metformin, chloroquine along with three natural compounds viz., epigallocatechin gallate, naringenin and phloroglucinol on the major receptors of Wnt/β-catenin signaling. RESULTS It was noted that all the experimental compounds possessed profound interaction with the two major receptors of Wnt/β-catenin pathway. CONCLUSION To the best of our knowledge, this study is the first of its kind to characterize the combined interactions of the afore-mentioned drugs on Wnt/β-catenin signaling in silico and this will putatively open up new avenues for combination therapies in GBM treatment.
Collapse
Affiliation(s)
- Daisy S Precilla
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | - Shreyas S Kuduvalli
- Central Inter-Disciplinary Research Facility, School of Biological Sciences, Sri Balaji Vidyapeeth (Deemed to-be University), Puducherry, India
| | | | - Parthiban Marimuthu
- Structural Bioinformatics Laboratory - Pharmacy, Faculty of Science and Engineering, Åbo Akademi University, Turku. Finland
| | | | | |
Collapse
|
133
|
An Alternative Pipeline for Glioblastoma Therapeutics: A Systematic Review of Drug Repurposing in Glioblastoma. Cancers (Basel) 2021; 13:cancers13081953. [PMID: 33919596 PMCID: PMC8073966 DOI: 10.3390/cancers13081953] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma is a devastating malignancy that has continued to prove resistant to a variety of therapeutics. No new systemic therapy has been approved for use against glioblastoma in almost two decades. This observation is particularly disturbing given the amount of money invested in identifying novel therapies for this disease. A relatively rapid and economical pipeline for identification of novel agents is drug repurposing. Here, a comprehensive review detailing the state of drug repurposing in glioblastoma is provided. We reveal details on studies that have examined agents in vitro, in animal models and in patients. While most agents have not progressed beyond the initial stages, several drugs, from a variety of classes, have demonstrated promising results in early phase clinical trials. Abstract The treatment of glioblastoma (GBM) remains a significant challenge, with outcome for most pa-tients remaining poor. Although novel therapies have been developed, several obstacles restrict the incentive of drug developers to continue these efforts including the exorbitant cost, high failure rate and relatively small patient population. Repositioning drugs that have well-characterized mechanistic and safety profiles is an attractive alternative for drug development in GBM. In ad-dition, the relative ease with which repurposed agents can be transitioned to the clinic further supports their potential for examination in patients. Here, a systematic analysis of the literature and clinical trials provides a comprehensive review of primary articles and unpublished trials that use repurposed drugs for the treatment of GBM. The findings demonstrate that numerous drug classes that have a range of initial indications have efficacy against preclinical GBM models and that certain agents have shown significant potential for clinical benefit. With examination in randomized, placebo-controlled trials and the targeting of particular GBM subgroups, it is pos-sible that repurposing can be a cost-effective approach to identify agents for use in multimodal anti-GBM strategies.
Collapse
|
134
|
Cho YA, Kim D, Lee B, Shim JH, Suh YL. Incidence, clinicopathologic, and genetic characteristics of mismatch repair gene-mutated glioblastomas. J Neurooncol 2021; 153:43-53. [PMID: 33864561 DOI: 10.1007/s11060-021-03710-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Glioblastoma (GBM) is the most common and malignant gliomas of adults and recur, resulting in death, despite surgery, radiotherapy, and temozolomide-based chemotherapy. There are a few reports on immunotherapy for the mismatch repair (MMR)-deficient GBMs with high tumor mutational burden (TMB). However, the clinicopathological and genetic features of the MMR genes altered in GBMs have not been elucidated yet. METHODS The authors analyzed targeted next-generation sequencing (NGS) data from 282 (276 primary and 6 recurrent) glioblastomas to evaluate the mutational status of six DNA repair-related genes: MLH1, MSH2, MSH6, PMS2, POLE, and POLD1. Tumors harboring somatic or germline mutations in one or more of these six genes were classified as an MMR gene-altered GBM. The clinicopathologic and molecular characteristics of MMR gene-altered GBMs were compared to those of tumors without MMR gene alterations. RESULTS Sixty germline or somatic mutations were identified in 37 cases (35 primary and two recurrent) of GBM. The most frequently mutated genes were MSH6 and POLE. Single nucleotide variants were the most common, followed by frameshift deletions or insertions and approximately 60% of the mutations were germline mutations. Two patients who showed MSH2 (c.2038C > T) and MSH6 (c.1082G > A) mutations had familial colon cancer. The clinical findings were not different between the two groups. However, the presence of MGMT promoter methylation and high tumor mutation burden (TMB) values (> 20) were correlated with MMR gene alterations. CONCLUSION Since MMR-related genes can be found even in primary glioblastoma and are correlated with high TMB and MGMT promoter methylation, MMR genes should be carefully analyzed in NGS study on glioblastomas.
Collapse
Affiliation(s)
- Yoon Ah Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.,Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Deokgeun Kim
- Department of Clinical Genomic Center, Samsung Medical Center, Seoul, Republic of Korea.,Department of Digital Health, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Boram Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Samsung Genomic Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Joon Ho Shim
- Department of Health Sciences and Technology, Samsung Advanced Institute of Health Science and Technology, Sungkyunkwan University, Seoul, Republic of Korea.,Samsung Genomic Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Yeon-Lim Suh
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| |
Collapse
|
135
|
Ma W, Zhang K, Bao Z, Jiang T, Zhang Y. SAMD9 Is Relating With M2 Macrophage and Remarkable Malignancy Characters in Low-Grade Glioma. Front Immunol 2021; 12:659659. [PMID: 33936093 PMCID: PMC8085496 DOI: 10.3389/fimmu.2021.659659] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022] Open
Abstract
Immunoreactions regulated by TAMs (Tumor-associated macrophages) play a pivotal role in tumorigenesis and metastasis. In recent decades, treatments based on immune regulation have achieved revolutionary breakthroughs in cancer targeted therapies. The phenotypes of TAMs in gliomas are more heterogeneous and inherently complex than can be simply defined by classification into the M1 and M2 polarized states. The detailed mechanisms surrounding infiltrating macrophage phenotype and glioma characteristics remain undefined. SAMD9 (Sterile Alpha Motif Domain-Containing Protein 9) was found to be highly expressed in glioma and closely related to histological and genetic features in CGGA and TCGA databases. Simultaneously, we present evidence to show that there was a positive association between SAMD9 and malignancy characters in LGG. Univariable and Multivariate proportional hazard Cox analysis showed that SAMD9 was an independent prognostic factor for LGG. Surprisingly, Gene Ontology (GO) analysis showed SAMD9 expression level was remarkably well correlated with immunological responses and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis supported the connection with immune responses and tumorigenesis. Immune infiltration analysis demonstrated that high SAMD9 expression resulted in an accumulation of macrophages by CIBERSORT and TIMER databases, especially positively related to macrophage total marker gene AIF1 and Macrophage M2 marker gene CD163. IHC staining further indicated a high correlation of SAMD9 with those specific macrophage markers in the immune response. Human THP-1 cells were induced into M2 macrophages, which were then co-cultured with LN229 cells. Silencing of SAMD9 by shRNA in LN229 cells attenuated the infiltration abilities of M2 macrophage. SAMD9 explored immune response via relating of M2 macrophage in vitro. Our results revealed SAMD9 acted as the malignancy characters in LGG, enrichment with M2 macrophage.
Collapse
Affiliation(s)
- Wenping Ma
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Kenan Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| | - Ying Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, China
| |
Collapse
|
136
|
Wang LB, Karpova A, Gritsenko MA, Kyle JE, Cao S, Li Y, Rykunov D, Colaprico A, Rothstein JH, Hong R, Stathias V, Cornwell M, Petralia F, Wu Y, Reva B, Krug K, Pugliese P, Kawaler E, Olsen LK, Liang WW, Song X, Dou Y, Wendl MC, Caravan W, Liu W, Cui Zhou D, Ji J, Tsai CF, Petyuk VA, Moon J, Ma W, Chu RK, Weitz KK, Moore RJ, Monroe ME, Zhao R, Yang X, Yoo S, Krek A, Demopoulos A, Zhu H, Wyczalkowski MA, McMichael JF, Henderson BL, Lindgren CM, Boekweg H, Lu S, Baral J, Yao L, Stratton KG, Bramer LM, Zink E, Couvillion SP, Bloodsworth KJ, Satpathy S, Sieh W, Boca SM, Schürer S, Chen F, Wiznerowicz M, Ketchum KA, Boja ES, Kinsinger CR, Robles AI, Hiltke T, Thiagarajan M, Nesvizhskii AI, Zhang B, Mani DR, Ceccarelli M, Chen XS, Cottingham SL, Li QK, Kim AH, Fenyö D, Ruggles KV, Rodriguez H, Mesri M, Payne SH, Resnick AC, Wang P, Smith RD, Iavarone A, Chheda MG, Barnholtz-Sloan JS, Rodland KD, Liu T, Ding L. Proteogenomic and metabolomic characterization of human glioblastoma. Cancer Cell 2021; 39:509-528.e20. [PMID: 33577785 PMCID: PMC8044053 DOI: 10.1016/j.ccell.2021.01.006] [Citation(s) in RCA: 353] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/02/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma (GBM) is the most aggressive nervous system cancer. Understanding its molecular pathogenesis is crucial to improving diagnosis and treatment. Integrated analysis of genomic, proteomic, post-translational modification and metabolomic data on 99 treatment-naive GBMs provides insights to GBM biology. We identify key phosphorylation events (e.g., phosphorylated PTPN11 and PLCG1) as potential switches mediating oncogenic pathway activation, as well as potential targets for EGFR-, TP53-, and RB1-altered tumors. Immune subtypes with distinct immune cell types are discovered using bulk omics methodologies, validated by snRNA-seq, and correlated with specific expression and histone acetylation patterns. Histone H2B acetylation in classical-like and immune-low GBM is driven largely by BRDs, CREBBP, and EP300. Integrated metabolomic and proteomic data identify specific lipid distributions across subtypes and distinct global metabolic changes in IDH-mutated tumors. This work highlights biological relationships that could contribute to stratification of GBM patients for more effective treatment.
Collapse
Affiliation(s)
- Liang-Bo Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Alla Karpova
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Song Cao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, University of Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami, FL 33136, USA
| | - Joseph H Rothstein
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Vasileios Stathias
- Sylvester Comprehensive Cancer Center, University of Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; BD2K-LINCS Data Coordination and Integration Center, Miami, FL 33136, USA
| | - MacIntosh Cornwell
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pietro Pugliese
- Department of Science and Technology, University of Sannio, 82100, Benevento, Italy
| | - Emily Kawaler
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lindsey K Olsen
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yongchao Dou
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel Cui Zhou
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xiaolu Yang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexis Demopoulos
- Department of Neurology, Northwell Health System, Lake Success, NY 11042 USA
| | - Houxiang Zhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joshua F McMichael
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - Caleb M Lindgren
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Hannah Boekweg
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Shuangjia Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jessika Baral
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lijun Yao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Kelly G Stratton
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Lisa M Bramer
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Erika Zink
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Sneha P Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Weiva Sieh
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simina M Boca
- Innovation Center for Biomedical Informatics, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Stephan Schürer
- Sylvester Comprehensive Cancer Center, University of Miami, FL 33136, USA; Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; BD2K-LINCS Data Coordination and Integration Center, Miami, FL 33136, USA; Institute for Data Science & Computing, University of Miami, FL 33136, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | | | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michele Ceccarelli
- Department of Electrical Engineering and Information Technology, University of Naples "Federico II", 80128, Naples, Italy; BIOGEM, 83031 Ariano Irpino, Italy
| | - Xi S Chen
- Sylvester Comprehensive Cancer Center, University of Miami, FL 33136, USA; Division of Biostatistics, Department of Public Health Science, University of Miami, FL 33136, USA
| | - Sandra L Cottingham
- Department of Pathology, Spectrum Health and Helen DeVos Children's Hospital, Grand Rapids, MI 49503, USA
| | - Qing Kay Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - Adam C Resnick
- Center for Data Driven Discovery in Biomedicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA; Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Milan G Chheda
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Neurology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jill S Barnholtz-Sloan
- Case Comprehensive Cancer Center and Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Research and Education, University Hospitals Health System, Cleveland, OH 44106, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA.
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63130, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
137
|
Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel) 2021; 13:1795. [PMID: 33918704 PMCID: PMC8069979 DOI: 10.3390/cancers13081795] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM), the most frequent and aggressive glial tumor, is currently treated as first line by the Stupp protocol, which combines, after surgery, radiotherapy and chemotherapy. For recurrent GBM, in absence of standard treatment or available clinical trials, various protocols including cytotoxic drugs and/or bevacizumab are currently applied. Despite these heavy treatments, the mean overall survival of patients is under 18 months. Many clinical studies are underway. Based on clinicaltrials.org and conducted up to 1 April 2020, this review lists, not only main, but all targeted therapies in phases II-IV of 257 clinical trials on adults with newly diagnosed or recurrent GBMs for the last twenty years. It does not involve targeted immunotherapies and therapies targeting tumor cell metabolism, that are well documented in other reviews. Without surprise, the most frequently reported drugs are those targeting (i) EGFR (40 clinical trials), and more generally tyrosine kinase receptors (85 clinical trials) and (ii) VEGF/VEGFR (75 clinical trials of which 53 involving bevacizumab). But many other targets and drugs are of interest. They are all listed and thoroughly described, on an one-on-one basis, in four sections related to targeting (i) GBM stem cells and stem cell pathways, (ii) the growth autonomy and migration, (iii) the cell cycle and the escape to cell death, (iv) and angiogenesis.
Collapse
Affiliation(s)
- Elisabete Cruz Da Silva
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Marie-Cécile Mercier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Nelly Etienne-Selloum
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
- Service de Pharmacie, Institut de Cancérologie Strasbourg Europe, 67200 Strasbourg, France
| | - Monique Dontenwill
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| | - Laurence Choulier
- CNRS, UMR 7021, Laboratoire de Bioimagerie et Pathologies, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch, France; (E.C.D.S.); (M.-C.M.); (N.E.-S.); (M.D.)
| |
Collapse
|
138
|
Advances in Lipid-Based Nanoparticles for Cancer Chemoimmunotherapy. Pharmaceutics 2021; 13:pharmaceutics13040520. [PMID: 33918635 PMCID: PMC8069739 DOI: 10.3390/pharmaceutics13040520] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nanomedicines have shown great potential in cancer therapy; in particular, the combination of chemotherapy and immunotherapy (namely chemoimmunotherapy) that is revolutionizing cancer treatment. Currently, most nanomedicines for chemoimmunotherapy are still in preclinical and clinical trials. Lipid-based nanoparticles, the most widely used nanomedicine platform in cancer therapy, is a promising delivery platform for chemoimmunotherapy. In this review, we introduce the commonly used immunotherapy agents and discuss the opportunities for chemoimmunotherapy mediated by lipid-based nanoparticles. We summarize the clinical trials involving lipid-based nanoparticles for chemoimmunotherapy. We also highlight different chemoimmunotherapy strategies based on lipid-based nanoparticles such as liposomes, nanodiscs, and lipid-based hybrid nanoparticles in preclinical research. Finally, we discuss the challenges that have hindered the clinical translation of lipid-based nanoparticles for chemoimmunotherapy, and their future perspectives.
Collapse
|
139
|
Alizadeh D, Wong RA, Gholamin S, Maker M, Aftabizadeh M, Yang X, Pecoraro JR, Jeppson JD, Wang D, Aguilar B, Starr R, Larmonier CB, Larmonier N, Chen MH, Wu X, Ribas A, Badie B, Forman SJ, Brown CE. IFNγ Is Critical for CAR T Cell-Mediated Myeloid Activation and Induction of Endogenous Immunity. Cancer Discov 2021; 11:2248-2265. [PMID: 33837065 DOI: 10.1158/2159-8290.cd-20-1661] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/24/2021] [Accepted: 04/05/2021] [Indexed: 11/16/2022]
Abstract
Chimeric antigen receptor (CAR) T cells mediate potent antigen-specific antitumor activity; however, their indirect effects on the endogenous immune system are not well characterized. Remarkably, we demonstrate that CAR T-cell treatment of mouse syngeneic glioblastoma (GBM) activates intratumoral myeloid cells and induces endogenous T-cell memory responses coupled with feed-forward propagation of CAR T-cell responses. IFNγ production by CAR T cells and IFNγ responsiveness of host immune cells are critical for tumor immune landscape remodeling to promote a more activated and less suppressive tumor microenvironment. The clinical relevance of these observations is supported by studies showing that human IL13Rα2-CAR T cells activate patient-derived endogenous T cells and monocytes/macrophages through IFNγ signaling and induce the generation of tumor-specific T-cell responses in a responding patient with GBM. These studies establish that CAR T-cell therapy has the potential to shape the tumor microenvironment, creating a context permissible for eliciting endogenous antitumor immunity. SIGNIFICANCE: Our findings highlight the critical role of IFNγ signaling for a productive CAR T-cell therapy in GBM. We establish that CAR T cells can activate resident myeloid populations and promote endogenous T-cell immunity, emphasizing the importance of host innate and adaptive immunity for CAR T-cell therapy of solid tumors.This article is highlighted in the In This Issue feature, p. 2113.
Collapse
Affiliation(s)
- Darya Alizadeh
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| | - Robyn A Wong
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Sharareh Gholamin
- Department of Biology and Bioengineering, California Institute of Technology, Pasadena, California
| | - Madeleine Maker
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Maryam Aftabizadeh
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Xin Yang
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Joseph R Pecoraro
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - John D Jeppson
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Dongrui Wang
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Brenda Aguilar
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Renate Starr
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Claire B Larmonier
- Department of Biopathology, Molecular Pathology Unit, Bergonié Institute, Comprehensive Cancer Center, Bordeaux, France
| | - Nicolas Larmonier
- CNRS UMR 5164, ImmunoConcEpT, University of Bordeaux, Bordeaux, France
| | - Min-Hsuan Chen
- Core of Integrative Genomics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Xiwei Wu
- Core of Integrative Genomics, City of Hope Comprehensive Cancer Center, Duarte, California
| | - Antoni Ribas
- Department of Medicine, Jonsson Comprehensive Cancer Center at University of California, Los Angeles, California
| | - Behnam Badie
- Division of Neurosurgery, Department of Surgery, City of Hope, Duarte, California
| | - Stephen J Forman
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California
| | - Christine E Brown
- T Cell Therapeutics Research Labs, Cellular Immunotherapy Center, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, California.
| |
Collapse
|
140
|
Physiological Imaging Methods for Evaluating Response to Immunotherapies in Glioblastomas. Int J Mol Sci 2021; 22:ijms22083867. [PMID: 33918043 PMCID: PMC8069140 DOI: 10.3390/ijms22083867] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor in adults, with a dismal prognosis despite aggressive multi-modal therapy. Immunotherapy is currently being evaluated as an alternate treatment modality for recurrent GBMs in clinical trials. These immunotherapeutic approaches harness the patient's immune response to fight and eliminate tumor cells. Standard MR imaging is not adequate for response assessment to immunotherapy in GBM patients even after using refined response assessment criteria secondary to amplified immune response. Thus, there is an urgent need for the development of effective and alternative neuroimaging techniques for accurate response assessment. To this end, some groups have reported the potential of diffusion and perfusion MR imaging and amino acid-based positron emission tomography techniques in evaluating treatment response to different immunotherapeutic regimens in GBMs. The main goal of these techniques is to provide definitive metrics of treatment response at earlier time points for making informed decisions on future therapeutic interventions. This review provides an overview of available immunotherapeutic approaches used to treat GBMs. It discusses the limitations of conventional imaging and potential utilities of physiologic imaging techniques in the response assessment to immunotherapies. It also describes challenges associated with these imaging methods and potential solutions to avoid them.
Collapse
|
141
|
Kavya S, Reghu R. An Overview of High-grade Glioma: Current and Emerging Treatment Approaches. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666200721155514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High grade glioma is one of the severe form of tumour that progresses in the glial cells
of the brain and spinal cord. Age, gender, exposure to infections, race, ethnicity, viruses and allergens,
environmental carcinogens, diet, head injury or trauma and ionizing radiation may report
with increased glioma risk. Headache, seizure mainly generalized tonic-clonic seizure, memory
loss and altered sensorium are considered as common symptoms of glioma. Magnetic Resonance
Imaging (MRI), CT scans, neurological examinations and biopsy are considered as the diagnostic
option for glioma. Treatment for glioma mainly depended upon the tumour progression, malignancy,
cell type, age, location of tumour growth and anatomic structure. The standard treatment includes
surgery, radiation therapy and chemotherapy. Temozolomide is usually prescribed at a
dosage of 75 mg/m2 and began in combination with radiation therapy and continued daily. The primary
indicator of hepatotoxicity is the elevation of the liver profiles, i.e. the changes in any of the
liver panels may be considered to be hepatotoxic. Serum glutamic oxaloacetic transaminase (SGOT),
Serum Glutamic Pyruvic Transaminase (SGPT), Alkaline phosphatase (ALP) are rising panels
of the liver, which are elevated during toxicity. In some patients, albumin and globulin levels
may show variations. Treatment for glioma associated symptoms like seizures, depression anxiety
etc. are also mentioned along with supportive care for glioma. New trends in the treatment for glioma
are RINTEGA, an experimental immunotherapeutic agent and bevazizumab, a recombinant
monoclonal, a humanized antibody against the VEGF ligand [VEGF-A (vascular endothelial
growth factor)] in tumor cells.
Collapse
Affiliation(s)
- S.G. Kavya
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| | - R. Reghu
- Department of Pharmacy Practice, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, 682041, Kerala, India
| |
Collapse
|
142
|
Zhu H, Yu X, Zhang S, Shu K. Targeting the Complement Pathway in Malignant Glioma Microenvironments. Front Cell Dev Biol 2021; 9:657472. [PMID: 33869223 PMCID: PMC8047198 DOI: 10.3389/fcell.2021.657472] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Malignant glioma is a highly fatal type of brain tumor, and its reoccurrence is largely due to the ordered interactions among the components present in the complex microenvironment. Besides its role in immune surveillance and clearance under physiological conditions, the complement system is expressed in a variety of tumor types and mediates the interactions within the tumor microenvironments. Recent studies have uncovered the broad expression spectrum of complement signaling molecules in the tumor microenvironment and various tumor cells, in particular, malignant glioma cells. Involvement of the complement system in tumor growth, immunosuppression and phenotype transition have also been elucidated. In this review, we enumerate the expression and function of complement molecules in multiple tumor types reported. Moreover, we elaborate the complement pathways in glioma cells and various components of malignant glioma microenvironments. Finally, we summarize the possibility of the complement molecules as prognostic factors and therapeutic targets in the treatment of malignant glioma. Specific targeting of the complement system maybe of great significance and value in the future treatment of multi-type tumors including malignant glioma.
Collapse
Affiliation(s)
- Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
143
|
Wang S, Xu X. An Immune-Related Gene Pairs Signature for Predicting Survival in Glioblastoma. Front Oncol 2021; 11:564960. [PMID: 33859933 PMCID: PMC8042321 DOI: 10.3389/fonc.2021.564960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 02/12/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Glioblastoma (GBM) is the frequently occurring and most aggressive form of brain tumors. In the study, we constructed an immune-related gene pairs (IRGPs) signature to predict overall survival (OS) in patients with GBM. Methods: We established IRGPs with immune-related gene (IRG) matrix from The Cancer Genome Atlas (TCGA) database (Training cohort). After screened by the univariate regression analysis and least absolute shrinkage and selection operator (LASSO) regression analysis, IRGPs were subjected to the multivariable Cox regression to develop an IRGP signature. Then, the predicting accuracy of the signature was assessed with the area under the receiver operating characteristic curve (AUC) and validated the result using the Chinese Glioma Genome Atlas (CGGA) database (Validation cohorts 1 and 2). Results: A 10-IRGP signature was established for predicting the OS of patients with GBM. The AUC for predicting 1-, 3-, and 5-year OS in Training cohort was 0.801, 0.901, and 0.964, respectively, in line with the AUC of Validation cohorts 1 and 2 [Validation cohort 1 (1 year: 0.763; 3 years: 0.786; and 5 years: 0.884); Validation cohort 2 (1 year: 0.745; 3 years: 0.989; and 5 years: 0.987)]. Moreover, survival analysis in three cohorts suggested that patients with low-risk GBM had better clinical outcomes than patients with high-risk GBM. The univariate and multivariable Cox regression demonstrated that the IRGPs signature was an independent prognostic factor. Conclusions: We developed a novel IRGPs signature for predicting OS in patients with GBM.
Collapse
Affiliation(s)
- Sheng Wang
- Zhejiang Jinhua Guangfu Hospital, Jinhua, China
| | - Xia Xu
- Department of General Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
144
|
Cai SZ, Xiong QW, Zhao LN, Ji YT, Luo ZX, Ma ZR. β-Elemene Triggers ROS-dependent Apoptosis in Glioblastoma Cells Through Suppressing STAT3 Signaling Pathway. Pathol Oncol Res 2021; 27:594299. [PMID: 34257541 PMCID: PMC8262204 DOI: 10.3389/pore.2021.594299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/15/2021] [Indexed: 01/01/2023]
Abstract
Glioblastoma is one of the most aggressive primary brain tumors with few treatment strategies. β-Elemene is a sesquiterpene known to have broad spectrum antitumor activity against various cancers. However, the signaling pathways involved in β-elemene induced apoptosis of glioblastoma cells remains poorly understood. In this study, we reported that β-elemene exhibited antiproliferative activity on U87 and SHG-44 cells, and induced cell death through induction of apoptosis. Incubation of these cells with β-elemene led to the activation of caspase-3 and generation of reactive oxygen species (ROS). Western blot assay showed that β-elemene suppressed phosphorylation of STAT3, and subsequently down-regulated the activation of p-JAK2 and p-Src. Moreover, pre-incubation of cells with ROS inhibitor N-acetyl-L-cysteine (NAC) significantly reversed β-elemene-mediated apoptosis effect and down-regulation of JAK2/Src-STAT3 signaling pathway. Overall, our findings implied that generation of ROS and suppression of STAT3 signaling pathway is critical for the apoptotic activity of β-elemene in glioblastoma cells.
Collapse
Affiliation(s)
- Shi-Zhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, China
| | - Qian-Wei Xiong
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Na Zhao
- Department of Laboratory Medicine, Key Laboratory of Clinical Immunology of Jiangsu Province, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Ting Ji
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, China
| | - Zheng-Xiang Luo
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Zhou-Rui Ma
- Department of Surgery, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
145
|
Abstract
Neurologic injury arises from treatment of central nervous system malignancies as result of direct toxic effects or indirect vascular, autoimmune, or infectious effects. Multimodality treatment may potentiate both therapeutic and toxic effects. Symptoms range from mild to severe and permanent. Injuries can be immediate or delayed. Many early complications are nonspecific. Other early and delayed neurologic injuries, such as posterior reversible encephalopathy syndrome, dural sinus thrombosis, infarctions, myelopathy, leukoencephalopathy, and hypophysitis, have unique imaging features. This article reviews treatment options for neurologic malignancies and common and uncommon neurologic injuries that can result from treatment, focusing on radiologic features.
Collapse
|
146
|
Yekula A, Taylor A, Beecroft A, Kang KM, Small JL, Muralidharan K, Rosh Z, Carter BS, Balaj L. The role of extracellular vesicles in acquisition of resistance to therapy in glioblastomas. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:1-16. [PMID: 35582008 PMCID: PMC9019190 DOI: 10.20517/cdr.2020.61] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with a median survival of 15 months despite standard care therapy consisting of maximal surgical debulking, followed by radiation therapy with concurrent and adjuvant temozolomide treatment. The natural history of GBM is characterized by inevitable recurrence with patients dying from increasingly resistant tumor regrowth after therapy. Several mechanisms including inter- and intratumoral heterogeneity, the evolution of therapy-resistant clonal subpopulations, reacquisition of stemness in glioblastoma stem cells, multiple drug efflux mechanisms, the tumor-promoting microenvironment, metabolic adaptations, and enhanced repair of drug-induced DNA damage have been implicated in therapy failure. Extracellular vesicles (EVs) have emerged as crucial mediators in the maintenance and establishment of GBM. Multiple seminal studies have uncovered the multi-dynamic role of EVs in the acquisition of drug resistance. Mechanisms include EV-mediated cargo transfer and EVs functioning as drug efflux channels and decoys for antibody-based therapies. In this review, we discuss the various mechanisms of therapy resistance in GBM, highlighting the emerging role of EV-orchestrated drug resistance. Understanding the landscape of GBM resistance is critical in devising novel therapeutic approaches to fight this deadly disease.
Collapse
Affiliation(s)
- Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Keiko M. Kang
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zachary Rosh
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
147
|
Song J, Kadaba P, Kravitz A, Hormigo A, Friedman J, Belani P, Hadjipanayis C, Ellingson BM, Nael K. Multiparametric MRI for early identification of therapeutic response in recurrent glioblastoma treated with immune checkpoint inhibitors. Neuro Oncol 2021; 22:1658-1666. [PMID: 32193547 DOI: 10.1093/neuonc/noaa066] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Physiologic changes quantified by diffusion and perfusion MRI have shown utility in predicting treatment response in glioblastoma (GBM) patients treated with cytotoxic therapies. We aimed to investigate whether quantitative changes in diffusion and perfusion after treatment by immune checkpoint inhibitors (ICIs) would determine 6-month progression-free survival (PFS6) in patients with recurrent GBM. METHODS Inclusion criteria for this retrospective study were: (i) diagnosis of recurrent GBM treated with ICIs and (ii) availability of diffusion and perfusion in pre and post ICI MRI (iii) at ≥6 months follow-up from treatment. After co-registration, mean values of the relative apparent diffusion coefficient (rADC), Ktrans (volume transfer constant), Ve (extravascular extracellular space volume) and Vp (plasma volume), and relative cerebral blood volume (rCBV) were calculated from a volume-of-interest of the enhancing tumor. Final assignment of stable/improved versus progressive disease was determined on 6-month follow-up using modified Response Assessment in Neuro-Oncology criteria. RESULTS Out of 19 patients who met inclusion criteria and follow-up (mean ± SD: 7.8 ± 1.4 mo), 12 were determined to have tumor progression, while 7 had treatment response after 6 months of ICI treatment. Only interval change of rADC was suggestive of treatment response. Patients with treatment response (6/7: 86%) had interval increased rADC, while 11/12 (92%) with tumor progression had decreased rADC (P = 0.001). Interval change in rCBV, Ktrans, Vp, and Ve were not indicative of treatment response within 6 months. CONCLUSIONS In patients with recurrent GBM, interval change in rADC is promising in assessing treatment response versus progression within the first 6 months following ICI treatment. KEY POINTS • In recurrent GBM treated with ICIs, interval change in rADC suggests early treatment response.• Interval change in rADC can be used as an imaging biomarker to determine PFS6.• Interval change in MR perfusion and permeability measures do not suggest ICI treatment response.
Collapse
Affiliation(s)
- Joseph Song
- Icahn School of Medicine at Mount Sinai, Department of Radiology (Neuroimaging Advanced and Exploratory Lab), New York, New York
| | - Priyanka Kadaba
- Icahn School of Medicine at Mount Sinai, Department of Radiology (Neuroimaging Advanced and Exploratory Lab), New York, New York
| | - Amanda Kravitz
- Icahn School of Medicine at Mount Sinai, Department of Radiology (Neuroimaging Advanced and Exploratory Lab), New York, New York
| | - Adilia Hormigo
- Department of Neurology, Medicine (Div Hem Onc), The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joshua Friedman
- Department of Neurology, Medicine (Div Hem Onc), The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Puneet Belani
- Icahn School of Medicine at Mount Sinai, Department of Radiology (Neuroimaging Advanced and Exploratory Lab), New York, New York
| | | | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Kambiz Nael
- UCLA Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
148
|
Prognostic significance of L-type amino acid transporter-1 (LAT-1) expression in human astrocytic gliomas. INTERDISCIPLINARY NEUROSURGERY 2021. [DOI: 10.1016/j.inat.2020.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
149
|
Piper K, DePledge L, Karsy M, Cobbs C. Glioma Stem Cells as Immunotherapeutic Targets: Advancements and Challenges. Front Oncol 2021; 11:615704. [PMID: 33718170 PMCID: PMC7945033 DOI: 10.3389/fonc.2021.615704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common and lethal primary brain malignancy. Despite major investments in research into glioblastoma biology and drug development, treatment remains limited and survival has not substantially improved beyond 1-2 years. Cancer stem cells (CSC) or glioma stem cells (GSC) refer to a population of tumor originating cells capable of self-renewal and differentiation. While controversial and challenging to study, evidence suggests that GCSs may result in glioblastoma tumor recurrence and resistance to treatment. Multiple treatment strategies have been suggested at targeting GCSs, including immunotherapy, posttranscriptional regulation, modulation of the tumor microenvironment, and epigenetic modulation. In this review, we discuss recent advances in glioblastoma treatment specifically focused on targeting of GCSs as well as their potential integration into current clinical pathways and trials.
Collapse
Affiliation(s)
- Keenan Piper
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Lisa DePledge
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,University of Washington School of Medicine, Spokane, WA, United States
| | - Michael Karsy
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Charles Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States
| |
Collapse
|
150
|
Li X, Sun L, Wang X, Wang N, Xu K, Jiang X, Xu S. A Five Immune-Related lncRNA Signature as a Prognostic Target for Glioblastoma. Front Mol Biosci 2021; 8:632837. [PMID: 33665208 PMCID: PMC7921698 DOI: 10.3389/fmolb.2021.632837] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 01/18/2023] Open
Abstract
Background: A variety of regulatory approaches including immune modulation have been explored as approaches to either eradicate antitumor response or induce suppressive mechanism in the glioblastoma microenvironment. Thus, the study of immune-related long noncoding RNA (lncRNA) signature is of great value in the diagnosis, treatment, and prognosis of glioblastoma. Methods: Glioblastoma samples with lncRNA sequencing and corresponding clinical data were acquired from the Cancer Genome Atlas (TCGA) database. Immune-lncRNAs co-expression networks were built to identify immune-related lncRNAs via Pearson correlation. Based on the median risk score acquired in the training set, we divided the samples into high- and low-risk groups and demonstrate the survival prediction ability of the immune-related lncRNA signature. Both principal component analysis (PCA) and gene set enrichment analysis (GSEA) were used for immune state analysis. Results: A cohort of 151 glioblastoma samples and 730 immune-related genes were acquired in this study. A five immune-related lncRNA signature (AC046143.1, AC021054.1, AC080112.1, MIR222HG, and PRKCQ-AS1) was identified. Compared with patients in the high-risk group, patients in the low-risk group showed a longer overall survival (OS) in the training, validation, and entire TCGA set (p = 1.931e-05, p = 1.706e-02, and p = 3.397e-06, respectively). Additionally, the survival prediction ability of this lncRNA signature was independent of known clinical factors and molecular features. The area under the ROC curve (AUC) and stratified analyses were further performed to verify its optimal survival predictive potency. Of note, the high-and low-risk groups exhibited significantly distinct immune state according to the PCA and GSEA analyses. Conclusions: Our study proposes that a five immune-related lncRNA signature can be utilized as a latent indicator of prognosis and potential therapeutic approach for glioblastoma.
Collapse
Affiliation(s)
- Xiaomeng Li
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Li Sun
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xue Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Nan Wang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Kanghong Xu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Xinquan Jiang
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Shuo Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan, China.,Brain Science Research Institute, Shandong University, Jinan, China
| |
Collapse
|