101
|
Wei D, Tang L, Su L, Zeng S, Telushi A, Lang X, Zhang Y, Qin M, Qiu L, Zhong C, Yu J. Edgeworthia gardneri (Wall.) Meisn. extract protects against myocardial infarction by inhibiting NF-κB-and MAPK-mediated endothelial inflammation. Front Cardiovasc Med 2022; 9:1013013. [PMID: 36606274 PMCID: PMC9808090 DOI: 10.3389/fcvm.2022.1013013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Experimental and clinical evidence has demonstrated a pivotal role of inflammation in the pathogenesis of ischemic heart disease, and targeting inflammation has been shown to provide clinical benefits for patients with coronary disease. Endothelial cells constitute the majority of non-cardiomyocytes in the heart. Endothelial pro-inflammatory activation is recognized as a critical component in the pathophysiology of cardiovascular disease. The dried flowers of Edgeworthia gardneri (Wall.) Meisn. (EG) have been widely used as Tibetan folk medicine to ameliorate a range of metabolic disorders, such as diabetes mellitus, hyperlipidemia, hypertension, and obesity. However, its role in modulating endothelial inflammation and ischemic heart disease has not been evaluated. Methods and results Herein, using a preclinical rat model of coronary artery ligation-induced myocardial infarction (MI), we demonstrated that systemic administration of EG extract (EEEG) attenuated ischemic cardiac injury. EEEG reduced myocardial infarct size, improved cardiac function, and ameliorated adverse cardiac remodeling. Moreover, the cardioprotective effects of EEEG were associated with decreased MI-induced myocardial inflammation. Consistent with the anti-inflammatory role of EEEG in vivo, EEEG attenuated TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) activation and monocyte-endothelial cell firm adhesion in vitro. Mechanistically, our data showed that EEEG's mode of action suppresses the activation of NF-κB, ERK, and p38 MAPK signaling pathways in ECs. Importantly, we demonstrated that EEEG inhibits endothelial inflammation in an NF-κB- and p38 MAPK-dependent manner using pharmacological inhibitors. Conclusion Collectively, this study identified EG as a potential therapeutic agent in attenuating endothelial inflammation and managing ischemic cardiovascular disease.
Collapse
Affiliation(s)
- Dan Wei
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Le Tang
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Lingqing Su
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Sufen Zeng
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Ajdora Telushi
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xiaoya Lang
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Yanli Zhang
- The National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Manman Qin
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Liang Qiu
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Chao Zhong
- Center for Translational Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China,*Correspondence: Chao Zhong,
| | - Jun Yu
- Department of Cardiovascular Sciences and Center for Metabolic Disease Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States,Jun Yu,
| |
Collapse
|
102
|
Bereda G. Ischemic Stroke in a COVID-19-Infected Patient: A Case Report and Literature Review.. [DOI: 10.21203/rs.3.rs-2385606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Ischemic stroke is a recognized neurological consequence of acute COVID-19 infection. A 61-year-old black African farmer with right-sided weakness was sent to the emergency hospital on September 19, 2022, within three hours of the onset of the impairment. He suffered a serious accident while working in the rural region fifteen years prior. Generalized body weakness, including weakness in the right upper and lower extremities while he was moving around, left facial paralysis, an inability to walk without assistance, difficulty swallowing, difficulty speaking, a two-day fever, a headache, and shortness of breath were all reasons why the patient was brought into the emergency room. An X-ray of the chest was taken, and it revealed scattered reticulations, coarse, somewhat bilateral crepitation, and diffuse bilateral infiltrates. The patient's cardiovascular checkup revealed nothing unusual. According to the Glasgow Coma Scale, the eye opening reaction was 1/4, the motor response was 3/6 (abnormal flexion), and the verbal response was 3/5 (inappropriate words). He started having trouble breathing and needed five intranasal doses of oxygen per minute to stay saturated. He began taking 81 mg of low-dose aspirin every day for a month. For ten days, he took 75 mg of clopidogrel orally once every day.
Collapse
|
103
|
Lee M, Kim MC, Lee JY. Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. Int J Nanomedicine 2022; 17:6181-6200. [PMID: 36531116 PMCID: PMC9748845 DOI: 10.2147/ijn.s386763] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/23/2022] [Indexed: 08/28/2023] Open
Abstract
Cardiovascular disease is one of major causes of deaths, and its incidence has gradually increased worldwide. For cardiovascular diseases, several therapeutic approaches, such as drugs, cell-based therapy, and heart transplantation, are currently employed; however, their therapeutic efficacy and/or practical availability are still limited. Recently, biomaterial-based tissue engineering approaches have been recognized as promising for regenerating cardiac function in patients with cardiovascular diseases, including myocardial infarction (MI). In particular, materials mimicking the characteristics of native cardiac tissues can potentially prevent pathological progression and promote cardiac repair of the heart tissues post-MI. The mechanical (softness) and electrical (conductivity) properties of biomaterials as non-biochemical cues can improve the cardiac functions of infarcted hearts by mitigating myocardial cell death and subsequent fibrosis, which often leads to cardiac tissue stiffening and high electrical resistance. Consequently, electrically conductive hydrogels that can provide mechanical strength and augment the electrical activity of the infarcted heart tissue are considered new functional materials capable of mitigating the pathological progression to heart failure and stimulating cardiac regeneration. In this review, we highlight nanomaterial-incorporated hydrogels that can induce cardiac repair after MI. Nanomaterials, including carbon-based nanomaterials and recently discovered two-dimensional nanomaterials, offer great opportunities for developing functional conductive hydrogels owing to their excellent electrical conductivity, large surface area, and ease of modification. We describe recent results using nanomaterial-incorporated conductive hydrogels as cardiac patches and injectable hydrogels for cardiac repair. While further evaluations are required to confirm the therapeutic efficacy and toxicity of these materials, they could potentially be used for the regeneration of other electrically active tissues, such as nerves and muscles.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Min Chul Kim
- Division of Cardiology, Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| |
Collapse
|
104
|
Zhang ZY, Liu C, Wang PX, Han YW, Zhang YW, Hao ML, Song ZX, Zhang XY. Dihydromyricetin Alleviates H9C2 Cell Apoptosis and Autophagy by Regulating CircHIPK3 Expression and PI3K/AKT/mTOR Pathway. Chin J Integr Med 2022; 29:434-440. [PMID: 36474083 DOI: 10.1007/s11655-022-3687-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To investigate the effect and potential mechanism of dihydromyricetin (Dmy) on H9C2 cell proliferation, apoptosis, and autophagy. METHODS H9C2 cells were randomly divided into 7 groups, namely control, model, EV (empty pCDH-CMV-MCS-EF1-CopGFP-T2A-Puro vector), IV (circHIPK3 interference), Dmy (50 µ mol/L), Dmy+IV, and Dmy+EV groups. Cell proliferation and apoptosis were detected by cell counting kit-8 assay and flow cytometry, respectivley. Western blot was used to evaluate the levels of light chain 3 II/I (LC3II/I), phospho-phosphoinositide 3-kinase (p-PI3K), protein kinase B (p-AKT), and phospho-mammalian target of rapamycin (p-mTOR). The level of circHIPK3 was determined using reverse transcriptase polymerase chain reaction. Electron microscopy was used to observe autophagosomes in H9C2 cells. RESULTS Compared to H9C2 cells, the expression of circHIPK in H9C2 hypoxia model cells increased significantly (P<0.05). Compared to the control group, the cell apoptosis and autophagosomes increased, cell proliferation rate decreased significantly, and the expression of LC3 II/I significantly increased (all P<0.05). Compared to the model group, the rate of apoptosis and autophagosomes in IV, Dmy, and Dmy+IV group decreased, the cell proliferation rate increased, and the expression of LC3 II/I decreased significantly (all P<0.05). Compared to the control group, the expressions of p-PI3K, p-AKT, and p-mTOR in the model group significantly reduced (P<0.05), whereas after treatment with Dmy and sh-circHIPK3, the above situation was reversed (P<0.05). CONCLUSION Dmy plays a protective role in H9C2 cells by inhibiting circHIPK expression and cell apoptosis and autophagy, and the mechanism may be related to PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Zhi-Ying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Chao Liu
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Peng-Xiang Wang
- School of Information Engineering, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Yi-Wei Han
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Yi-Wen Zhang
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Mei-Li Hao
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Zi-Xu Song
- School of Finance Economics, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China
| | - Xiao-Ying Zhang
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China.
- Key Laboratory of High Altitude Environment and Gene Related to Disease of Tibet Ministry of Education, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi Province, 712082, China.
| |
Collapse
|
105
|
Guo HY, Wang W, Peng H, Yuan H. Bidirectional two-sample Mendelian randomization study of causality between rheumatoid arthritis and myocardial infarction. Front Immunol 2022; 13:1017444. [PMID: 36532051 PMCID: PMC9755576 DOI: 10.3389/fimmu.2022.1017444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Background Epidemiological evidence suggests an association between rheumatoid arthritis (RA) and myocardial infarction (MI). However, causality remains uncertain. Therefore, this study aimed to explore the causal association between RA and MI. Methods Using publicly available genome-wide association study summary datasets, bidirectional two-sample Mendelian randomization (TSMR) was performed using inverse-variance weighted (IVW), weighted median, MR-Egger regression, simple mode, and weighted mode methods. Results The MR results for the causal effect of RA on MI (IVW, odds ratio [OR] = 1.041, 95% confidence interval [CI]: 1.007-1.076, P = 0.017; weighted median, OR = 1.027, 95% CI: 1.006-1.049, P = 0.012) supported a causal association between genetic susceptibility to RA and an increased risk of MI. MR results for the causal effect of MI on RA (IVW, OR = 1.012, 95% CI: 0.807-1.268, P = 0.921; weighted median, OR = 1.069, 95% CI: 0.855-1.338, P = 0.556) indicated that there was no causal association between genetic susceptibility to MI and an increased risk of RA. Conclusion Bidirectional TSMR analysis supports a causal association between genetic susceptibility to RA and an increased risk of MI but does not support a causal association between genetic susceptibility to MI and an increased risk of RA.
Collapse
Affiliation(s)
- Hao-Yang Guo
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Wei Wang
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Hui Peng
- Department of Science and Technology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Hui Yuan
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China,*Correspondence: Hui Yuan,
| |
Collapse
|
106
|
Razaghi A, Szakos A, Al-Shakarji R, Björnstedt M, Szekely L. Morphological changes without histological myocarditis in hearts of COVID-19 deceased patients. Scand Cardiovasc J Suppl 2022; 56:166-173. [PMID: 35678649 DOI: 10.1080/14017431.2022.2085320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Objective. Patients with underlying heart diseases have a higher risk of dying from Covid-19. It has also been suggested that Covid-19 affects the heart through myocarditis. Despite the rapidly growing research on the management of Covid-19 associated complications, most of the ongoing research is focused on the respiratory complications of Covid-19, and little is known about the prevalence of myocarditis. Design. This study aimed to characterize myocardial involvement by using a panel of antibodies to detect hypoxic and inflammatory changes and the presence of SARS-CoV-2 proteins in heart tissues obtained during the autopsy procedure of Covid-19 deceased patients. Thirty-seven fatal COVID-19 cases and 21 controls were included in this study. Results. Overall, the Covid-19 hearts had several histopathological changes like the waviness of myocytes, fibrosis, contract band necrosis, infiltration of polymorphonuclear neutrophils, vacuolization, and necrosis of myocytes. In addition, endothelial damage and activation were detected in heart tissue. However, viral replication was not detected using RNA in situ hybridization. Also, lymphocyte infiltration, as a hallmark of myocarditis, was not seen in this study. Conclusion. No histological sign of myocarditis was detected in any of our cases; our findings are thus most congruent with the hypothesis of the presence of a circulating endothelium activating factor such as VEGF, originating outside of the heart, probably from the hypoxic part of the Covid-19 lungs.
Collapse
Affiliation(s)
- Ali Razaghi
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Attila Szakos
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Riham Al-Shakarji
- Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Björnstedt
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - Laszlo Szekely
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden.,Laboratory of Clinical Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
107
|
Shi YY, Wei B, Zhou J, Yin ZL, Zhao F, Peng YJ, Yu QW, Wang XL, Chen YJ. Discovery of 5-(3,4-dihydroxybenzylidene)-1,3-dimethylpyrimidine- 2,4,6(1H,3H,5H)-trione as a novel and effective cardioprotective agent via dual anti-inflammatory and anti-oxidative activities. Eur J Med Chem 2022; 244:114848. [DOI: 10.1016/j.ejmech.2022.114848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/04/2022]
|
108
|
Zhang B, Xu D. Wogonoside preserves against ischemia/reperfusion-induced myocardial injury by suppression of apoptosis, inflammation, and fibrosis via modulating Nrf2/HO-1 pathway. Immunopharmacol Immunotoxicol 2022; 44:877-885. [PMID: 35708282 DOI: 10.1080/08923973.2022.2090955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury occurs after restoring blood supply, which brings about extra damage to heart tissue. Thus, exploring protection measures and underlying mechanisms appear to be particularly important. In this study, we investigated the cardioprotection of wogonoside against I/R injury in mice and further uncovered its mechanism. METHODS Mice model of myocardial I/R injury was established by left anterior descending coronary artery (LAD). Before modeling, mice were administered the wogonoside (10, 20, and 40 mg/kg) for 7 d. To evaluate the effect of wogonoside through nuclear factor E2-associated factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, sh-Nrf2 was transfected into wogonoside-treated I/R mice. Subsequently, echocardiography detection, HE staining, western blotting, ELISA, TUNEL assay, and MASSON assay were utilized to evaluate the degree of myocardial injury. RESULTS In I/R group, mice had severe myocardial injury, however, pretreatment of wogonoside at doses of 20 and 40 mg/kg ameliorated the cardiac function, as evidenced by improving hemodynamic parameters. Besides, wogonoside could relieved the abnormality of cardiomyocytes structure, inflammatory reaction, apoptosis, and myocardial fibrosis. Importantly, wogonoside activated the Nrf2/HO-1 pathway, as demonstrated by increasing Nrf2 expression in nucleus and its downstream genes including HO-1 and NADPH quinone oxidoreductase-1 (NQO1). However, effects of wogonoside on cardioprotection were abolished by sh-Nrf2. CONCLUSIONS Wogonoside exerted the protective role against I/R-induced myocardial injury by suppression of apoptosis, inflammation, and fibrosis via activating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Bingshan Zhang
- Department of Geriatrics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Di Xu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
109
|
Fu J, Niu H, Gao G, Wang L, Yu K, Guo R, Zhang J. Naringenin promotes angiogenesis of ischemic myocardium after myocardial infarction through miR-223-3p/IGF1R axis. Regen Ther 2022; 21:362-371. [PMID: 36161098 PMCID: PMC9471969 DOI: 10.1016/j.reth.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/15/2022] [Accepted: 07/28/2022] [Indexed: 11/29/2022] Open
Abstract
Introduction Naringenin exerts a protective effect on myocardial ischemia and reperfusion. It has been reported that miR-223-3p is a potential target for the treatment of myocardial infarction (MI). In view of the unreported correlation between Naringenin and miR-223-3p, this study was designed to confirm that the ameliorative effects of Naringenin on MI is directly related to the regulation of miR-223-3p. Methods Through electrocardiogram detection, Masson pathological staining and immunohistochemistry of angiogenesis-related factors, alleviative effects of Naringenin on heart function, myocardial injury and angiogenesis in MI mice were observed individually. Hypoxic HUVECs were selected in the in vitro experimental model. The cell viability, angiogenesis and migration ability were analyzed to fathom out the pro-angiogenesis potential of Naringenin. The effect of Naringenin on miR-223-3p, as well as the downstream molecular mechanism was verified through bioinformatics analysis and rescue experiments. Results Naringenin improved heart functions of MI mice, reduced degree of myocardial fibrosis, stimulated expressions of angiogenic factors and down-regulated level of miR-223-3p in myocardial tissue. In in vitro experiments, Naringenin increased the viability of hypoxic HUVECs, as well as the abilities of tube formation and migration, and further inhibited the expression of miR-223-3p. In the rescue trial, miR-223-3p mimic reversed the therapeutic effect of Naringenin. Type 1 insulin-like growth factor receptor (IGF1R), as a downstream target gene of miR-223-3p, partially offset the cellular regulatory effects of miR-223-3p after overexpression of IGF1R. Conclusions Naringenin improves the angiogenesis of hypoxic HUVECs by regulating the miR-223-3p/IGF1R axis, and has the potential to promote myocardial angiogenesis in MI mice.
Collapse
Affiliation(s)
- Jinguo Fu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Heping Niu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Guangren Gao
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Lei Wang
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Kai Yu
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Run Guo
- Department of Cardiology, Cangzhou Central Hospital, China
| | - Jun Zhang
- Department of Cardiology, Cangzhou Central Hospital, China
| |
Collapse
|
110
|
Bai LQ, Wang BZ, Liu QW, Li WQ, Zhou H, Yang XY. Effects of penehyclidine hydrochloride on myocardial ischaemia-reperfusion injury in rats by inhibiting TLR4/MyD88/NF-κB pathway via miR-199a-3p. Growth Factors 2022; 40:186-199. [PMID: 35984706 DOI: 10.1080/08977194.2022.2109469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
This study was to probe the role of penehyclidine hydrochloride (PHC) mediating the impact of toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)/nuclear factor-kappa B (NF-κB) signalling pathway on myocardial ischaemia-reperfusion injury (MI/RI) in rats through miR-199a-3p. The rat MI/RI model was established through ligating left anterior descending (LAD) coronary artery. PHC was injected preoperatively into the model rats, and injected with miR-199a-3p lentiviral vector or TLR4 antagonist (TAK-242). Next, cardiac function of rats was examined by echocardiography, and rat serum indicators, oxidative stress levels and inflammatory factors were detected. HE staining was applied to detect pathological tissue structure, TUNEL staining to detect apoptosis rate, qRCR and western blot to detect miR-199a-3p and TLR4/MyD88/NF-κB expressions in rat myocardial tissues. Dual luciferase reporter experiment was conducted to confirm the relationship between miR-199a-3p and TLR4. In conclusion, PHC suppresses TLR4/MyD88/NF-κB signalling pathway through miR-199a-3p, thereby improving MI/RI in rats.
Collapse
Affiliation(s)
- Ling Qiang Bai
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| | - Bin Zhe Wang
- Department of The First Outpatients, The 940th Hospital of Joint Logistics Support force of Chinese People's Liberation Army, Lanzhou City, China
| | - Qi Wei Liu
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| | - Wen Qiang Li
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| | - Hang Zhou
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| | - Xiao Yan Yang
- Department of Cardiovascular Medicine, Baoji High-Tech Hospital, Baoji City, China
| |
Collapse
|
111
|
Zhang F, Duan B, Zhou Z, Han L, Huang P, Ye Y, Wang Q, Huang F, Li J. Integration of metabolomics and transcriptomics to reveal anti-chronic myocardial ischemia mechanism of Gualou Xiebai decoction. JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115530. [PMID: 35830899 DOI: 10.1016/j.jep.2022.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gualou Xiebai decoction (GLXB), a well-known classic traditional Chinese medicine formula, is a recorded and proven therapy for the management of cardiac diseases. However, its pharmacological characteristics and mechanism of action are unclear. MATERIALS AND METHODS The effects of GLXB and its mechanism of action in an isoprenaline-induced rat model of chronic myocardial ischemia (CMI) were investigated by incorporating metabonomics and transcriptomics. Meanwhile, the echocardiographic evaluation, histopathological analysis, serum biochemistry assay, TUNEL assay and western blot analysis were detected to revealed the protective effects of GLXB on CMI. RESULTS The results of echocardiographic evaluation, histopathological analysis and serum biochemistry assay revealed that GLXB had a significantly cardioprotective performance by reversing echocardiographic abnormalities, restoring pathological disorders and converting the serum biochemistry perturbations. Further, the omics analysis indicated that many genes and metabolites were regulated after modeling and GLXB administration, and maintained the marked "high-low" or "low-high" trends. Meanwhile, the results from integrated bioinformatics analysis suggested that the interaction network mainly consisted of amino acid and organic acid metabolism. The results of TUNEL assay and western blot analysis complemented the findings of integrated analysis of metabolomics and transcriptomics. CONCLUSION These findings suggested that GLXB has a curative effect in isoproterenol-induced CMI in rats. Integrated analysis based on transcriptomics and metabolomics studies revealed that the mechanism of GLXB in alleviating CMI was principally by the regulation of energy homeostasis and apoptosis, which was through a multi-component and multi-target treatment modality.
Collapse
Affiliation(s)
- Fengyun Zhang
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China
| | - Bailu Duan
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| | - Zhenxiang Zhou
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Lintao Han
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China
| | - Ping Huang
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China; College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Ye
- Pharmacy School, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China
| | - Qiong Wang
- Key Laboratory of Traditional Chinese Medicine Resource and Prescription, Ministry of Education, Wuhan, Hubei, 430061, China; College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Fang Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jingjing Li
- College of Basic Medicine, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
112
|
Mohseni Afshar Z, Tavakoli Pirzaman A, Liang JJ, Sharma A, Pirzadeh M, Babazadeh A, Hashemi E, Deravi N, Abdi S, Allahgholipour A, Hosseinzadeh R, Vaziri Z, Sio TT, Sullman MJM, Barary M, Ebrahimpour S. Do we miss rare adverse events induced by COVID-19 vaccination? Front Med (Lausanne) 2022; 9:933914. [PMID: 36300183 PMCID: PMC9589063 DOI: 10.3389/fmed.2022.933914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused many complications, the invention of coronavirus disease 2019 (COVID-19) vaccines has also brought about several adverse events, from common side effects to unexpected and rare ones. Common vaccine-related adverse reactions manifest locally or systematically following any vaccine, including COVID-19 vaccines. Specific side effects, known as adverse events of particular interest (AESI), are unusual and need more evaluation. Here, we discuss some of the most critical rare adverse events of COVID-19 vaccines.
Collapse
Affiliation(s)
- Zeinab Mohseni Afshar
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Jackson J. Liang
- Division of Cardiovascular Medicine, Cardiac Arrhythmia Service, University of Michigan, Ann Arbor, MI, United States
| | - Akanksha Sharma
- Department of Neurology, Mayo Clinic, Scottsdale, AZ, United States
| | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Arefeh Babazadeh
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Erfan Hashemi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadaf Abdi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Amirreza Allahgholipour
- Student Research Committee, School of Nursing and Midwifery, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Hosseinzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Zahra Vaziri
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Terence T. Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, United States
| | - Mark J. M. Sullman
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Mohammad Barary
- Student Research Committee, Virtual School of Medical Education and Management, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Soheil Ebrahimpour
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
113
|
Sarda AK, Thute P. Importance of ECG in the Diagnosis of Acute Pericarditis and Myocardial Infarction: A Review Article. Cureus 2022; 14:e30633. [PMID: 36426313 PMCID: PMC9683083 DOI: 10.7759/cureus.30633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/24/2022] [Indexed: 11/05/2022] Open
Abstract
A promising scientific field is health monitoring and associated technology. A standard testing method to evaluate and identify heart issues is the electrocardiogram (E.C.G.) and diagnose cardiovascular diseases (CVDs). E.C.G. monitoring technologies are becoming more and more prevalent in publications at an exponential rate. E.C.G. is the most crucial tool for screening cardiology and other medical specialities. Twelve leads can be recorded by traditional E.C.G. equipment, while current E.C.G. systems allow for extra leads also with fewer electrodes. Furthermore, "smart" gadgets allow patients to take an E.C.G. at residence. Presenting different ischemia-related symptoms on the E.C.G. by the most recent recommendations. Presentation of contemporary E.C.G. systems and their possible benefit in identifying ischemia-related E.C.G. symptoms based on recent study findings. The identification of ischemia E.C.G. abnormalities can be facilitated and optimised by current E.C.G. systems using vector-based electrocardiography. Although they can be effective for documenting transient E.C.G. abnormalities, especially inside the S.T. segment, smart non-vector-based devices for patients are primarily beneficial for the diagnosis of arrhythmias and cannot substitute the 12-lead E.C.G. for the diagnosis of ischemia. The electrocardiogram (E.C.G.) is inexpensive and easily accessible, but because of its alleged limited specificity, its utility as a screening tool for early detection of athletes with a cardiac condition in danger of immediate cardiac death is contentious. The interpreting parameters have been continuously evolving over the past 10 years as various efforts have been made to better the separation between healthy and pathological E.C.G. abnormalities in athletes. Electrocardiographic abnormalities that are unrelated to cardiac electrical activity are known as electrocardiographic artefacts. E.C.G. elements, including the baseline and waves, can become altered as a result of artefacts.
Collapse
Affiliation(s)
- Aditya K Sarda
- Medicine and Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Preeti Thute
- Anatomy, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
114
|
Shen Y, Shen X, Wang S, Zhang Y, Wang Y, Ding Y, Shen J, Zhao J, Qin H, Xu Y, Zhou Q, Wang X, Shen J. Protective effects of Salvianolic acid B on rat ferroptosis in myocardial infarction through upregulating the Nrf2 signaling pathway. Int Immunopharmacol 2022; 112:109257. [PMID: 36174419 DOI: 10.1016/j.intimp.2022.109257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/08/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
Accumulating evidence has highlighted the role of ferroptosis, a novel type of programmed cell death involved in the pathological process of myocardial infarction (MI). However, the underlying mechanism of ferroptosis in mediating MI is complicated that needs to be further investigated. Salvianolic acid B (Sal B) extracted from the traditional Chinese medicine (TCM) herb Salvia miltiorrhiza possesses pharmacological function against MI, which provides us with a new direction to explore the effect of Sal B on ferroptosis after myocardial ischemic injury. In the present study, iron accumulation and expression levels of ferroptosis-related proteins in MI rats altered in a time-dependent manner. Importantly, treatment of ferroptosis inhibitors ferrostatin-1 (Fer-1) or deferoxamine (DFO) reversed typical changes of ferroptosis, including iron overload, lipid peroxide accumulation, mitochondrial damage, and specific expression levels of ferroptosis-related proteins, thereby alleviating myocardial injury in rats. Similar results were observed in Sal B-treated MI rats in a dose-dependent manner. In addition, NFE2-related factor 2 (Nrf2) was strongly activated by the treatment of Sal B. In vivo knockdown of Nrf2 in MI rats enhanced ferroptosis and damaged the protective effect of Sal B on MI. Furthermore, Sal B administration was unable to significantly reverse expression levels of target genes of Nrf2 that were associated with iron homeostasis and oxidative stress (e.g., HO-1, xCT, Gpx4, Fth1, and Fpn1) in MI rats after knockdown of Nrf2. Taken together, Sal B contributed to protecting MI by inhibiting ferroptosis via activating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yuehong Shen
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210023, China
| | - Xinyu Shen
- Department of Biostatistics, School of Global Public Health, New York University, NY, USA
| | - Shulin Wang
- Zhenjiang Hospital Affiliated to Nanjing University of Chinese Medicine (Zhenjiang Hospital of Traditional Chinese Medicine), Zhenjiang 212008, China
| | - Yunyun Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Yue Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Ye Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Jiayun Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Jianqiao Zhao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Huahan Qin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Yijiao Xu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China
| | - Qian Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China.
| | - Xindong Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China.
| | - Jianping Shen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nangjing 210028, China.
| |
Collapse
|
115
|
Sacubitril Valsartan Enhances Cardiac Function and Alleviates Myocardial Infarction in Rats through a SUV39H1/SPP1 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5009289. [PMID: 36193085 PMCID: PMC9526637 DOI: 10.1155/2022/5009289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/22/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022]
Abstract
Sacubitril valsartan (lcz696) has been demonstrated as a substitute for angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for the treatment of heart failure. This research is aimed at examining the effects of lcz696 and its target molecules on myocardial infarction (MI). A rat model of MI was induced by left anterior descending artery ligation and treated with lcz696. Lcz696 treatment significantly reduced cardiac injury and heart failure, restored the left ventricular fractional shortening and ejection fraction, and reduced oxidative stress and inflammatory responses in rat myocardium. By analyzing the heart failure-related GSE47495 dataset and performing gene ontology (GO) functional enrichment analysis, we obtained histone lysine methyltransferase SUV39H1 and secreted phosphoprotein 1 (SPP1) as two molecules implicated in the oxidative stress and inflammation processes. An elevation of SUV39H1 whereas a decline of SPP1 were detected in cardiac tissues after lcz696 treatment. Enrichments of SUV39H1 and H3K9me3 at the SPP1 promoter were identified by chromatin immunoprecipitation assay. SUV39H1 catalyzed H3K9me3 modification to suppress the expression of SPP1. Preconditioning of SUV39H1 silencing blocked the protective roles of lcz696, but SPP1 silencing alleviated the myocardial injury. In conclusion, this study demonstrates that lcz696 enhances cardiac function and alleviates MI in rats through a SUV39H1/SPP1 axis.
Collapse
|
116
|
Wuche C. The cardiovascular system and associated disorders. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2022; 31:886-892. [PMID: 36149425 DOI: 10.12968/bjon.2022.31.17.886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The cardiovascular system, consisting of the heart as the 'pump' and the vascular network of blood vessels, is responsible for the distribution of blood around the body. Oxygen molecules attach to haemoglobin in red blood cells and are transported around the body where the oxygen aids cellular metabolism. Any blockage in the blood vessels as a result of build-up of plaques in the endothelium layer would result in an interruption in blood supply and therefore oxygen deprivation (ischaemia). This would lead to necrosis of the distal area of the affected vessel and is known as an infarct. This article aims to describe the normal anatomy and physiology of the cardiovascular system and to explain some of the common associated disorders, with a brief guide to the management of a common heart disorder, myocardial infarction. A case study is included to enhance the knowledge of management of myocardial infarction. An in-depth knowledge and understanding of the cardiovascular system and its associated disorders will enable the nurse to safely assess a patient, recognise a deteriorating patient and seek early intervention.
Collapse
|
117
|
Chumachenko D, Butkevych M, Lode D, Frohme M, Schmailzl KJG, Nechyporenko A. Machine Learning Methods in Predicting Patients with Suspected Myocardial Infarction Based on Short-Time HRV Data. SENSORS (BASEL, SWITZERLAND) 2022; 22:7033. [PMID: 36146381 PMCID: PMC9502529 DOI: 10.3390/s22187033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Diagnosis of cardiovascular diseases is an urgent task because they are the main cause of death for 32% of the world's population. Particularly relevant are automated diagnostics using machine learning methods in the digitalization of healthcare and introduction of personalized medicine in healthcare institutions, including at the individual level when designing smart houses. Therefore, this study aims to analyze short 10-s electrocardiogram measurements taken from 12 leads. In addition, the task is to classify patients with suspected myocardial infarction using machine learning methods. We have developed four models based on the k-nearest neighbor classifier, radial basis function, decision tree, and random forest to do this. An analysis of time parameters showed that the most significant parameters for diagnosing myocardial infraction are SDNN, BPM, and IBI. An experimental investigation was conducted on the data of the open PTB-XL dataset for patients with suspected myocardial infarction. The results showed that, according to the parameters of the short ECG, it is possible to classify patients with a suspected myocardial infraction as sick and healthy with high accuracy. The optimized Random Forest model showed the best performance with an accuracy of 99.63%, and a root mean absolute error is less than 0.004. The proposed novel approach can be used for patients who do not have other indicators of heart attacks.
Collapse
Affiliation(s)
- Dmytro Chumachenko
- Mathematical Modelling and Artificial Intelligence Department, National Aerospace University Kharkiv Aviation Institute, 61072 Kharkiv, Ukraine
- Molecular Biotechnology and Functional Genomics Department, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - Mykola Butkevych
- Mathematical Modelling and Artificial Intelligence Department, National Aerospace University Kharkiv Aviation Institute, 61072 Kharkiv, Ukraine
| | - Daniel Lode
- Molecular Biotechnology and Functional Genomics Department, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | - Marcus Frohme
- Molecular Biotechnology and Functional Genomics Department, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
| | | | - Alina Nechyporenko
- Molecular Biotechnology and Functional Genomics Department, Technical University of Applied Sciences Wildau, 15745 Wildau, Germany
- Systems Engineering Department, Kharkiv National University of Radio Electronics, 61166 Kharkiv, Ukraine
| |
Collapse
|
118
|
Kim SY, Lee JP, Shin WR, Oh IH, Ahn JY, Kim YH. Cardiac biomarkers and detection methods for myocardial infarction. Mol Cell Toxicol 2022; 18:443-455. [PMID: 36105117 PMCID: PMC9463516 DOI: 10.1007/s13273-022-00287-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 12/14/2022]
Abstract
Background A significant heart attack known as a myocardial infarction (MI) occurs when the blood supply to the heart is suddenly interrupted, harming the heart muscles due to a lack of oxygen. The incidence of myocardial infarction is increasing worldwide. A relationship between COVID-19 and myocardial infarction due to the recent COVID-19 pandemic has also been revealed. Objective We propose a biomarker and a method that can be used for the diagnosis of myocardial infarction, and an aptamer-based approach. Results For the diagnosis of myocardial infarction, an algorithm-based diagnosis method was developed using electrocardiogram data. A diagnosis method through biomarker detection was then developed. Conclusion Myocardial infarction is a disease that is difficult to diagnose based on the aspect of a single factor. For this reason, it is necessary to use a combination of various methods to diagnose myocardial infarction quickly and accurately. In addition, new materials such as aptamers must be grafted and integrated into new ways. Purpose of Review The incidence of myocardial infarction is increasing worldwide, and some studies are being conducted on the association between COVID-19 and myocardial infarction. The key to properly treating myocardial infarction is early detection, thus we aim to do this by offering both tools and techniques as well as the most recent diagnostic techniques. Recent Findings Myocardial infarction is diagnosed using an electrocardiogram and echocardiogram, which utilize cardiac signals. It is required to identify biomarkers of myocardial infarction and use biomarker-based ELISA, SPR, gold nanoparticle, and aptamer technologies in order to correctly diagnose myocardial infarction.
Collapse
Affiliation(s)
- Sang Young Kim
- Department of Food Science and Biotechnology, Shin Ansan University, 135 Sinansandaehak-Ro, Danwon-Gu, Ansan, 15435 Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju 28644 South Korea
| |
Collapse
|
119
|
Doescher C, Thai A, Cha E, Cheng PV, Agrawal DK, Thankam FG. Intelligent Hydrogels in Myocardial Regeneration and Engineering. Gels 2022; 8:576. [PMID: 36135287 PMCID: PMC9498403 DOI: 10.3390/gels8090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Myocardial infarction (MI) causes impaired cardiac function due to the loss of cardiomyocytes following an ischemic attack. Intelligent hydrogels offer promising solutions for post-MI cardiac tissue therapy to aid in structural support, contractility, and targeted drug therapy. Hydrogels are porous hydrophilic matrices used for biological scaffolding, and upon the careful alteration of ideal functional groups, the hydrogels respond to the chemistry of the surrounding microenvironment, resulting in intelligent hydrogels. This review delves into the perspectives of various intelligent hydrogels and evidence from successful models of hydrogel-assisted treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Devendra K. Agrawal
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Finosh G. Thankam
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
120
|
Habimana O, Modupe Salami O, Peng J, Yi GH. Therapeutic Implications of Targeting Pyroptosis in Cardiac-related Etiology of Heart Failure. Biochem Pharmacol 2022; 204:115235. [PMID: 36044938 DOI: 10.1016/j.bcp.2022.115235] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Heart failure remains a considerable clinical and public health problem, it is the dominant cause of death from cardiovascular diseases, besides, cardiovascular diseases are one of the leading causes of death worldwide. The survival of patients with heart failure continues to be low with 45-60% reported deaths within five years. Apoptosis, necrosis, autophagy, and pyroptosis mediate cardiac cell death. Acute cell death is the hallmark pathogenesis of heart failure and other cardiac pathologies. Inhibition of pyroptosis, autophagy, apoptosis, or necrosis reduces cardiac damage and improves cardiac function in cardiovascular diseases. Pyroptosis is a form of inflammatory deliberate cell death that is characterized by the activation of inflammasomes such as NOD-like receptors (NLR), absent in melanoma 2 (AIM2), interferon-inducible protein 16 (IFI-16), and their downstream effector cytokines: Interleukin IL-1β and IL-18 leading to cell death. Recent studies have shown that pyroptosis is also the dominant cell death process in cardiomyocytes, cardiac fibroblasts, endothelial cells, and immune cells. It plays a crucial role in the pathogenesis of cardiac diseases that contribute to heart failure. This review intends to summarize the therapeutic implications targeting pyroptosis in the main cardiac pathologies preceding heart failure.
Collapse
Affiliation(s)
- Olive Habimana
- International College, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | | | - Jinfu Peng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China; Institute of Pharmacy and Pharmacology, Hunan province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28, W Changsheng Road, Hengyang, Hunan, 421001, China.
| |
Collapse
|
121
|
SDF-1/CXCR4-Mediated Stem Cell Mobilization Involved in Cardioprotective Effects of Electroacupuncture on Mouse with Myocardial Infarction. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4455183. [PMID: 35982734 PMCID: PMC9381195 DOI: 10.1155/2022/4455183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/19/2022] [Accepted: 06/28/2022] [Indexed: 02/07/2023]
Abstract
Stem cell-based therapeutic strategies have obtained a significant breakthrough in the treatment of cardiovascular diseases, particularly in myocardial infarction (MI). Nevertheless, limited retention and poor migration of stem cells are still problems for stem cell therapeutic development. Hence, there is an urgent need to develop new strategies that can mobilize stem cells to infarcted myocardial tissues effectively. Electroacupuncture (EA) intervention can improve cardiac function and alleviate myocardial injury after MI, but its molecular mechanism is still unclear. This study is aimed at observing the effects of EA treatment on the stem cell mobilization and revealing possible mechanisms in the MI model of mice. EA treatment at Neiguan (PC6) and Xinshu (BL15) acupoints was conducted on the second day after the ligation surgery. Then, the number of stem cells in peripheral blood after EA in MI mice and their cardiac function, infarct size, and collagen deposition was observed. We found that the number of CD34-, CD117-, Sca-1-, and CD90-positive cells increased at 6 h and declined at 24 h after EA intervention in the blood of MI mice. The expression of CXC chemokine receptor-4 (CXCR4) protein was upregulated at 6 h after EA treatment, while the ratio of LC3B II/I or p-ERK/ERK showed a reverse trend. In addition, there was obvious difference in EF and FS between wild-type mice and CXCR4+/− mice. The infarct size, collagen deposition, and apoptosis of the injured myocardium in CXCR4+/− mice increased but could be ameliorated by EA. In a word, our study demonstrates that EA alleviates myocardial injury via stem cell mobilization which may be regulated by the SDF-1/CXCR4 axis.
Collapse
|
122
|
Xiao Y, Chen Y, Shao C, Wang Y, Hu S, Lei W. Strategies to improve the therapeutic effect of pluripotent stem cell-derived cardiomyocytes on myocardial infarction. Front Bioeng Biotechnol 2022; 10:973496. [PMID: 35992358 PMCID: PMC9388750 DOI: 10.3389/fbioe.2022.973496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Myocardial infarction (MI) is a common cardiovascular disease caused by permanent loss of cardiomyocytes and the formation of scar tissue due to myocardial ischemia. Mammalian cardiomyocytes lose their ability to proliferate almost completely in adulthood and are unable to repair the damage caused by MI. Therefore, transplantation of exogenous cells into the injured area for treatment becomes a promising strategy. Pluripotent stem cells (PSCs) have the ability to proliferate and differentiate into various cellular populations indefinitely, and pluripotent stem cell-derived cardiomyocytes (PSC-CMs) transplanted into areas of injury can compensate for part of the injuries and are considered to be one of the most promising sources for cell replacement therapy. However, the low transplantation rate and survival rate of currently transplanted PSC-CMs limit their ability to treat MI. This article focuses on the strategies of current research for improving the therapeutic efficacy of PSC-CMs, aiming to provide some inspiration and ideas for subsequent researchers to further enhance the transplantation rate and survival rate of PSC-CMs and ultimately improve cardiac function.
Collapse
Affiliation(s)
- Yang Xiao
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yihuan Chen
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Chunlai Shao
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- *Correspondence: Wei Lei, ; Shijun Hu,
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital and Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, China
- *Correspondence: Wei Lei, ; Shijun Hu,
| |
Collapse
|
123
|
Deger N, Ozmen R, Karabulut D. Thymoquinone regulates nitric oxide synthase enzymes and receptor-interacting serine-threonine kinases in isoproterenol-induced myocardial infarcted rats. Chem Biol Interact 2022; 365:110090. [PMID: 35940283 DOI: 10.1016/j.cbi.2022.110090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/26/2022]
Abstract
This study aims to investigate the protective effects of thymoquinone (THQ) in isoproterenol (ISO)-induced myocardial infarction (MI) in rats. Thirty-two rats were divided into four equal groups. Control, THQ; Intragastric(ig) by dissolved 20 mg/kg in 500 μl olive oil at 24-h intervals for 7 days, ISO; On the 6th and 7th days of the experiment, it was dissolved in 1 ml distilled water, 100 mg/kg, subcutaneously(sb), THQ + ISO; THQ was given 20 mg/kg at 24-h intervals for 7 days, 100 mg/kg was given on days 6 and 7 of the ISO experiment. At the end of the experiment, blood and heart tissues were taken and histological, Western blot and biochemical analyzes were performed. In the ISO group, cardiomyocyte damage and large necrotic areas were observed. While neuronal nitric oxide synthase (nNOS) decreased, inducible NOS (iNOS) and endothelial NOS (eNOS) expression increased. Receptor-interacting serine-threonine kinase (RIP/RIPK) RIP1 and RIP3 protein levels were increased. Lactate dehydrogenase (LDH), creatin-kinase (CK-MB) and cardiac troponin I (cTn-I) levels were increased. Atrial natriuretic peptide (ANP) and N-terminal pro-brain natriuretic peptide (NT-proBNP) levels were decreased. THQ caused the reduction of necrotic areas caused by ISO. NOS regulated enzyme levels. Increased ISO-induced decreased RIP1 and RIP3 expressions. THQ regulated the biochemical parameter levels. ISO triggers MI-induced necrosis through NOS enzymes by causing severe histological changes in heart tissue. THQ, on the other hand, reveals that it can be an important antinecrotic agent in the prevention of MI-induced damage by regulating both NOS enzyme levels and necrosis markers.
Collapse
Affiliation(s)
- Necla Deger
- Department of Histology-Embryology, Medicine Faculty of Erciyes University, Kayseri, 38280, Turkey
| | - Rifat Ozmen
- Department of Cardiovascular Surgery, Medicine Faculty of Erciyes University, Kayseri, 38280, Turkey
| | - Derya Karabulut
- Department of Histology-Embryology, Medicine Faculty of Erciyes University, Kayseri, 38280, Turkey.
| |
Collapse
|
124
|
Bian Z, Xu F, Liu H, Du Y. Ursolic Acid Ameliorates the Injury of H9c2 Cells Caused by Hypoxia and Reoxygenation Through Mediating CXCL2/NF-κB Pathway. Int Heart J 2022; 63:755-762. [PMID: 35831147 DOI: 10.1536/ihj.21-807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ursolic acid (UA) has been reported to possess several biological benefits, such as anti-cancer, anti-inflammation, antibacterial, and neuroprotective functions. This study detects the function and molecular mechanism of UA in H9c2 cells under hypoxia and reoxygenation (H/R) conditions.Under H/R stimulation, the effects of UA on H9c2 cells were examined using ELISA and western blot assays. The Comparative Toxicogenomics Database was employed to analyze the target molecule of UA. Small interfering RNA was used to knock down CXCL2 expression, further exploring the function of CXCL2 in H/R-induced H9c2 cells. The genes related to the nuclear factor-kappa B (NF-κB) pathway were assessed using western blot analysis.Significant effects of UA on H/R-induced H9c2 cell damage were observed, accompanied by reduced inflammation and oxidative stress injury. Additionally, the increased level of CXCL2 in H/R-induced H9c2 cells was reduced after UA stimulation. Moreover, CXCL2 knockdown strengthened the beneficial effect of UA on H/R-induced H9c2 cells. HY-18739, an activator of the NF-κB pathway, can increase CXCL2 expression. Moreover, the increased levels of p-P65 NF-κB and p-IκBα in H/R-induced H9c2 cells were remarkably attenuated by UA treatment.In summary, the results indicated that UA may alleviate the damage of H9c2 cells by targeting the CXCL2/NF-κB pathway under H/R conditions.
Collapse
Affiliation(s)
- Zhongrui Bian
- Department of Cardiology, The Second Hospital of Shandong University
| | - Fei Xu
- Department of Cardiology, The Second Hospital of Shandong University
| | - Hui Liu
- Department of Cardiology, The Second Hospital of Shandong University
| | - Yimeng Du
- Department of Cardiology, The Second Hospital of Shandong University
| |
Collapse
|
125
|
Tariq U, Gupta M, Pathak S, Patil R, Dohare A, Misra SK. Role of Biomaterials in Cardiac Repair and Regeneration: Therapeutic Intervention for Myocardial Infarction. ACS Biomater Sci Eng 2022; 8:3271-3298. [PMID: 35867701 DOI: 10.1021/acsbiomaterials.2c00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heart failure or myocardial infarction (MI) is one of the world's leading causes of death. Post MI, the heart can develop pathological conditions such as ischemia, inflammation, fibrosis, and left ventricular dysfunction. However, current surgical approaches are sufficient for enhancing myocardial perfusion but are unable to reverse the pathological changes. Tissue engineering and regenerative medicine approaches have shown promising effects in the repair and replacement of injured cardiomyocytes. Additionally, biomaterial scaffolds with or without stem cells are established to provide an effective environment for cardiac regeneration. Excipients loaded with growth factors, cytokines, oligonucleotides, and exosomes are found to help in such cardiac eventualities by promoting angiogenesis, cardiomyocyte proliferation, and reducing fibrosis, inflammation, and apoptosis. Injectable hydrogels, nanocarriers, cardiac patches, and vascular grafts are some excipients that can help the self-renewal in the damaged heart but are not understood well yet, in the context of used biomaterials. This review focuses on the use of various biomaterial-based approaches for the regeneration and repair of cardiac tissue postoccurrence of MI. It also discusses the outlines of cardiac remodeling and current therapeutic approaches after myocardial infarction, which are translationally important with respect to used biomaterials. It provides comprehensive details of the biomaterial-based regenerative approaches, which are currently the focus of the research for cardiac repair and regeneration and can provide a broad outline for further improvements.
Collapse
Affiliation(s)
- Ubaid Tariq
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Mahima Gupta
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Subhajit Pathak
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Ruchira Patil
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Akanksha Dohare
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| | - Santosh K Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India.,Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Uttar Pradesh 208016, India
| |
Collapse
|
126
|
Zhang L, Zhang Y, Yu F, Li X, Gao H, Li P. The circRNA-miRNA/RBP regulatory network in myocardial infarction. Front Pharmacol 2022; 13:941123. [PMID: 35924059 PMCID: PMC9340152 DOI: 10.3389/fphar.2022.941123] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial infarction (MI) is a serious heart disease that causes high mortality rate worldwide. Noncoding RNAs are widely involved in the pathogenesis of MI. Circular RNAs (circRNAs) are recently validated to be crucial modulators of MI. CircRNAs are circularized RNAs with covalently closed loops, which make them stable under various conditions. CircRNAs can function by different mechanisms, such as serving as sponges of microRNAs (miRNAs) and RNA-binding proteins (RBPs), regulating mRNA transcription, and encoding peptides. Among these mechanisms, sponging miRNAs/RBPs is the main pathway. In this paper, we systematically review the current knowledge on the properties and action modes of circRNAs, elaborate on the roles of the circRNA-miRNA/RBP network in MI, and explore the value of circRNAs in MI diagnosis and clinical therapies. CircRNAs are widely involved in MI. CircRNAs have many advantages, such as stability, specificity, and wide distribution, which imply that circRNAs have a great potential to act as biomarkers for MI diagnosis and prognosis.
Collapse
Affiliation(s)
- Lei Zhang
- *Correspondence: Lei Zhang, ; Peifeng Li,
| | | | | | | | | | - Peifeng Li
- *Correspondence: Lei Zhang, ; Peifeng Li,
| |
Collapse
|
127
|
Ahsan F, Mahmood T, Wani TA, Zargar S, Siddiqui MH, Usmani S, Shamim A, Wahajuddin M. Effectual Endeavors of Silk Protein Sericin against Isoproterenol Induced Cardiac Toxicity and Hypertrophy in Wistar Rats. LIFE (BASEL, SWITZERLAND) 2022; 12:life12071063. [PMID: 35888151 PMCID: PMC9317748 DOI: 10.3390/life12071063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/24/2023]
Abstract
The silkworm cocoon has been used in the treatment of various ailments in different Asian countries. This research was designed to evaluate the effect of sericin on myocardial necrosis and hypertrophy in isoproterenol-challenged rats. The rats were administered with sericin (500 and 1000 mg/kg, p.o.) for 28 days, followed by administration of isoprenaline (85 mg/kg, s.c.) on the 29th and 30th days. The cardioprotective activity was assessed by various physical, enzymatic, and histopathological parameters along with apoptotic marker expression. The cardioprotective effect showed that pre-treatment of rats with sericin significantly increased the non-enzymatic antioxidants marker in serum and heart tissue (glutathione, vitamin E, and vitamin C). The results were the same in enzymatic antioxidant marker, mitochondrial enzymes, and protein. The grading of heart, heart/body weight ratio, gross morphology, cardiac markers, oxidative stress markers in serum and heart tissue, glucose, serum lipid profiling and Lysosomal hydrolases, heart apoptotic markers such as MHC expression by western blot, apoptosis by flow cytometry, total myocardial collagen content, fibrosis estimation, myocyte size were significantly decreased when compared with isoproterenol (ISG) group however histopathological studies showed normal architecture of heart in both control and treated rats. The pharmacological study reflects that sericin on both doses i.e., 500 mg/kg and 1000 mg/kg have potent cardioprotective action against the experimental model which was confirmed by various physical, biochemical, and histopathological parameters evaluated further research is required to examine the molecular mechanism of cardioprotective effect of sericin.
Collapse
Affiliation(s)
- Farogh Ahsan
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Tarique Mahmood
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
- Correspondence: ; Tel.: +91-9918681701
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Mohammed Haris Siddiqui
- Department of Bioengineering, Integral University, Dasauli, Kursi Road, Lucknow 226026, India;
| | - Shazia Usmani
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Arshiya Shamim
- Department of Pharmacy, Integral University, Dasauli, Kursi Road, Lucknow 226026, India; (F.A.); (S.U.); (A.S.)
| | - Muhammad Wahajuddin
- Institute of Cancer Therapeutics, School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK;
| |
Collapse
|
128
|
Yin Y, Wang L, Chen G, You H. Effect of Fraxetin on Oxidative Damage Caused by Isoproterenol-Induced Myocardial Infarction in Rats. Appl Biochem Biotechnol 2022; 194:5666-5679. [PMID: 35802243 DOI: 10.1007/s12010-022-04019-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
At present, cardiovascular disorders are the most prominent factors for the high morbidity rate globally. The occurrence of myocardial infarction followed by myocardial ischemia is the important cause of high death rates. Various medical treatments are available, yet the mortality and morbidity rate is high. In the present investigation, the cardioprotective property of fraxetin (Fx) is evaluated in myocardial infarction-induced experimental rats. Fraxetin, a phytochemical known as coumarin isolated from Fraxinus rhynchophylla. Fraxetin has numerous pharmacological activities including antioxidant, apoptosis inhibitor, anti-inflammatory, and antimicrobial agent. The experimental mice were split into 4 groups each comprising six animals. Group I was considered the control group; 0.1% NaCl solution was given as dosage. Group II received only Fx; group III was treated with ISO. Group IV was treated with Fx followed by ISO to induce myocardial infarction. In ISO administrated rats, there were changes in the heart weight, activities of cardiac markers, transmembrane protein activity, antioxidant enzymes, pro-inflammatory proteins, lipid profile, and myocardial structures. Pre-treatment of fraxetin in group IV experimental rats resulted in decreased cardiac weight, diminished level of cardiac markers (cardiac troponin T (cTnT), creatine kinase, creatine kinase-MB, and cardiac troponin I (cTnI)), reduced level of oxidative stress biomarkers (LOOH and TBARS) in the plasma and cardiac tissue, amplified level of enzymes in antioxidant defense system (catalase (CAT), superoxide dismutase (SOD), glutathione (GSH), and glutathione peroxidase (GPx)) in the plasma and heart tissue, and elevated level of ATPase activities. The histopathological studies also revealed the potent activity of fraxetin in protecting the cardiac tissues from inflammation and damage. ISO-administrated experimental rats treated with fraxetin exhibit increased antioxidants activity and decreased free radicals. Our study revealed that the administration of fraxetin significantly reduced the extent of myocardial damage during myocardial infarction in rats caused by isoproterenol. Thus, the results prove the cardioprotective effect of fraxetin in MI-induced rats.
Collapse
Affiliation(s)
- Yu Yin
- Department of Medical Insurance, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Lihui Wang
- Department of Internal Medicine, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Guifang Chen
- Department of Integrated Traditional Chinese and Western Medicine & Rheumatology and Immunology, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250013, Shandong Province, China
| | - Hongwen You
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwuweiqi Road, Jinan City, 250021, Shandong Province, China.
| |
Collapse
|
129
|
Guha S, Majumder K. Comprehensive Review of γ-Glutamyl Peptides (γ-GPs) and Their Effect on Inflammation Concerning Cardiovascular Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7851-7870. [PMID: 35727887 DOI: 10.1021/acs.jafc.2c01712] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
γ-Glutamyl peptides (γ-GPs) are a group of peptides naturally found in various food sources. The unique γ-bond potentially enables them to resist gastrointestinal digestion and offers high stability in vivo with a longer half-life. In recent years, these peptides have caught researchers' attention due to their ability to impart kokumi taste and elicit various physiological functions via the allosteric activation of the calcium-sensing receptor (CaSR). This review discusses the various food sources of γ-glutamyl peptides, different synthesis modes, allosteric activation of CaSR for taste perception, and associated multiple biological functions they can exhibit, with a special emphasis on their role in modulating chronic inflammation concerning cardiovascular health.
Collapse
Affiliation(s)
- Snigdha Guha
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kaustav Majumder
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
130
|
Kim D, Lee Y, Jeong J, Kim S. Stimulation method and individual health index study for real-time cardiovascular and autonomic nervous system reactivity analysis using PPG signal. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
131
|
Han Y, Duan B, Wu J, Zheng Y, Gu Y, Cai X, Lu C, Wu X, Li Y, Gu X. Analysis of Time Series Gene Expression and DNA Methylation Reveals the Molecular Features of Myocardial Infarction Progression. Front Cardiovasc Med 2022; 9:912454. [PMID: 35811717 PMCID: PMC9263976 DOI: 10.3389/fcvm.2022.912454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Myocardial infarction (MI) is one of the deadliest diseases in the world, and the changes at the molecular level after MI and the DNA methylation features are not clear. Understanding the molecular characteristics of the early stages of MI is of significance for the treatment of the disease. In this study, RNA-seq and MeDIP-seq were performed on heart tissue from mouse models at multiple time points (0 h, 10 min, 1, 6, 24, and 72 h) to explore genetic and epigenetic features that influence MI progression. Analysis based on a single point in time, the number of differentially expressed genes (DEGs) and differentially methylated regions (DMRs) increased with the time of myocardial infarction, using 0 h as a control group. Moreover, within 10 min of MI onset, the cells are mainly in immune response, and as the duration of MI increases, apoptosis begins to occur. Analysis based on time series data, the expression of 1012 genes was specifically downregulated, and these genes were associated with energy metabolism. The expression of 5806 genes was specifically upregulated, and these genes were associated with immune regulation, inflammation and apoptosis. Fourteen transcription factors were identified in the genes involved in apoptosis and inflammation, which may be potential drug targets. Analysis based on MeDIP-seq combined with RNA-seq methodology, focused on methylation at the promoter region. GO revealed that the downregulated genes with hypermethylation at 72 h were enriched in biological processes such as cardiac muscle contraction. In addition, the upregulated genes with hypomethylation at 72 h were enriched in biological processes, such as cell-cell adhesion, regulation of the apoptotic signaling pathway and regulation of angiogenesis. Among these genes, the Tnni3 gene was also present in the downregulated model. Hypermethylation of Tnni3 at 72 h after MI may be an important cause of exacerbation of MI.
Collapse
Affiliation(s)
- Yuru Han
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Baoyu Duan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jing Wu
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanjun Zheng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yinchen Gu
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaomeng Cai
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Xubo Wu
- School of Nursing, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Xubo Wu
| | - Yanfei Li
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Yanfei Li
| | - Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai, China
- *Correspondence: Xuefeng Gu
| |
Collapse
|
132
|
Wan J, Lin S, Yu Z, Song Z, Lin X, Xu R, Du S. Protective Effects of MicroRNA-200b-3p Encapsulated by Mesenchymal Stem Cells-Secreted Extracellular Vesicles in Myocardial Infarction Via Regulating BCL2L11. J Am Heart Assoc 2022; 11:e024330. [PMID: 35699193 PMCID: PMC9238663 DOI: 10.1161/jaha.121.024330] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background Extracellular vesicles (EVs) are a popular treatment candidate for myocardial injury. This work investigated the effects of mesenchymal stem cells (MSCs)-secreted EVs-derived miR-200b-3p on cardiomyocyte apoptosis and inflammatory response after myocardial infarction (MI) through targeting BCL2L11 (Bcl-2-like protein 11) . Methods and Results EVs from MSCs were isolated and identified. EVs from MSCs with transfection of miR-200b-3p for overexpression were injected into MI mice. The effect of miR-200b-3p on cardiac function, infarction area, myocardial fibrosis, cardiomyocyte apoptosis, and inflammatory response was determined in MI mice. The targeting relationship between miR-200b-3p and BCL2L11 was verified, and the interaction between BCL2L11 and NLR family pyrin domain containing 1 (NLRP1) was also verified. MI mice were injected with an overexpressing BCL2L11 lentiviral vector to clarify whether BCL2L11 can regulate the effect of miR-200b-3p on MI mice. EVs from MSCs were successfully extracted. MSCs-EVs improved cardiac function and reduced infarction area, apoptosis of cardiomyocytes, myocardial fibrosis, and inflammation in MI mice. Upregulation of miR-200b-3p further enhanced the effects of MSCs-EVs on the myocardial injury of MI mice. BCL2L11 was targeted by miR-200b-3p and bound to NLRP1. Upregulation of BCL2L11 negated the role of miR-200b-3p-modified MSCs-EVs in MI mice. Conclusions A summary was obtained that miR-200b-3p-encapsulated MSCs-EVs protect against MI-induced apoptosis of cardiomyocytes and inflammation via suppressing BCL2L11.
Collapse
Affiliation(s)
- Jun Wan
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Shaoyan Lin
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Zhuo Yu
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Zhengkun Song
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Xuefeng Lin
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Rongning Xu
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| | - Songlin Du
- Department of Cardiovascular Surgery Nanfang Hospital Southern Medical University Guangzhou Guangdong China
| |
Collapse
|
133
|
Role of ABCA1 in Cardiovascular Disease. J Pers Med 2022; 12:jpm12061010. [PMID: 35743794 PMCID: PMC9225161 DOI: 10.3390/jpm12061010] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cholesterol homeostasis plays a significant role in cardiovascular disease. Previous studies have indicated that ATP-binding cassette transporter A1 (ABCA1) is one of the most important proteins that maintains cholesterol homeostasis. ABCA1 mediates nascent high-density lipoprotein biogenesis. Upon binding with apolipoprotein A-I, ABCA1 facilitates the efflux of excess intracellular cholesterol and phospholipids and controls the rate-limiting step of reverse cholesterol transport. In addition, ABCA1 interacts with the apolipoprotein receptor and suppresses inflammation through a series of signaling pathways. Thus, ABCA1 may prevent cardiovascular disease by inhibiting inflammation and maintaining lipid homeostasis. Several studies have indicated that post-transcriptional modifications play a critical role in the regulation of ABCA1 transportation and plasma membrane localization, which affects its biological function. Meanwhile, carriers of the loss-of-function ABCA1 gene are often accompanied by decreased expression of ABCA1 and an increased risk of cardiovascular diseases. We summarized the ABCA1 transcription regulation mechanism, mutations, post-translational modifications, and their roles in the development of dyslipidemia, atherosclerosis, ischemia/reperfusion, myocardial infarction, and coronary heart disease.
Collapse
|
134
|
Lan Z, Wang T, Zhang L, Jiang Z, Zou X. CircSLC8A1 Exacerbates Hypoxia-Induced Myocardial Injury via Interacting with MiR-214-5p to Upregulate TEAD1 Expression. Int Heart J 2022; 63:591-601. [PMID: 35650159 DOI: 10.1536/ihj.21-547] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Circular RNAs (circRNAs) act as important regulators in myocardial infarction (MI). This study aimed to explore the regulatory mechanism of circRNA solute carrier family 8 member A1 antisense RNA 1 (circSLC8A1) in hypoxia-induced myocardial injury.Exosomes were isolated by ultracentrifugation and identified by microscopic observation or protein detection. Protein levels were examined by Western blot. CircSLC8A1, microRNA-214-5p (miR-214-5p), and TEA domain transcription factor 1 (TEAD1) levels were determined via quantitative real-time polymerase chain reaction (qRT-PCR). Cell viability and apoptosis were analyzed by 3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyl tetrazolium bromide (MTT) and flow cytometry, respectively. Inflammatory cytokines were measured using enzyme-linked immunosorbent assay (ELISA). Oxidative stress was assessed by reactive oxygen species (ROS) production, malondialdehyde (MDA) level, and superoxide dismutase (SOD) activity through the corresponding detection kits. Target analysis was performed by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, and pull-down assay.Exosomes released circSLC8A1 from hypoxic cardiomyocytes. Exosomal circSLC8A1 exacerbated hypoxia-induced repression of cell viability but promotion of cell apoptosis, inflammation, and oxidative stress. Knockdown of circSLC8A1 ameliorated hypoxia-mediated cell injury. CircSLC8A1 directly targeted miR-214-5p and miR-214-5p downregulation reverted the effects of si-circSLC8A1 on hypoxia-treated cardiomyocytes. TEAD1 was a target of miR-214-5p and circSLC8A1 upregulated TEAD1 level via targeting miR-214-5p. In addition, miR-214-5p inhibited hypoxia-caused cell injury by downregulating the expression of TEAD1.These results suggested that circSLC8A1 aggravated cell damages in hypoxia-treated cardiomyocytes by the regulation of TEAD1 via sponging miR-214-5p.
Collapse
Affiliation(s)
- Zhong Lan
- Department of Internal Medicine-Cardiovascular, The Fifth Affiliated Hospital of Southern Medical University
| | - Tao Wang
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Southern Medical University
| | - Lihong Zhang
- Department of Internal Medicine-Cardiovascular, The Fifth Affiliated Hospital of Southern Medical University
| | - Zhizhong Jiang
- Department of Internal Medicine-Cardiovascular, The Fifth Affiliated Hospital of Southern Medical University
| | - Xiaoming Zou
- Department of Cardiac Surgery, The Fifth Affiliated Hospital of Southern Medical University
| |
Collapse
|
135
|
Lu X, Wang Z, Ye D, Feng Y, Liu M, Xu Y, Wang M, Zhang J, Liu J, Zhao M, Xu S, Ye J, Wan J. The Role of CXC Chemokines in Cardiovascular Diseases. Front Pharmacol 2022; 12:765768. [PMID: 35668739 PMCID: PMC9163960 DOI: 10.3389/fphar.2021.765768] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular disease (CVD) is a class of diseases with high disability and mortality rates. In the elderly population, the incidence of cardiovascular disease is increasing annually. Between 1990 and 2016, the age-standardised prevalence of CVD in China significantly increased by 14.7%, and the number of cardiovascular disease deaths increased from 2.51 million to 3.97 million. Much research has indicated that cardiovascular disease is closely related to inflammation, immunity, injury and repair. Chemokines, which induce directed chemotaxis of reactive cells, are divided into four subfamilies: CXC, CC, CX3C, and XC. As cytokines, CXC chemokines are similarly involved in inflammation, immunity, injury, and repair and play a role in many cardiovascular diseases, such as atherosclerosis, myocardial infarction, cardiac ischaemia-reperfusion injury, hypertension, aortic aneurysm, cardiac fibrosis, postcardiac rejection, and atrial fibrillation. Here, we explored the relationship between the chemokine CXC subset and cardiovascular disease and its mechanism of action with the goal of further understanding the onset of cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Jing Ye
- *Correspondence: Jing Ye, ; Jun Wan,
| | - Jun Wan
- *Correspondence: Jing Ye, ; Jun Wan,
| |
Collapse
|
136
|
Role of Transcriptional and Epigenetic Regulation in Lymphatic Endothelial Cell Development. Cells 2022; 11:cells11101692. [PMID: 35626729 PMCID: PMC9139870 DOI: 10.3390/cells11101692] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
The lymphatic system is critical for maintaining the homeostasis of lipids and interstitial fluid and regulating the immune cell development and functions. Developmental anomaly-induced lymphatic dysfunction is associated with various pathological conditions, including lymphedema, inflammation, and cancer. Most lymphatic endothelial cells (LECs) are derived from a subset of endothelial cells in the cardinal vein. However, recent studies have reported that the developmental origin of LECs is heterogeneous. Multiple regulatory mechanisms, including those mediated by signaling pathways, transcription factors, and epigenetic pathways, are involved in lymphatic development and functions. Recent studies have demonstrated that the epigenetic regulation of transcription is critical for embryonic LEC development and functions. In addition to the chromatin structures, epigenetic modifications may modulate transcriptional signatures during the development or differentiation of LECs. Therefore, the understanding of the epigenetic mechanisms involved in the development and function of the lymphatic system can aid in the management of various congenital or acquired lymphatic disorders. Future studies must determine the role of other epigenetic factors and changes in mammalian lymphatic development and function. Here, the recent findings on key factors involved in the development of the lymphatic system and their epigenetic regulation, LEC origins from different organs, and lymphatic diseases are reviewed.
Collapse
|
137
|
Zhang MX, Song Y, Xu WL, Zhang LX, Li C, Li YL. Natural Herbal Medicine as a Treatment Strategy for Myocardial Infarction through the Regulation of Angiogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:8831750. [PMID: 35600953 PMCID: PMC9119779 DOI: 10.1155/2022/8831750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
Abstract
Methods We conducted a literature search on the bioactive components of medicinal plants and their effects on angiogenesis after MI. We searched for articles in Web of Science, MEDLINE, PubMed, Scopus, Google Scholar, and China National Knowledge Infrastructure databases before April 2021. Results In this article, we summarized the mechanisms by which copper ions, microRNA, Akt1, inflammation, oxidative stress, mitochondria, and pericytes are involved in angiogenesis after myocardial infarction. In addition, we reviewed the angiogenic effects of natural herbal medicines such as Salvia miltiorrhiza Bunge Bunge, Carthamus tinctorius L., Pueraria lobata, Astragalus, Panax ginseng C.A. Mey., Panax notoginseng (Burkill) F.H. Chen, Cinnamomum cassia (L.) J. Presl, Rehmannia glutinosa (Gaertn.) DC., Leonurus japonicus Houtt, Scutellaria baicalensis Georgi., and Geum macrophyllum Willd. Conclusions Some herbs have the effect of promoting angiogenesis. In the future, natural proangiogenic drugs may become candidates for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Mu-xin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yu Song
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wan-li Xu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ling-xiao Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yun-lun Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| |
Collapse
|
138
|
Walkowski B, Kleibert M, Majka M, Wojciechowska M. Insight into the Role of the PI3K/Akt Pathway in Ischemic Injury and Post-Infarct Left Ventricular Remodeling in Normal and Diabetic Heart. Cells 2022; 11:cells11091553. [PMID: 35563860 PMCID: PMC9105930 DOI: 10.3390/cells11091553] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/07/2023] Open
Abstract
Despite the significant decline in mortality, cardiovascular diseases are still the leading cause of death worldwide. Among them, myocardial infarction (MI) seems to be the most important. A further decline in the death rate may be achieved by the introduction of molecularly targeted drugs. It seems that the components of the PI3K/Akt signaling pathway are good candidates for this. The PI3K/Akt pathway plays a key role in the regulation of the growth and survival of cells, such as cardiomyocytes. In addition, it has been shown that the activation of the PI3K/Akt pathway results in the alleviation of the negative post-infarct changes in the myocardium and is impaired in the state of diabetes. In this article, the role of this pathway was described in each step of ischemia and subsequent left ventricular remodeling. In addition, we point out the most promising substances which need more investigation before introduction into clinical practice. Moreover, we present the impact of diabetes and widely used cardiac and antidiabetic drugs on the PI3K/Akt pathway and discuss the molecular mechanism of its effects on myocardial ischemia and left ventricular remodeling.
Collapse
Affiliation(s)
- Bartosz Walkowski
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Correspondence: (M.K.); (M.M.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (B.W.); (M.W.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
139
|
Sensitive detection of MiRNA and CircRNA through DSN enzyme cooperating NEase assisted dual signal amplification. Anal Biochem 2022; 654:114744. [DOI: 10.1016/j.ab.2022.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/16/2022] [Accepted: 05/18/2022] [Indexed: 11/23/2022]
|
140
|
Wang B, Zhang Y, Fang S, Wang H. Role of circRNA circ_0000080 in myocardial hypoxia injury. Bioengineered 2022; 13:10902-10913. [PMID: 35475415 PMCID: PMC9208504 DOI: 10.1080/21655979.2022.2066752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the potential role of circRNA circ_0000080 in myocardial hypoxia injury and the underlying mechanisms. Patients with myocardial hypoxia injury who were admitted to Xi’an No. 1 Hospital, China, were included in this study. The expression levels of circ_0000080, miR-367-5p, and COX2 were analyzed by real-time quantitative PCR (RT-qPCR); cell viability was measured by cell counting kit-8 (CCK-8) assay; and apoptosis was detected by flow cytometry. In addition, the release of cytokines was determined by Enzyme-linked immunosorbent assay (ELISA), and the binding sites between miR-367-5p and circ_0000080/COX2 were predicted by bioinformatics analysis and confirmed by dual-luciferase reporter and RNA pull-down assays. circ_0000080 was upregulated in patients with MI and in H9c2 cells treated with H2O2 and hypoxia/reoxygenation (H/R). Silencing circ_0000080 reduced the H/R-mediated apoptosis of cardiomyocytes and secretion of pro-inflammatory cytokines. Moreover, circ_0000080 functioned as an miR-367-5p sponge to regulate the expression of COX2. Downregulated miR-367-5p or overexpressed COX2 degraded cellular functions of cardiomyocytes. circ_0000080 knockdown alleviated myocardial hypoxia injury through the miR-367-5p/COX2 axis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Cardiology, Xi'an City, Shaanxi Province, China
| | - Yuyang Zhang
- Department of Cardiology, Xi'an City, Shaanxi Province, China
| | - Shunmiao Fang
- Department of Cardiology, Xi'an City, Shaanxi Province, China
| | - Hui Wang
- Department of Cardiology, Xi'an City, Shaanxi Province, China
| |
Collapse
|
141
|
Xu L, Wang F. LINC00936 exacerbated myocardial infarction progression via miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. Perfusion 2022; 38:706-716. [PMID: 35410528 DOI: 10.1177/02676591221076788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE LncRNAs show great potential in diagnosing and treating myocardial infarction (MI). Clarifying the mechanism of lncRNAs on MI is of great significance for the application of MI biomarkers. Therefore, this report intended to determine the role and mechanism of LINC00936 on MI by biological and imaging methods. METHODS Hypoxia H9C2 model was established by hypoxia treatment. Flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labeling assay detected the apoptosis of H9C2. H2DCFDA staining and enzyme-linked immunosorbent assay (ELISA) was used to detect the reactive oxygen species (ROS) accumulation and Lactate dehydrogenase (LDH) contents, respectively. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect LINC00936, Wnt3a and miR-4795-3p levels. Western blot detected Wnt3a protein expression. Dual luciferase reporter assays detected the relationship of miR-4795-3p to LINC00936 or Wnt3a. Echocardiography analysis detected cardiac function. 2,3,5-Triphenyltetrazolium chloride (TTC) detected the infarct size. Masson staining detected the pathological changes. RESULTS LINC00936 level was elevated in the MI patients compared with the controls. Overexpression of LINC00936 promoted apoptosis and ROS accumulation in hypoxia H9C2 model and exacerbated MI progression in vivo. miR-4795-3p bound with LINC00936 in H9C2 cells and miR-4795-3p mimics inhibited apoptosis and ROS accumulation in hypoxia H9C2 model regulated by LINC00936. Wnt3a was targeted by miR-4795-3p and Wnt3a elevation promoted apoptosis and ROS accumulation in hypoxia H9C2 model. CONCLUSION In this report, we illustrated that LINC00936 exacerbated MI progression via the miR-4795-3p/Wnt3a signaling pathway based on biological and imaging methods. These findings might provide potential molecular target for the diagnosis and treatment of MI.
Collapse
Affiliation(s)
- Lvyun Xu
- Department of Emergency, Affiliated Taikang Xianlin Drum Tower Hospital, 117559Medical School of Nanjing University, Nanjing, China
| | - Fan Wang
- Department of Radiology, Nanjing BenQ Medical Center, 189779The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
142
|
Li Z, Huo X, Chen K, Yang F, Tan W, Zhang Q, Yu H, Li C, Zhou D, Chen H, Zhao B, Wang Y, Chen Z, Du X. Profilin 2 and Endothelial Exosomal Profilin 2 Promote Angiogenesis and Myocardial Infarction Repair in Mice. Front Cardiovasc Med 2022; 9:781753. [PMID: 35479278 PMCID: PMC9036097 DOI: 10.3389/fcvm.2022.781753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) are the leading cause of death worldwide, wherein myocardial infarction (MI) is the most dangerous one. Promoting angiogenesis is a prospective strategy to alleviate MI. Our previous study indicated that profilin 2 (PFN2) may be a novel target associated with angiogenesis. Further results showed higher levels of serum PFN2 and exosomal PFN2 in patients, mice, and pigs with MI. In this study, we explored whether PFN2 and endothelial cell (EC)-derived exosomal PFN2 could increase angiogenesis and be beneficial for the treatment of MI. Serum PFN2, exosomes, and exosomal PFN2 were elevated in rats with MI. PFN2 and exosomes from PFN2-overexpressing ECs (OE-exo) enhanced EC proliferation, migration, and tube formation ability. OE-exo also significantly increased the vessel number in zebrafish and protected the ECs from inflammatory injury. Moreover, OE-exo-treated mice with MI showed improvement in motor ability, ejection fraction, left ventricular shortening fraction, and left ventricular mass, as well as increased vessel numbers in the MI location, and decreased infarction volume. Mechanistically, PI3K might be the upstream regulator of PFN2, while ERK might be the downstream regulator in the PI3K-PFN2-ERK axis. Taken together, our findings demonstrate that PFN2 and exosomal PFN2 promote EC proliferation, migration, and tube formation through the PI3K-PFN2-ERK axis. Exosomal PFN2 may be a valuable target in the repair of MI injury via angiogenesis.
Collapse
Affiliation(s)
- Zhenkun Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xueyun Huo
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Keyan Chen
- Department of Laboratory Animal Science, China Medical University, Dalian, China
| | - Fenghua Yang
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Weijiang Tan
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Qi Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haixu Yu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Changlong Li
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Deshan Zhou
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
| | - Hao Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuan Wang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Zhenwen Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- Zhenwen Chen
| | - Xiaoyan Du
- School of Basic Medical Sciences, Capital Medical University, Beijing Key Laboratory of Cancer Invasion & Metastasis Research, Beijing, China
- *Correspondence: Xiaoyan Du
| |
Collapse
|
143
|
Wang YW, Dong HZ, Tan YX, Bao X, Su YM, Li X, Jiang F, Liang J, Huang ZC, Ren YL, Xu YL, Su Q. HIF-1α-regulated lncRNA-TUG1 promotes mitochondrial dysfunction and pyroptosis by directly binding to FUS in myocardial infarction. Cell Death Dis 2022; 8:178. [PMID: 35396503 PMCID: PMC8993815 DOI: 10.1038/s41420-022-00969-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022]
Abstract
Myocardial infarction (MI) is a fatal heart disease that affects millions of lives worldwide each year. This study investigated the roles of HIF-1α/lncRNA-TUG1 in mitochondrial dysfunction and pyroptosis in MI. CCK-8, DHE, lactate dehydrogenase (LDH) assays, and JC-1 staining were performed to measure proliferation, reactive oxygen species (ROS), LDH leakage, and mitochondrial damage in hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Enzyme-linked immunoassay (ELISA) and flow cytometry were used to detect LDH, creatine kinase (CK), and its isoenzyme (CK-MB) levels and caspase-1 activity. Chromatin immunoprecipitation (ChIP), luciferase assay, and RNA-immunoprecipitation (RIP) were used to assess the interaction between HIF-1α, TUG1, and FUS. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were used to measure HIF-1α, TUG1 and pyroptosis-related molecules. Hematoxylin and eosin (HE), 2,3,5-triphenyltetrazolium chloride (TTC), and terminal deoxynucleotidyl transferase dUTP risk end labelling (TUNEL) staining were employed to examine the morphology, infarction area, and myocardial injury in the MI mouse model. Mitochondrial dysfunction and pyroptosis were induced in H/R-treated cardiomyocytes, accompanied by an increase in the expression of HIF-α and TUG1. HIF-1α promoted TUG1 expression by directly binding to the TUG1 promoter. TUG1 silencing inhibited H/R-induced ROS production, mitochondrial injury and the expression of the pyroptosis-related proteins NLRP3, caspase-1 and GSDMD. Additionally, H/R elevated FUS levels in cardiomyocytes, which were directly inhibited by TUG1 silencing. Fused in sarcoma (FUS) overexpression reversed the effect of TUG1 silencing on mitochondrial damage and caspase-1 activation. However, the ROS inhibitor N-acetylcysteine (NAC) promoted the protective effect of TUG1 knockdown on H/R-induced cardiomyocyte damage. The in vivo MI model showed increased infarction, myocardial injury, ROS levels and pyroptosis, which were inhibited by TUG1 silencing. HIF-1α targeting upregulated TUG1 promotes mitochondrial damage and cardiomyocyte pyroptosis by combining with FUS, thereby promoting the occurrence of MI. HIF-1α/TUG1/FUS may serve as a potential treatment target for MI.
Collapse
Affiliation(s)
- Yong-Wang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Hong-Zhi Dong
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, P. R. China
| | - Yong-Xing Tan
- Department of Intensive Care Unit, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xu Bao
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Ying-Man Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xin Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Fang Jiang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Jing Liang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Zhen-Cai Huang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yan-Ling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yu-Li Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China.
| |
Collapse
|
144
|
Xu S, Gu R, Bian X, Xu X, Xia X, Liu Y, Jia C, Gu Y, Zhang H. Remote Conditioning by Rhythmic Compression of Limbs Ameliorated Myocardial Infarction by Downregulation of Inflammation via A2 Adenosine Receptors. Front Cardiovasc Med 2022; 8:723332. [PMID: 35498376 PMCID: PMC9040771 DOI: 10.3389/fcvm.2021.723332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
Background Remote ischemic conditioning (RIC) is a cardioprotective phenomenon, yet transient ischemia is not a requisite trigger for remote cardioprotection. In fact, RIC is a stimulus compound containing interruption of the blood vessel and tissue compression. In this study, we evaluate the effects of remote tissue compression on infarct size after myocardial infarction and explore its preliminary mechanisms. Methods and Results We used a murine model of myocardial infarction to assess ischemia injury and identified remote conditioning by rhythmic compression on forelimb as a novel cardioprotective intervention. We show that the cardioprotective signal transduction of remote conditioning from the trigger limb to the heart involves the release of adenosine. Our results demonstrate that A2a and A2b receptors are indispensable parts for cardioprotection of remote conditioning, which is linked to its anti-inflammatory properties by the subsequent activation of cAMP/PKA/NF-κB axis. Conclusion Our results establish a new connection between remote tissue compression and cardiovascular diseases, which enhances our cognition about the role of tissue compression on RIC cardioprotection.
Collapse
Affiliation(s)
- Senlei Xu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiangyu Bian
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Xu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xuefeng Xia
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuchen Liu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengjie Jia
- Wuxi Municipal Rehabilitation Hospital, Wuxi, China
| | - Yihuang Gu
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Yihuang Gu
| | - Hongru Zhang
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Hongru Zhang
| |
Collapse
|
145
|
Wang L, Yu P, Wang J, Xu G, Wang T, Feng J, Bei Y, Xu J, Wang H, Das S, Xiao J. Downregulation of circ-ZNF609 Promotes Heart Repair by Modulating RNA N 6-Methyladenosine-Modified Yap Expression. RESEARCH 2022; 2022:9825916. [PMID: 35474903 PMCID: PMC9012977 DOI: 10.34133/2022/9825916] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/26/2022] [Indexed: 12/14/2022]
Abstract
Circular RNAs take crucial roles in several pathophysiological processes. The regulatory role and its underlying mechanisms of circ-ZNF609 in the heart remains largely unknown. Here, we report that circ-ZNF609 is upregulated during myocardial ischemia/reperfusion (I/R) remodeling. Knockdown of circ-ZNF609 protects against acute I/R injury and attenuates left ventricle dysfunction after I/R remodeling in vivo. In vitro, circ-ZNF609 regulates cardiomyocyte survival and proliferation via modulating the crosstalk between Hippo-YAP and Akt signaling. Mechanically, N6-methyladenosine-modification is involved in the regulatory role of circ-ZNF609 on YAP. An in-depth study indicates that knockdown of circ-ZNF609 decreases the expression of YTHDF3 and further fine-tuned the accessibility of Yap mRNA to YTHDF1 and YTHDF2 to regulate YAP expression. circ-ZNF609 knockdown represents a promising therapeutic strategy to combat the pathological process of myocardial I/R injury.
Collapse
Affiliation(s)
- Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Pujiao Yu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jiaqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Guie Xu
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Tianhui Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jingyi Feng
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Yihua Bei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
| | - Jiahong Xu
- Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Hongbao Wang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Saumya Das
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People’s Hospital of Nantong), School of Medicine, Shanghai University, Nantong 226011, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science, Shanghai University, Shanghai 200444, China
| |
Collapse
|
146
|
Myosin Light Chain Kinase Modulates to Improve Myocardial Hypoxia/Reoxygenation Injury. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8124343. [PMID: 35378949 PMCID: PMC8976627 DOI: 10.1155/2022/8124343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022]
Abstract
Objective The aim of this study was to evaluate whether myosin light chain kinase (MLCK) knockdown attenuated H9C2 cell hypoxia/reoxygenation (H/R) injury and downstream signaling pathway. Methods The MLCK expression in H/R injury model H9C2 cell was determined by western blot and qRT-PCR. H/R cells were transfected with si-MLCK in the presence of P38 inhibitor (SB203580) or ERK inhibitor (U0126). Then, cell apoptosis was verified by flow cytometry. Apoptosis-related proteins were detected by western blot. The contents of reactive oxygen species (ROS), lactate dehydrogenase (LDH), superoxide dismutase (SOD), interleukin-6 (IL-6), interleukin (IL)-1β (IL-1β), and tumor necrosis factor-α (TNF-α) were measured using flow cytometry and colorimetric assays, respectively. Results MLCK expression was higher in H/R cells. Knockdown of MLCK diminished the amounts of ROS, LDH, IL-6, IL-1β, and TNF-α and elevated the release of SOD in H/R model H9C2 cells. Additionally, H/R injury induced the cumulative expression and phosphorylation of ERK and the phosphorylation of P38, whereas MLCK siRNA-treated cells showed decreased ERK1/2 and P38 activation. Inversely, P38 inhibitor (SB203580) and ERK inhibitor (U0126) could reverse the cardioprotective effects induced by si-MLCK. Conclusion MLCK knockdown attenuated H/R injury in H9C2 cells via regulating the ERK/P38 signaling pathway. MLCK/ERK/p38 axis may provide novel insight into therapeutic targets to restrain I/R injury caused by revascularization therapy after acute myocardial infarction.
Collapse
|
147
|
Liu B, Guo K. CircRbms1 knockdown alleviates hypoxia-induced cardiomyocyte injury via regulating the miR-742-3p/FOXO1 axis. Cell Mol Biol Lett 2022; 27:31. [PMID: 35346026 PMCID: PMC8962532 DOI: 10.1186/s11658-022-00330-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 12/23/2022] Open
Abstract
Background Circular RNA (circRNA) has been shown to play an important role in a variety of cardiovascular diseases, including myocardial infarction (MI). However, the role of circRbms1 in MI progression remains unclear. Methods An MI mouse model was constructed in vivo, and cardiomyocytes were cultured under hypoxia condition to induce a cardiomyocyte injury model in vitro. The expression levels of circRbms1, microRNA (miR)-742-3p, and forkhead box O1 (FOXO1) were determined by quantitative real-time PCR. Cell viability, migration, invasion, and apoptosis were measured using Cell Counting Kit-8 assay, transwell assay, and flow cytometry. Meanwhile, western blot analysis was used to examine the protein levels of apoptosis markers and FOXO1. Additionally, dual-luciferase reporter assay, RNA pull-down assay, and RIP assay were employed to verify the interactions between miR-742-3p and circRbms1 or FOXO1. Results CircRbms1 was upregulated in the heart tissues of MI mice and hypoxia-induced cardiomyocytes. Hypoxia induced cardiomyocyte injury by suppressing cell viability, migration, and invasion, and promoting apoptosis. Function experiments showed that circRbms1 overexpression aggravated hypoxia-induced cardiomyocyte injury, while its silencing relieved cardiomyocyte injury induced by hypoxia. Furthermore, circRbms1 sponged miR-742-3p. MiR-742-3p overexpression alleviated hypoxia-induced cardiomyocyte injury, and its inhibitor reversed the suppressive effect of circRbms1 silencing on hypoxia-induced cardiomyocyte injury. Further experiments showed that FOXO1 was a target of miR-742-3p, and its expression was positively regulated by circRbms1. The inhibitory effect of miR-742-3p on hypoxia-induced cardiomyocyte injury was reversed by FOXO1 overexpression. Conclusion CircRbms1 regulated the miR-742-3p/FOXO1 axis to mediate hypoxia-induced cardiomyocyte injury, suggesting that circRbms1 might be an effective target for MI treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00330-y.
Collapse
Affiliation(s)
- Bo Liu
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, 20092, Shanghai, China
| | - Kai Guo
- Department of Cardiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, 20092, Shanghai, China.
| |
Collapse
|
148
|
Health Benefits, Pharmacological Effects, Molecular Mechanisms, and Therapeutic Potential of α-Bisabolol. Nutrients 2022; 14:nu14071370. [PMID: 35405982 PMCID: PMC9002489 DOI: 10.3390/nu14071370] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
α-Bisabolol is one of the important monocyclic sesquiterpenes, derived naturally from essential oils of many edible and ornamental plants. It was first obtained from Matricaria chamomilla, commonly known as chamomile or German chamomile. The available literature indicates that this plant along with other α-Bisabolol containing plants is popularly used in traditional medicine for potential health benefits and general wellbeing. Nutritional studies are indicative of the health benefits of α-Bisabolol. Numerous experimental studies demonstrated pharmacological properties of α-Bisabolol including anticancer, antinociceptive, neuroprotective, cardioprotective, and antimicrobial. This review aims to collectively present different pharmacological activities based on both in vitro and in vivo studies. In the present review using synoptic tables and figures, we comprehensively present that α-Bisabolol possesses therapeutic and protective activities, therefore, it can be used for potential health benefits based on pharmacological effects, underlying molecular mechanism, and favorable pharmaceutical properties. Based on the studies mostly performed on cell lines or animal models, it is evident that α-Bisabolol may be a promising nutraceutical and phytomedicine to target aberrant biological mechanisms which result in altered physiological processes and various ailments. Given the polypharmacological effects and pleiotropic properties, along with favorable pharmacokinetics, and dietary availability and safety, α-Bisabolol can be used as a dietary agent, nutraceutical or phytopharmaceutical agent or as an adjuvant with currently available modern medicines. The regulatory approval of this molecule for use as food additives, and in cosmetics and fragrance industry is also supportive of its human usage. Moreover, further studies are necessary to address pharmaceutical, pharmacological, and toxicological aspects before clinical or nutritional usage in humans. The biological actions and health benefits open opportunities for pharmaceutical development with pharmacological basis of its use in future therapeutics.
Collapse
|
149
|
Wang J, Wang W, Yan C, Wang T. Ischemic postconditioning protects nonculprit coronary arteries against ischemia-reperfusion injury via downregulating miR-92a, miR-328 and miR-494. Aging (Albany NY) 2022; 14:2748-2757. [PMID: 35321943 PMCID: PMC9004578 DOI: 10.18632/aging.203971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Nonculprit lesions are closely related to the prognosis of patients with ST-segment elevation myocardial infarction (STEMI). Our previous research found that ischemic postconditioning (IP) could inhibit the progression of nonculprit lesions. However, the mechanism by which IP regulates the occurrence and development of nonculprit lesions remains unclear. METHODS Firstly, a rabbit ischemia-reperfusion (IR) model was constructed. Next, the morphological characteristics of the coronary arterial tissues and myocardial tissues of the rabbits were observed using hematoxylin-eosin (H&E) staining. Then, western blot was performed to detect the expressions of AT1, Cx43, β-tubulin, Bax, Bcl-2 and cleaved caspase 3. Finally, to further confirm the effect of IP on nonculprit coronary arterial tissues, an in vitro model of oxygen and glucose deprivation/reperfusion (OGD/R) was established. RESULTS IR notably induced the cells apoptosis in nonculprit coronary arterial tissues and in myocardial tissues, while IR-induced cell apoptosis was significantly inhibited by IP. In addition, IP protected nonculprit coronary arterial tissues against IR via downregulating miR-92a, miR-328 and miR-494 and mRNA AT1, Cx43 and β-tubulin. Consistently, OGD/R-induced injury of Human umbilical vein endothelial cells (HUVECs) was reversed by IP. CONCLUSIONS In this study, IP could protect nonculprit coronary arteries against IR injury via downregulating miR-92a, miR-328 and miR-494. Our findings may provide new directions for the treatment of nonculprit lesions.
Collapse
Affiliation(s)
- Jian Wang
- Department of Cardiology, Beijing Geriatric Hospital, Beijing 100095, Beijing, China
| | - Wu Wang
- Department of Cardiology, Xining First People's Hospital, Xining 810001, Qinghai, China
| | - Chengying Yan
- Department of Cardiology, Xining First People's Hospital, Xining 810001, Qinghai, China
| | - Tianzhen Wang
- Hengduan House, RDFZ Chaoyang Branch School, Beijing 100028, Beijing, China
| |
Collapse
|
150
|
Zhang F, Wu J, Li X, Ying X, Fang W, Dong Y. Angiopoietin-like protein 4 treated bone marrow-derived mesenchymal stem cells alleviate myocardial injury of patients with myocardial infarction. Nurs Health Sci 2022; 24:312-321. [PMID: 35157362 PMCID: PMC9306838 DOI: 10.1111/nhs.12927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/30/2022]
Abstract
Bone marrow‐derived mesenchymal stem cells (BMSCs) and their exosomes are of great significance for the recovery of cardiac function in patients with myocardial infarction (MI). However, the underlying mechanisms of BMSCs applied to MI treatment remain unclear. Fluorescence‐activated cell sorting (FACs) are performed to assess the apoptosis, reactive oxygen species levels and glucose uptake capacity of BMSCs. Reverse transcription polymerase chain reaction is conducted to detect the levels of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), insulin‐like growth factor (IGF), transforming growth factor‐beta 1, connective tissue growth factor, and platelet‐derived growth factor. The levels of apoptosis‐related proteins were detected by Western blot. The levels of VEGF, bFGF, HGF, and IGF were assessed by enzyme‐linked immunosorbent assay. The biochemical kits are applied to detect the levels of malondialdehyde, superoxide dismutase, and adenosine triphosphate/adenosine diphosphate. 2,3,5‐triphenyltetrazolium and Masson staining and immunofluorescence are performed to assess myocardial function of rats. Angiopoietin‐like protein 4 (ANGPTL4) alleviates apoptosis and oxidative stress of BMSCs induced by serum deprivation and hypoxia; ANGPTL4 activates paracrine and accelerate metabolic energy of BMSCs; and ANGPTL4 treated‐BMSCs alleviate myocardial injury of rats with MI. ANGPTL4 treated‐BMSCs alleviate myocardial injury in rats with MI, indicating the combination therapy of ANGPTL4 and BMSCs may alleviate myocardial injury in rats with MI.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Jie Wu
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Xingxing Li
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Xuan Ying
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Wenbing Fang
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| | - Yang Dong
- Department of Cardiology, Jinhua People's Hospital, Zhejiang, China
| |
Collapse
|