101
|
Silicon Supplementation Alleviates the Salinity Stress in Wheat Plants by Enhancing the Plant Water Status, Photosynthetic Pigments, Proline Content and Antioxidant Enzyme Activities. PLANTS 2022; 11:plants11192525. [PMID: 36235391 PMCID: PMC9572231 DOI: 10.3390/plants11192525] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 01/24/2023]
Abstract
Silicon (Si) is the most abundant element on earth after oxygen and is very important for plant growth under stress conditions. In the present study, we inspected the role of Si in the mitigation of the negative effect of salt stress at three concentrations (40 mM, 80 mM, and 120 mM NaCl) in two wheat varieties (KRL-210 and WH-1105) with or without Si (0 mM and 2 mM) treatment. Our results showed that photosynthetic pigments, chlorophyll stability index, relative water content, protein content, and carbohydrate content were reduced at all three salt stress concentrations in both wheat varieties. Moreover, lipid peroxidation, proline content, phenol content, and electrolyte leakage significantly increased under salinity stress. The antioxidant enzyme activities, like catalase and peroxidase, were significantly enhanced under salinity in both leaves and roots; however, SOD activity was drastically decreased under salt stress in both leaves and roots. These negative effects of salinity were more pronounced in WH-1105, as KRL-210 is a salt-tolerant wheat variety. On the other hand, supplementation of Si improved the photosynthetic pigments, relative water, protein, and carbohydrate contents in both varieties. In addition, proline content, MDA content, and electrolyte leakage were shown to decline following Si application under salt stress. It was found that applying Si enhanced the antioxidant enzyme activities under stress conditions. Si showed better results in WH-1105 than in KRL-210. Furthermore, Si was found to be more effective at a salt concentration of 120 mM compared to low salt concentrations (40 mM, 80 mM), indicating that it significantly improved plant growth under stressed conditions. Our experimental findings will open a new area of research in Si application for the identification and implication of novel genes involved in enhancing salinity tolerance.
Collapse
|
102
|
Jasmonic Acid Boosts Physio-Biochemical Activities in Grewia asiatica L. under Drought Stress. PLANTS 2022; 11:plants11192480. [PMID: 36235345 PMCID: PMC9573089 DOI: 10.3390/plants11192480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
It has been shown that jasmonic acid (JA) can alleviate drought stress. Nevertheless, there are still many questions regarding the JA-induced physiological and biochemical mechanisms that underlie the adaptation of plants to drought stress. Hence, the aim of this study was to investigate whether JA application was beneficial for the antioxidant activity, plant performance, and growth of Grewia asiatica L. Therefore, a study was conducted on G. asiatica plants aged six months, exposing them to 100% and 60% of their field capacity. A JA application was only made when the plants were experiencing moderate drought stress (average stem water potential of 1.0 MPa, considered moderate drought stress), and physiological and biochemical measures were monitored throughout the 14-day period. In contrast to untreated plants, the JA-treated plants displayed an improvement in plant growth by 15.5% and increased CO2 assimilation (AN) by 43.9% as well as stomatal conductance (GS) by 42.7% on day 3. The ascorbate peroxidase (APX), glutathione peroxidase (GPX), and superoxide dismutase (SOD) activities of drought-stressed JA-treated plants increased by 87%, 78%, and 60%, respectively, on day 3. In addition, G. asiatica plants stressed by drought accumulated 34% more phenolics and 63% more antioxidants when exposed to JA. This study aimed to understand the mechanism by which G. asiatica survives in drought conditions by utilizing the JA system.
Collapse
|
103
|
Li J, Ran X, Zhou M, Wang K, Wang H, Wang Y. Oxidative stress and antioxidant mechanisms of obligate anaerobes involved in biological waste treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156454. [PMID: 35667421 DOI: 10.1016/j.scitotenv.2022.156454] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In-depth understanding of the molecular mechanisms and physiological consequences of oxidative stress is still limited for anaerobes. Anaerobic biotechnology has become widely accepted by the wastewater/sludge industry as a better alternative to more conventional but costly aerobic processes. However, the functional anaerobic microorganisms used in anaerobic biotechnology are frequently hampered by reactive oxygen/nitrogen species (ROS/RNS)-mediated oxidative stress caused by exposure to stressful factors (e.g., oxygen and heavy metals), which negatively impact treatment performance. Thus, identifying stressful factors and understanding antioxidative defense mechanisms of functional obligate anaerobes are crucial for the optimization of anaerobic bioprocesses. Herein, we present a comprehensive overview of oxidative stress and antioxidant mechanisms of obligate anaerobes involved in anaerobic bioprocesses; as examples, we focus on anaerobic ammonium oxidation bacteria and methanogenic archaea. We summarize the primary stress factors in anaerobic bioprocesses and the cellular antioxidant defense systems of functional anaerobes, a consortia of enzymatic and nonenzymatic mechanisms. The dual role of ROS/RNS in cellular processes is elaborated; at low concentrations, they have vital cell signaling functions, but at high concentrations, they cause oxidative damage. Finally, we highlight gaps in knowledge and future work to uncover antioxidant and damage repair mechanisms in obligate anaerobes. This review provides in-depth insights and guidance for future research on oxidative stress of obligate anaerobes to boost the accurate regulation of anaerobic bioprocesses in challenging and changing operating conditions.
Collapse
Affiliation(s)
- Jia Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Kaichong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| |
Collapse
|
104
|
Zhang J, Sundfør EB, Klokkerengen R, Gonzalez SV, Mota VC, Lazado CC, Asimakopoulos AG. Determination of the Oxidative Stress Biomarkers of 8-Hydroxydeoxyguanosine and Dityrosine in the Gills, Skin, Dorsal Fin, and Liver Tissue of Atlantic Salmon ( Salmo salar) Parr. TOXICS 2022; 10:509. [PMID: 36136474 PMCID: PMC9503732 DOI: 10.3390/toxics10090509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Oxidative stress is a condition caused by an imbalance in the occurrence of reactive oxygen species in the cells and tissues of organisms. An ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed for the simultaneous determination of two oxidative stress biomarkers, 8-hydroxydeoxyguanosine (8OHDG) and dityrosine (DIY), in the gills, skin, dorsal fin, and liver tissue of Atlantic salmon (Salmo salar) parr. The use of target analyte-specific 13C and 15N internal standards allowed quantification of each target analyte to be performed through the standard solvent calibration curve. The relative recoveries [mean ± (relative standard deviation%)] of 8OHDG and DIY were 101 ± 11 and 104 ± 13% at a fortified concentration of 10 ng/mL (8OHDG) and 500 ng/mL (DIY), respectively, ensuring the accuracy of the extraction and quantification. The chromatographic separation was carried out using a gradient elution program with a total run time of 5 min. The limits of detection (LODs) were 0.11 and 1.37 ng/g wet weight (w.w.) for 8OHDG and DIY, respectively. To demonstrate the applicability of the developed method, it was applied in 907 tissue samples that were collected from Atlantic salmon parr individuals reared in an experimental land-based recirculating aquaculture system (RAS) treated with peracetic acid. Moreover, the possibility of using the dorsal fin as an alternative matrix for the minimally invasive assessment of oxidative stress in Atlantic salmon parr was introduced. To our knowledge, 8OHDG and DIY were used for the first time as biomarkers for biomonitoring the fish health (oxidative stress) of Atlantic salmon parr in RAS.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Eivind B. Sundfør
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Rolf Klokkerengen
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Susana V. Gonzalez
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| | - Vasco C. Mota
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, 9019 Tromsø, Norway
| | - Carlo C. Lazado
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, 1433 Ås, Norway
| | - Alexandros G. Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology, Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
105
|
Shahid M, Al-Khattaf FS, Danish M, Zeyad MT, Atef Hatamleh A, Mohamed A, Ali S. PGPR Kosakonia Radicincitans KR-17 Increases the Salt Tolerance of Radish by Regulating Ion-Homeostasis, Photosynthetic Molecules, Redox Potential, and Stressor Metabolites. FRONTIERS IN PLANT SCIENCE 2022; 13:919696. [PMID: 35979076 PMCID: PMC9376370 DOI: 10.3389/fpls.2022.919696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/10/2022] [Indexed: 05/10/2023]
Abstract
Among abiotic stresses, salinity is a significant limiting factor affecting agricultural productivity, survival, and production, resulting in significant economic losses. Considering the salinity problem, the goal of this study was to identify a halotolerant beneficial soil bacterium to circumvent salinity-induced phytotoxicity. Here, strain KR-17 (having an irregular margin; a mucoid colony; Gm-ve short rod; optimum temperature, 30°C; pH 7.0; no any pigmentation; showed a positive response to citrate utilization, catalase, starch, sucrose, lactose, and dextrose, etc.) recovered from rhizosphere soils of the potato-cultivating field, tolerated surprisingly a high (18% NaCl; 3.-M concentration) level of salt and identified as Kosakonia radicincitans (Accession No. OM348535). This strain was discovered to be metabolically active, synthesized essential PGP bioactive molecules like indole-3-acetic acid (IAA), siderophore (iron-chelating compounds), ACC deaminase, and ammonia, the quantity of which, however, increased with increasing NaCl concentrations. Here, Raphanus sativus L. (radish) was taken as a model crop to evaluate the adverse impact of NaCl, as well as salinity alleviation by halotolerant K. radicincitans. Salinity-induced toxicity to R. sativus was increased in a dose-dependent way, as observed both in vitro and in vivo conditions. Maximum NaCl levels (15%) demonstrated more extreme harm and considerably reduced the plant's biological features. However, membrane damage, relative leaf water content (RLWC), stressor metabolites, and antioxidant enzymes were increased as NaCl concentration increased. In contrast, halotolerant K. radicincitans KR-17 relieved salinity stress and enhanced the overall performance of R. sativus (L.) by increasing germination efficiency, dry biomass, and leaf pigments even in salt-challenged conditions. Additionally, KR-17 inoculation significantly (p ≤ 0.05) improved plant mineral nutrients (Na, K, Ca, Mg, Zn, Fe, Cu, P, and N). Following inoculation, strain KR-17 enhanced the protein, carbohydrates, root pigments, amino acids (AsA and Lys), lipids, and root alkaloids in R. sativus (L.). Besides these, due to PGPR seed priming in NaCl-stressed/non-stressed conditions, membrane damage, RLWC, stressor metabolites, and antioxidant defense enzymes were dramatically reduced. The strong biofilm-forming capacity of K. radicincitans could result in both in vitro and in vivo colonization under NaCl stress. Conclusively, halotolerant K. radicincitans KR-17 may probably be investigated affordably as the greatest way to increase the production of radish under salinity-stressed soils.
Collapse
Affiliation(s)
- Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Fatimah S. Al-Khattaf
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Danish
- Section of Plant Pathology and Nematology, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | | | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
106
|
Zhao XL, Li P, Qu C, Lu R, Li ZH. Phytotoxicity of environmental norfloxacin concentrations on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, photosynthetic toxicity and biochemical traits. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109365. [PMID: 35525467 DOI: 10.1016/j.cbpc.2022.109365] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 01/12/2023]
Abstract
As an emerging pollutant, the increasing use of antibiotics in wastewater posed a serious threat to non-target organisms in the environment. Duckweed (Spirodela polyrrhiza) is a common higher aquatic plant broadly used in phytotoxicity tests for xenobiotic substances. The aim of this study was to evaluate the chronic toxicity of norfloxacin (NOR) on Spirodela polyrrhiza during 18 days of exposure. Our study investigated the addition of NOR into the medium with environment-related concentrations (0, 0.1, 10, and 1000 μg L-1). Subsequently, biomarkers of toxicity such as growth, pigment, chlorophyll fluorescence parameters, indicators of oxidative stress, and osmotic regulatory substances content were analyzed in duckweed. In response to NOR exposure, obvious chlorosis, declines in growth and photosynthetic pigment, and photosystem II inhibition were noted in a concentration dependent manner. Reactive oxygen species (ROS) and antioxidant activity content increased in the treated fronds, which indicated that oxidative stress was specifically affected by NOR exposure. A slight increase in osmotic regulatory substances in NOR treated setups than in the control represented the increasing stress resistance. These results suggest NOR exerts its toxic effects on the aquatic plant Spirodela polyrrhiza.
Collapse
Affiliation(s)
- Xue-Li Zhao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Chunfeng Qu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Rong Lu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
107
|
Koza NA, Adedayo AA, Babalola OO, Kappo AP. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms 2022; 10:1528. [PMID: 36013946 PMCID: PMC9415082 DOI: 10.3390/microorganisms10081528] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Crops aimed at feeding an exponentially growing population are often exposed to a variety of harsh environmental factors. Although plants have evolved ways of adjusting their metabolism and some have also been engineered to tolerate stressful environments, there is still a shortage of food supply. An alternative approach is to explore the possibility of using rhizosphere microorganisms in the mitigation of abiotic stress and hopefully improve food production. Several studies have shown that rhizobacteria and mycorrhizae organisms can help improve stress tolerance by enhancing plant growth; stimulating the production of phytohormones, siderophores, and solubilizing phosphates; lowering ethylene levels; and upregulating the expression of dehydration response and antioxidant genes. This article shows the secretion of secondary metabolites as an additional mechanism employed by microorganisms against abiotic stress. The understanding of these mechanisms will help improve the efficacy of plant-growth-promoting microorganisms.
Collapse
Affiliation(s)
- Ntombikhona Appear Koza
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa
| | - Afeez Adesina Adedayo
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Science, North-West University, Mmabatho 2735, South Africa
| | - Abidemi Paul Kappo
- Molecular Biophysics and Structural Biology Group, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
108
|
Lima AF, Bernal J, Venâncio MGS, de Souza BHS, Carvalho GA. Comparative Tolerance Levels of Maize Landraces and a Hybrid to Natural Infestation of Fall Armyworm. INSECTS 2022; 13:insects13070651. [PMID: 35886827 PMCID: PMC9316814 DOI: 10.3390/insects13070651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/16/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Exploiting the tolerance of plants against herbivorous insects is a viable pest management alternative, especially where conventional controls are ineffective. For example, due to the inefficacy of currently adopted practices, new strategies and methods are needed for Spodoptera frugiperda management in maize. This study evaluated the tolerance levels of maize landraces and a conventional hybrid under natural infestation of S. frugiperda. We found promising sources of tolerance among the landraces, evident as tolerance indices that varied across the landraces and hybrid we evaluated. Abstract Insect pests such as Spodoptera frugiperda cause significant losses to maize (Zea mays mays). Control of S. frugiperda is difficult, but the use of insect resistant cultivars, including tolerant cultivars, is a promising alternative, and landraces are a potential source of insect resistance. This study investigated tolerance to S. frugiperda in five Brazilian landraces, Amarelão, Aztequinha, Branco Antigo, Palha Roxa, and São Pedro, in relation to one conventional (non-Bt) hybrid, BM207, under field conditions. We assessed tolerance as the ratio of insecticide-free to insecticide-protected plants for plant height, stem diameter, and leaf chlorophyll content at two plant stages. Tolerance ratios varied across the maize genotypes, but inconsistently across plant variables, and cluster analysis revealed three groups based on tolerance ratios. A first group contained genotypes similarly tolerant to S. frugiperda, BM207, Palha Roxa, São Pedro, and Aztequinha, while the second and third groups each contained single genotypes, Amarelão, and Branco Antigo, which were considered not tolerant. Overall, the landraces Palha Roxa, São Pedro, and Aztequinha compared favorably to BM207 in terms of tolerance, and therefore may be valuable for management of this pest, and as germplasm sources to improve tolerance in other cultivars.
Collapse
Affiliation(s)
- Andreísa Fabri Lima
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
| | - Julio Bernal
- Department of Entomology, Texas A&M University, College Station, TX 77840, USA
- Correspondence: (J.B.); (B.H.S.d.S.)
| | - Maria Gabriela Silva Venâncio
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
| | - Bruno Henrique Sardinha de Souza
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
- Correspondence: (J.B.); (B.H.S.d.S.)
| | - Geraldo Andrade Carvalho
- Department of Entomology, Lavras Federal University (UFLA), Lavras 37200-900, MG, Brazil; (A.F.L.); (M.G.S.V.); (G.A.C.)
| |
Collapse
|
109
|
Olechowska E, Słomnicka R, Kaźmińska K, Olczak-Woltman H, Bartoszewski G. The genetic basis of cold tolerance in cucumber (Cucumis sativus L.)-the latest developments and perspectives. J Appl Genet 2022; 63:597-608. [PMID: 35838983 DOI: 10.1007/s13353-022-00710-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/18/2022] [Accepted: 06/28/2022] [Indexed: 10/17/2022]
Abstract
Cold stress is one of the main causes of yield losses in plant production in temperate climate areas. Cold stress slows down and even stops plant growth and development and causes injuries that may result in the plant's death. Cucumber (Cucumis sativus L.), an economically important vegetable, is sensitive to low temperatures, thus improving cold tolerance in cucumber would benefit cucumber producers, particularly those farming in temperate climates and higher altitude areas. So far, single cucumber accessions showing different degrees of cold tolerance have been identified, and genetic studies have revealed biparentally and maternally inherited genetic factors responsible for chilling tolerance. Paternally transmitted chilling tolerance has also been suggested. Quantitative trait loci (QTL) associated with seed germination ability at low temperature and seedling recovery from chilling have been described. Several transgenic attempts have been made to improve cold tolerance in cucumber. Despite numerous studies, the molecular mechanisms of cold tolerance in cucumber have still not been sufficiently elucidated. In this review, we summarise the results of research focused on understanding the genetic basis of cold tolerance in cucumber and their implications for cucumber breeding.
Collapse
Affiliation(s)
- Emilia Olechowska
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, Poland
| | - Renata Słomnicka
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, Poland
| | - Karolina Kaźmińska
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, Poland
| | - Helena Olczak-Woltman
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, Poland
| | - Grzegorz Bartoszewski
- Department of Plant Genetics Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw, Poland.
| |
Collapse
|
110
|
Deng Y, Qian X, Wu Y, Ma T, Xu X, Li J, Wang G, Yan Y. Effects of ciprofloxacin on Eichhornia crassipes phytoremediation performance and physiology under hydroponic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47363-47372. [PMID: 35179691 DOI: 10.1007/s11356-022-19008-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Antibiotics can be absorbed by aquatic plants, but they seriously affect the health of aquatic plants and threaten the steady state of aquatic ecosystem. The phytoremediation performance and physiology of floating macrophyte (Eichhornia crassipes) under antibiotic ciprofloxacin (CIP) hydroponic conditions were investigated. It was found that CIP absorption of E. crassipes was up to 84.38% and the root was the main absorption tissue. Hydrolysis and microbial degradation were the second removal pathway of CIP followed the plant absorption. After 7 days of CIP exposure, the photosynthesis efficiency of E. crassipes remained stable, and the presence of CIP did not inhibit the growth of the plant. On the 14th day, the superoxide dismutase and catalase activities were increased in response to the CIP stress. However, the tender leaves of E. crassipes turned white and shrivel, attributed to a decrease in chlorophyll content and chlorophyll fluorescence parameters after 21 days of CIP exposure. These findings will have significant implications for E. crassipes to absorb CIP on a limited time-scale and provide a phytoremediation technology for antibiotics in water.
Collapse
Affiliation(s)
- Yang Deng
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Xiyi Qian
- School of Geographical Sciences, Nantong University, Nantong, 226019, China
| | - Yiting Wu
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Tian Ma
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Xiaoguang Xu
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China
| | - Jiayi Li
- College of Zhong Bei, Nanjing Normal University, Zhenjiang, 210046, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, 1, Wenyuan Road, Xianlin University District, Nanjing, 210023, China.
| | - Yan Yan
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China.
| |
Collapse
|
111
|
Light Intensity- and Spectrum-Dependent Redox Regulation of Plant Metabolism. Antioxidants (Basel) 2022; 11:antiox11071311. [PMID: 35883801 PMCID: PMC9312225 DOI: 10.3390/antiox11071311] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Both light intensity and spectrum (280–800 nm) affect photosynthesis and, consequently, the formation of reactive oxygen species (ROS) during photosynthetic electron transport. ROS, together with antioxidants, determine the redox environment in tissues and cells, which in turn has a major role in the adjustment of metabolism to changes in environmental conditions. This process is very important since there are great spatial (latitude, altitude) and temporal (daily, seasonal) changes in light conditions which are accompanied by fluctuations in temperature, water supply, and biotic stresses. The blue and red spectral regimens are decisive in the regulation of metabolism because of the absorption maximums of chlorophylls and the sensitivity of photoreceptors. Based on recent publications, photoreceptor-controlled transcription factors such as ELONGATED HYPOCOTYL5 (HY5) and changes in the cellular redox environment may have a major role in the coordinated fine-tuning of metabolic processes during changes in light conditions. This review gives an overview of the current knowledge of the light-associated redox control of basic metabolic pathways (carbon, nitrogen, amino acid, sulphur, lipid, and nucleic acid metabolism), secondary metabolism (terpenoids, flavonoids, and alkaloids), and related molecular mechanisms. Light condition-related reprogramming of metabolism is the basis for proper growth and development of plants; therefore, its better understanding can contribute to more efficient crop production in the future.
Collapse
|
112
|
Alharbi K, Al-Osaimi AA, Alghamdi BA. Sodium Chloride (NaCl)-Induced Physiological Alteration and Oxidative Stress Generation in Pisum sativum (L.): A Toxicity Assessment. ACS OMEGA 2022; 7:20819-20832. [PMID: 35755363 PMCID: PMC9219073 DOI: 10.1021/acsomega.2c01427] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Salinity stress has a deleterious impact on plant development, morphology, physiology, and biochemical characteristics. Considering the NaCl-induced phytotoxicity, current investigation was done to better understand the salt-tolerant mechanisms using Pisum sativum L. (pea) as a model crop. Generally, NaCl resulted in a progressive decrease in germinative attributes and physiological and biochemical parameters of P. sativum (L.). The 400 mM NaCl level had a higher detrimental effect and reduced the germination rate, plumule, radicle length, and seedling vigor index (SVI) by 78, 89, 84, and 77%, respectively, under in vitro. Furthermore, after 400 mM NaCl exposure, physiological and enzymatic profiles like root dry biomass (71%) chl-a (66%), chl-b (54%), total chlorophyll (45%), and nitrate reductase activity (NRA) (59%) of peas were decreased. In addition, a NaCl dose-related increase in soluble protein (SP) and sugar (SS), Na+ and K+ ions, and stressor metabolites was recorded. For instance, at 400 mM NaCl, SP, SS, Na+ ion, K+ ion, root proline, and malondialdehyde (MDA) contents were significantly and maximally elevated by 65, 33, 84, 79, 85, and 89%, respectively, compared to the control (0 mM NaCl). Data analysis indicated that greater doses of pesticides dramatically increased reactive oxygen species (ROS) levels and induced membrane damage through production of thiobarbituric acid reactive substances (TBARS), as well as increased cell injury. To deal with NaCl-induced oxidative stress, plants subjected to higher salinity stress showed a considerable build-up in antioxidant levels. As an example, ascorbate peroxidase (APX), catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) were maximally and significantly (p ≤ 0.05) increased by 68, 80, 74, and 58%, respectively, after 400 mM NaCl exposure. The propidium iodide (PI)-stained and NaCl-treated plant roots corroborated the damaging effect of salinity-induced stress on the cell membrane, which was observed under a confocal laser microscope (CLSM). The cells exposed to 400 mM NaCl had maximum fluorescence intensity, indicating that higher level of salts can cause pronounced cell damage and reactive oxygen species (ROS) generation. The increases in superoxide ion (O2 -) and hydrogen peroxide (H2O2) content in NaCl-treated plant tissues indicated the elevation of ROS with increasing salt levels. This finding revealed that salt stress can cause toxicity in plants by causing alteration in metabolic activity, oxidative injury, and damage to cell membrane integrity.
Collapse
Affiliation(s)
- Khadiga Alharbi
- Department
of Biology, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Areej Ahmed Al-Osaimi
- Department
of Biology, College of Science, Imam Abdulrahman
Bin Faisal University, Dammam 34212, Saudi Arabia
| | - Budour A. Alghamdi
- Genome
Department, Ministry of Environment, Water
and Agriculture, Riyadh 11564, Saudi Arabia
| |
Collapse
|
113
|
Cutler GC, Amichot M, Benelli G, Guedes RNC, Qu Y, Rix RR, Ullah F, Desneux N. Hormesis and insects: Effects and interactions in agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153899. [PMID: 35181361 DOI: 10.1016/j.scitotenv.2022.153899] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Insects in agroecosystems contend with many stressors - e.g., chemicals, heat, nutrient deprivation - that are often encountered at low levels. Exposure to mild stress is now well known to induce hormetic (stimulatory) effects in insects, with implications for insect management, and ecological structure and function in agroecosystems. In this review, we examine the major ecological niches insects occupy or guilds to which they belong in agroecosystems and how hormesis can manifest within and across these groups. The mechanistic underpinnings of hormesis in insects are starting to become established, explaining the many phenotypic hormetic responses observed in insect reproduction, development, and behavior. Whereas potential effects on insect populations are well supported in laboratory experiments, field-based hypothesis-driven research on hormesis is greatly lacking. Furthermore, because most ecological paradigms are founded within the context of communities, entomological agroecologists interested in hormesis need to 'level up' and test hypotheses that explore effects on species interactions, and community structure and functioning. Embedded in this charge is to continue experimentation on herbivorous pest species while shifting more focus towards insect natural enemies, pollinators, and detritivores - guilds that play crucial roles in highly functioning agroecosystems that have been understudied in hormesis research. Important areas for future insect agroecology research on hormesis are discussed.
Collapse
Affiliation(s)
- G Christopher Cutler
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Marcel Amichot
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil.
| | - Yanyan Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China.
| | - Rachel R Rix
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, PO Box 550, Truro, NS B2N 5E3, Canada.
| | - Farman Ullah
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing 100193, China.
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000 Nice, France.
| |
Collapse
|
114
|
Chen Z, Sun H, Hu T, Wang Z, Wu W, Liang Y, Guo Y. Sunflower resistance against Sclerotinia sclerotiorum is potentiated by selenium through regulation of redox homeostasis and hormones signaling pathways. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38097-38109. [PMID: 35067873 DOI: 10.1007/s11356-021-18125-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
White mold of sunflower caused by Sclerotinia sclerotiorum is a devastating disease that causes serious yield losses. Selenium (Se) helps plants resist stress. In this study, the resistance of sunflower to S. sclerotiorum was improved after foliar application of selenite. Selenite sprayed on leaves can be absorbed by sunflowers and transformed to selenomethionine. Consequently, sunflowers treated with Se exhibited a delay in lesion development with decrease by 54% compared to mock inoculation at 36-h post inoculation (hpi). In addition, treatment with Se compromised the adverse effects caused by S. sclerotiorum infection by balancing the regulation of genes involved in redox homeostasis. In particular, cat expression on leaves treated with Se increased to 2.5-fold to alleviate the downregulation caused by S. sclerotiorum infection at 12 hpi. Additionally, apx expression on leaves treated with Se decreased by 36% to alleviate the upregulation caused by S. sclerotiorum infection at 24 hpi, whereas expressions of gpx, pox, and nox on leaves treated with Se also successively decreased by approximately 40-60% to alleviate the upregulation caused by S. sclerotiorum infection at 24 and 36 hpi, respectively. The use of Se also enhanced the regulation of genes involved in hormones signaling pathways, in which expressions of AOC and PAL increased to 2.0- and 1.5-fold, respectively, to enhance the upregulation caused by S. sclerotiorum infection at 12 hpi, whereas expressions of AOC and PDF1.2 increased to 2.7- and 1.8-fold at 24 hpi, respectively. In addition, EIN2 expression on leaves treated with Se increased to 1.8-, 2.0-, and 1.5-fold to alleviate the downregulation caused by S. sclerotiorum infection. These results suggest that Se can improve sunflower defense responses against S. sclerotiorum infection aiming a sustainable white mold management.
Collapse
Affiliation(s)
- Zhiying Chen
- College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Huiying Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ting Hu
- College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Zehao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenliang Wu
- College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China
| | - Yue Liang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanbin Guo
- College of Resources and Environmental Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, 100193, Beijing, China.
| |
Collapse
|
115
|
Akbudak MA, Filiz E, Çetin D. Genome-wide identification and characterization of high-affinity nitrate transporter 2 (NRT2) gene family in tomato (Solanum lycopersicum) and their transcriptional responses to drought and salinity stresses. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153684. [PMID: 35349936 DOI: 10.1016/j.jplph.2022.153684] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The high-affinity nitrate transporter 2 (NRT2) proteins play vital roles in both nitrate (NO3-) uptake and translocation in plants. Although the gene families coding the NRT2 proteins have been identified and functionally characterized in many plant species, the systematic identification of NRT2 gene family members has not previously been reported in tomato (Solanum lycopersicum). Moreover, little is known about their expression profiles in response to different environmental stresses. The present study sought to identify the NRT2 gene family members within the tomato genome, and then to characterize them in detail by means of bioinformatics, physiological and expression analyses. Four novel NRT2 genes were identified in the tomato genome, all of which contained the same domain belonging to the major facilitator superfamily (PF07690). The co-expression network of the SlNRT2 genes revealed that they were co-expressed with several other genes in a number of different molecular pathways, including the transport, photosynthesis, fatty acid metabolism and amino acid catabolism pathways. Several phosphorylation sites were predicted in the NRT2 proteins. The SlNRT2 genes interact with many other genes that perform various functions in many crucial pathways within the tomato genome. The sequence variations observed at the gene and protein levels indicate the dynamic regulation of the SlNRT2 gene family members in relation to cell metabolism, particularly with regard to the nitrogen assimilation pathway. The responses of the SlNRT2 genes to drought and salinity stresses are diverse, and they are neither stress- nor tissue-specific. The findings of this study should provide a useful scientific basis for future studies concerning the roles of the NRT2 gene family in plants.
Collapse
Affiliation(s)
- M Aydın Akbudak
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey.
| | - Ertugrul Filiz
- Duzce University, Department of Crop and Animal Production, Cilimli Vocational School, 81750, Cilimli, Duzce, Turkey.
| | - Durmuş Çetin
- Akdeniz University, Department of Agricultural Biotechnology, Antalya, Turkey
| |
Collapse
|
116
|
Secondary Metabolism Rearrangements in Linum usitatissimum L. after Biostimulation of Roots with COS Oligosaccharides from Fungal Cell Wall. Molecules 2022; 27:molecules27072372. [PMID: 35408773 PMCID: PMC9000297 DOI: 10.3390/molecules27072372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/27/2022] [Accepted: 03/30/2022] [Indexed: 12/03/2022] Open
Abstract
In vitro culture of flax (Linum usitatissimum L.) was exposed to chitosan oligosaccharides (COS) in order to investigate the effects on the growth and secondary metabolites content in roots and shoots. COS are fragments of chitosan released from the fungal cell wall during plant–pathogen interactions. They can be perceived by the plant as pathogen-associated signals, mediating local and systemic innate immune responses. In the present study, we report a novel COS oligosaccharide fraction with a degree of polymerization (DP) range of 2–10, which was produced from fungal chitosan by a thermal degradation method and purified by an alcohol-precipitation process. COS was dissolved in hydroponic medium at two different concentrations (250 and 500 mg/L) and applied to the roots of growing flax seedlings. Our observations indicated that the growth of roots and shoots decreased markedly in COS-treated flax seedlings compared to the control. In addition, the results of a metabolomics analysis showed that COS treatment induced the accumulation of (neo)lignans locally at roots, flavones luteolin C-glycosides, and chlorogenic acid in systemic responses in the shoots of flax seedlings. These phenolic compounds have been previously reported to exhibit a strong antioxidant and antimicrobial activities. COS oligosaccharides, under the conditions applied in this study (high dose treatment with a much longer exposure time), can be used to indirectly trigger metabolic response modifications in planta, especially secondary metabolism, because during fungal pathogen attack, COS oligosaccharides are among the signals exchanged between the pathogen and host plant.
Collapse
|
117
|
Abstract
The non-essential metalloid arsenic (As) is widely distributed in soil and underground water of many countries. Arsenic contamination is a concern because it creates threat to food security in terms of crop productivity and food safety. Plants exposed to As show morpho-physiological, growth and developmental disorder which altogether result in loss of productivity. At physiological level, As-induced altered biochemistry in chloroplast, mitochondria, peroxisome, endoplasmic reticulum, cell wall, plasma membrane causes reactive oxygen species (ROS) overgeneration which damage cell through disintegrating the structure of lipids, proteins, and DNA. Therefore, plants tolerance to ROS-induced oxidative stress is a vital strategy for enhancing As tolerance in plants. Plants having enhanced antioxidant defense system show greater tolerance to As toxicity. Depending upon plant diversity (As hyperaccumulator/non-hyperaccumulator or As tolerant/susceptible) the mechanisms of As accumulation, absorption or toxicity response may differ. There can be various crop management practices such as exogenous application of nutrients, hormones, antioxidants, osmolytes, signaling molecules, different chelating agents, microbial inoculants, organic amendments etc. can be effective against As toxicity in plants. There is information gap in understanding the mechanism of As-induced response (damage or tolerance response) in plants. This review presents the mechanism of As uptake and accumulation in plants, physiological responses under As stress, As-induced ROS generation and antioxidant defense system response, various approaches for enhancing As tolerance in plants from the available literatures which will make understanding the to date knowledge, knowledge gap and future guideline to be worked out for the development of As tolerant plant cultivars.
Collapse
|
118
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
119
|
The Stimulation of Superoxide Dismutase Enzyme Activity and Its Relation with the Pyrenophora teres f. teres Infection in Different Barley Genotypes. SUSTAINABILITY 2022. [DOI: 10.3390/su14052597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in superoxide dismutase (SOD) enzyme activity were examined in infected barley seedlings of five cultivars with the goal to study the role of SOD in the defense mechanism induced by Pyrenophora teres f. teres (PTT) infection. Our results showed that although there were differences in the responses of the cultivars, all three PTT isolates (H-618, H-774, H-949) had significantly increased SOD activity in all examined barley varieties at the early stages of the infection. The lowest SOD activity was observed in the case of the most resistant cultivar. Our results did not show a clear connection between seedling resistance of genotypes and SOD enzyme activity; however, we were able to find strong significant correlations between the PTT infection scores on the Tekauz scale and the SOD activity. The measurement of the SOD activity could offer a novel perspective to detect the early stress responses induced by PTT. Our results suggest that the resistance of varieties cannot be estimated based on SOD enzyme activity alone, because many antioxidant enzymes play a role in fine-tuning the defense response, but SOD is an important member of this system.
Collapse
|
120
|
Henderson ED, Hua T, Kiran S, Khamis ZI, Li Y, Sang QXA. Long-Term Effects of Nanoscale Magnetite on Human Forebrain-like Tissue Development in Stem-Cell-Derived Cortical Spheroids. ACS Biomater Sci Eng 2022; 8:801-813. [DOI: 10.1021/acsbiomaterials.1c01487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elizabeth D. Henderson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Timothy Hua
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Sonia Kiran
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Zahraa I. Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Biochemistry, Faculty of Sciences-I, Lebanese University, Beirut, Beirut Central District 109991, Lebanon
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
121
|
Gupta S, Seth CS. Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2651-2664. [PMID: 34924716 PMCID: PMC8639991 DOI: 10.1007/s12298-021-01088-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/24/2021] [Accepted: 10/05/2021] [Indexed: 05/03/2023]
Abstract
Contamination of agricultural soil by chromium (Cr) is a serious menace to environmental safety and global food security. Although potential of salicylic acid (SA) in mitigating heavy metal (HM) toxicity in plants is well recognized, detailed physiological mechanisms behind such beneficial effects under Cr-stress in tomato (Solanum lycopersicum L.) plant are far from being completely unravelled. The present study evaluated the efficacy of exogenously applied SA, in alleviating Cr-mediated alterations on photosynthesis and antioxidant defense in tomato exposed to three different concentrations of Cr(VI) [0, 50, and 100 mg Cr(VI) kg-1 soil]. Exposure of tomato plants to Cr resulted in increased Cr-accumulation and oxidative damage, as signposted by high Cr concentration in root as well as shoot, augmented malondialdehyde (MDA) and superoxides levels, and inhibition in enzymes of ascorbate-glutathione (AsA-GSH) cycle. Furthermore, a significant (P ≤ 0.05) reduction in photosynthetic pigments and gas exchange parameters was also evident in Cr-stressed tomato plants. Findings of the present study showed that exogenous application of 0.5 mM SA not only promoted plant growth subjected to Cr, but also restored Cr-mediated disturbances in plant physiology. A significant (P ≤ 0.05) decrease in Cr acquisition and translocation as evidenced by improved growth and photosynthesis in SA-treated plants was observed. Additionally, exogenous SA application by virtue of its positive effect on efficient antioxidant system ameliorated the Cr-mediated oxidative stress in tomato plants as signposted by lower MDA and superoxide levels and improved AsA-GSH cycle. Overall, current study advocates the potential of exogenous SA application in amelioration of Cr-mediated physiological disturbances in tomato plant.
Collapse
Affiliation(s)
- Samta Gupta
- Department of Botany, University of Delhi, Delhi, 110007 India
| | | |
Collapse
|
122
|
Gao Y, Wang L, Hu X, Zhang Z, Liu B, Zhang X, Wang G. Rapid adaptive responses of rosette-type macrophyte Vallisneria natans juveniles to varying water depths: The role of leaf trait plasticity. Ecol Evol 2021; 11:14268-14281. [PMID: 34707853 PMCID: PMC8525151 DOI: 10.1002/ece3.8142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/01/2022] Open
Abstract
Rosette-type submerged macrophytes are widely distributed across a range of water depths in shallow lakes and play a key role in maintaining ecosystem structures and functions. However, little is known about the rapid adaptive responses of such macrophytes to variations in water depth, especially at the juvenile stage. Here, we conducted a short-term in situ mesocosm experiment, in which the juveniles of Vallisneria natans were exposed to a water depth gradient ranging from 20 to 360 cm. Twenty-two leaf-related traits were examined after 4 weeks of growth in a shallow lake. Most (18) traits of V. natans generally showed high plasticity in relation to water depth. Specifically, juveniles allocated more biomass to leaves and had higher specific leaf area, leaf length-to-width ratio, chlorophyll content, and carotenoids content in deep waters, displaying trait syndrome associated with high resource acquisition. In contrast, V. natans juveniles in shallow waters had higher leaf dry matter content, leaf soluble carbohydrate content, carotenoids per unit chlorophyll, and peroxidase activity, pertaining to resource conservation. Notably, underwater light intensity was found to be the key factor explaining the trait plasticity along the water depth gradient, and 1.30 mol photons m-2 d-1 (at 270 cm) could be the optimal irradiance level based on the total biomass of V. natans juveniles. The present study highlights the significance of leaf trait plasticity for rosette-type macrophytes in response to variations in water depth and sheds new light on the differences between trade-offs in deep- and shallow-water areas.
Collapse
Affiliation(s)
- Yuxuan Gao
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Lei Wang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Xiaoqing Hu
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Zhuolun Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Baogui Liu
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Xinhou Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| | - Guoxiang Wang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation School of Environment Nanjing Normal University Nanjing China
| |
Collapse
|
123
|
Gupta DR, Khanom S, Rohman MM, Hasanuzzaman M, Surovy MZ, Mahmud NU, Islam MR, Shawon AR, Rahman M, Abd-Elsalam KA, Islam T. Hydrogen peroxide detoxifying enzymes show different activity patterns in host and non-host plant interactions with Magnaporthe oryzae Triticum pathotype. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2127-2139. [PMID: 34629783 PMCID: PMC8484409 DOI: 10.1007/s12298-021-01057-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/30/2021] [Accepted: 08/26/2021] [Indexed: 05/06/2023]
Abstract
Wheat blast caused by the hemibiotroph fungal pathogen Magnaporthe oryzae Triticum (MoT) pathotype is a destructive disease of wheat in South America, Bangladesh and Zambia. This study aimed to determine and compare the activities of antioxidant enzymes in susceptible (wheat, maize, barley and swamp rice grass) and resistant (rice) plants when interacting with MoT. The activities of reactive oxygen species-detoxifying enzymes; catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX), glutathione S-transferase (GST), peroxidase (POX) were increased in all plants in response to MoT inoculation with a few exceptions. Interestingly, an early and very high activity of CAT was observed within 24 h after inoculation in wheat, barley, maize and swamp rice grass with lower H2O2 concentration. In contrast, an early and high accumulation of H2O2 was observed in rice at 48 hai with little CAT activity only at a later stage of MoT inoculation. The activities of APX, GST and POD were also high at an early stage of infection in rice. However, these enzymes activities were very high at a later stage in wheat, barley, maize and swamp rice grass. The activity of GPX gradually decreased with the increase of time in rice. Taken together, our results suggest that late and early inductions of most of the antioxidant enzyme activities occurs in susceptible and resistant plants, respectively. This study demonstrates some insights into physiological responses of host and non-host plants when interacting with the devastating wheat blast fungus MoT, which could be useful for developing blast resistant wheat.
Collapse
Affiliation(s)
- Dipali Rani Gupta
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Sanjida Khanom
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Joydebpur, Gazipur, Bangladesh
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Musrat Zahan Surovy
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Nur Uddin Mahmud
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Md. Robyul Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Ashifur Rahman Shawon
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| | - Mahfuzur Rahman
- Agriculture and Natural Resources, Extension Service, West Virginia University, Morgantown, WV 26506 USA
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza, 12619 Egypt
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706 Bangladesh
| |
Collapse
|
124
|
The Impact of Salt Stress on Plant Growth, Mineral Composition, and Antioxidant Activity in Tetragonia decumbens Mill.: An Underutilized Edible Halophyte in South Africa. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7060140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Climate change, expanding soil salinization, and the developing shortages of freshwater have negatively affected crop production around the world. Seawater and salinized lands represent potentially cultivable areas for edible salt-tolerant plants. In the present study, the effect of salinity stress on plant growth, mineral composition (macro-and micro-nutrients), and antioxidant activity in dune spinach (Tetragonia decumbens) were evaluated. The treatments consisted of three salt concentrations, 50, 100, and 200 mM, produced by adding NaCl to the nutrient solution. The control treatment had no NaCl but was sustained and irrigated by the nutrient solution. Results revealed a significant increase in total yield, branch production, and ferric reducing antioxidant power in plants irrigated with nutrient solution incorporated with 50 mM NaCl. Conversely, an increased level of salinity (200 mM) caused a decrease in chlorophyll content (SPAD), while the phenolic content, as well as nitrogen, phosphorus, and sodium, increased. The results of this study indicate that there is potential for brackish water cultivation of dune spinach for consumption, especially in provinces experiencing the adverse effect of drought and salinity, where seawater or underground saline water could be diluted and used as irrigation water in the production of this vegetable.
Collapse
|
125
|
Hu X, Wei X, Ling J, Chen J. Cobalt: An Essential Micronutrient for Plant Growth? FRONTIERS IN PLANT SCIENCE 2021; 12:768523. [PMID: 34868165 PMCID: PMC8635114 DOI: 10.3389/fpls.2021.768523] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/29/2021] [Indexed: 05/19/2023]
Abstract
Cobalt is a transition metal located in the fourth row of the periodic table and is a neighbor of iron and nickel. It has been considered an essential element for prokaryotes, human beings, and other mammals, but its essentiality for plants remains obscure. In this article, we proposed that cobalt (Co) is a potentially essential micronutrient of plants. Co is essential for the growth of many lower plants, such as marine algal species including diatoms, chrysophytes, and dinoflagellates, as well as for higher plants in the family Fabaceae or Leguminosae. The essentiality to leguminous plants is attributed to its role in nitrogen (N) fixation by symbiotic microbes, primarily rhizobia. Co is an integral component of cobalamin or vitamin B12, which is required by several enzymes involved in N2 fixation. In addition to symbiosis, a group of N2 fixing bacteria known as diazotrophs is able to situate in plant tissue as endophytes or closely associated with roots of plants including economically important crops, such as barley, corn, rice, sugarcane, and wheat. Their action in N2 fixation provides crops with the macronutrient of N. Co is a component of several enzymes and proteins, participating in plant metabolism. Plants may exhibit Co deficiency if there is a severe limitation in Co supply. Conversely, Co is toxic to plants at higher concentrations. High levels of Co result in pale-colored leaves, discolored veins, and the loss of leaves and can also cause iron deficiency in plants. It is anticipated that with the advance of omics, Co as a constitute of enzymes and proteins and its specific role in plant metabolism will be exclusively revealed. The confirmation of Co as an essential micronutrient will enrich our understanding of plant mineral nutrition and improve our practice in crop production.
Collapse
Affiliation(s)
- Xiu Hu
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xiangying Wei
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jie Ling
- He Xiangning College of Art and Design, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Jianjun Chen
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL, United States
- *Correspondence: Jianjun Chen
| |
Collapse
|