101
|
Vascular tissue engineering: the next generation. Trends Mol Med 2012; 18:394-404. [DOI: 10.1016/j.molmed.2012.04.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/29/2012] [Accepted: 04/30/2012] [Indexed: 12/19/2022]
|
102
|
Converse GL, Armstrong M, Quinn RW, Buse EE, Cromwell ML, Moriarty SJ, Lofland GK, Hilbert SL, Hopkins RA. Effects of cryopreservation, decellularization and novel extracellular matrix conditioning on the quasi-static and time-dependent properties of the pulmonary valve leaflet. Acta Biomater 2012; 8:2722-9. [PMID: 22484150 DOI: 10.1016/j.actbio.2012.03.047] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 02/28/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
Decellularized allografts offer potential as heart valve substitutes and scaffolds for cell seeding. The effects of decellularization on the quasi-static and time-dependent mechanical behavior of the pulmonary valve leaflet under biaxial loading conditions have not previously been reported in the literature. In the current study, the stress-strain, relaxation and creep behaviors of the ovine pulmonary valve leaflet were investigated under planar-biaxial loading conditions to determine the effects of decellularization and a novel post-decellularization extracellular matrix (ECM) conditioning process. As expected, decellularization resulted in increased stretch along the loading axes. A reduction in relaxation was observed following decellularization. This was accompanied by a reduction in glycosaminoglycan (GAG) content. Based on previous implant studies, these changes may be of little functional consequence in the short term; however, the long term effects of decreased relaxation and GAG content remain unknown. Some restoration of relaxation was observed following ECM conditioning, especially in the circumferential specimen direction, which may help mitigate any detrimental effects due to decellularization. Regardless of processing, creep under biaxial loading was negligible.
Collapse
Affiliation(s)
- Gabriel L Converse
- Cardiac Surgery Research Laboratories of the Ward Family Center for Congenital Heart Disease, Children's Mercy Hospital and Clinics, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Simionescu DT, Chen J, Jaeggli M, Wang B, Liao J. Form Follows Function: Advances in Trilayered Structure Replication for Aortic Heart Valve Tissue Engineering. JOURNAL OF HEALTHCARE ENGINEERING 2012; 3:179-202. [PMID: 23355946 DOI: 10.1260/2040-2295.3.2.179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tissue engineering the aortic heart valve is a challenging endeavor because of the particular hemodynamic and biologic conditions present in the native aortic heart valve. The backbone of an ideal valve substitute should be a scaffold that is strong enough to withstand billions of repetitive bending, flexing and stretching cycles, while also being slowly degradable to allow for remodeling. In this review we highlight three overlooked aspects that might influence the long term durability of tissue engineered valves: replication of the native valve trilayered histoarchitecture, duplication of the three-dimensional shape of the valve and cell integration efforts focused on getting the right number and type of cells to the right place within the valve structure and driving them towards homeostatic maintenance of the valve matrix. We propose that the trilayered structure in the native aortic valve that includes a middle spongiosa layer cushioning the motions of the two external fibrous layers should be our template for creation of novel scaffolds with improved mechanical durability. Furthermore, since cells adapt to micro-loads within the valve structure, we believe that interstitial cell remodeling of the valvular matrix will depend on the accurate replication of the structures and loads, resulting in successful regeneration of the valve tissue and extended durability.
Collapse
Affiliation(s)
- Dan T Simionescu
- Biocompatibility and Tissue Regeneration Laboratory, Department of Bioengineering, Clemson University, Clemson, SC 29634
| | | | | | | | | |
Collapse
|
104
|
Dijkman PE, Driessen-Mol A, Frese L, Hoerstrup SP, Baaijens FPT. Decellularized homologous tissue-engineered heart valves as off-the-shelf alternatives to xeno- and homografts. Biomaterials 2012; 33:4545-54. [PMID: 22465337 DOI: 10.1016/j.biomaterials.2012.03.015] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 03/04/2012] [Indexed: 01/14/2023]
Abstract
Decellularized xenogenic or allogenic heart valves have been used as starter matrix for tissue-engineering of valve replacements with (pre-)clinical promising results. However, xenografts are associated with the risk of immunogenic reactions or disease transmission and availability of homografts is limited. Alternatively, biodegradable synthetic materials have been used to successfully create tissue-engineered heart valves (TEHV). However, such TEHV are associated with substantial technological and logistical complexity and have not yet entered clinical use. Here, decellularized TEHV, based on biodegradable synthetic materials and homologous cells, are introduced as an alternative starter matrix for guided tissue regeneration. Decellularization of TEHV did not alter the collagen structure or tissue strength and favored valve performance when compared to their cell-populated counterparts. Storage of the decellularized TEHV up to 18 months did not alter valve tissue properties. Reseeding the decellularized valves with mesenchymal stem cells was demonstrated feasible with minimal damage to the reseeded valve when trans-apical valve delivery was simulated. In conclusion, decellularization of in-vitro grown TEHV provides largely available off-the-shelf homologous scaffolds suitable for reseeding with autologous cells and trans-apical valve delivery.
Collapse
Affiliation(s)
- Petra E Dijkman
- Department of Biomedical Engineering, Eindhoven University of Technology, GEM-Z 4.110, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | | | | | | | | |
Collapse
|
105
|
The adhering junctions of valvular interstitial cells: molecular composition in fetal and adult hearts and the comings and goings of plakophilin-2 in situ, in cell culture and upon re-association with scaffolds. Cell Tissue Res 2012; 348:295-307. [DOI: 10.1007/s00441-011-1315-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/20/2011] [Indexed: 10/14/2022]
|
106
|
Fioretta ES, Fledderus JO, Burakowska-Meise EA, Baaijens FPT, Verhaar MC, Bouten CVC. Polymer-based Scaffold Designs For In Situ Vascular Tissue Engineering: Controlling Recruitment and Differentiation Behavior of Endothelial Colony Forming Cells. Macromol Biosci 2012; 12:577-90. [DOI: 10.1002/mabi.201100315] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 10/08/2011] [Indexed: 01/22/2023]
|
107
|
The Intrinsic Fatigue Mechanism of the Porcine Aortic Valve Extracellular Matrix. Cardiovasc Eng Technol 2012. [DOI: 10.1007/s13239-011-0080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
108
|
Abstract
Applications of regenerative medicine technology may offer novel therapies for patients with injuries, end-stage organ failure, or other clinical problems. Currently, patients suffering from diseased and injured organs can be treated with transplanted organs. However, there is a severe shortage of donor organs that is worsening yearly as the population ages and new cases of organ failure increase. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. The stem cell field is also advancing rapidly, opening new avenues for this type of therapy. For example, therapeutic cloning and cellular reprogramming may one day provide a potentially limitless source of cells for tissue engineering applications. While stem cells are still in the research phase, some therapies arising from tissue engineering endeavors have already entered the clinical setting successfully, indicating the promise regenerative medicine holds for the future.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
109
|
Albanna MZ, Bou-Akl TH, Walters HL, Matthew HW. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. J Mech Behav Biomed Mater 2012; 5:171-80. [DOI: 10.1016/j.jmbbm.2011.08.021] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 08/23/2011] [Accepted: 08/25/2011] [Indexed: 11/29/2022]
|
110
|
Alavi SH, Kheradvar A. Metal mesh scaffold for tissue engineering of membranes. Tissue Eng Part C Methods 2011; 18:293-301. [PMID: 22070743 DOI: 10.1089/ten.tec.2011.0531] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Engineering of the membrane-like tissue structures to be utilized in highly dynamic loading environments such as the cardiovascular system has been a challenge in the past decade. Scaffolds are critical components of the engineered tissue membranes and allow them being formed in vitro and remain secure in vivo when implanted in the body. Several approaches have been taken to develop scaffolds for tissue membranes. However, all methods entail limitations due to structural vulnerability, short-term functionality, and mechanical properties of the resulted membrane constructs. To overcome these issues, we have developed a novel hybrid scaffold made of an extra thin layer of metal mesh tightly enclosed by biological matrix components. This approach retains all the advantages of using biological scaffolds while developing a strong extracellular matrix that can stand various types of loads after implantation inside the body.
Collapse
Affiliation(s)
- S Hamed Alavi
- The Edwards Lifesciences Center for Advanced Cardiovascular Technology, Department Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
111
|
MORSI YOSS, WONG CYNTHIAS. CURRENT DEVELOPMENTS AND FUTURE CHALLENGES FOR THE CREATION OF AORTIC HEART VALVE. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519408002528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The concept of tissue-engineered heart valves offers an alternative to current heart valve replacements that is capable of addressing shortcomings such as life-long administration of anticoagulants, inadequate durability, and inability to grow. Since tissue engineering is a multifaceted area, studies conducted have focused on different aspects such as hemodynamics, cellular interactions and mechanisms, scaffold designs, and mechanical characteristics in the form of both in vitro and in vivo investigations. This review concentrates on the advancements of scaffold materials and manufacturing processes, and on cell–scaffold interactions. Aside from the commonly used materials, polyglycolic acid and polylactic acid, novel polymers such as hydrogels and trimethylene carbonate-based polymers are being developed to simulate the natural mechanical characteristics of heart valves. Electrospinning has been examined as a new manufacturing technique that has the potential to facilitate tissue formation via increased surface area. The type of cells utilized for seeding onto the scaffolds is another factor to take into consideration; currently, stem cells are of great interest because of their potential to differentiate into various types of cells. Although extensive studies have been conducted, the creation of a fully functional heart valve that is clinically applicable still requires further investigation due to the complexity and intricacies of the heart valve.
Collapse
Affiliation(s)
- YOS S. MORSI
- Biomechanics and Tissue Engineering Group, IRIS, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - CYNTHIA S. WONG
- Institute of Biotechnology, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
112
|
Sewell-Loftin M, Chun YW, Khademhosseini A, Merryman WD. EMT-inducing biomaterials for heart valve engineering: taking cues from developmental biology. J Cardiovasc Transl Res 2011; 4:658-71. [PMID: 21751069 PMCID: PMC3310168 DOI: 10.1007/s12265-011-9300-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 06/20/2011] [Indexed: 12/20/2022]
Abstract
Although artificial prostheses for diseased heart valves have been around for several decades, viable heart valve replacements have yet to be developed due to their complicated nature. The majority of research in heart valve replacement technology seeks to improve decellularization techniques for porcine valves or bovine pericardium as an effort to improve current clinically used valves. The drawback of clinically used valves is that they are nonviable and thus do not grow or remodel once implanted inside patients. This is particularly detrimental for pediatric patients, who will likely need several reoperations over the course of their lifetimes to implant larger valves as the patient grows. Due to this limitation, additional biomaterials, both synthetic and natural in origin, are also being investigated as novel scaffolds for tissue-engineered heart valves, specifically for the pediatric population. Here, we provide a brief overview of valves in clinical use as well as of the materials being investigated as novel tissue-engineered heart valve scaffolds. Additionally, we focus on natural-based biomaterials for promoting cell behavior that is indicative of the developmental biology process that occurs in the formation of heart valves in utero, such as epithelial-to-mesenchymal transition or transformation. By engineering materials that promote native developmental biology cues and signaling, while also providing mechanical integrity once implanted, a viable tissue-engineered heart valve may one day be realized. A viable tissue-engineered heart valve, capable of growing and remodeling actively inside a patient, could reduce risks and complications associated with current valve replacement options and improve overall quality of life in the thousands of patients who received such valves each year, particularly for children.
Collapse
Affiliation(s)
- M.K. Sewell-Loftin
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212
| | - Young Wook Chun
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA 02139
- Harvad-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115
| | - W. David Merryman
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212
| |
Collapse
|
113
|
|
114
|
Wong ML, Leach JK, Athanasiou KA, Griffiths LG. The role of protein solubilization in antigen removal from xenogeneic tissue for heart valve tissue engineering. Biomaterials 2011; 32:8129-38. [PMID: 21810537 DOI: 10.1016/j.biomaterials.2011.07.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 07/11/2011] [Indexed: 11/19/2022]
Abstract
Decellularization techniques have been developed in an attempt to reduce the antigenicity of xenogeneic biomaterials, a critical barrier in their use as tissue engineering scaffolds. However, numerous studies have demonstrated inadequate removal and subsequent persistence of antigens in the biomaterial following decellularization, resulting in an immune response upon implantation. Thus, methods to enhance antigen removal (AR) are critical for the use of xenogeneic biomaterials in tissue engineering and regenerative medicine. In the present study, AR methods incorporating protein solubilization principles were investigated for their ability to reduce antigenicity of bovine pericardium (BP) for heart valve tissue engineering. Bovine pericardium following AR (BP-AR) was assessed for residual antigenicity, tensile properties, and extracellular matrix composition. Increasing protein solubility during AR significantly decreased the residual antigenicity of BP-AR-by an additional 80% compared to hypotonic solution or 60% compared to 0.1% (w/v) SDS decellularization methods. Moreover, solubilizing agents have a dominant effect on reducing the level of residual antigenicity of BP-AR beyond that achieved by AR additives alone. Tested AR methods did not compromise the tensile properties of BP-AR compared to native BP. Furthermore, residual cell nuclei did not correlate to residual antigenicity, demonstrating that residual nuclei counts may not be an appropriate indicator of successful AR. In conclusion, AR strategies promoting protein solubilization significantly reduced residual antigens compared to decellularization methods without compromising biomaterial functional properties. This study demonstrates the importance of solubilizing protein antigens for their removal in the generation of xenogeneic scaffolds.
Collapse
Affiliation(s)
- Maelene L Wong
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
115
|
Butcher JT, Mahler GJ, Hockaday LA. Aortic valve disease and treatment: the need for naturally engineered solutions. Adv Drug Deliv Rev 2011; 63:242-68. [PMID: 21281685 DOI: 10.1016/j.addr.2011.01.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/05/2011] [Accepted: 01/14/2011] [Indexed: 01/21/2023]
Abstract
The aortic valve regulates unidirectional flow of oxygenated blood to the myocardium and arterial system. The natural anatomical geometry and microstructural complexity ensures biomechanically and hemodynamically efficient function. The compliant cusps are populated with unique cell phenotypes that continually remodel tissue for long-term durability within an extremely demanding mechanical environment. Alteration from normal valve homeostasis arises from genetic and microenvironmental (mechanical) sources, which lead to congenital and/or premature structural degeneration. Aortic valve stenosis pathobiology shares some features of atherosclerosis, but its final calcification endpoint is distinct. Despite its broad and significant clinical significance, very little is known about the mechanisms of normal valve mechanobiology and mechanisms of disease. This is reflected in the paucity of predictive diagnostic tools, early stage interventional strategies, and stagnation in regenerative medicine innovation. Tissue engineering has unique potential for aortic valve disease therapy, but overcoming current design pitfalls will require even more multidisciplinary effort. This review summarizes the latest advancements in aortic valve research and highlights important future directions.
Collapse
|
116
|
Olson JL, Atala A, Yoo JJ. Tissue engineering: current strategies and future directions. Chonnam Med J 2011; 47:1-13. [PMID: 22111050 PMCID: PMC3214857 DOI: 10.4068/cmj.2011.47.1.1] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/08/2011] [Indexed: 12/15/2022] Open
Abstract
Novel therapies resulting from regenerative medicine and tissue engineering technology may offer new hope for patients with injuries, end-stage organ failure, or other clinical issues. Currently, patients with diseased and injured organs are often treated with transplanted organs. However, there is a shortage of donor organs that is worsening yearly as the population ages and as the number of new cases of organ failure increases. Scientists in the field of regenerative medicine and tissue engineering are now applying the principles of cell transplantation, material science, and bioengineering to construct biological substitutes that can restore and maintain normal function in diseased and injured tissues. In addition, the stem cell field is a rapidly advancing part of regenerative medicine, and new discoveries in this field create new options for this type of therapy. For example, new types of stem cells, such as amniotic fluid and placental stem cells that can circumvent the ethical issues associated with embryonic stem cells, have been discovered. The process of therapeutic cloning and the creation of induced pluripotent cells provide still other potential sources of stem cells for cell-based tissue engineering applications. Although stem cells are still in the research phase, some therapies arising from tissue engineering endeavors that make use of autologous, adult cells have already entered the clinical setting, indicating that regenerative medicine holds much promise for the future.
Collapse
Affiliation(s)
- Jennifer L Olson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, NC, USA
| | | | | |
Collapse
|
117
|
Deng C, Dong N, Shi J, Chen S, Xu L, Shi F, Hu X, Zhang X. Application of decellularized scaffold combined with loaded nanoparticles for heart valve tissue engineering in vitro. ACTA ACUST UNITED AC 2011; 31:88-93. [PMID: 21336730 DOI: 10.1007/s11596-011-0156-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to fabricate decelluarized valve scaffold modified with polyethylene glycol nanoparticles loaded with transforming growth factor-β1 (TGF-β1), by which to improve the extracellular matrix microenvironment for heart valve tissue engineering in vitro. Polyethylene glycol nanoparticles were obtained by an emulsion-crosslinking method, and their morphology was observed under a scanning electron microscope. Decelluarized valve scaffolds, prepared by using trypsinase and TritonX-100, were modified with nanoparticles by carbodiimide, and then TGF-β1 was loaded into them by adsorption. The TGF-β1 delivery of the fabricated scaffold was measured by asing enzyme-linked immunosorbent assay. Whether unseeded or reseeded with myofibroblast from rats, the morphologic, biochemical and biomechanical characteristics of hybrid scaffolds were tested and compared with decelluarized scaffolds under the same conditions. The enzyme-linked immunosorbent assay revealed a typical delivery of nanoparticles. The morphologic observations and biological data analysis indicated that fabricated scaffolds possessed advantageous biocompatibility and biomechanical property beyond decelluarized scaffolds. Altogether this study proved that it was feasible to fabricate the hybrid scaffold and effective to improve extracellular matrix microenvironment, which is beneficial for an application in heart valve tissue engineering.
Collapse
Affiliation(s)
- Cheng Deng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Feng Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xingjian Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xianzheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
118
|
Tissue engineering on matrix: future of autologous tissue replacement. Semin Immunopathol 2011; 33:307-15. [PMID: 21279358 DOI: 10.1007/s00281-011-0258-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 01/19/2011] [Indexed: 01/03/2023]
Abstract
Tissue engineering aims at the creation of living neo-tissues identical or close to their native human counterparts. As basis of this approach, temporary biodegradable supporter matrices are fabricated in the shape of a desired construct, which promote tissue strength and provide functionality until sufficient neo-tissue is formed. Besides fully synthetic polymer-based scaffolds, decellularized biological tissue of xenogenic or homogenic origin can be used. In a second step, these scaffolds are seeded with autologous cells attaching to the scaffold microstructure. In order to promote neo-tissue formation and maturation, the seeded scaffolds are exposed to different forms of stimulation. In cardiovascular tissue engineering, this "conditioning" can be achieved via culture media and biomimetic in vitro exposure, e.g., using flow bioreactors. This aims at adequate cellular differentiation, proliferation, and extracellular matrix production to form a living tissue called the construct. These living autologous constructs, such as heart valves or vascular grafts, are created in vitro, comprising a viable interstitium with repair and remodeling capabilities already prior to implantation. In situ further in vivo remodeling is intended to recapitulate physiological vascular architecture and function. The remodeling mechanisms were shown to be dominated by monocytic infiltration and chemotactic host-cell attraction leading into a multifaceted inflammatory process and neo-tissue formation. Key molecules of these processes can be integrated into the scaffold matrix to direct cell and tissue fate in vivo.
Collapse
|
119
|
|
120
|
Apte SS, Paul A, Prakash S, Shum-Tim D. Current developments in the tissue engineering of autologous heart valves: moving towards clinical use. Future Cardiol 2011; 7:77-97. [DOI: 10.2217/fca.10.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The use of tissue-engineering methods to create autologous heart valve constructs has the potential to overcome the fundamental drawbacks of more traditional valve prostheses. Traditional mechanical valves, while durable, increase the risk for endocarditis and thrombogenesis, and require the recipient to continue lifelong anticoagulant therapy. Homograft or xenograft heart valve prostheses are associated with immune reaction and progressive deterioration with limited durability. Most importantly, neither option is capable of growth and remodeling in vivo and both options place the patient at risk for valve-related complications and reoperation. These shortcomings have prompted the application of tissue-engineering techniques to create fully autologous heart valve replacements. Future clinically efficacious tissue-engineered autologous valves should be nonthrombogenic, biocompatible, capable of growth and remodeling in vivo, implantable with current surgical techniques, hemodynamically perfect, durable for the patient’s life and most importantly, significantly improve quality of life for the patient. In order to meet these expectations, the nature of the ideal biochemical milieu for conditioning an autologous heart valve will need to be elucidated. In addition, standardized criteria by which to quantitatively evaluate a tissue-engineered heart valve, as well as noninvasive analytical techniques for use in long-term animal models, will be required. This article highlights the advances, challenges and future clinical prospects in the field of tissue engineering of autologous heart valves, focusing on progress made by studies that have investigated a fully autologous, tissue-engineered pulmonary valve replacement in vivo.
Collapse
Affiliation(s)
- Sameer S Apte
- Division of Cardiac Surgery & Surgical Research, McGill University Health Center, Montreal, Quebec, Canada: The Royal Victoria Hospital, MUHC, Room S8–73b, 687 Pine Avenue West, Montreal, Quebec, H3A 1A1, Canada
| | - Arghya Paul
- Biomedical Technology & Cell Therapy Research Laboratory, Department of Biomedical Engineering & Artificial Cells & Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology & Cell Therapy Research Laboratory, Department of Biomedical Engineering & Artificial Cells & Organs Research Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
121
|
Yamanami M, Yahata Y, Uechi M, Fujiwara M, Ishibashi-Ueda H, Kanda K, Watanabe T, Tajikawa T, Ohba K, Yaku H, Nakayama Y. Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation 2010; 122:S100-6. [PMID: 20837900 DOI: 10.1161/circulationaha.109.922211] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND We developed autologous prosthetic implants by simple and safe in-body tissue architecture technology. We present the first report on the development of autologous valved conduit with the sinus of Valsalva (BIOVALVE) by using this unique technology and its subsequent implantation in the pulmonary valves in a beagle model. METHODS AND RESULTS A mold of BIOVALVE organization was assembled using 2 types of specially designed silicone rods with a small aperture in a trileaflet shape between them. The concave rods had 3 projections that resembled the protrusions of the sinus of Valsalva. The molds were placed in the dorsal subcutaneous spaces of beagle dogs for 4 weeks. The molds were covered with autologous connective tissues. BIOVALVEs with 3 leaflets in the inner side of the conduit with the sinus of Valsalva were obtained after removing the molds. These valves had adequate burst strength, similar to that of native valves. Tight valvular coaptation and sufficient open orifice area were observed in vitro. These BIOVALVEs were implanted to the main pulmonary arteries as allogenic conduit valves (n=3). Postoperative echocardiography demonstrated smooth movement of the leaflets with trivial regurgitation. Histological examination of specimens obtained at 84 days showed that the surface of the leaflet was covered by endothelial cells and neointima, including an elastin fiber network, and was formed at the anastomosis sides on the luminal surface of the conduit. CONCLUSIONS We developed the first completely autologous BIOVALVE and successfully implanted these BIOVALVEs in a beagle model in a pilot study.
Collapse
Affiliation(s)
- Masashi Yamanami
- Department of Cardiovascular Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Ma H, Hu J, Ma PX. Polymer scaffolds for small-diameter vascular tissue engineering. ADVANCED FUNCTIONAL MATERIALS 2010; 20:2833-2841. [PMID: 24501590 PMCID: PMC3911792 DOI: 10.1002/adfm.201000922] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To better engineer small-diameter blood vessels, a few types of novel scaffolds were fabricated from biodegradable poly(L-lactic acid) (PLLA) by means of thermally induced phase separation (TIPS) techniques. By utilizing the differences in thermal conductivities of the mold materials, the scaffolds with oriented gradient microtubular structures in axial or radial direction were created using benzene as the solvent. The porosity, tubular size, and the orientation direction of the microtubules can be controlled by polymer concentration, TIPS temperature, and materials of different thermal conductivities. The gradient microtubular structure was intended to facilitate cell seeding and mass transfer for cell growth and function. We also developed nanofibrous scaffolds with oriented and interconnected micro-tubular pore network by a one-step TIPS method using benzene/tetrahydrofuran mixture as the solvent without using porogen materials. The structural features of such scaffolds can be conveniently adjusted by varying the solvent ratio, phase separation temperature and polymer concentration to mimic the nanofibrous feature of extracellular matrix. These scaffolds were fabricated for the tissue engineering of small-diameter blood vessels by utilizing their advantageous structural features to facilitate blood vessel regeneration.
Collapse
Affiliation(s)
- Haiyun Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109-1078
| | | | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI, 48109-1078
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109-1078
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI, 48109-1078
| |
Collapse
|
123
|
Selection of an Immunohistochemical Panel for Cardiovascular Research in Sheep. Appl Immunohistochem Mol Morphol 2010; 18:382-91. [DOI: 10.1097/pai.0b013e3181cd32e7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
124
|
|
125
|
Lutter G, Metzner A, Jahnke T, Bombien R, Boldt J, Iino K, Cremer J, Stock UA. Percutaneous tissue-engineered pulmonary valved stent implantation. Ann Thorac Surg 2010; 89:259-63. [PMID: 20103248 DOI: 10.1016/j.athoracsur.2009.06.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/11/2009] [Accepted: 06/12/2009] [Indexed: 11/19/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the feasibility of percutaneously implanted tissue-engineered valved stents in the ovine pulmonary valve position. DESCRIPTION Porcine pulmonary heart valves and small intestinal submucosa were obtained from a slaughterhouse, and the intestinal submucosa used to cover the inside of the porcine pulmonary valved stents. Endothelial cells and autologous myofibroblasts were obtained from carotid artery segments of juvenile sheep. After myofibroblast seeding, constructs were placed in a dynamic bioreactor system and were cultured for 16 days. After Endothelial cell seeding, the tissue-engineered valved stents were deployed into the pulmonary valve annular site. Angiography was performed at implantation and explantation (4 weeks). Constructs were analyzed macroscopically and microscopically. EVALUATION Orthotopic positioning of the stents (n = 3) at the time of implantation and explantation, as well as normal valve function, was observed through angiography. Gross morphology confirmed excellent opening and closing of all leaflets. Strong expression of alpha-smooth muscle actin in neointerstitial cells and of von-Willebrand-Factor in endothelial cells was revealed by immunocytochemistry. CONCLUSIONS This study demonstrates successful merging of two novel technologies: (1) percutaneous valved stent implantation and (2) tissue engineering of autologous heart valves.
Collapse
Affiliation(s)
- Georg Lutter
- Department of Cardiovascular Surgery, Christian-Albrechts-University of Kiel, School of Medicine, Kiel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Abstract
Polymeric heart valves could offer an optimum alternative to current prostheses, by joining the advantages of mechanical and bioprosthetic valves. Though a number of materials suitable for this application have recently become available, significant improvements in the valve design are still needed. In this paper, a novel polymeric heart valve design is proposed and its optimization procedure, based on the use of finite elements, is described. The design strategy was aimed at reducing the energy absorbed during the operating cycle, resulting in high hydrodynamic performances and reduced stress levels. The efficacy of the design strategy was assessed by comparing the valve dynamics and stress levels predicted numerically during the cycle with those of an existing and well qualified polymeric valve design. The improved hydrodynamic performance of the proposed design was confirmed experimentally, by in vitro testing in a pulse duplicator.
Collapse
Affiliation(s)
- G Burriesci
- Cardiovascular Engineering & Medical Devices Group, Department of Mechanical Engineering, UCL, Torrington Place, WC1E 7JE, London, UK.
| | | | | |
Collapse
|
127
|
Hibino N, McGillicuddy E, Matsumura G, Ichihara Y, Naito Y, Breuer C, Shinoka T. Late-term results of tissue-engineered vascular grafts in humans. J Thorac Cardiovasc Surg 2010; 139:431-6, 436.e1-2. [PMID: 20106404 DOI: 10.1016/j.jtcvs.2009.09.057] [Citation(s) in RCA: 370] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 09/14/2009] [Accepted: 09/29/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The development of a tissue-engineered vascular graft with the ability to grow and remodel holds promise for advancing cardiac surgery. In 2001, we began a human trial evaluating these grafts in patients with single ventricle physiology. We report the late clinical and radiologic surveillance of a patient cohort that underwent implantation of tissue-engineered vascular grafts as extracardiac cavopulmonary conduits. METHODS Autologous bone marrow was obtained and the mononuclear cell component was collected. Mononuclear cells were seeded onto a biodegradable scaffold composed of polyglycolic acid and epsilon-caprolactone/L-lactide and implanted as extracardiac cavopulmonary conduits in patients with single ventricle physiology. Patients were followed up by postoperative clinic visits and by telephone. Additionally, ultrasonography, angiography, computed tomography, and magnetic resonance imaging were used for postoperative graft surveillance. RESULTS Twenty-five grafts were implanted (median patient age, 5.5 years). There was no graft-related mortality (mean follow-up, 5.8 years). There was no evidence of aneurysm formation, graft rupture, graft infection, or ectopic calcification. One patient had a partial mural thrombosis that was successfully treated with warfarin. Four patients had graft stenosis and underwent successful percutaneous angioplasty. CONCLUSION Tissue-engineered vascular grafts can be used as conduits in patients with single ventricle physiology. Graft stenosis is the primary mode of graft failure. Further follow-up and investigation for the mechanism of stenosis are warranted.
Collapse
Affiliation(s)
- Narutoshi Hibino
- Yale University School of Medicine, Section of Cardiac Surgery, New Haven, Conn 06520, USA.
| | | | | | | | | | | | | |
Collapse
|
128
|
Use of Human Umbilical Cord Blood-Derived Progenitor Cells for Tissue-Engineered Heart Valves. Ann Thorac Surg 2010; 89:819-28. [DOI: 10.1016/j.athoracsur.2009.11.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 11/18/2009] [Accepted: 11/19/2009] [Indexed: 11/17/2022]
|
129
|
Robinson PS, Tranquillo RT. Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets. Tissue Eng Part A 2009; 15:2763-72. [PMID: 19368523 DOI: 10.1089/ten.tea.2008.0426] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To design more effective tissue-engineered heart valve replacements, the replacement tissue may need to mimic the biaxial stress-strain behavior of native heart valve tissue. This study characterized the planar biaxial properties of tissue-engineered valve leaflets and native aortic valve leaflets. Fibrin-based valve equivalent (VE) and porcine aortic valve (PAV) leaflets were subjected to incremental biaxial stress relaxation testing, during which fiber alignments were measured, over a range of strain ratios. Results showed that VE leaflets exhibited a modulus and fiber reorientation behavior that correlated with strain ratio. In contrast, PAV leaflets maintained their relaxed modulus and fiber alignment when exposed to nonequibiaxial strain, but exhibited changes in stress relaxation. In uniaxial and equi-biaxial tension, there were few observed differences in relaxation behavior between VE and PAV leaflets, despite differences in the modulus and fiber reorientation. Likewise, in both tissues there was similar relaxation response in the circumferential and radial directions in biaxial tension, despite different moduli in these two directions. This study presents some fundamental differences in the mechanical response to biaxial tension of fibrin-based tissue-engineered constructs and native valve tissue. It also highlights the importance of using a range of strain ratios when generating mechanical property data for valvular and engineered tissues. The data presented on the stress-strain, relaxation, and fiber reorientation of VE tissue will be useful in future efforts to mathematically model and improve fibrin-based tissue-engineered constructs.
Collapse
Affiliation(s)
- Paul S Robinson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
130
|
|
131
|
Hjortnaes J, Bouten CV, Van Herwerden LA, Gründeman PF, Kluin J. Translating Autologous Heart Valve Tissue Engineering from Bench to Bed. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:307-17. [DOI: 10.1089/ten.teb.2008.0565] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jesper Hjortnaes
- Division of Heart & Lungs, Department of Clinical and Experimental Cardio-Thoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carlijn V.C. Bouten
- Division of Heart & Lungs, Department of Clinical and Experimental Cardio-Thoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
- Cell & Tissue Engineering Laboratory, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lex A. Van Herwerden
- Division of Heart & Lungs, Department of Clinical and Experimental Cardio-Thoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul F. Gründeman
- Division of Heart & Lungs, Department of Clinical and Experimental Cardio-Thoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jolanda Kluin
- Division of Heart & Lungs, Department of Clinical and Experimental Cardio-Thoracic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
132
|
Stem Cells and Organ Replacement. Artif Organs 2009. [DOI: 10.1007/978-1-84882-283-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
133
|
Kidane AG, Burriesci G, Cornejo P, Dooley A, Sarkar S, Bonhoeffer P, Edirisinghe M, Seifalian AM. Current developments and future prospects for heart valve replacement therapy. J Biomed Mater Res B Appl Biomater 2009; 88:290-303. [PMID: 18615473 DOI: 10.1002/jbm.b.31151] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Valve replacement is the most common surgical treatment in patients with advanced valvular heart disease. Mechanical and bio-prostheses have been the traditional heart valve replacements in these patients. However, currently the heart valves for replacement therapy are imperfect and subject patients to one or more ongoing risks, including thrombosis, limited durability, and need for re-operations due to the lack of growth in pediatric populations. Furthermore, they require an open heart surgery, which is risky for elderly and young children who are too weak or ill to undergo major surgery. This article reviews the current state of the art of heart valve replacements in light of their potential clinical applications. In recent years polymeric materials have been widely studied as potential prosthetic heart valve material being designed to overcome the clinical problems associated with both mechanical and bio-prosthetic valves. The review also addresses the advances in polymer materials, tissue engineering approaches, and the development of percutaneous valve replacement technology and discusses the future prospects in these fields.
Collapse
Affiliation(s)
- Asmeret G Kidane
- Biomaterial and Tissue Engineering Centre (BTEC), Academic Division of Surgery & Interventional Sciences, University College London, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Miura M, Fujimoto K. Formation and recovery of a cell sheet by a particle monolayer with the surface roughness. Colloids Surf B Biointerfaces 2008; 66:125-33. [DOI: 10.1016/j.colsurfb.2008.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Revised: 06/05/2008] [Accepted: 06/07/2008] [Indexed: 10/22/2022]
|
135
|
Dong N, Shi J, Hu P, Chen S, Hong H. Current progress on scaffolds of tissue engineering heart valves. ACTA ACUST UNITED AC 2008. [DOI: 10.1007/s11684-008-0043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
136
|
Hayashida K, Kanda K, Oie T, Okamoto Y, Ishibashi-Ueda H, Onoyama M, Tajikawa T, Ohba K, Yaku H, Nakayama Y. Architecture of anin vivo-tissue engineered autologous conduit “Biovalve”. J Biomed Mater Res B Appl Biomater 2008; 86:1-8. [PMID: 18076096 DOI: 10.1002/jbm.b.30981] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kyoko Hayashida
- Department of Bioengineering, Advanced Medical Engineering Center, National Cardiovascular Center Research Institute, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Prabha S, Verghese S. EXISTENCE OF PROVIRAL PORCINE ENDOGENOUS RETROVIRUS IN FRESH AND DECELLULARISED PORCINE TISSUES. Indian J Med Microbiol 2008. [DOI: 10.1016/s0255-0857(21)01867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
138
|
Stem Cell–Derived, Tissue-Engineered Pulmonary Artery Augmentation Patches In Vivo. Ann Thorac Surg 2008; 86:132-40; discussion 140-1. [DOI: 10.1016/j.athoracsur.2008.02.074] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 02/19/2008] [Accepted: 02/21/2008] [Indexed: 11/19/2022]
|
139
|
Robinson PS, Johnson SL, Evans MC, Barocas VH, Tranquillo RT. Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng Part A 2008; 14:83-95. [PMID: 18333807 DOI: 10.1089/ten.a.2007.0148] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Heart valve replacements composed of living tissue that can adapt, repair, and grow with a patient would provide a more clinically beneficial option than current inert replacements. Bioartificial valves were produced by entrapping human dermal fibroblasts within a fibrin gel. Using a mold design that presents appropriate mechanical constraints to the cell-induced fibrin gel compaction, gross fiber alignment (commissure-to-commissure alignment in the leaflets and circumferential alignment in the root) and the basic geometry of a native aortic valve were obtained. After static incubation on the mold in complete medium supplemented with transforming growth factor beta 1, insulin, and ascorbate, collagen fibers produced by the entrapped cells were found to coalign with the fibrin based on histological analyses. The resultant tensile mechanical properties were anisotropic. Ultimate tensile strength and tensile modulus of the leaflets in the commissural direction were 0.53 and 2.34 MPa, respectively. The constructs were capable of withstanding backpressure commensurate with porcine aortic valves in regurgitation tests (330 mmHg) and opened and closed under physiological pressure swings of 10 and 20 mmHg, respectively. These data support proof of principle of using cell-remodeled fibrin gel to produce tissue-engineered valve replacements.
Collapse
Affiliation(s)
- Paul S Robinson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
140
|
Migneco F, Hollister SJ, Birla RK. Tissue-engineered heart valve prostheses: ‘state of the heart’. Regen Med 2008; 3:399-419. [DOI: 10.2217/17460751.3.3.399] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In this article, we will review the current state of the art in heart valve tissue engineering. We provide an overview of mechanical and biological replacement options, outlining advantages and limitations of each option. Tissue engineering, as a field, is introduced, and specific aspects of valve tissue engineering are discussed (e.g., biomaterials, cells and bioreactors). Technological hurdles, which need to be overcome for advancement of the field, are also discussed.
Collapse
Affiliation(s)
- Francesco Migneco
- Section of Cardiac Surgery, the University of Michigan, B560 Medical Science Research Building II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-2110, USA
| | - Scott J Hollister
- Department of Biomedical Engineering, the University of Michigan, Ann Arbor, MI 48109-2110, USA
| | - Ravi K Birla
- Section of Cardiac Surgery, the University of Michigan, B560 Medical Science Research Building II, 1150 West Medical Center Drive, Ann Arbor, MI 48109-2110, USA
| |
Collapse
|
141
|
Mirensky TL, Breuer CK. The development of tissue-engineered grafts for reconstructive cardiothoracic surgical applications. Pediatr Res 2008; 63:559-68. [PMID: 18427302 DOI: 10.1203/01.pdr.0000305938.92695.b9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Surgical correction of congenital heart defects often requires the use of valves, patches, or conduits to establish anatomic continuity. Homografts, xenografts, or mechanical prosthetic devices are frequently implanted during these surgical procedures. These grafts however lack growth potential, are associated with increased risk of thrombosis and infection and have limited durability, thus increasing the morbidity and mortality of their application in pediatric cardiac surgery. These limitations are being addressed through the development of living, biologic tissue-engineered valves, patches, and conduits. Pilot studies and phase 1 clinical trials are currently underway to evaluate their feasibility, safety, and efficacy. The optimal scaffold, cell source, and conditioning parameters, however, still remain to be determined and are areas of active research.
Collapse
Affiliation(s)
- Tamar L Mirensky
- Department of Surgery, Yale-New Haven Hospital, New Haven, CA 06520, USA.
| | | |
Collapse
|
142
|
Leung L, Chan C, Song J, Tam B, Naguib H. A Parametric Study on the Processing and Physical Characterization of PLGA 50/50 Bioscaffolds. J CELL PLAST 2008. [DOI: 10.1177/0021955x07084909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to control the characteristics of scaffolds is important such that scaffolds can be fine tuned for specific applications. In this study, the effects of processing parameters on cell morphology and mechanical properties of PLGA 50/50 bioscaffolds for tissue engineering applications were investigated. Specifically, the effects of salt particle sizes and salt-to-polymer mass ratios on the scaffold relative density, average pore size and density, open-cell porosity, and mechanical properties were examined. The PLGA samples were processed using a salt leaching technique in a batch-foaming setup. Experiments showed that pore size and density were dependent on the salt particle size used, and that as the salt-to-polymer mass ratio increased, the porosity increased while the relative density decreased. The results showed that by varying the salt parameters during fabrication, the scaffold characteristics and morphology can be controlled.
Collapse
Affiliation(s)
- Linus Leung
- University of Toronto, Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| | - Christine Chan
- Department of Materials Science and Engineering University of Toronto 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| | - Janice Song
- Department of Materials Science and Engineering University of Toronto 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| | - Billy Tam
- Department of Materials Science and Engineering University of Toronto 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| | - Hani Naguib
- University of Toronto, Department of Mechanical and Industrial Engineering, Department of Materials Science and Engineering 5 King's College Road, Toronto, Ontario, Canada M5S 3G8, , Department of Materials Science and Engineering University of Toronto 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| |
Collapse
|
143
|
Leung L, Chan C, Baek S, Naguib H. Comparison of morphology and mechanical properties of PLGA bioscaffolds. Biomed Mater 2008; 3:025006. [PMID: 18458364 DOI: 10.1088/1748-6041/3/2/025006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this study, bioscaffolds using poly(DL-lactide-co-glycolide) acid (PLGA) were fabricated and studied. The gas foaming/salt leaching technique in a batch foaming setup was employed, and the effects of material composition of PLGA on the morphology and mechanical properties using this process were investigated. Two material compositions of PLGA 50/50 and 85/15 were used, and characterization of scaffolds fabricated with these materials showed that a lower relative density can be achieved with an increasing poly(DL-lactide) acid (PDLLA) content; however, higher open-cell porosity was obtained with lower PDLLA content. Furthermore, the effect of PLGA composition on modulus of the scaffolds was minor.
Collapse
Affiliation(s)
- L Leung
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | | | | | | |
Collapse
|
144
|
Abstract
Patients suffering from diseased and injured organs may be treated with transplanted organs; however, there is a severe shortage of donor organs that is worsening yearly, given the ageing population. In the field of regenerative medicine and tissue engineering, scientists apply the principles of cell transplantation, materials science and bioengineering to construct biological substitutes that will restore and maintain normal function in diseased and injured tissues. Therapeutic cloning, where the nucleus from a donor cell is transferred into an enucleated oocyte in order to extract pluripotent embryonic stem cells, offers a potentially limitless source of cells for tissue engineering applications. The stem cell field is also advancing rapidly, opening new options for therapy, including the use of amniotic and placental fetal stem cells. This review covers recent advances that have occurred in regenerative medicine and describes applications of these technologies using chemical compounds that may offer novel therapies for patients with end-stage organ failure.
Collapse
Affiliation(s)
- Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
145
|
Liao J, Joyce EM, Sacks MS. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 2008; 29:1065-74. [PMID: 18096223 PMCID: PMC2253688 DOI: 10.1016/j.biomaterials.2007.11.007] [Citation(s) in RCA: 210] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Accepted: 11/03/2007] [Indexed: 11/25/2022]
Abstract
The potential for decellularized aortic heart valves (AVs) as heart valve replacements is based on the assumption that the major cellular immunogenic components have been removed, and that the remaining extracellular matrix (ECM) should retain the necessary mechanical properties and functional design. However, decellularization processes likely alter the ECM mechanical and structural properties, potentially affecting long-term durability. In the present study, we explored the effects of an anionic detergent (sodium dodecyl sulfate (SDS)), enzymatic agent (Trypsin), and a non-ionic detergent (Triton X-100) on the mechanical and structural properties of AV leaflets (AVLs) to provide greater insight into the initial functional state of the decellularized AVL. The overall extensibility represented by the areal strain under 60 N/m increased from 68.85% for the native AV to 139.95%, 137.51%, and 177.69% for SDS, Trypsin, and Triton X-100, respectively, after decellularization. In flexure, decellularized AVLs demonstrated a profound loss of stiffness overall, and also produced a nonlinear moment-curvature relation compared to the linear response of the native AVL. Effective flexural moduli decreased from 156.0+/-24.6 kPa for the native AV to 23.5+/-5.8, 15.6+/-4.8, and 19.4+/-8.9 kPa for SDS, Trypsin, and Triton X-100 treated leaflets, respectively. While the overall leaflet fiber architecture remained relatively unchanged, decellularization resulted in substantial microscopic disruption. In conclusion, changes in mechanical and structural properties of decellularized leaflets were likely associated with disruption of the ECM, which may impact the durability of the leaflets.
Collapse
Affiliation(s)
| | | | - Michael S. Sacks
- From the Engineered Tissue Mechanics and Mechanobiology Laboratory, Department of Bioengineering and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh PA 15219
| |
Collapse
|
146
|
Brody S, Pandit A. Approaches to heart valve tissue engineering scaffold design. J Biomed Mater Res B Appl Biomater 2008; 83:16-43. [PMID: 17318822 DOI: 10.1002/jbm.b.30763] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Heart valve disease is a significant cause of mortality worldwide. However, to date, a nonthrombogenic, noncalcific prosthetic, which maintains normal valve mechanical properties and hemodynamic flow, and exhibits sufficient fatigue properties has not been designed. Current prosthetic designs have not been optimized and are unsuitable treatment for congenital heart defects. Research is therefore moving towards the development of a tissue engineered heart valve equivalent. Two approaches may be used in the creation of a tissue engineered heart valve, the traditional approach, which involves seeding a scaffold in vitro, in the presence of specific signals prior to implantation, and the guided tissue regeneration approach, which relies on autologous reseeding in vivo. Regardless of the approach taken, the design of a scaffold capable of supporting the growth of cells and extracellular matrix generation and capable of withstanding the unrelenting cardiovascular environment while forming a tight seal during closure, is critical to the success of the tissue engineered construct. This paper focuses on the quest to design, such a scaffold.
Collapse
Affiliation(s)
- Sarah Brody
- National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Ireland
| | | |
Collapse
|
147
|
Zilla P, Brink J, Human P, Bezuidenhout D. Prosthetic heart valves: Catering for the few. Biomaterials 2008; 29:385-406. [DOI: 10.1016/j.biomaterials.2007.09.033] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 09/23/2007] [Indexed: 01/17/2023]
|
148
|
Khait L, Hecker L, Blan NR, Coyan G, Migneco F, Huang YC, Birla RK. Getting to the Heart of Tissue Engineering. J Cardiovasc Transl Res 2008; 1:71-84. [DOI: 10.1007/s12265-007-9005-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
|
149
|
|
150
|
Robinson PS, Johnson SL, Evans MC, Barocas VH, Tranquillo RT. Functional Tissue-Engineered Valves from Cell-Remodeled Fibrin with Commissural Alignment of Cell-Produced Collagen. ACTA ACUST UNITED AC 2008. [DOI: 10.1089/ten.2007.0148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|