101
|
Grigat S, Harlfinger S, Pal S, Striebinger R, Golz S, Geerts A, Lazar A, Schömig E, Gründemann D. Probing the substrate specificity of the ergothioneine transporter with methimazole, hercynine, and organic cations. Biochem Pharmacol 2007; 74:309-16. [PMID: 17532304 DOI: 10.1016/j.bcp.2007.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2007] [Revised: 04/12/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Recently, we have identified the ergothioneine (ET) transporter ETT (gene symbol SLC22A4). Much interest in human ETT has been generated by case-control studies that suggest an association of polymorphisms in the SLC22A4 gene with susceptibility to chronic inflammatory diseases. ETT was originally designated a multispecific novel organic cation transporter (OCTN1). Here we reinvestigated, based on stably transfected 293 cells and with ET as reference substrate, uptake of quinidine, verapamil, and pyrilamine. ETT from human robustly catalyzed transport of ET (68micfrol/(minmgprotein)), but no transport of organic cations was discernible. With ET as substrate, ETT was relatively resistant to inhibition by selected drugs; the most potent inhibitor was verapamil (K(i)=11micromol/l). The natural compound hercynine and antithyroid drug methimazole are related in structure to ET. However, efficiency of ETT-mediated transport of methimazole (K(i)=7.5mmol/l) was 130-fold lower, and transport of hercynine (K(i)=1.4mmol/l) was 25-fold lower than transport of ET. ETT from mouse, upon expression in 293 cells, catalyzed high affinity, sodium-driven uptake of ET very similar to ETT from human. Additional real-time PCR experiments based on 16 human tissues revealed ETT mRNA levels considerably lower than in bone marrow. Our experiments establish that ETT is highly specific for its physiological substrate ergothioneine. ETT is not a cationic drug transporter, and it does not have high affinity for organic cation inhibitors. Detection of ETT mRNA or protein can therefore be utilized as a specific molecular marker of intracellular ET activity.
Collapse
Affiliation(s)
- Silke Grigat
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Smiles KA, Dong KK, Canning MT, Grimson R, Walfield AM, Yarosh DB. A hydroquinone formulation with increased stability and decreased potential for irritation. J Cosmet Dermatol 2007; 6:83-8. [PMID: 17524123 DOI: 10.1111/j.1473-2165.2007.00301.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Long-term treatment with a high-strength hydroquinone (HQ) cream (usually 4% HQ) is the mainstay therapy for hyperpigmentation disorders. Instability and high potential for irritancy hinders patient compliance. A new 4% HQ preparation has been designed with an innovative antioxidant for stability and a biomimetic of an herbal extract for skin calming. AIMS To investigate the activity, stability, and irritancy of a new HQ cream. METHODS To evaluate the new HQ cream in comparison with commercial 4% HQ creams for stability by temperature stress test, for irritancy by repeated-insult patch test on human subjects, and for lightening effect using the MelanoDerm B skin equivalent model. RESULTS The new HQ is more resistant to browning and shows less irritancy than three commercially available 4% HQ products. It has comparable bleaching effect with faster onset than a 4% HQ product containing 0.05% tretinoin and 0.01% fluocinolone acetonide. CONCLUSION Based on its improved stability, lower irritancy, and activity in skin lightening, the new approach to the formulation of 4% HQ may improve therapeutic outcomes by improving patient compliance to dosing.
Collapse
|
103
|
Nakamura T, Sugiura S, Kobayashi D, Yoshida K, Yabuuchi H, Aizawa S, Maeda T, Tamai I. Decreased Proliferation and Erythroid Differentiation of K562 Cells by siRNA-induced Depression of OCTN1 (SLC22A4) Transporter Gene. Pharm Res 2007; 24:1628-35. [PMID: 17447122 DOI: 10.1007/s11095-007-9290-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 03/01/2007] [Indexed: 11/28/2022]
Abstract
PURPOSE Recently, it was reported that OCTN1 transporter (SLC22A4) is associated with rheumatoid arthritis (RA) and Crohn's disease. Additionally, we reported that OCTN1 is expressed in hematopoietic cells, preferentially in erythroid cells. Accordingly, we assessed the physiological role of OCTN1 by examining the effect of knockdown of OCTN1 in blood cells using siRNA method. MATERIALS AND METHODS Vector-based short hairpin RNA (shRNA) was used to establish K562 cell line which shows stably decreased expression of OCTN1. The characteristic of knockdown of OCTN1 in K562 cells was investigated by cell proliferation, cell differentiation, and uptake of ergothioneine that is a good substrate of OCTN1. RESULTS Several clones of K562 cells exhibited significantly reduced expression of OCTN1 mRNA and protein. They also showed a decreased growth rate and butyrate-dependent differentiation to erythrocytes compared with control-vector transfected cells. In addition, uptake of [(3)H]ergothioneine by K562 cells suggested that Na(+)-dependent and high-affinity transporter which is similar to the characteristics of OCTN1 is functional. Moreover, uptake of ergothioneine by K562 cells which exhibit decreased-expression of OCTN1 was decreased in comparison with wild type K562 cells. CONCLUSIONS It was suggested that OCTN1 is involved in the transport of physiological compounds that are important for cell proliferation and erythroid differentiation.
Collapse
Affiliation(s)
- Toshimichi Nakamura
- Department of Molecular Biopharmaceutics, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamasaki, Noda, Chiba, 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Franzoni F, Colognato R, Galetta F, Laurenza I, Barsotti M, Di Stefano R, Bocchetti R, Regoli F, Carpi A, Balbarini A, Migliore L, Santoro G. An in vitro study on the free radical scavenging capacity of ergothioneine: comparison with reduced glutathione, uric acid and trolox. Biomed Pharmacother 2006; 60:453-7. [PMID: 16930933 DOI: 10.1016/j.biopha.2006.07.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Treatment of oxidative stress-related pathologies is a possible therapeutical strategy for the future. Natural product with antioxidant properties could trigger this goal. The aim of this in vitro study was to assess the antioxidant activity of the natural product ergothioneine (EGT), a compound of plant origin, which is assimilated and conserved by mammals in erythrocytes, kidney, seminal fluid and liver. METHODS We measured the antioxidant activity of EGT as its ability to antagonize the oxidation of alpha-keto-gamma-methiolbutyric acid (KMBA) by hydroxyl radical, peroxyl radicals and peroxynitrite. The results are expressed as total oxyradical scavenging capacity (TOSC) units. Glutathione (GSH), uric acid and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (trolox), the water-soluble analog of vitamin E, were used as the reference antioxidants. RESULTS EGT was the most active scavenger of free radicals as compared to classic antioxidants as GSH, uric acid and trolox. In particular, the highest antioxidant capacity exhibited by EGT vs. peroxyl radicals (5.53 +/- 1.27 units) resulted 25% higher than the value obtained with the reference antioxidant trolox (4.4 +/- 0.6 units, P < 0.01). The scavenging capacity of EGT towards hydroxyl radicals (0.34 +/- 0.09 units) was 60% higher, as compared to uric acid (0.21 +/- 0.04 units, P < 0.001), which represent the reference antioxidant vs. hydroxyl radicals. Finally, EGT showed the highest antioxidant activity also towards peroxynitrite (5.2 +/- 1.0 units), with a scavenging capacity 10% higher than that of uric acid (4.7 +/- 0.9 units, P < 0.05). CONCLUSIONS This study showed that EGT has potent intrinsic anti-hydroxyl, anti-peroxyl and anti-peroxynitrite radicals antioxidant activity, as compared to classic molecules with antioxidant capacity as GSH, trolox and uric acid. This appears of interest, given the increasing use of non-vitamins cocktails for therapeutical approaches to many oxidative-induced pathologies.
Collapse
Affiliation(s)
- F Franzoni
- Dipartimento di Medicina Interna, Università di Pisa, 67, Pisa, Italia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Jacob C. A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. Nat Prod Rep 2006; 23:851-63. [PMID: 17119635 DOI: 10.1039/b609523m] [Citation(s) in RCA: 247] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A range of sulfur-containing natural products from plants, fungi, bacteria and animals have recently been investigated to determine their therapeutic potential. Preliminary in vitro and in vivo studies of compounds such as ergothioneine, ovothiols, allicin, leinamycin, varacin, lenthionine and diallyltetrasulfide have provided evidence for antioxidant, antibacterial, antimicrobial, antifungal and anticancer properties. The biological activity of these compounds is the result of specific chemical properties which converge in chemotypes such as thiols, disulfides, sulfenic and sulfinic acids,thiosulfinates, sulfoxides, sulfones and polysulfides. Redox-activity, catalysis, metal binding, enzyme inhibition and radical generation allow reactive sulfur species to interact with oxidative stressors, to affect the function of redox-sensitive cysteine proteins and to disrupt the integrity of DNA and cellular membranes. In some cases, the biological activity of sulfur-containing plant products depends on initial enzymatic activation, which allows thiosulfinates and isothiocyanates to be generated with high target selectivity. Not surprisingly, research into the biochemical and pharmacological properties of the lesser known sulfur chemotypes is rapidly gathering momentum.
Collapse
Affiliation(s)
- Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Universität des Saarlandes, Postfach 151150, D-66041, Saarbrücken, Germany.
| |
Collapse
|
106
|
Gründemann D, Harlfinger S, Golz S, Geerts A, Lazar A, Berkels R, Jung N, Rubbert A, Schömig E. Discovery of the ergothioneine transporter. Proc Natl Acad Sci U S A 2005; 102:5256-61. [PMID: 15795384 PMCID: PMC555966 DOI: 10.1073/pnas.0408624102] [Citation(s) in RCA: 402] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Indexed: 11/18/2022] Open
Abstract
Variants of the SLC22A4 gene are associated with susceptibility to rheumatoid arthritis and Crohn's disease. SLC22A4 codes for an integral membrane protein, OCTN1, that has been presumed to carry organic cations like tetraethylammonium across the plasma membrane. Here, we show that the key substrate of this transporter is in fact ergothioneine (ET). Human OCTN1 was expressed in 293 cells. A substrate lead, stachydrine (alias proline betaine), was identified by liquid chromatography MS difference shading, a new substrate search strategy. Analysis of transport efficiency of stachydrine-related solutes, affinity, and Na+ dependence indicates that the physiological substrate is ET. Efficiency of transport of ET was as high as 195 microl per min per mg of protein. By contrast, the carnitine transporter OCTN2 from rat did not transport ET at all. Because ET is transported >100 times more efficiently than tetraethylammonium and carnitine, we propose the functional name ETT (ET transporter) instead of OCTN1. ET, all of which is absorbed from food, is an intracellular antioxidant with metal ion affinity. Its particular purpose is unresolved. Cells with expression of ETT accumulate ET to high levels and avidly retain it. By contrast, cells lacking ETT do not accumulate ET, because their plasma membrane is virtually impermeable for this compound. The real-time PCR expression profile of human ETT, with strong expression in CD71+ cells, is consistent with a pivotal function of ET in erythrocytes. Moreover, prominent expression of ETT in monocytes and SLC22A4 polymorphism associations suggest a protective role of ET in chronic inflammatory disorders.
Collapse
Affiliation(s)
- Dirk Gründemann
- Department of Pharmacology, University of Cologne, Gleueler Strasse 24, 50931 Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Park TH, Kim DH, Kim CH, Jung HA, Choi JS, Lee JW, Chung HY. Peroxynitrite scavenging mode of alaternin isolated from Cassia tora. J Pharm Pharmacol 2005; 56:1315-21. [PMID: 15482647 DOI: 10.1211/0022357044229] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Peroxynitrite (ONOO-), formed from the reaction of superoxide (.O2-) and nitric oxide (NO), is a potent oxidant that contributes to the oxidation of various cellular constituents, including lipids, amino acids, sulfhydryls and nucleotides. It can cause cellular injury, such as DNA fragmentation and apoptotic cell death. ONOO- toxicity is also reported to be involved in inflammatory and neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and atherosclerosis. Moreover, the necessity for a strong ONOO- scavenger is important because of the lack of endogenous enzymes that protect against the damage caused by ONOO-. The aim of this study was to evaluate the ability of natural products to scavenge ONOO-. We tested various plant extracts for their ONOO- scavenging activity. Among them, extract from Cassia tora, which is well known as an oriental herb in traditional medicine, showed potent ONOO- scavenging activity. Further analysis identified the phenolic active components, alaternin and nor-rubrofusarin glucose, as potent ONOO- scavengers. Spectrophotometric analysis demonstrated that alaternin and nor-rubrofusarin glucose led to a decrease in the ONOO- -mediated nitration of tyrosine through electron donation. In bovine serum albumin, alaternin, but not nor-rubrofusarin glucose, showed significant inhibition of ONOO- -mediated nitration in a dose-dependent manner. We believe alaternin can be developed as an effective ONOO- scavenger for the prevention of ONOO- -associated diseases.
Collapse
Affiliation(s)
- Tae Hyun Park
- College of Pharmacy, Aging Tissue Bank, Pusan National University, Busan 609-735, Korea
| | | | | | | | | | | | | |
Collapse
|
108
|
Abstract
Variants of the SLC22A4 gene are associated with susceptibility to rheumatoid arthritis and Crohn's disease. SLC22A4 codes for an integral membrane protein, OCTN1, that has been presumed to carry organic cations like tetraethylammonium across the plasma membrane. Here, we show that the key substrate of this transporter is in fact ergothioneine (ET). Human OCTN1 was expressed in 293 cells. A substrate lead, stachydrine (alias proline betaine), was identified by liquid chromatography MS difference shading, a new substrate search strategy. Analysis of transport efficiency of stachydrine-related solutes, affinity, and Na+ dependence indicates that the physiological substrate is ET. Efficiency of transport of ET was as high as 195 microl per min per mg of protein. By contrast, the carnitine transporter OCTN2 from rat did not transport ET at all. Because ET is transported >100 times more efficiently than tetraethylammonium and carnitine, we propose the functional name ETT (ET transporter) instead of OCTN1. ET, all of which is absorbed from food, is an intracellular antioxidant with metal ion affinity. Its particular purpose is unresolved. Cells with expression of ETT accumulate ET to high levels and avidly retain it. By contrast, cells lacking ETT do not accumulate ET, because their plasma membrane is virtually impermeable for this compound. The real-time PCR expression profile of human ETT, with strong expression in CD71+ cells, is consistent with a pivotal function of ET in erythrocytes. Moreover, prominent expression of ETT in monocytes and SLC22A4 polymorphism associations suggest a protective role of ET in chronic inflammatory disorders.
Collapse
|
109
|
Hand CE, Taylor NJ, Honek JF. Ab initio studies of the properties of intracellular thiols ergothioneine and ovothiol. Bioorg Med Chem Lett 2005; 15:1357-60. [PMID: 15713386 DOI: 10.1016/j.bmcl.2005.01.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 01/05/2005] [Accepted: 01/10/2005] [Indexed: 11/30/2022]
Abstract
Intracellular naturally occurring aromatic thiols such as ergothioneine and the ovothiols have been shown to play a variety of roles in cellular function. A detailed ab initio electronic structure analysis of these thiols is reported evaluating the thermodynamics of the reactions of these intracellular thiols with alkyl thiols, HO*, H2O2, ascorbate and their disulfides.
Collapse
Affiliation(s)
- Christine E Hand
- Chemistry Department, University of Waterloo, Waterloo, Ontario, Canada
| | | | | |
Collapse
|
110
|
Wilson TJG, Thomsen KK, Petersen BO, Duus JØ, Oliver RP. Detection of 3-hydroxykynurenine in a plant pathogenic fungus. Biochem J 2003; 371:783-8. [PMID: 12556224 PMCID: PMC1223336 DOI: 10.1042/bj20021797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Revised: 01/22/2003] [Accepted: 01/30/2003] [Indexed: 12/18/2022]
Abstract
A redox-active compound has been purified from the barley powdery mildew fungus Blumeria ( Erysiphe ) graminis f. sp. hordei. A combination of spectrophotometry, MS and NMR has identified it as 3-hydroxykynurenine (3OHKyn). This compound, never previously detected in any fungus or pathogen, is best known for its role in vertebrate cataracts. It is found abundantly in developing and germinating spores and also in runner hyphae. Two roles for 3OHKyn are discussed: first, the presence of active oxygen species would enable 3OHKyn to cross-link the spore chemically with the plant. Secondly, it may be acting as an UV protectant and an antioxidant.
Collapse
Affiliation(s)
- T J Greer Wilson
- Division of Science and Engineering, Australian Centre for Necrotrophic Fungal Pathogens, Murdoch University, Perth, WA 6150, Australia.
| | | | | | | | | |
Collapse
|
111
|
Guijarro MV, Indart A, Aruoma OI, Viana M, Bonet B. Effects of ergothioneine on diabetic embryopathy in pregnant rats. Food Chem Toxicol 2002; 40:1751-5. [PMID: 12419688 DOI: 10.1016/s0278-6915(02)00177-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The natural antioxidant ergothioneine (2-mercaptohistidine trimethylbetaine) is a fungal metabolite and found in most plant and animal tissues. The effect of ergothioneine on diabetic embryopathy in rats was assessed. Supplementation of diabetic pregnant rats with L-ergothioneine (1.147 mg/kg body weight) daily for the first 11.5 days of pregnancy reduced the rate of embryo malformations, to values similar to the non-diabetic animals. The ergothioneine had no effect on the plasma glucose levels, both in diabetic and control animals. We conclude that the inhibition of the glucose-mediated free radical dependent embryo malformation by ergothioneine is an important antioxidant prophylactic mechanism, which when combined with vitamin E could benefit the management of diabetic embryopathy.
Collapse
Affiliation(s)
- M V Guijarro
- Facultad de Ciencias Experimentales y Técnicas, Universidad de San Pablo CEU, PO Box 67, 28660 Boadilla del Monte, Madrid, Spain
| | | | | | | | | |
Collapse
|
112
|
Moncaster JA, Walsh DT, Gentleman SM, Jen LS, Aruoma OI. Ergothioneine treatment protects neurons against N-methyl-D-aspartate excitotoxicity in an in vivo rat retinal model. Neurosci Lett 2002; 328:55-9. [PMID: 12123858 DOI: 10.1016/s0304-3940(02)00427-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Injection of the glutamate agonist N-methyl-D-aspartate into the vitreous body of the rat eye resulted in a number of morphological changes in the retina. Most apparent was a dramatic reduction in the density and sizes of neurons accompanied by a decrease in amyloid precursor protein and glial fibrillary acidic protein immunoreactivity. Cell counts revealed that 81% of ganglion cells and 43% of non-ganglion cells were lost as a result of the treatment. However, in animals treated with the antioxidant ergothioneine, these figures dropped to 44 and 31%, respectively. Thus, ergothioneine appears to be neuroprotective in this system and the data suggest that antioxidants may provide a useful means of modulating glutamate-based toxicity.
Collapse
Affiliation(s)
- Juliet A Moncaster
- Department of Neuroinflammation, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Hospital, Fulham Palace Road, London W6 8RF, UK
| | | | | | | | | |
Collapse
|
113
|
Abstract
Glutathione metabolism is associated with oxygenic cyanobacteria and the oxygen-utilizing purple bacteria, but is absent in many other prokaryotes. This review focuses on novel thiols found in those bacteria lacking glutathione. Included are glutathione amide and its perthiol, produced by phototrophic purple sulfur bacteria and apparently involved in their sulfide metabolism. Among archaebacteria, coenzyme M (2-mercaptoethanesulfonic acid) and coenzyme B (7-mercaptoheptanoylthreonine phosphate) play central roles in the anaerobic production of CH4 and associated energy conversion by methanogens, whereas the major thiol in the aerobic phototrophic halobacteria is gamma-glutamylcysteine. The highly aerobic actinomycetes produce mycothiol, a conjugate of N-acetylcysteine with a pseudodisaccharide of glucosamine and myo-inositol, AcCys-GlcNalpha(1 --> 1)Ins, which appears to play an antioxidant role similar to glutathione. Ergothioneine, also produced by actinomycetes, remains a mystery despite many years of study. Available data on the biosynthesis and metabolism of these and other novel thiols is summarized and key areas for additional study are identified.
Collapse
Affiliation(s)
- R C Fahey
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| |
Collapse
|
114
|
Misiti F, Castagnola M, Zuppi C, Giardina B, Messana I. Role of ergothioneine on S-nitrosoglutathione catabolism. Biochem J 2001; 356:799-804. [PMID: 11389687 PMCID: PMC1221906 DOI: 10.1042/0264-6021:3560799] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ergothioneine (ESH) is a low-molecular-mass thiol present in millimolar concentrations in a limited number of tissues, including erythrocytes, kidney, seminal fluid and liver; however, its biological function is still unclear. In the present study we investigated the role of ESH in the catabolism of S-nitrosoglutathione (GSNO). The results show that: (1) GSNO decomposition is strongly influenced by ESH (k"=0.178+/-0.032 M(-1) x s(-1)); (2) ammonia is the main nitrogen-containing compound generated by the reaction; and (3) nitrite is practically absent under both aerobic and anaerobic conditions. These findings are markedly different from those reported for the GSH-induced decomposition of GSNO, in which the nitrogen-containing end products are nitrite, ammonia and nitrous oxide (N(2)O) under aerobic conditions but nitrite, ammonia, nitric oxide (NO) and small quantities of hydroxylamine under anaerobic conditions. Considering the high concentration of ESH in specific cells, the reaction with GSNO should be considered as an important molecular event occurring in the cell.
Collapse
Affiliation(s)
- F Misiti
- Istituto di Chimica e Chimica Clinica, Facoltà di Medicina e Chirurgia Università Cattolica, Largo F. Vito 1, 00168 Roma, Italy
| | | | | | | | | |
Collapse
|
115
|
Renard P, Delaive E, Van Steenbrugge M, Remacle J, Raes M. Is the effect of interleukin-1 on glutathione oxidation in cultured human fibroblasts involved in nuclear factor-kappaB activation? Antioxid Redox Signal 2001; 3:329-40. [PMID: 11396485 DOI: 10.1089/152308601300185269] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our understanding of the interleukin-1 (IL-1) signaling molecular mechanisms has recently made considerable progress, with the discovery of the IL-1 receptor-associated kinase and the downstream enzymatic cascade that leads to the activation of nuclear factor-kappaB (NF-kappaB). IL-1 signaling and especially NF-kappaB activation are thought to be redox-sensitive, even though the precise nature and the molecular targets of the oxidants/antioxidants involved remain largely unknown. Here, we investigated the possible role of cellular oxidized/reduced glutathione (GSSG/GSH) balance in IL-1 signaling. We describe a quantitative method based on capillary electrophoresis designed to assay both intracellular GSH and GSSG in adhering fibroblasts. This method allows the GSSG/GSH balance to be followed during IL-1 stimulation. Our data show that IL-1 induces rapid and transient oxidation of intracellular glutathione in human fibroblasts. Using various antioxidants, including pyrrolidine dithiocarbamate and curcumin, we were unable to show a direct relationship between this IL-1-induced glutathione oxidation and NF-kappaB activation. Of the five antioxidants tested, only curcumin was able to inhibit IkappaBalpha degradation upstream and, hence, NF-kappaB DNA-binding activity and NF-kappaB-dependent expression of IL-6 downstream.
Collapse
Affiliation(s)
- P Renard
- Laboratoire de Biochimie et de Biologie Cellulaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium.
| | | | | | | | | |
Collapse
|
116
|
Aruoma OI, Spencer JP, Mahmood N. Protection against oxidative damage and cell death by the natural antioxidant ergothioneine. Food Chem Toxicol 1999; 37:1043-53. [PMID: 10566875 DOI: 10.1016/s0278-6915(99)00098-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The natural antioxidant ergothioneine (EGT) was tested for its ability to inhibit cell death caused by hydrogen peroxide (H2O2) and to inhibit DNA oxidation by peroxynitrite (ONOO-) in human neuronal hybridoma cell line (N-18-RE-105). High concentrations of EGT (5 mM) were tolerated by the N-18-RE-105 cells. N-acetylcysteine (NAC) was not well tolerated by the cells at concentrations greater than 3 mM (cell viability averaged 50%). Increasing concentrations of EGT increases cell viability in the presence of NAC. EGT at concentrations up to 2 mM weakly improved cell viability in the presence of H2O2. NAC at concentrations up to 2 mM weakly decreased, but not significantly, the viability of the cells. At a higher concentration of 5 mM, NAC weakly protected the neuronal cells against the H2O2-induced cell death. The protection was significantly enhanced by preincubation with EGT. Ergothioneine inhibited ONOO(-)-induced oxidative damage in isolated calf thymus DNA and DNA in N-18-RE-105 cells. The concentration of EGT in human and mammalian tissue has been estimated to be 1-2 mM, which suggests that EGT may serve as a non-toxic thiol buffering antioxidant in vivo and may find applications in pharmaceutical preparations where oxidative stability is desired.
Collapse
Affiliation(s)
- O I Aruoma
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
117
|
Abstract
Intracellular antioxidants include low molecular weight scavengers of oxidizing species, and enzymes which degrade superoxide and hydroperoxides. Such antioxidants systems prevent the uncontrolled formation of free radicals and activated oxygen species, or inhibit their reactions with biological structures. Hydrophilic scavengers are found in cytosolic, mitochondrial and nuclear compartments. Ascorbate and glutathione scavenge oxidizing free radicals in water by means of one-electron or hydrogen atom transfer. Similarly, ergothioneine scavenges hydroxyl radicals at very high rates, but it acts more specifically as a chemical scavenger of hypervalent ferryl complexes, halogenated oxidants and peroxynitrite-derived nitrating species, and as a physical quencher of singlet oxygen. Hydrophobic scavengers are found in cell membranes where they inhibit or interrupt chain reactions of lipid peroxidation. In animal cells, they include alpha-tocopherol (vitamin E) which is a primary scavenger of lipid peroxyl radicals, and carotenoids which are secondary scavengers of free radicals as well as physical quenchers of singlet oxygen. The main antioxidant enzymes include dismutases such as superoxide dismutases (SOD) and catalases, which do not consume cofactors, and peroxidases such as selenium-dependent glutathione peroxidases (GPx) in animals or ascorbate peroxidases (APx) in plants. The reducing coenzymes of peroxidases, and as a rule all reducing components of the antioxidant network, are regenerated at the expense of NAD(P)H produced in specific metabolic pathways. Synergistic and co-operative interactions of antioxidants rely on the sequential degradation of peroxides and free radicals as well as on mutual protections of enzymes. This antioxidant network can induce metabolic deviations and plays an important role in the regulation of protein expression and/or activity at the transcriptional or post-translational levels. Its biological significance is discussed in terms of environmental adaptations and functional regulations of aerobic cells.
Collapse
|
118
|
Aruoma OI. Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy. Free Radic Res 1999; 30:419-27. [PMID: 10400454 DOI: 10.1080/10715769900300461] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Plant-food-derived antioxidants and active principles such as flavonoids, hydroxycinnamates (ferulic acid, chlorogenic acids, vanillin etc.), beta-carotene and other carotenoids, vitamin E, vitamin C, or rosemary, sage, tea and numerous extracts are increasingly proposed as important dietary antioxidant factors. In this endeavor, assays involving oxidative DNA damage for characterizing the potential antioxidant actions are suggested as in vitro screens of antioxidant efficacy. The critical question is the bioavailability of the plant-derived antioxidants.
Collapse
Affiliation(s)
- O I Aruoma
- Faculty of Pharmaceutical Sciences, University of São Paulo-Ribeirão Preto, Brazil.
| |
Collapse
|
119
|
Davis JL, Mendiratta S, May JM. Similarities in the metabolism of alloxan and dehydroascorbate in human erythrocytes. Biochem Pharmacol 1998; 55:1301-7. [PMID: 9719486 DOI: 10.1016/s0006-2952(97)00637-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The beta-cell toxin alloxan is reduced within cells to dialuric acid, which may then decompose to release damaging reactive oxygen species. We tested whether such redox cycling of alloxan occurs in the human erythrocyte, a cell with stronger antioxidant defenses than beta-cells. Erythrocytes incubated with increasing concentrations of alloxan progressively accumulated dialuric acid, as measured directly by HPLC with electrochemical detection. At concentrations up to 2 mM, alloxan decreased cellular GSH slightly, but did not affect erythrocyte contents of ascorbate or alpha-tocopherol. Intracellular H2O2 generation, measured as inhibition of endogenous catalase activity in the presence of 3-amino-1,2,4-triazole (aminotriazole), was decreased by alloxan. Despite its failure to induce significant oxidant stress in erythrocytes, 2 mM of alloxan doubled the activity of the hexose monophosphate pathway (HMP). This likely reflected consumption of reducing equivalents during reduction of alloxan to dialuric acid. Alloxan pretreatment enhanced the ability of erythrocytes to reduce extracellular ferricyanide while protecting alpha-tocopherol in the cell membrane from oxidation by ferricyanide. Ninhydrin, a hydrophobic derivative of alloxan, showed similar effects, but caused progressive GSH depletion and cell lysis at concentrations above 50 microM. The ability of alloxan to enhance ferricyanide reduction and to spare alpha-tocopherol suggests that dialuric acid or other reducing species within the cells can protect or recycle alpha-tocopherol and donate electrons to a transmembrane transfer process. This behavior resembles that observed for the dehydroascorbate (DHA)/ascorbate pair, and leads to the unexpected conclusion that alloxan increases the reducing capacity of the erythrocyte.
Collapse
Affiliation(s)
- J L Davis
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-6303, USA
| | | | | |
Collapse
|
120
|
Shires TK, Brummel MC, Pulido JS, Stegink LD. Ergothioneine distribution in bovine and porcine ocular tissues. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1997; 117:117-20. [PMID: 9185334 DOI: 10.1016/s0742-8413(96)00223-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Ergothioneine (ERT), is a low molecular weight, sulfur-containing antioxidant occurring in up to millimolar amounts in mammalian tissues. Using an improved HPLC assay, ERT levels have been measured and compared in bovine and porcine eyes and erythrocytes. The rank order of ERT levels in bovine ocular tissue was lens > retina = cornea > pigmented retinal epithelium (RPE) > aqueous humor (AQ) > vitreous humor (VIT) > sclera. In porcine ocular tissue, the rank order was retina > AQ > VIT > RPE > cornea > lens > sclera. ERT levels in bovine lens were about 250 x > that in porcine lens. Porcine erythrocyte levels were 5.5 x > bovine levels. Species differences were also observed in the retina, VIT and AQ where porcine levels were 2 to 10-fold greater than bovine levels. ERT in bovine lens and cornea was 35 and 14 times greater than the corresponding level of reduced glutathione (GSH). Porcine lens had 45 times more GSH than ERT. Values for ERT and GSH in other tissues from both species were of the same order of magnitude. These results are consistent with a role for ERT in prevention of oxidative damage to the eye.
Collapse
Affiliation(s)
- T K Shires
- Department of Pharmacology, College of Medicine, University of Iowa, Iowa City 52242, USA
| | | | | | | |
Collapse
|
121
|
Aruoma OI, Whiteman M, England TG, Halliwell B. Antioxidant action of ergothioneine: assessment of its ability to scavenge peroxynitrite. Biochem Biophys Res Commun 1997; 231:389-91. [PMID: 9070285 DOI: 10.1006/bbrc.1997.6109] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The superoxide radical (O.2-) and nitric oxide (NO.) combine very rapidly to form peroxynitrite (ONOO-), a reactive tissue damaging nitrogen species thought to be involved in the pathology of several chronic diseases. The natural product ergothioneine protects against the nitration of tyrosine and the inactivation of alpha 1-antiproteinase by ONOO-. Ergothioneine merits further investigation as a biological and therapeutic antioxidant agent.
Collapse
Affiliation(s)
- O I Aruoma
- Pharmacology Group, University of London King's College, United Kingdom
| | | | | | | |
Collapse
|
122
|
Steenkamp DJ, Weldrick D, Spies HS. Studies on the biosynthesis of ovothiol A. Identification of 4-mercaptohistidine as an intermediate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 242:557-66. [PMID: 9022682 DOI: 10.1111/j.1432-1033.1996.0557r.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The recent discovery of N1-methyl-4-mercaptohistidine (ovothiol A), a small aromatic thiol, in Crithidia fasciculata made it possible to study its biosynthesis in an organism which can be cultured in large quantities and under defined growth conditions. Radiolabeling experiments using intact cells indicated that the methyl group in ovothiol A is derived from methionine, while 35S was incorporated from either cysteine or methionine. Three lines of evidence suggested that transsulfuration preceded the methylation step: (a) Crithidia fasciculata failed to convert radiolabeled N pi-methylhistidine to ovothiol A. (b) Ovothiol A was poorly separated from a component which was labeled by [14C]histidine and by [35S]cysteine, but not by [methyl-3H] methionine. (c) Dialysed crude extracts of C. fasciculata catalysed the conversion of histidine to a thiolated species in the presence of pyridoxal phosphate, iron and cysteine in the absence of S-adenosylmethionine. The product of the in vitro reaction was isolated as the bimane derivative. Structural analysis using 1H and 13C-NMR spectroscopy confirmed its identity as the bimane derivative of 4-mercaptohistidine.
Collapse
Affiliation(s)
- D J Steenkamp
- Department of Chemical Pathology, University of Cape Town Medical School, Observatory, South Africa.
| | | | | |
Collapse
|
123
|
Asmus KD, Bensasson RV, Bernier JL, Houssin R, Land EJ. One-electron oxidation of ergothioneine and analogues investigated by pulse radiolysis: redox reaction involving ergothioneine and vitamin C. Biochem J 1996; 315 ( Pt 2):625-9. [PMID: 8615839 PMCID: PMC1217242 DOI: 10.1042/bj3150625] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Redox reactions of endogenous and exogenous sulphur-containing compounds are involved in protection against oxidative damage arising from the incidence and/or treatment of many diseases, including cancer. We have investigated, via pulse radiolysis, the one-electron oxidation of ergothioneine, a molecule with antioxidant properties which is detected at millimolar concentrations in certain tissues and fluids subject to oxidative stress, including erythrocytes and plasma. The spectrum of the transient species, assigned to the product of one-electron oxidation, observed after reaction of ergothioneine with the oxidizing radicals OH., N3. and CCl3O2. has a maximum absorption at 520 nm and is very similar to that obtained by oxidation of analogous molecules such as 2-mercaptoimidazole, 1-methyl-2-mercaptoimidazole, S-methyl- and S,N-dimethyl-ergothioneine. In the presence of vitamin C, the oxidized form of ergothioneine is repaired by a rapid reduction (k = 6.3 x 10(8) M(-1).s(-1)) producing ascorbyl radicals. This co-operative interaction between ergothionine and ascorbate, similar to that previously observed between vitamin E and ascorbate, may contribute to essential biological redox protection.
Collapse
Affiliation(s)
- K D Asmus
- Radiation Laboratory, University of Notre Dame, IN 46556, USA
| | | | | | | | | |
Collapse
|
124
|
Some chemical and biochemical constraints of oxidative stress in living cells* *This chapter is dedicated to René Buvet († November 26, 1992) who led me to the astonishing world of oxygen biochemistry. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/s0167-7306(08)60438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
125
|
Rae CD, Sweeney KJ, Kuchel PW. Stability and nonreactivity of ergothioneine in human erythrocytes studied by 1H NMR. Magn Reson Med 1993; 29:826-9. [PMID: 8350728 DOI: 10.1002/mrm.1910290617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The N(CH3)3 resonance of ergothioneine in 1H spin-echo Fourier transform (SEFT) NMR spectra of red blood cells is usually a large singlet and it has been common practice to use this apparently unchanging resonance as an intensity reference. Recently, Reglinski et al. (Magn. Reson. Med. 6, 217-223 (1988)) have questioned this practice, reporting changes seen in the resonance in response to oxidative stress induced by arsenicals. We propose that the changes in the ergothioneine resonance that were reported are artifacts due to alterations in osmolality and magnetic susceptibility induced by the addition of nonisotonic solutions to red blood cell suspensions. These factors change the specific intensity of the intracellular resonances of all compounds. Ergothioneine was observed not to take part in any chemical reactions with arsenicals in free solution or in intact erythrocytes, and we conclude that ergothioneine may still be used as an internal intensity reference in 1H SEFT NMR spectra, bearing in mind the above physical factors.
Collapse
Affiliation(s)
- C D Rae
- Department of Biochemistry, University of Sydney, NSW, Australia
| | | | | |
Collapse
|
126
|
Newton GL, Fahey RC, Cohen G, Aharonowitz Y. Low-molecular-weight thiols in streptomycetes and their potential role as antioxidants. J Bacteriol 1993; 175:2734-42. [PMID: 8478335 PMCID: PMC204577 DOI: 10.1128/jb.175.9.2734-2742.1993] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The intracellular low-molecular-weight thiols present in five gram-positive Streptomyces species and one Flavobacterium species were analyzed by high-performance liquid chromatography after fluorescence labeling with monobromobimane. Bacteria were chosen to include penicillin and cephalosporin beta-lactam producers and nonproducers. No significant amount of glutathione was found in any of the streptomycetes. Major intracellular thiols in all strains examined were cysteine, coenzyme A, sulfide, thiosulfate, and an unknown thiol designated U17. Those streptomycetes that make beta-lactam antibiotics also produce significant amounts of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV), a key intermediate in their biosynthesis. In Streptomyces clavuligerus, a potent producer of beta-lactams, the level of ACV was low during the early phase of growth and increased rapidly toward the end of exponential growth, paralleling that of antibiotic production. These and other observations indicate that ACV does not function as a protective thiol in streptomycetes. U17 may have this role since it was the major thiol in all streptomycetes and appeared to occur at levels about 10-fold higher than those of the other thiols measured, including ACV. Purification and amino acid analysis of U17 indicated that it contains cysteine and an unusual amine that is not one of the common amino acids. This thiol is identical to an unknown thiol found previously in Micrococcus roseus and Streptomyces griseus. A high level of ergothioneine was found in Streptomyces lactamdurans, and several unidentified thiols were detected in this and other streptomycetes.
Collapse
Affiliation(s)
- G L Newton
- Department of Chemistry, University of California, San Diego, La Jolla 92093
| | | | | | | |
Collapse
|
127
|
Hartman PE, Hartman Z. Direct interception of mutagens and carcinogens by biomolecules. BASIC LIFE SCIENCES 1993; 61:351-366. [PMID: 8304946 DOI: 10.1007/978-1-4615-2984-2_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Five points are emphasized: 1. Chemical interception and mere physical exclusion of mutagens and carcinogens constitute the major means by which mutations in cellular DNA are prevented. DNA repair processes comprise critical, but relatively minor, modes of genetic protection. 2. Disruption of a mutagen-interception defense mechanism can lead to substantial increases in mutagenesis and can preordain sites to eventual tumor formation. 3. Quantitation of the relative contributions of various blocking molecules is often simplified by the fact that protection can be calculated merely through knowledge of the measured concentration of the antimutagen and its rate of reaction with specific mutagens as measured in straightforward in vitro tests. 4. Two recently recognized defensive molecules, carnosine and ergothioneine, are put ++forward as examples of interesting chemical interceptor molecules. 5. Essentially all antimutagens are in fact "double-edged swords." Situations can be artificially constructed that can lead to generation of toxic species from molecules that are normally antimutagens; in isolated cases some of these interactions can be pictured as having deleterious consequences in vivo. This may be one reason why a number of important antimutagens are often sequestered, either in different tissues or by binding to dispensable macromolecules.
Collapse
Affiliation(s)
- P E Hartman
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
128
|
Daub ME, Leisman GB, Clark RA, Bowden EF. Reductive detoxification as a mechanism of fungal resistance to singlet oxygen-generating photosensitizers. Proc Natl Acad Sci U S A 1992; 89:9588-92. [PMID: 1409670 PMCID: PMC50177 DOI: 10.1073/pnas.89.20.9588] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Fungi that are resistant or sensitive to the singlet oxygen-generating toxin cercosporin were assayed for their ability to detoxify it by reduction. Cercosporin reduction was assayed microscopically by using bandpass filters to differentiate between fluorescence emission from cercosporin and reduced cercosporin. Hyphae of the resistant Cercospora and Alternaria species emitted a green fluorescence, indicative of reduced cercosporin. Hyphae of nonviable cultures and of cercosporin-sensitive fungi did not reduce cercosporin. Sensitive fungi occasionally reduced cercosporin when incubated with reducing agents that protect against cercosporin toxicity. Cercosporin could not be efficiently photoreduced in the absence of the fungus. Cercospora species were also resistant to eosin Y but were sensitive to rose bengal. Microscopic observation demonstrated that Cercospora species were not capable of reducing rose bengal but were capable of reducing eosin Y. These observations were supported by in vitro electrochemical measurements that revealed the following order with respect to ease of reduction: cercosporin >> eosin Y > rose bengal. The formal redox potential (E 0') of cercosporin at pH 7.5 was found to be -0.14 V vs. the normal hydrogen electrode. We conclude that Cercospora species protect themselves against cercosporin by the reduction and detoxification of the toxin molecule.
Collapse
Affiliation(s)
- M E Daub
- Department of Plant Pathology, North Carolina State University, Raleigh 27695-7616
| | | | | | | |
Collapse
|
129
|
Hartman Z, Hartman PE. Copper and cobalt complexes of carnosine and anserine: production of active oxygen species and its enhancement by 2-mercaptoimidazoles. Chem Biol Interact 1992; 84:153-68. [PMID: 1327555 DOI: 10.1016/0009-2797(92)90076-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Phosphate buffer solutions of two dipeptides prevalent in striated muscle, L-carnosine (beta-alanyl-L-histidine) and L-anserine (beta-alanyl-L-1-methylhistidine), produce active oxygen species as measured by bleaching of N,N-dimethyl-4-nitrosoaniline (RNO). Activity is enhanced 5-14-fold in the presence of 2-mercaptoimidazoles such as ergothioneine, carbimazole (3-methyl-2-mercaptoimidazole-1-carboxylate), methimazole (2-mercapto-1-methylimidazole) and 2-mercaptoimidazole but only slightly by thiourea and dimethylthiourea. Activity is proportional to carnosine concentration and to mercaptoimidazole concentration at a fixed concentration of the second component. A variety of imidazoles closely related to carnosine and anserine are inactive, even after addition of transition metal ions. Activity is moderately increased above the pKa of the carnosine imidazole ring (pH 7.2, 7.5 and 8.0) versus below the pKa (pH 6.5 and 6.8). Activity is slightly increased by addition of copper or cobalt ions but not by addition of ferrous or ferric ions. Activity is decreased by Chelex 100 pretreatment of phosphate buffer and stimulated when copper or cobalt ions are added to the chelated buffer but there is no significant stimulation by ferric ions. Catalase eliminates most activity but superoxide dismutase has little effect. We propose that metal-carnosine and metal-anserine complexes produce superoxide and also serve as superoxide dismutases with resultant accumulation of hydrogen peroxide. An unidentified radical produced from hydrogen peroxide subsequently bleaches RNO. From the biological distributions of carnosine, anserine and ergothioneine, we infer that deleterious effects are probably minimal under normal physiological circumstances due to tissue and cellular compartmentalization and to sequestration of these compounds and transition metal ions.
Collapse
Affiliation(s)
- Z Hartman
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218
| | | |
Collapse
|
130
|
Han JS. Effects of various chemical compounds on spontaneous and hydrogen peroxide-induced reversion in strain TA104 of Salmonella typhimurium. Mutat Res 1992; 266:77-84. [PMID: 1373841 DOI: 10.1016/0027-5107(92)90174-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In experiments designed to determine which active oxygen species contribute to hydrogen peroxide (HP)-induced reversion in strain TA104 of Salmonella typhimurium, 1,10-phenanthroline (an iron chelator, which prevents the formation of hydroxyl radicals from HP and DNA-bound iron by the Fenton reaction), sodium azide (a singlet oxygen scavenger), and potassium iodide (an hydroxyl radical scavenger) inhibited HP-induced reversion. These results indicate that hydroxyl radicals generated from HP by the Fenton reaction, and perhaps singlet oxygen, contribute to HP-induced reversion in TA104. However, reduced glutathione (reduces Fe3+ to Fe2+ and/or HP to water), diethyldithiocarbamic acid (an inhibitor of superoxide dismutase), diethyl maleate (a glutathione scavenger), and 3-amino-1,2,4-triazole (an inhibitor of catalase) did not inhibit HP-induced reversion in TA104. Thus, superoxide radical anions and HP itself do not appear to be the cause of HP-induced reversion in this strain. In experiments on the effect of 5 common dietary compounds (beta-carotene, retinoic acid, and vitamins A, C and E), chlorophyllin (CHL), and ergothioneine, the frequency of revertants in TA104 increased above the spontaneous frequency in the presence of beta-carotene or vitamin C (about 2-fold) or vitamin A (about 3-fold). The 5 dietary antimutagens and CHL did not inhibit HP-induced reversion in TA104. However, L-ergothioneine inhibited HP-induced reversion in this strain. Therefore, it is likely that L-ergothioneine is a scavenger of hydroxyl radicals or an inhibitor of their formation, and perhaps of singlet oxygen, at the concentrations tested in TA104.
Collapse
Affiliation(s)
- J S Han
- Department of Biological Sciences, Illinois State University, Normal 61761
| |
Collapse
|
131
|
Sollod CC, Jenns AE, Daub ME. Cell surface redox potential as a mechanism of defense against photosensitizers in fungi. Appl Environ Microbiol 1992; 58:444-9. [PMID: 1610167 PMCID: PMC195267 DOI: 10.1128/aem.58.2.444-449.1992] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The phytotoxin cercosporin, a singlet oxygen-generating photosensitizer, is toxic to plants, mice, and many fungi, yet the fungi that produce it, Cercospora spp., are resistant. We hypothesize that resistance to cercosporin may result from a reducing environment at the cell surface. Twenty tetrazolium dyes differing in redox potential were used as indicators of cell surface redox potential of seven fungal species differing in resistance to cercosporin. Resistant fungi were able to reduce significantly more dyes than were sensitive fungi. A correlation between dye reduction and cercosporin resistance was also observed when resistance levels of Cercospora species were manipulated by growth on different media. The addition of the reducing agents ascorbate, cysteine, and reduced glutathione (GSH) to growth media decreased cercosporin toxicity for sensitive fungi. None of these agents directly reduced cercosporin at the concentrations at which they protected fungi. Spectral and thin-layer chromatographic analyses of cercosporin solutions containing the different reducing agents indicated that GSH, but not cysteine or ascorbate, reacted with cercosporin. Resistant and sensitive fungi did not differ in endogenous levels of cysteine, GSH, or total thiols. On the basis of data from this and other studies, this report presents a model which proposes that cercosporin resistance results from the production of reducing power at the surfaces of resistant cells, leading to transient reduction and detoxification of the cercosporin molecule.
Collapse
Affiliation(s)
- C C Sollod
- Department of Plant Pathology, North Carolina State University, Raleigh 27695-7616
| | | | | |
Collapse
|
132
|
Smith RC, Gore JZ. STIMULATION BY COPPER(II) OF REACTIVITY OF VARIOUS SULFHYDRYL-CONTAINING COMPOUNDS WITH 2,2-DIPHENYL-1-PICRYLHYDRAZYL. PHOSPHORUS SULFUR 1991. [DOI: 10.1080/10426509108034465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
133
|
Abstract
The most common fluorescent lamps in use today in homes and businesses in the United States, 'coolwhite' fluorescent lamps, emit light that is mutagenic for Salmonella. Strains that carry both a uvrB mutation and plasmid pKM101 are extremely susceptible to this light-induced mutation. Both base substitution and frameshift mutations can be induced without substantial lethal effects on the bacteria. Induced mutations accumulate essentially as a linear function of the time bacteria are exposed to illumination. Of Salmonella histidine-requiring strains with known nucleotide target sequences (Hartman et al., 1986; Cebula and Koch, 1989, 1990), strains either carrying one of the base substitution mutations, hisG428 and hisG46, or one of the frameshifts, hisC3076 and hisD6610, are most highly mutagenized whereas frameshift strains with hisD6580 and hisD3052 exhibit lower rates of mutagenesis. Mutagenicity does not appear to require the presence of oxygen. A filter blocking wavelengths below 370 nm eliminates mutagenesis. Polystyrene, cellulose acetate and, especially, mylar and glass filters reduce mutagenesis, indicating that at least some of the mutagenic effects can be attributed to leakage of radiations below 290 nm (far-ultraviolet light) from 'coolwhite' lamps. The more recently introduced fluorescent 'softwhite' lamps are roughly 10-fold less mutagenic at approximately equal light intensity. Incandescent light bulbs are much less mutagenic than are these fluorescent lamps. Our mutational data correlate closely with previous results in eukaryotic cells (Jacobson and Krell, 1982). A uvrB recA Salmonella double mutant is hypersensitive to the lethal effects of coolwhite fluorescent light, even when illuminated through the lids of glass Petri dishes. Thus, appropriate Salmonella strains would appear to be simple and useful screens for both the mutagenic and the lethal activities of fluorescent lamps. These systems are amenable to classroom laboratory use as relatively safe and effective means of demonstrating environmental mutagenesis.
Collapse
Affiliation(s)
- Z Hartman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|
134
|
Hartman PE, Hartman Z, Ault KT. Scavenging of singlet molecular oxygen by imidazole compounds: high and sustained activities of carboxy terminal histidine dipeptides and exceptional activity of imidazole-4-acetic acid. Photochem Photobiol 1990; 51:59-66. [PMID: 2304979 DOI: 10.1111/j.1751-1097.1990.tb01684.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Singlet molecular oxygen was generated by illumination of phenosafranin in phosphate buffer at pH 7.5. Relative efficiencies of various imidazole compounds to form endoperoxides were assayed by following at 25 degrees C the rate of light- and imidazole-dependent bleaching of N,N-dimethyl-4-nitrosoaniline. Of over 30 imidazole compounds tested, imidazole-4-acetic acid, a major catabolite of histamine in mammals, exhibited the highest activity. L-Carnosine (beta-alanyl-L-histidine), a natural dipeptide prevalent in striated muscle of mammals, possessed several properties important for a physiologically significant scavenger of singlet oxygen. On a molar basis, this readily water-soluble C-terminal histidine dipeptide reacted with singlet oxygen two- to four-fold faster than free L-histidine and approximately two-fold faster than the N-terminal L-histidine dipeptides tested. Furthermore scavenging ability of L-carnosine did not appreciably increase or decrease with time of reaction, in contrast to behaviors exhibited by a number of other imidazole compounds that included some other C-terminal L-histidine dipeptides. The fungal metabolite, ergothioneine, blocked singlet oxygen generation by illuminated phenosafranin.
Collapse
Affiliation(s)
- P E Hartman
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218
| | | | | |
Collapse
|