101
|
Kahvejian A, Svitkin YV, Sukarieh R, M'Boutchou MN, Sonenberg N. Mammalian poly(A)-binding protein is a eukaryotic translation initiation factor, which acts via multiple mechanisms. Genes Dev 2005; 19:104-13. [PMID: 15630022 PMCID: PMC540229 DOI: 10.1101/gad.1262905] [Citation(s) in RCA: 368] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Translation initiation is a multistep process involving several canonical translation factors, which assemble at the 5'-end of the mRNA to promote the recruitment of the ribosome. Although the 3' poly(A) tail of eukaryotic mRNAs and its major bound protein, the poly(A)-binding protein (PABP), have been studied extensively, their mechanism of action in translation is not well understood and is confounded by differences between in vivo and in vitro systems. Here, we provide direct evidence for the involvement of PABP in key steps of the translation initiation pathway. Using a new technique to deplete PABP from mammalian cell extracts, we show that extracts lacking PABP exhibit dramatically reduced rates of translation, reduced efficiency of 48S and 80S ribosome initiation complex formation, and impaired interaction of eIF4E with the mRNA cap structure. Supplementing PABP-depleted extracts with wild-type PABP completely rectified these deficiencies, whereas a mutant of PABP, M161A, which is incapable of interacting with eIF4G, failed to restore translation. In addition, a stronger inhibition (approximately twofold) of 80S as compared to 48S ribosome complex formation (approximately 65% vs. approximately 35%, respectively) by PABP depletion suggests that PABP plays a direct role in 60S subunit joining. PABP can thus be considered a canonical translation initiation factor, integral to initiation complex formation at the 5'-end of mRNA.
Collapse
Affiliation(s)
- Avak Kahvejian
- Department of Biochemistry, McGill Cancer Center, McGill University, Montreal, Quebec, H3G 1Y6,Canada
| | | | | | | | | |
Collapse
|
102
|
Dunn EF, Hammell CM, Hodge CA, Cole CN. Yeast poly(A)-binding protein, Pab1, and PAN, a poly(A) nuclease complex recruited by Pab1, connect mRNA biogenesis to export. Genes Dev 2005; 19:90-103. [PMID: 15630021 PMCID: PMC540228 DOI: 10.1101/gad.1267005] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/02/2004] [Indexed: 11/25/2022]
Abstract
In eukaryotic cells, pre-mRNAs undergo extensive processing in the nucleus prior to export. Processing is subject to a quality-control mechanism that retains improperly processed transcripts at or near sites of transcription. A poly(A) tail added by the normal 3'-processing machinery is necessary but not sufficient for export. Retention depends on the exosome. In this study, we identify the poly(A)-binding protein, Pab1, and the poly(A) nuclease, PAN, as important factors that couple 3' processing to export. Pab1 contains a nonessential leucine-rich nuclear export signal and shuttles between the nucleus and the cytoplasm. It can exit the nucleus either as cargo of exportin 1 or bound to mRNA. Pab1 is essential but several bypass suppressors have been identified. Deletion of PAB1 from these bypass suppressor strains results in exosome-dependent retention at sites of transcription. Retention is also seen in cells lacking PAN, which Pab1 is thought to recruit and which may be responsible for the final step of mRNA biogenesis, trimming of the poly(A) tail to the length found on newly exported mRNAs. The studies presented here suggest that proper loading of Pab1 onto mRNAs and final trimming of the tail allows release from transcription sites and couples pre-mRNA processing to export.
Collapse
Affiliation(s)
- Ewan F Dunn
- Department of Biochemistry, the Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | |
Collapse
|
103
|
Lapeyre B. Conserved ribosomal RNA modification and their putative roles in ribosome biogenesis and translation. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b105433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
104
|
Dower K, Kuperwasser N, Merrikh H, Rosbash M. A synthetic A tail rescues yeast nuclear accumulation of a ribozyme-terminated transcript. RNA (NEW YORK, N.Y.) 2004; 10:1888-99. [PMID: 15547135 PMCID: PMC1370677 DOI: 10.1261/rna.7166704] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
To investigate the role of 3' end formation in yeast mRNA export, we replaced the mRNA cleavage and polyadenylation signal with a self-cleaving hammerhead ribozyme element. The resulting RNA is unadenylated and accumulates near its site of synthesis. Nonetheless, a significant fraction of this RNA reaches the cytoplasm. Nuclear accumulation was relieved by insertion of a stretch of DNA-encoded adenosine residues immediately upstream of the ribozyme element (a synthetic A tail). This indicates that a 3' stretch of adenosines can promote export, independently of cleavage and polyadenylation. We further show that a synthetic A tail-containing RNA is unaffected in 3' end formation mutant strains, in which a normally cleaved and polyadenylated RNA accumulates within nuclei. Our results support a model in which a polyA tail contributes to efficient mRNA progression away from the gene, most likely through the action of the yeast polyA-tail binding protein Pab1p.
Collapse
MESH Headings
- Base Sequence
- Cell Nucleus/metabolism
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- In Situ Hybridization, Fluorescence
- Models, Biological
- Mutation
- Poly A/chemistry
- Poly A/genetics
- Poly A/metabolism
- Poly(A)-Binding Proteins/genetics
- Poly(A)-Binding Proteins/metabolism
- RNA, Catalytic/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Ken Dower
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
105
|
Reverdatto SV, Dutko JA, Chekanova JA, Hamilton DA, Belostotsky DA. mRNA deadenylation by PARN is essential for embryogenesis in higher plants. RNA (NEW YORK, N.Y.) 2004; 10:1200-14. [PMID: 15247430 PMCID: PMC1370610 DOI: 10.1261/rna.7540204] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Deadenylation of mRNA is often the first and rate-limiting step in mRNA decay. PARN, a poly(A)-specific 3' --> 5' ribonuclease which is conserved in many eukaryotes, has been proposed to be primarily responsible for such a reaction, yet the importance of the PARN function at the whole-organism level has not been demonstrated in any species. Here, we show that mRNA deadenylation by PARN is essential for viability in higher plants (Arabidopsis thaliana). Yet, this essential requirement for the PARN function is not universal across the phylogenetic spectrum, because PARN is dispensable in Fungi (Schizosaccharomyces pombe), and can be at least severely downregulated without any obvious consequences in Metazoa (Caenorhabditis elegans). Development of the Arabidopsis embryos lacking PARN (AtPARN), as well as of those expressing an enzymatically inactive protein, was markedly retarded, and ultimately culminated in an arrest at the bent-cotyledon stage. Importantly, only some, rather than all, embryo-specific transcripts were hyperadenylated in the mutant embryos, suggesting that preferential deadenylation of a specific select subset of mRNAs, rather than a general deadenylation of the whole mRNA population, by AtPARN is indispensable for embryogenesis in Arabidopsis. These findings indicate a unique, nonredundant role of AtPARN among the multiple plant deadenylases.
Collapse
Affiliation(s)
- Sergei V Reverdatto
- Department of Biological Sciences, State University of New York at Albany, 12222, USA
| | | | | | | | | |
Collapse
|
106
|
Kühn U, Wahle E. Structure and function of poly(A) binding proteins. ACTA ACUST UNITED AC 2004; 1678:67-84. [PMID: 15157733 DOI: 10.1016/j.bbaexp.2004.03.008] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 03/30/2004] [Accepted: 03/31/2004] [Indexed: 01/01/2023]
Abstract
Poly (A) tails are found at the 3' ends of almost all eukaryotic mRNAs. They are bound by two different poly (A) binding proteins, PABPC in the cytoplasm and PABPN1 in the nucleus. PABPC functions in the initiation of translation and in the regulation of mRNA decay. In both functions, an interaction with the m7G cap at the 5' end of the message plays an important role. PABPN1 is involved in the synthesis of poly (A) tails, increasing the processivity of poly (A) polymerase and contributing to defining the length of a newly synthesized poly (A) tail.
Collapse
Affiliation(s)
- Uwe Kühn
- Institut für Biochemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Stasse. 3, D-06120 Halle, Germany
| | | |
Collapse
|
107
|
Mangus DA, Evans MC, Agrin NS, Smith M, Gongidi P, Jacobson A. Positive and negative regulation of poly(A) nuclease. Mol Cell Biol 2004; 24:5521-33. [PMID: 15169912 PMCID: PMC419872 DOI: 10.1128/mcb.24.12.5521-5533.2004] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PAN, a yeast poly(A) nuclease, plays an important nuclear role in the posttranscriptional maturation of mRNA poly(A) tails. The activity of this enzyme is dependent on its Pan2p and Pan3p subunits, as well as the presence of poly(A)-binding protein (Pab1p). We have identified and characterized the associated network of factors controlling the maturation of mRNA poly(A) tails in yeast and defined its relevant protein-protein interactions. Pan3p, a positive regulator of PAN activity, interacts with Pab1p, thus providing substrate specificity for this nuclease. Pab1p also regulates poly(A) tail trimming by interacting with Pbp1p, a factor that appears to negatively regulate PAN. Pan3p and Pbp1p both interact with themselves and with the C terminus of Pab1p. However, the domains required for Pan3p and Pbp1p binding on Pab1p are distinct. Single amino acid changes that disrupt Pan3p interaction with Pab1p have been identified and define a binding pocket in helices 2 and 3 of Pab1p's carboxy terminus. The importance of these amino acids for Pab1p-Pan3p interaction, and poly(A) tail regulation, is underscored by experiments demonstrating that strains harboring substitutions in these residues accumulate mRNAs with long poly(A) tails in vivo.
Collapse
Affiliation(s)
- David A Mangus
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | |
Collapse
|
108
|
Mangus DA, Smith MM, McSweeney JM, Jacobson A. Identification of factors regulating poly(A) tail synthesis and maturation. Mol Cell Biol 2004; 24:4196-206. [PMID: 15121841 PMCID: PMC400472 DOI: 10.1128/mcb.24.10.4196-4206.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional maturation of the 3' end of eukaryotic pre-mRNAs occurs as a three-step pathway involving site-specific cleavage, polymerization of a poly(A) tail, and trimming of the newly synthesized tail to its mature length. While most of the factors essential for catalyzing these reactions have been identified, those that regulate them remain to be characterized. Previously, we demonstrated that the yeast protein Pbp1p associates with poly(A)-binding protein (Pab1p) and controls the extent of mRNA polyadenylation. To further elucidate the function of Pbp1p, we conducted a two-hybrid screen to identify factors with which it interacts. Five genes encoding putative Pbp1p-interacting proteins were identified, including (i) FIR1/PIP1 and UFD1/PIP3, genes encoding factors previously implicated in mRNA 3'-end processing; (ii) PBP1 itself, confirming directed two-hybrid results and suggesting that Pbp1p can multimerize; (iii) DIG1, encoding a mitogen-activated protein kinase-associated protein; and (iv) PBP4 (YDL053C), a previously uncharacterized gene. In vitro polyadenylation reactions utilizing extracts derived from fir1 Delta and pbp1 Delta cells and from cells lacking the Fir1p interactor, Ref2p, demonstrated that Pbp1p, Fir1p, and Ref2p are all required for the formation of a normal-length poly(A) tail on precleaved CYC1 pre-mRNA. Kinetic analyses of the respective polyadenylation reactions indicated that Pbp1p is a negative regulator of poly(A) nuclease (PAN) activity and that Fir1p and Ref2p are, respectively, a positive regulator and a negative regulator of poly(A) synthesis. We suggest a model in which these three factors and Ufd1p are part of a regulatory complex that exploits Pab1p to link cleavage and polyadenylation factors of CFIA and CFIB (cleavage factors IA and IB) to the polyadenylation factors of CPF (cleavage and polyadenylation factor).
Collapse
Affiliation(s)
- David A Mangus
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
109
|
Inouye M, Phadtare S. Cold shock response and adaptation at near-freezing temperature in microorganisms. Sci Signal 2004; 2004:pe26. [PMID: 15199224 DOI: 10.1126/stke.2372004pe26] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Microorganisms that naturally encounter sharp temperature shifts must develop strategies for responding and adapting to these shifts. Escherichia coli, which are adapted to living at both warm temperatures inside animals and cooler ambient temperatures, respond to low temperatures (10 degrees to 15 degrees C) by adjusting membrane lipid composition and increasing the production of proteins that act as "RNA chaperones" required for transcription and translation and proteins that facilitate ribosomal assembly. In contrast, yeast, which are adapted to cooler temperatures, show a relatively minor cold shock response after temperature shifts from 30 degrees to 10 degrees C but respond with a dramatic increase in the synthesis of trehalose and a heat shock protein when exposed to freezing or near-freezing temperatures. This emphasizes the fact that different groups of microorganisms exhibit distinct types of cold shock responses.
Collapse
Affiliation(s)
- Masayori Inouye
- Robert Wood Johnson Medical School, Department of Biochemistry, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
110
|
Abstract
Great advances have been made in the past three decades in understanding the molecular mechanics underlying protein synthesis in bacteria, but our understanding of the corresponding events in eukaryotic organisms is only beginning to catch up. In this review we describe the current state of our knowledge and ignorance of the molecular mechanics underlying eukaryotic translation. We discuss the mechanisms conserved across the three kingdoms of life as well as the important divergences that have taken place in the pathway.
Collapse
Affiliation(s)
- Lee D Kapp
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
| | | |
Collapse
|
111
|
Holmes LEA, Campbell SG, De Long SK, Sachs AB, Ashe MP. Loss of translational control in yeast compromised for the major mRNA decay pathway. Mol Cell Biol 2004; 24:2998-3010. [PMID: 15024087 PMCID: PMC371117 DOI: 10.1128/mcb.24.7.2998-3010.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cytoplasmic fate of mRNAs is dictated by the relative activities of the intimately connected mRNA decay and translation initiation pathways. In this study, we have found that yeast strains compromised for stages downstream of deadenylation in the major mRNA decay pathway are incapable of inhibiting global translation initiation in response to stress. In the past, the paradigm of the eIF2alpha kinase-dependent amino acid starvation pathway in yeast has been used to evaluate this highly conserved stress response in all eukaryotic cells. Using a similar approach we have found that even though the mRNA decay mutants maintain high levels of general translation, they exhibit many of the hallmarks of amino acid starvation, including increased eIF2alpha phosphorylation and activated GCN4 mRNA translation. Therefore, these mutants appear translationally oblivious to decreased ternary complex abundance, and we propose that this is due to higher rates of mRNA recruitment to the 40S ribosomal subunit.
Collapse
Affiliation(s)
- L E A Holmes
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | | | |
Collapse
|
112
|
Kakoki M, Tsai YS, Kim HS, Hatada S, Ciavatta DJ, Takahashi N, Arnold LW, Maeda N, Smithies O. Altering the Expression in Mice of Genes by Modifying Their 3′ Regions. Dev Cell 2004; 6:597-606. [PMID: 15068798 DOI: 10.1016/s1534-5807(04)00094-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 02/12/2004] [Accepted: 02/13/2004] [Indexed: 11/15/2022]
Abstract
Polymorphic differences altering expression of genes without changing their products probably underlie human quantitative traits affecting risks of serious diseases, but methods for investigating such quantitative differences in animals are limited. Accordingly, we have developed a procedure for changing the expression in mice of chosen genes over a 100-fold range while retaining their chromosomal location and transcriptional controls. To develop the procedure, we first dissected the effects in embryonic stem (ES) cells of elements within and downstream of the 3' untranslated region (UTR) of a single copy transgene at the Hprt locus. As expected, protein expression varied with the steady-state level and half-life of the mRNA. The rank order of expression with various tested 3' regions is the same in ES cells, and in cardiomyocytes and trophoblastocytes derived from them. In mice having two functionally different native genes with modified 3'UTRs, the desired expression was obtained.
Collapse
Affiliation(s)
- Masao Kakoki
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Kuyumcu-Martinez NM, Van Eden ME, Younan P, Lloyd RE. Cleavage of poly(A)-binding protein by poliovirus 3C protease inhibits host cell translation: a novel mechanism for host translation shutoff. Mol Cell Biol 2004; 24:1779-90. [PMID: 14749392 PMCID: PMC344173 DOI: 10.1128/mcb.24.4.1779-1790.2004] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 06/26/2003] [Accepted: 10/29/2003] [Indexed: 11/20/2022] Open
Abstract
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) by viral 2A protease (2Apro) has been proposed to cause severe translation inhibition in poliovirus-infected cells. However, infections containing 1 mM guanidine-HCl result in eIF4GI cleavage but only partial translation shutoff, indicating eIF4GI cleavage is insufficient for drastic translation inhibition. Viral 3C protease (3Cpro) cleaves poly(A)-binding protein (PABP) and removes the C-terminal domain (CTD) that interacts with several translation factors. In HeLa cell translation extracts that exhibit cap-poly(A) synergy, partial cleavage of PABP by 3Cpro inhibited translation of endogenous mRNAs and reporter RNA as effectively as complete cleavage of eIF4GI and eIF4GII by 2Apro. 3Cpro-mediated translation inhibition was poly(A) dependent, and addition of PABP to extracts restored translation. Expression of 3Cpro in HeLa cells resulted in partial PABP cleavage and similar inhibition of translation. PABP cleavage did not affect eIF4GI-PABP interactions, and the results of kinetics experiments suggest that 3Cpro might inhibit late steps in translation or ribosome recycling. The data illustrate the importance of the CTD of PABP in poly(A)-dependent translation in mammalian cells. We propose that enteroviruses use a dual strategy for host translation shutoff, requiring cleavage of PABP by 3Cpro and of eIF4G by 2Apro.
Collapse
Affiliation(s)
- N Muge Kuyumcu-Martinez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
114
|
Uchida N, Hoshino SI, Katada T. Identification of a Human Cytoplasmic Poly(A) Nuclease Complex Stimulated by Poly(A)-binding Protein. J Biol Chem 2004; 279:1383-91. [PMID: 14583602 DOI: 10.1074/jbc.m309125200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The poly(A) tail shortening in mRNA, called deadenylation, is the first rate-limiting step in eukaryotic mRNA turnover, and the polyadenylate-binding protein (PABP) appears to be involved in the regulation of this step. However, the precise role of PABP remains largely unknown in higher eukaryotes. Here we identified and characterized a human PABP-dependent poly(A) nuclease (hPAN) complex consisting of catalytic hPan2 and regulatory hPan3 subunits. hPan2 has intrinsically a 3' to 5' exoribonuclease activity and requires Mg2+ for the enzyme activity. On the other hand, hPan3 interacts with PABP to simulate hPan2 nuclease activity. Interestingly, the hPAN nuclease complex has a higher substrate specificity to poly(A) RNA upon its association with PABP. Consistent with the roles of hPan2 and hPan3 in mRNA decay, the two subunits exhibit cytoplasmic co-localization. Thus, the human PAN complex is a poly(A)-specific exoribonuclease that is stimulated by PABP in the cytoplasm.
Collapse
Affiliation(s)
- Naoyuki Uchida
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
115
|
Kozlov G, De Crescenzo G, Lim NS, Siddiqui N, Fantus D, Kahvejian A, Trempe JF, Elias D, Ekiel I, Sonenberg N, O'Connor-McCourt M, Gehring K. Structural basis of ligand recognition by PABC, a highly specific peptide-binding domain found in poly(A)-binding protein and a HECT ubiquitin ligase. EMBO J 2003; 23:272-81. [PMID: 14685257 PMCID: PMC1271756 DOI: 10.1038/sj.emboj.7600048] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Accepted: 12/01/2003] [Indexed: 11/08/2022] Open
Abstract
The C-terminal domain of poly(A)-binding protein (PABC) is a peptide-binding domain found in poly(A)-binding proteins (PABPs) and a HECT (homologous to E6-AP C-terminus) family E3 ubiquitin ligase. In protein synthesis, the PABC domain of PABP functions to recruit several translation factors possessing the PABP-interacting motif 2 (PAM2) to the mRNA poly(A) tail. We have determined the solution structure of the human PABC domain in complex with two peptides from PABP-interacting protein-1 (Paip1) and Paip2. The structures show a novel mode of peptide recognition, in which the peptide binds as a pair of beta-turns with extensive hydrophobic, electrostatic and aromatic stacking interactions. Mutagenesis of PABC and peptide residues was used to identify key protein-peptide interactions and quantified by isothermal calorimetry, surface plasmon resonance and GST pull-down assays. The results provide insight into the specificity of PABC in mediating PABP-protein interactions.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Gregory De Crescenzo
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Canada
| | - Nadia S Lim
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Nadeem Siddiqui
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Daniel Fantus
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Avak Kahvejian
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Jean-François Trempe
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Demetra Elias
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Irena Ekiel
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Canada
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | - Maureen O'Connor-McCourt
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Canada
| | - Kalle Gehring
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G 1Y6. Tel.: +1 514 398 7287; Fax: +1 514 398 7384; E-mail:
| |
Collapse
|
116
|
Chekanova JA, Belostotsky DA. Evidence that poly(A) binding protein has an evolutionarily conserved function in facilitating mRNA biogenesis and export. RNA (NEW YORK, N.Y.) 2003; 9:1476-90. [PMID: 14624004 PMCID: PMC1370502 DOI: 10.1261/rna.5128903] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Accepted: 08/20/2003] [Indexed: 05/18/2023]
Abstract
Eukaryotic poly(A) binding protein (PABP) is a ubiquitous, essential cellular factor with well-characterized roles in translational initiation and mRNA turnover. In addition, there exists genetic and biochemical evidence that PABP has an important nuclear function. Expression of PABP from Arabidopsis thaliana, PAB3, rescues an otherwise lethal phenotype of the yeast pab1Delta mutant, but it neither restores the poly(A) dependent stimulation of translation, nor protects the mRNA 5' cap from premature removal. In contrast, the plant PABP partially corrects the temporal lag that occurs prior to the entry of mRNA into the decay pathway in the yeast strains lacking Pab1p. Here, we examine the nature of this lag-correction function. We show that PABP (both PAB3 and the endogenous yeast Pab1p) act on the target mRNA via physically binding to it, to effect the lag correction. Furthermore, substituting PAB3 for the yeast Pab1p caused synthetic lethality with rna15-2 and gle2-1, alleles of the genes that encode a component of the nuclear pre-mRNA cleavage factor I, and a factor associated with the nuclear pore complex, respectively. PAB3 was present physically in the nucleus in the complemented yeast strain and was able to partially restore the poly(A) tail length control during polyadenylation in vitro, in a poly(A) nuclease (PAN)-dependent manner. Importantly, PAB3 in yeast also promoted the rate of entry of mRNA into the translated pool, rescued the conditional lethality, and alleviated the mRNA export defect of the nab2-1 mutant when overexpressed. We propose that eukaryotic PABPs have an evolutionarily conserved function in facilitating mRNA biogenesis and export.
Collapse
Affiliation(s)
- Julia A Chekanova
- Department of Biological Sciences, State University of New York at Albany, Albany, New York 12222, USA.
| | | |
Collapse
|
117
|
Hosoda N, Kobayashi T, Uchida N, Funakoshi Y, Kikuchi Y, Hoshino S, Katada T. Translation termination factor eRF3 mediates mRNA decay through the regulation of deadenylation. J Biol Chem 2003; 278:38287-91. [PMID: 12923185 DOI: 10.1074/jbc.c300300200] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Messenger RNA decay, which is a regulated process intimately linked to translation, begins with the deadenylation of the poly(A) tail at the 3' end. However, the precise mechanism triggering the first step of mRNA decay and its relationship to translation have not been elucidated. Here, we show that the translation termination factor eRF3 mediates mRNA deadenylation and decay in the yeast Saccharomyces cerevisiae. The N-domain of eRF3, which is not necessarily required for translation termination, interacts with the poly(A)-binding protein PABP. When this interaction is blocked by means of deletion or overexpression of the N-domain of eRF3, half-lives of all mRNAs are prolonged. The eRF3 mutant lacking the N-domain is deficient in the poly(A) shortening. Furthermore, the eRF3-mediated mRNA decay requires translation to proceed, especially ribosomal transition through the termination codon. These results indicate that the N-domain of eRF3 mediates mRNA decay by regulating deadenylation in a manner coupled to translation.
Collapse
Affiliation(s)
- Nao Hosoda
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
118
|
Mangus DA, Evans MC, Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 2003; 4:223. [PMID: 12844354 PMCID: PMC193625 DOI: 10.1186/gb-2003-4-7-223] [Citation(s) in RCA: 449] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Most eukaryotic mRNAs are subject to considerable post-transcriptional modification, including capping, splicing, and polyadenylation. The process of polyadenylation adds a 3' poly(A) tail and provides the mRNA with a binding site for a major class of regulatory factors, the poly(A)-binding proteins (PABPs). These highly conserved polypeptides are found only in eukaryotes; single-celled eukaryotes each have a single PABP, whereas humans have five and Arabidopis has eight. They typically bind poly(A) using one or more RNA-recognition motifs, globular domains common to numerous other eukaryotic RNA-binding proteins. Although they lack catalytic activity, PABPs have several roles in mediating gene expression. Nuclear PABPs are necessary for the synthesis of the poly(A) tail, regulating its ultimate length and stimulating maturation of the mRNA. Association with PABP is also a requirement for some mRNAs to be exported from the nucleus. In the cytoplasm, PABPs facilitate the formation of the 'closed loop' structure of the messenger ribonucleoprotein particle that is crucial for additional PABP activities that promote translation initiation and termination, recycling of ribosomes, and stability of the mRNA. Collectively, these sequential nuclear and cytoplasmic contributions comprise a cycle in which PABPs and the poly(A) tail first create and then eliminate a network of cis- acting interactions that control mRNA function.
Collapse
Affiliation(s)
- David A Mangus
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0122, USA
| | - Matthew C Evans
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0122, USA
| | - Allan Jacobson
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655-0122, USA
| |
Collapse
|
119
|
Kahvejian A, Roy G, Sonenberg N. The mRNA closed-loop model: the function of PABP and PABP-interacting proteins in mRNA translation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:293-300. [PMID: 12762031 DOI: 10.1101/sqb.2001.66.293] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- A Kahvejian
- Department of Biochemistry, McGill Cancer Center, McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
120
|
Edmonds M. A history of poly A sequences: from formation to factors to function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 71:285-389. [PMID: 12102557 DOI: 10.1016/s0079-6603(02)71046-5] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biological polyadenylation, first recognized as an enzymatic activity, remained an orphan enzyme until poly A sequences were found on the 3' ends of eukarvotic mRNAs. Their presence in bacteria viruses and later in archeae (ref. 338) established their universality. The lack of compelling evidence for a specific function limited attention to their cellular formation. Eventually the newer techniques of molecular biology and development of accurate nuclear processing extracts showed 3' end formation to be a two-step process. Pre-mRNA was first cleaved endonucleolytically at a specific site that was followed by sequential addition of AMPs from ATP to the 3' hydroxyl group at the end of mRNA. The site of cleavage was specified by a conserved hexanucleotide, AAUAAA, from 10 to 30 nt upstream of this 3' end. Extensive purification of these two activities showed that more than 10 polypeptides were needed for mRNA 3' end formation. Most of these were in complexes involved in the cleavage step. Two of the best characterized are CstF and CPSF, while two other remain partially purified but essential. Oddly, the specific proteins involved in phosphodiester bond hydrolysis have yet to be identified. The polyadenylation step occurs within the complex of poly A polymerase and poly A-binding protein, PABII, that controls poly A length. That the cleavage complex, CPSF, is also required for this step attests to a tight coupling of the two steps of 3' and formation. The reaction reconstituted from these RNA-free purified factors correctly processes pre-mRNAs. Meaningful analysis of the role of poly A in mRNA metabolism or function was possible once quantities of these proteins most often over-expressed from cDNA clones became available. The large number needed for two simple reactions of an endonuclease, a polymerase and a sequence recognition factor, pointed to 3' end formation as a regulated process. Polyadenylation itself had appeared to require regulation in cases where two poly A sites were alternatively processed to produce mRNA coding for two different proteins. The 64-KDa subunit of CstF is now known to be a regulator of poly A site choice between two sites in the immunoglobulin heavy chain of B cells. In resting cells the site used favors the mRNA for a membrane-bound protein. Upon differentiation to plasma cells, an upstream site is used the produce a secreted form of the heavy chain. Poly A site choice in the calcitonin pre-mRNA involves splicing factors at a pseudo splice site in an intron downstream of the active poly site that interacts with cleavage factors for most tissues. The molecular basis for choice of the alternate site in neuronal tissue is unknown. Proteins needed for mRNA 3' end formation also participate in other RNA-processing reactions: cleavage factors bind to the C-terminal domain of RNA polymerase during transcription; splicing of 3' terminal exons is stimulated port of by cleavage factors that bind to splicing factors at 3' splice sites. nuclear ex mRNAs is linked to cleavage factors and requires the poly A II-binding protein. Most striking is the long-sought evidence for a role for poly A in translation in yeast where it provides the surface on which the poly A-binding protein assembles the factors needed for the initiation of translation. This adaptability of eukaryotic cells to use a sequence of low information content extends to bacteria where poly A serves as a site for assembly of an mRNA degradation complex in E. coli. Vaccinia virus creates mRNA poly A tails by a streamlined mechanism independent of cleavage that requires only two proteins that recognize unique poly A signals. Thus, in spite of 40 years of study of poly A sequences, this growing multiplicity of uses and even mechanisms of formation seem destined to continue.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/metabolism
- Escherichia coli/genetics
- Escherichia coli/metabolism
- History, 20th Century
- RNA Processing, Post-Transcriptional
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/history
- RNA, Messenger/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Vaccinia virus/genetics
- Vaccinia virus/metabolism
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Mary Edmonds
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
121
|
Ling J, Morley SJ, Pain VM, Marzluff WF, Gallie DR. The histone 3'-terminal stem-loop-binding protein enhances translation through a functional and physical interaction with eukaryotic initiation factor 4G (eIF4G) and eIF3. Mol Cell Biol 2002; 22:7853-67. [PMID: 12391154 PMCID: PMC134745 DOI: 10.1128/mcb.22.22.7853-7867.2002] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metazoan cell cycle-regulated histone mRNAs are unique cellular mRNAs in that they terminate in a highly conserved stem-loop structure instead of a poly(A) tail. Not only is the stem-loop structure necessary for 3'-end formation but it regulates the stability and translational efficiency of histone mRNAs. The histone stem-loop structure is recognized by the stem-loop-binding protein (SLBP), which is required for the regulation of mRNA processing and turnover. In this study, we show that SLBP is required for the translation of mRNAs containing the histone stem-loop structure. Moreover, we show that the translation of mRNAs ending in the histone stem-loop is stimulated in Saccharomyces cerevisiae cells expressing mammalian SLBP. The translational function of SLBP genetically required eukaryotic initiation factor 4E (eIF4E), eIF4G, and eIF3, and expressed SLBP coisolated with S. cerevisiae initiation factor complexes that bound the 5' cap in a manner dependent on eIF4G and eIF3. Furthermore, eIF4G coimmunoprecipitated with endogenous SLBP in mammalian cell extracts and recombinant SLBP and eIF4G coisolated. These data indicate that SLBP stimulates the translation of histone mRNAs through a functional interaction with both the mRNA stem-loop and the 5' cap that is mediated by eIF4G and eIF3.
Collapse
Affiliation(s)
- Jun Ling
- Department of Biochemistry, University of California, Riverside, California 92521-0129, USA
| | | | | | | | | |
Collapse
|
122
|
Brengues M, Pintard L, Lapeyre B. mRNA decay is rapidly induced after spore germination of Saccharomyces cerevisiae. J Biol Chem 2002; 277:40505-12. [PMID: 12181322 DOI: 10.1074/jbc.m206700200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spores from the yeast Saccharomyces cerevisiae can germinate and resume their vegetative growth when placed in favorable conditions. Biochemical studies on germination have been limited by the difficulty of obtaining a pure population of spores germinating synchronously. Here, we report that spores can be purified and sorted according to their size by centrifugal elutriation and that these spores are able to germinate synchronously. Synchronizing their development has allowed reevaluating certain parameters of germination, and we demonstrate that both transcription and translation are induced very rapidly after germination induction. Spores contain mRNAs that are stable for several months in spores kept at 4 degrees C. Germination induction leads to very rapid degradation of these mRNAs, thus providing a simple model to study induction of mRNA decay in eukaryotes. mRNAs from the spore are polyadenylated, capped, and cosediment on sucrose gradients with ribosomes and polysomes and with components of the mRNA degradation machinery. The presence of polysomes in the spores led us to evaluate the activity of the translation apparatus in these cells. We present evidence that there is ongoing transcription and translation in nongerminating yeast spores incubated in water at 30 degrees C, suggesting that these activities could play a role in spore long term survival.
Collapse
MESH Headings
- Base Sequence
- DNA Primers
- Glucose/metabolism
- Microscopy, Electron, Scanning
- Nucleic Acid Conformation
- Organelles/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Spores, Fungal/physiology
- Spores, Fungal/ultrastructure
Collapse
Affiliation(s)
- Muriel Brengues
- Centre de Recherche de Biochimie Macromoléculaire du CNRS, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | | | | |
Collapse
|
123
|
Hollams EM, Giles KM, Thomson AM, Leedman PJ. MRNA stability and the control of gene expression: implications for human disease. Neurochem Res 2002; 27:957-80. [PMID: 12462398 DOI: 10.1023/a:1020992418511] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Regulation of gene expression is essential for the homeostasis of an organism, playing a pivotal role in cellular proliferation, differentiation, and response to specific stimuli. Multiple studies over the last two decades have demonstrated that the modulation of mRNA stability plays an important role in regulating gene expression. The stability of a given mRNA transcript is determined by the presence of sequences within an mRNA known as cis-elements, which can be bound by trans-acting RNA-binding proteins to inhibit or enhance mRNA decay. These cis-trans interactions are subject to a control by a wide variety of factors including hypoxia, hormones, and cytokines. In this review, we describe mRNA biosynthesis and degradation, and detail the cis-elements and RNA-binding proteins known to affect mRNA turnover. We present recent examples in which dysregulation of mRNA stability has been associated with human diseases including cancer, inflammatory disease, and Alzheimer's disease.
Collapse
Affiliation(s)
- Elysia M Hollams
- Laboratory for Cancer Medicine and University Department of Medicine, Western Australian Institute for Medical Research and University of Western Australia, Perth, Australia
| | | | | | | |
Collapse
|
124
|
Maegawa S, Yamashita M, Yasuda K, Inoue K. Zebrafish DAZ-like protein controls translation via the sequence ‘GUUC’. Genes Cells 2002; 7:971-84. [PMID: 12296827 DOI: 10.1046/j.1365-2443.2002.00576.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND In many species, DAZ homologous genes encode RNA-binding proteins containing two conserved motifs, namely the RNA-recognition motif (RRM) and the DAZ motif. Genetic analysis and gene disruption studies have demonstrated that DAZ family proteins play important roles in gametogenesis. However, little is known about the biochemical functions of DAZ family proteins. RESULTS Using in vitro selection and UV-crosslinking experiments, we identified the sequence 'GUUC' as the target RNA sequence of zebrafish DAZ-like protein (zDAZL). In transfection experiments, zDAZL protein activated translation in a manner dependent on the binding sequence in the 3'UTR of the Drosophila twine gene or zDazl gene. Moreover, it is highly likely that the zDAZL protein associates with polysomes through the DAZ motif in vivo, and that the association with polysomes is indispensable for translational activation. CONCLUSIONS This is the first report that the DAZ family protein directly promotes the translation of the target mRNAs in vertebrates. This study provides important insights into the molecular mechanisms underlying the post-transcriptional regulation of DAZ family proteins in gametogenesis.
Collapse
Affiliation(s)
- Shingo Maegawa
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0101, Japan
| | | | | | | |
Collapse
|
125
|
Abstract
The steady-state levels of mRNAs depend upon their combined rates of synthesis and processing, transport from the nucleus to cytoplasm, and decay in the cytoplasm. In eukaryotic cells, the degradation of mRNA is an essential determinant in the regulation of gene expression, and it can be modulated in response to developmental, environmental, and metabolic signals. This level of regulation is particularly important for proteins that are active for a brief period, such as growth factors, transcription factors, and proteins that control cell cycle progression. The mechanisms by which mRNAs are degraded and the sequence elements within the mRNAs that affect their stability are the subject of this review. We will summarize the current state of knowledge regarding cis-acting elements in mRNA and trans-acting factors that contribute to mRNA regulation decay. We will then consider the mechanisms by which specific signaling proteins seem to contribute to a dynamic organization of the mRNA degradation machinery in response to physiological stimuli.
Collapse
Affiliation(s)
- Hélène Tourrière
- Institut de génétique moléculaire, UMR5535 du CNRS, IFR 24, 1919, route de Mende, 34293 Montpellier cedex 5, France
| | | | | |
Collapse
|
126
|
Kozlov G, Siddiqui N, Coillet-Matillon S, Trempe JF, Ekiel I, Sprules T, Gehring K. Solution structure of the orphan PABC domain from Saccharomyces cerevisiae poly(A)-binding protein. J Biol Chem 2002; 277:22822-8. [PMID: 11940585 DOI: 10.1074/jbc.m201230200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have determined the solution structure of the PABC domain from Saccharomyces cerevisiae Pab1p and mapped its peptide-binding site. PABC domains are peptide binding domains found in poly(A)-binding proteins (PABP) and are a subset of HECT-family E3 ubiquitin ligases (also known as hyperplastic discs proteins (HYDs)). In mammals, the PABC domain of PABP functions to recruit several different translation factors to the mRNA poly(A) tail. PABC domains are highly conserved, with high specificity for peptide sequences of roughly 12 residues with conserved alanine, phenylalanine, and proline residues at positions 7, 10, and 12. Compared with human PABP, the yeast PABC domain is missing the first alpha helix, contains two extra amino acids between helices 2 and 3, and has a strongly bent C-terminal helix. These give rise to unique peptide binding specificity wherein yeast PABC binds peptides from Paip2 and RF3 but not Paip1. Mapping of the peptide-binding site reveals that the bend in the C-terminal helix disrupts binding interactions with the N terminus of peptide ligands and leads to greatly reduced binding affinity for the peptides tested. No high affinity or natural binding partners from S. cerevisiae could be identified by sequence analysis of known PABC ligands. Comparison of the three known PABC structures shows that the features responsible for peptide binding are highly conserved and responsible for the distinct but overlapping binding specificities.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | | | | | |
Collapse
|
127
|
Abstract
Cells respond and adapt to changes in the environment. In this study, we examined the effect of environmental stresses on protein synthesis in the yeast Saccharomyces cerevisiae. We found that osmotic stress causes irreversible inhibition of methionine uptake, transient inhibition of uracil uptake, transient stimulation of glucose uptake, transient repression of ribosomal protein (RP) genes such as CYH2 and RPS27, and the transient inhibition of translation initiation. Rapid inhibition of translation initiation by osmotic stress requires a novel pathway, different from the amino acid-sensing pathway, the glucose-sensing pathway, and the TOR pathway. The Hog1 MAP kinase pathway is not involved in the inhibition of either methionine uptake or translation initiation but is required for the adaptation of translation initiation after inhibition and the repression of RP genes by osmotic stress. These results suggest that the transient inhibition of translation initiation occurs as a result of a combination of both acute inhibition of translation and the long-term activation of translation by the Hog1 pathway.
Collapse
Affiliation(s)
- Yukifumi Uesono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
128
|
Hector RE, Nykamp KR, Dheur S, Anderson JT, Non PJ, Urbinati CR, Wilson SM, Minvielle-Sebastia L, Swanson MS. Dual requirement for yeast hnRNP Nab2p in mRNA poly(A) tail length control and nuclear export. EMBO J 2002; 21:1800-10. [PMID: 11927564 PMCID: PMC125947 DOI: 10.1093/emboj/21.7.1800] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Recent studies of mRNA export factors have provided additional evidence for a mechanistic link between mRNA 3'-end formation and nuclear export. Here, we identify Nab2p as a nuclear poly(A)-binding protein required for both poly(A) tail length control and nuclear export of mRNA. Loss of NAB2 expression leads to hyperadenylation and nuclear accumulation of poly(A)(+) RNA but, in contrast to mRNA export mutants, these defects can be uncoupled in a nab2 mutant strain. Previous studies have implicated the cytoplasmic poly(A) tail-binding protein Pab1p in poly(A) tail length control during polyadenylation. Although cells are viable in the absence of NAB2 expression when PAB1 is overexpressed, Pab1p fails to resolve the nab2Delta hyperadenylation defect even when Pab1p is tagged with a nuclear localization sequence and targeted to the nucleus. These results indicate that Nab2p is essential for poly(A) tail length control in vivo, and we demonstrate that Nab2p activates polyadenylation, while inhibiting hyperadenylation, in the absence of Pab1p in vitro. We propose that Nab2p provides an important link between the termination of mRNA polyadenylation and nuclear export.
Collapse
Affiliation(s)
| | | | - Sonia Dheur
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| | - James T. Anderson
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| | | | | | - Scott M. Wilson
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| | - Lionel Minvielle-Sebastia
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| | - Maurice S. Swanson
- Department of Molecular Genetics and Microbiology, Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL 32610-0266, USA and
IBGC-CNRS, University of Bordeaux 2, 1 Rue Camille Saint Saens, Bordeaux, France Present address: Department of Biology, Marquette University, Milwaukee, WI 53233, USA Present address: National Cancer Institute–Frederick Cancer Research Facility and Development Center, Frederick, MD 21702, USA Corresponding author e-mail:
| |
Collapse
|
129
|
Kuyumcu-Martinez NM, Joachims M, Lloyd RE. Efficient cleavage of ribosome-associated poly(A)-binding protein by enterovirus 3C protease. J Virol 2002; 76:2062-74. [PMID: 11836384 PMCID: PMC135927 DOI: 10.1128/jvi.76.5.2062-2074.2002] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Accepted: 12/04/2001] [Indexed: 11/20/2022] Open
Abstract
Poliovirus (PV) causes a rapid and drastic inhibition of host cell cap-dependent protein synthesis during infection while preferentially allowing cap-independent translation of its own genomic RNA via an internal ribosome entry site element. Inhibition of cap-dependent translation is partly mediated by cleavage of an essential translation initiation factor, eIF4GI, during PV infection. In addition to cleavage of eIF4GI, cleavage of eIF4GII and poly(A)-binding protein (PABP) has been recently proposed to contribute to complete host translation shutoff; however, the relative importance of eIF4GII and PABP cleavage has not been determined. At times when cap-dependent translation is first blocked during infection, only 25 to 35% of the total cellular PABP is cleaved; therefore, we hypothesized that the pool of PABP associated with polysomes may be preferentially targeted by viral proteases. We have investigated what cleavage products of PABP are produced in vivo and the substrate determinants for cleavage of PABP by 2A protease (2A(pro)) or 3C protease (3C(pro)). Our results show that PABP in ribosome-enriched fractions is preferentially cleaved in vitro and in vivo compared to PABP in other fractions. Furthermore, we have identified four N-terminal PABP cleavage products produced during PV infection and have shown that viral 3C protease generates three of the four cleavage products. Also, 3C(pro) is more efficient in cleaving PABP in ribosome-enriched fractions than 2A(pro) in vitro. In addition, binding of PABP to poly(A) RNA stimulates 3C(pro)-mediated cleavage and inhibits 2A(pro)-mediated cleavage. These results suggest that 3C(pro) plays a major role in processing PABP during virus infection and that the interaction of PABP with translation initiation factors, ribosomes, or poly(A) RNA may promote its cleavage by viral 2A and 3C proteases.
Collapse
Affiliation(s)
- N Muge Kuyumcu-Martinez
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
130
|
Valentini SR, Casolari JM, Oliveira CC, Silver PA, McBride AE. Genetic interactions of yeast eukaryotic translation initiation factor 5A (eIF5A) reveal connections to poly(A)-binding protein and protein kinase C signaling. Genetics 2002; 160:393-405. [PMID: 11861547 PMCID: PMC1461981 DOI: 10.1093/genetics/160.2.393] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The highly conserved eukaryotic translation initiation factor eIF5A has been proposed to have various roles in the cell, from translation to mRNA decay to nuclear protein export. To further our understanding of this essential protein, three temperature-sensitive alleles of the yeast TIF51A gene have been characterized. Two mutant eIF5A proteins contain mutations in a proline residue at the junction between the two eIF5A domains and the third, strongest allele encodes a protein with a single mutation in each domain, both of which are required for the growth defect. The stronger tif51A alleles cause defects in degradation of short-lived mRNAs, supporting a role for this protein in mRNA decay. A multicopy suppressor screen revealed six genes, the overexpression of which allows growth of a tif51A-1 strain at high temperature; these genes include PAB1, PKC1, and PKC1 regulators WSC1, WSC2, and WSC3. Further results suggest that eIF5A may also be involved in ribosomal synthesis and the WSC/PKC1 signaling pathway for cell wall integrity or related processes.
Collapse
Affiliation(s)
- Sandro R Valentini
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
131
|
Bag J. Feedback inhibition of poly(A)-binding protein mRNA translation. A possible mechanism of translation arrest by stalled 40 S ribosomal subunits. J Biol Chem 2001; 276:47352-60. [PMID: 11590158 DOI: 10.1074/jbc.m107676200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An adenine-rich cis element at the 5'-untranslated region (UTR) of Pabp1 mRNA is able to inhibit translation of its own mRNA. Similar inhibition of translation of a reporter beta-galactosidase mRNA is observed when the adenine-rich auto regulatory sequence (ARS) is placed within the 5'-UTR of this mRNA. For this translational control the distance of the ARS from the 5' cap is not important. However, it determines the number of 40 S ribosomal subunits bound to the translationally arrested mRNA. Inhibition of mRNA translation by this regulatory sequence occurs at the step of joining of the 60 S ribosomal subunit to the pre-initiation complex. Translational arrest of the ARS containing mRNA in a rabbit reticulocyte lysate cell-free system in the presence of exogenous Pabp1 protects the 5'-flanking region of the ARS from nuclease digestion. This protection depends on the binding of the 40 S ribosomal subunit to the mRNA. The size and the sequence of the nucleotide-protected fragment depends on the location of the ARS within the 5'-UTR. When the ARS is located at a distance of about 78 nucleotides from the 5' cap, a 40-nucleotide long region adjacent to the ARS is protected. On the other hand, when the ARS is moved further away from the 5' cap to a distance of approximately 267 nucleotides, a 100-nucleotide-long region adjacent to the ARS is protected from nuclease digestion. Nuclease protection is attributed to the presence of one or more stalled 40 S ribosomal subunits near the Pabp1-bound ARS.
Collapse
Affiliation(s)
- J Bag
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
132
|
Kamiya H, Tsuchiya H, Yamazaki J, Harashima H. Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv Drug Deliv Rev 2001; 52:153-64. [PMID: 11718940 DOI: 10.1016/s0169-409x(01)00216-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of this review is to summarize the critical steps in intracellular trafficking and the principal factors involved in transgene expression by a comparison of viral and non-viral gene vectors. Intracellular trafficking of viral and non-viral gene vectors are reviewed kinetically as well as from the mechanistic point of view. The peptide-dependent specific mechanism of endosomal escape by viral vectors is compared with the non-specific mechanism of non-viral vectors. Regarding the nuclear transport of DNA, a number of recently developed strategies in non-viral vectors such as the application of nuclear localization signals or cell specific transcription factors are summarized in comparison with viral nuclear gene delivery. The molecular mechanisms of transcription and the translation of delivered genes to nucleus are also summarized in view of drug delivery systems. This information is intended to serve as a basis for developing a new gene delivery system for both viral and non-viral gene vectors. Optimizing the gene delivery system by integrating this intracellular trafficking as well as transgene expression will be required in order to develop an efficient and an safe gene delivery system.
Collapse
Affiliation(s)
- H Kamiya
- Laboratory for Molecular Design of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita 12, Nishi 6, Sapporo 060-0812, Japan
| | | | | | | |
Collapse
|
133
|
Feng Y, Huang H, Liao J, Cohen SN. Escherichia coli poly(A)-binding proteins that interact with components of degradosomes or impede RNA decay mediated by polynucleotide phosphorylase and RNase E. J Biol Chem 2001; 276:31651-6. [PMID: 11390393 DOI: 10.1074/jbc.m102855200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The multifunctional ribonuclease RNase E and the 3'-exonuclease polynucleotide phosphorylase (PNPase) are major components of an Escherichia coli ribonucleolytic "machine" that has been termed the RNA degradosome. Previous work has shown that poly(A) additions to the 3' ends of RNA substrates affect RNA degradation by both of these enzymes. To better understand the mechanism(s) by which poly(A) tails can modulate ribonuclease action, we used selective binding in 1 m salt to identify E. coli proteins that interact at high affinity with poly(A) tracts. We report here that CspE, a member of a family of RNA-binding "cold shock" proteins, and S1, an essential component of the 30 S ribosomal subunit, are poly(A)-binding proteins that interact functionally and physically, respectively, with degradosome ribonucleases. We show that purified CspE impedes poly(A)-mediated 3' to 5' exonucleolytic decay by PNPase by interfering with its digestion through the poly(A) tail and also inhibits both internal cleavage and poly(A) tail removal by RNase E. The ribosomal protein S1, which is known to interact with sequences at the 5' ends of mRNA molecules during the initiation of translation, can bind to both RNase E and PNPase, but in contrast to CspE, did not affect the ribonucleolytic actions of these enzymes. Our findings raise the prospect that E. coli proteins that bind to poly(A) tails may link the functions of degradosomes and ribosomes.
Collapse
Affiliation(s)
- Y Feng
- Department of Genetics and the Program in Cancer Biology, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | | | | | | |
Collapse
|
134
|
Chekanova JA, Shaw RJ, Belostotsky DA. Analysis of an essential requirement for the poly(A) binding protein function using cross-species complementation. Curr Biol 2001; 11:1207-14. [PMID: 11516954 DOI: 10.1016/s0960-9822(01)00371-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poly(A) binding protein (PABP) is an essential, well-conserved, multifunctional protein involved in translational initiation, mRNA biogenesis, and degradation [1--5]. We have used a cross-species complementation approach to address the nature of the essential requirement for PABP in yeast. The expression of Pab3p, a member of the Arabidopsis thaliana PABP multigene family, rescues the lethal phenotype associated with the loss of the yeast Pab1p. However, Pab3p neither protects the mRNA 5' cap from premature removal, nor does it support poly(A)-dependent translational initiation or the synergistic enhancement of translation by the poly(A) tail and 5' cap in yeast. However, Pab3p corrects the temporal lag prior to the entry of the mRNA into the degradation pathway characteristic of pab1 Delta yeast strains. Furthermore, this lag correction by Pab3p requires Pan3p, a subunit of poly(A) nuclease, an enzyme involved in the mRNA 3'-end processing. Importantly, the substitution of Pab3p for the yeast Pab1p is synthetically lethal with the PAN3 gene deletion. These results show that the function of PABP in mRNA biogenesis alone could be sufficient to support cell viability in yeast.
Collapse
Affiliation(s)
- J A Chekanova
- Department of Biological Sciences, State University of New York at Albany, Albany, NY 12222, USA
| | | | | |
Collapse
|
135
|
Searfoss A, Dever TE, Wickner R. Linking the 3' poly(A) tail to the subunit joining step of translation initiation: relations of Pab1p, eukaryotic translation initiation factor 5b (Fun12p), and Ski2p-Slh1p. Mol Cell Biol 2001; 21:4900-8. [PMID: 11438647 PMCID: PMC87206 DOI: 10.1128/mcb.21.15.4900-4908.2001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2001] [Accepted: 04/27/2001] [Indexed: 11/20/2022] Open
Abstract
The 3' poly(A) structure improves translation of a eukaryotic mRNA by 50-fold in vivo. This enhancement has been suggested to be due to an interaction of the poly(A) binding protein, Pab1p, with eukaryotic translation initiation factor 4G (eIF4G). However, we find that mutation of eIF4G eliminating its interaction with Pab1p does not diminish the preference for poly(A)(+) mRNA in vivo, indicating another role for poly(A). We show that either the absence of Fun12p (eIF5B), or a defect in eIF5, proteins involved in 60S ribosomal subunit joining, specifically reduces the translation of poly(A)(+) mRNA, suggesting that poly(A) may have a role in promoting the joining step. Deletion of two nonessential putative RNA helicases (genes SKI2 and SLH1) makes poly(A) dispensable for translation. However, in the absence of Fun12p, eliminating Ski2p and Slh1p shows little enhancement of expression of non-poly(A) mRNA. This suggests that Ski2p and Slh1p block translation of non-poly(A) mRNA by an effect on Fun12p, possibly by affecting 60S subunit joining.
Collapse
Affiliation(s)
- A Searfoss
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
136
|
Mochow-Grundy M, Dermody TS. The reovirus S4 gene 3' nontranslated region contains a translational operator sequence. J Virol 2001; 75:6517-26. [PMID: 11413319 PMCID: PMC114375 DOI: 10.1128/jvi.75.14.6517-6526.2001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reovirus mRNAs are efficiently translated within host cells despite the absence of 3' polyadenylated tails. The 3' nontranslated regions (3'NTRs) of reovirus mRNAs contain sequences that exhibit a high degree of gene-segment-specific conservation. To determine whether the 3'NTRs of reovirus mRNAs serve to facilitate efficient translation of viral transcripts, we used T7 RNA polymerase to express constructs engineered with full-length S4 gene cDNA or truncation mutants lacking sequences in the 3'NTR. Full-length and truncated s4 mRNAs were translated using rabbit reticulocyte lysates, and translation product sigma3 was quantitated by phosphorimager analysis. In comparison to full-length s4 mRNA, translation of the s4 mRNA lacking the 3'NTR resulted in a 20 to 50% decrease in sigma3 produced. Addition to translation reactions of an RNA oligonucleotide corresponding to the S4 3'NTR significantly enhanced translation of full-length s4 mRNA but had no effect on s4 mRNA lacking 3'NTR sequences. Translation of s4 mRNAs with smaller deletions within the 3'NTR identified a discrete region capable of translational enhancement and a second region capable of translational repression. Differences in translational efficiency of full-length and deletion-mutant mRNAs were independent of RNA stability. Protein complexes in reticulocyte lysates that specifically interact with the S4 3'NTR were identified by RNA mobility shift assays. RNA oligonucleotides lacking either enhancer or repressor sequences did not efficiently compete the binding of these complexes to full-length 3'NTR. These results indicate that the reovirus S4 gene 3'NTR contains a translational operator sequence that serves to regulate translational efficiency of the s4 mRNA. Moreover, these findings suggest that cellular proteins interact with reovirus 3'NTR sequences to regulate translation of the nonpolyadenylated reovirus mRNAs.
Collapse
Affiliation(s)
- M Mochow-Grundy
- Department of Microbiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
137
|
Zhou Z, Sun K, Lipstein EA, Haber JE. A Saccharomyces servazzii clone homologous to Saccharomyces cerevisiae chromosome III spanning KAR4, ARS 304 and SPB1 lacks the recombination enhancer but contains an unknown ORF. Yeast 2001; 18:789-95. [PMID: 11427961 DOI: 10.1002/yea.724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In order to learn about the evolutionary conservation of the recombination enhancer (RE) that controls donor preference during mating type switching in Saccharomyces cerevisiae, we have cloned a 13 kb region from S. servazzii. We find that the order of four genes surrounding the RE in S. cerevisiae (PRD1, KAR4, SPB1 and PBN1) is preserved in S.servazzii. However, there is an additional ORF in S. servazzii between PRD1 and KAR4 that is not homologous to any gene in S. cerevisiae or to genes in other organisms. Despite a 75-79% amino acid identity for KAR4 and SPB1, respectively, the S. servazzii sequence did not carry a well-conserved RE sequence and these sequences lacked RE function when introduced into S. cerevisiae. The S. servazzii region contains a sequence that supports autonomous DNA replication in S. cerevisiae and may represent a homologue of ARS304. The S. servazziii sequence has Genbank Accession No. BankIt359091 AF307954.
Collapse
Affiliation(s)
- Z Zhou
- Rosenstiel Center, Department of Biology, Brandeis University, Waltham, MA 02254-9110, USA
| | | | | | | |
Collapse
|
138
|
Martînez J, Ren YG, Nilsson P, Ehrenberg M, Virtanen A. The mRNA cap structure stimulates rate of poly(A) removal and amplifies processivity of degradation. J Biol Chem 2001; 276:27923-9. [PMID: 11359775 DOI: 10.1074/jbc.m102270200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Poly(A)-specific ribonuclease (PARN) is an oligomeric, processive, and cap-interacting 3' exonuclease. We have studied how the m7G(5')ppp(5')G cap structure affects the activity of PARN. It is shown that the cap has four distinct effects: (i) It stimulates the rate of deadenylation if provided in cis; (ii) it inhibits deadenylation if provided at high concentration in trans; (iii) it stimulates deadenylation if provided at low concentration in trans; and (iv) it increases the processivity of PARN when provided in cis. It is shown that the catalytic and cap binding sites on PARN are separate. The important roles of the 7-methyl group and the inverted guanosine residue of the cap are demonstrated. An active deadenylation complex, consisting of the poly(A)-tailed RNA substrate and PARN, has been identified. Complex formation does not require a cap structure on the RNA substrate. The multiple effects of cap are all accounted for by a simple, kinetic model that takes the processivity of PARN into account.
Collapse
Affiliation(s)
- J Martînez
- Department of Cell and Molecular Biology, Uppsala University, Box 596, Uppsala SE-751 24, Sweden
| | | | | | | | | |
Collapse
|
139
|
Féral C, Guellaën G, Pawlak A. Human testis expresses a specific poly(A)-binding protein. Nucleic Acids Res 2001; 29:1872-83. [PMID: 11328870 PMCID: PMC37253 DOI: 10.1093/nar/29.9.1872] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In testis mRNA stability and translation initiation are extensively under the control of poly(A)-binding proteins (PABP). Here we have cloned a new human testis-specific PABP (PABP3) of 631 amino acids (70.1 kDa) with 92.5% identical residues to the ubiquitous PABP1. A northern blot of multiple human tissues hybridised with PABP3- and PABP1-specific oligonucleotide probes revealed two PABP3 mRNAs (2.1 and 2.5 kb) detected only in testis, whereas PABP1 mRNA (3.2 kb) was present in all tested tissues. In human adult testis, PABP3 mRNA expression was restricted to round spermatids, whereas PABP1 was expressed in these cells as well as in pachytene spermatocytes. PABP3-specific antibodies identified a protein of 70 kDa in human testis extracts. This protein binds poly(A) with a slightly lower affinity as compared to PABP1. The human PABP3 gene is intronless with a transcription start site 61 nt upstream from the initiation codon. A sequence of 256 bp upstream from the transcription start site drives the promoter activity of PABP3 and its tissue-specific expression. The expression of PABP3 might be a way to bypass PABP1 translational repression and to produce the amount of PABP needed for active mRNA translation in spermatids.
Collapse
Affiliation(s)
- C Féral
- Unité INSERM 99, Hôpital Henri Mondor, 94010 Créteil, France
| | | | | |
Collapse
|
140
|
Horton LE, James P, Craig EA, Hensold JO. The yeast hsp70 homologue Ssa is required for translation and interacts with Sis1 and Pab1 on translating ribosomes. J Biol Chem 2001; 276:14426-33. [PMID: 11279042 DOI: 10.1074/jbc.m100266200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 70-kDa heat shock proteins are molecular chaperones that participate in a variety of cellular functions. This chaperone function is stimulated by interaction with hsp40 proteins. The Saccharomyces cerevisiae gene encoding the essential hsp40 homologue, SIS1, appears to function in translation initiation. Mutations in ribosomal protein L39 (rpl39) complement loss-of-function mutations in SIS1 as well as PAB1 (poly(A)-binding protein), suggesting a functional interaction between these proteins. However, while a direct interaction between Sis1 and Pab1 is not detectable, both of these proteins physically interact with the essential Ssa (and not Ssb) family of hsp70 proteins. This interaction is mediated by the variable C-terminal domain of Ssa. Subcellular fractionations demonstrate that the binding of Ssa to ribosomes is dependent upon its C terminus and that its interaction with Sis1 and Pab1 occurs preferentially on translating ribosomes. Consistent with a function in translation, depletion of Ssa protein produces a general translational defect that appears similar to loss of Sis1 and Pab1 function. This translational effect of Ssa appears mediated, at least in part, by its affect on the interaction of Pab1 with the translation initiation factor, eIF4G, which is dramatically reduced in the absence of functional Ssa protein.
Collapse
Affiliation(s)
- L E Horton
- Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
141
|
Nikcevic G, Perhonen M, Boateng SY, Russell B. Translation is regulated via the 3' untranslated region of alpha-myosin heavy chain mRNA by calcium but not by its localization. J Muscle Res Cell Motil 2001; 21:599-607. [PMID: 11206137 DOI: 10.1023/a:1026507727700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Posttranscriptional regulation plays an important role in alpha-myosin heavy chain (alpha-MyHC) protein synthesis in cardiac muscle cells. In the present study, we test the effects of calcium and mRNA mislocalization on alpha-MyHC translation in order to determine the mechanism(s) contributing to translational block via the 3' untranslated region (3'UTR). Neonatal rat cardiac myocytes were treated for 6 h with L-isoproterenol (10 microM) to enhance beating, with 10 microM verapamil to block beating and mislocalize mRNA, or with 3 microM colchicine to enhance beating but mislocalize mRNA by depolymerization of the microtubules. In order to determine whether translation is regulated by the 3'UTR, either a control (SV40 3'UTR) or the experimental (alpha-MyHC 3'UTR) was placed after a luciferase reporter gene and transfected into the myocytes. The amount of luciferase protein only decreased significantly in verapamil arrested cells transfected with the alpha-MyHC 3'UTR construct (P < 0.01). To control for the possibility that pharmacological treatments might affect transcription or message stability, we analyzed neomycin and luciferase mRNA levels transcribed from the same transfected plasmid. No significant changes were found with an RNase protection assay. These results suggest that calcium but not mRNA localization regulates protein synthesis and further, this is mediated by the 3' untranslated region of alpha-MyHC.
Collapse
Affiliation(s)
- G Nikcevic
- Department of Physiology and Biophysics, University of Illinois at Chicago, 60612-7342, USA
| | | | | | | |
Collapse
|
142
|
Voeltz GK, Ongkasuwan J, Standart N, Steitz JA. A novel embryonic poly(A) binding protein, ePAB, regulates mRNA deadenylation in Xenopus egg extracts. Genes Dev 2001; 15:774-88. [PMID: 11274061 PMCID: PMC312653 DOI: 10.1101/gad.872201] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
An in vitro system that recapitulates the in vivo effect of AU-rich elements (AREs) on mRNA deadenylation has been developed from Xenopus activated egg extracts. ARE-mediated deadenylation is uncoupled from mRNA body decay, and the rate of deadenylation increases with the number of tandem AUUUAs. A novel ARE-binding protein called ePAB (for embryonic poly(A)-binding protein) has been purified from this extract by ARE affinity selection. ePAB exhibits 72% identity to mammalian and Xenopus PABP1 and is the predominant poly(A)-binding protein expressed in the stage VI oocyte and during Xenopus early development. Immunodepletion of ePAB increases the rate of both ARE-mediated and default deadenylation in vitro. In contrast, addition of even a small excess of ePAB inhibits deadenylation, demonstrating that the ePAB concentration is critical for determining the rate of ARE-mediated deadenylation. These data argue that ePAB is the poly(A)-binding protein responsible for stabilization of poly(A) tails and is thus a potential regulator of mRNA deadenylation and translation during early development.
Collapse
Affiliation(s)
- G K Voeltz
- Department of Molecular Biophysics and Biochemistry, Yale University, Howard Hughes Medical Institute, New Haven, Connecticut 06536, USA
| | | | | | | |
Collapse
|
143
|
Basu U, Si K, Warner JR, Maitra U. The Saccharomyces cerevisiae TIF6 gene encoding translation initiation factor 6 is required for 60S ribosomal subunit biogenesis. Mol Cell Biol 2001; 21:1453-62. [PMID: 11238882 PMCID: PMC86691 DOI: 10.1128/mcb.21.5.1453-1462.2001] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eukaryotic translation initiation factor 6 (eIF6), a monomeric protein of about 26 kDa, can bind to the 60S ribosomal subunit and prevent its association with the 40S ribosomal subunit. In Saccharomyces cerevisiae, eIF6 is encoded by a single-copy essential gene. To understand the function of eIF6 in yeast cells, we constructed a conditional mutant haploid yeast strain in which a functional but a rapidly degradable form of eIF6 fusion protein was synthesized from a repressible GAL10 promoter. Depletion of eIF6 from yeast cells resulted in a selective reduction in the level of 60S ribosomal subunits, causing a stoichiometric imbalance in 60S-to-40S subunit ratio and inhibition of the rate of in vivo protein synthesis. Further analysis indicated that eIF6 is not required for the stability of 60S ribosomal subunits. Rather, eIF6-depleted cells showed defective pre-rRNA processing, resulting in accumulation of 35S pre-rRNA precursor, formation of a 23S aberrant pre-rRNA, decreased 20S pre-rRNA levels, and accumulation of 27SB pre-rRNA. The defect in the processing of 27S pre-rRNA resulted in the reduced formation of mature 25S and 5.8S rRNAs relative to 18S rRNA, which may account for the selective deficit of 60S ribosomal subunits in these cells. Cell fractionation as well as indirect immunofluorescence studies showed that c-Myc or hemagglutinin epitope-tagged eIF6 was distributed throughout the cytoplasm and the nuclei of yeast cells.
Collapse
Affiliation(s)
- U Basu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
144
|
Gray NK, Coller JM, Dickson KS, Wickens M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 2000; 19:4723-33. [PMID: 10970864 PMCID: PMC302064 DOI: 10.1093/emboj/19.17.4723] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Revised: 07/07/2000] [Accepted: 07/12/2000] [Indexed: 11/13/2022] Open
Abstract
Translational stimulation of mRNAs during early development is often accompanied by increases in poly(A) tail length. Poly(A)-binding protein (PAB) is an evolutionarily conserved protein that binds to the poly(A) tails of eukaryotic mRNAs. We examined PAB's role in living cells, using both Xenopus laevis oocytes and Saccharomyces cerevisiae, by tethering it to the 3'-untranslated region of reporter mRNAs. Tethered PAB stimulates translation in vivo. Neither a poly(A) tail nor PAB's poly(A)-binding activity is required. Multiple domains of PAB act redundantly in oocytes to stimulate translation: the interaction of RNA recognition motifs (RRMs) 1 and 2 with eukaryotic initiation factor-4G correlates with translational stimulation. Interaction with Paip-1 is insufficient for stimulation. RRMs 3 and 4 also stimulate, but bind neither factor. The regions of tethered PAB required in yeast to stimulate translation and stabilize mRNAs differ, implying that the two functions are distinct. Our results establish that oocytes contain the machinery necessary to support PAB-mediated translation and suggest that PAB may be an important participant in translational regulation during early development.
Collapse
Affiliation(s)
- N K Gray
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
145
|
Martinez J, Ren YG, Thuresson AC, Hellman U, Astrom J, Virtanen A. A 54-kDa fragment of the Poly(A)-specific ribonuclease is an oligomeric, processive, and cap-interacting Poly(A)-specific 3' exonuclease. J Biol Chem 2000; 275:24222-30. [PMID: 10801819 DOI: 10.1074/jbc.m001705200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously identified a HeLa cell 3' exonuclease specific for degrading poly(A) tails of mRNAs. Here we report on the purification and identification of a calf thymus 54-kDa polypeptide associated with a similar 3' exonuclease activity. The 54-kDa polypeptide was shown to be a fragment of the poly(A)-specific ribonuclease 74-kDa polypeptide. The native molecular mass of the nuclease activity was estimated to be 180-220 kDa. Protein/protein cross-linking revealed an oligomeric structure, most likely consisting of three subunits. The purified nuclease activity released 5'-AMP as the reaction product and degraded poly(A) in a highly processive fashion. The activity required monovalent cations and was dependent on divalent metal ions. The RNA substrate requirement was investigated, and it was found that the nuclease was highly poly(A)-specific and that only 3' end-located poly(A) was degraded by the activity. RNA substrates capped with m(7)G(5')ppp(5')G were more efficiently degraded than noncapped RNA substrates. Addition of free m(7)G(5')ppp(5')G cap analogue inhibited poly(A) degradation in vitro, suggesting a functional link between the RNA 5' end cap structure and poly(A) degradation at the 3' end of the RNA.
Collapse
Affiliation(s)
- J Martinez
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
146
|
Bonnerot C, Boeck R, Lapeyre B. The two proteins Pat1p (Mrt1p) and Spb8p interact in vivo, are required for mRNA decay, and are functionally linked to Pab1p. Mol Cell Biol 2000; 20:5939-46. [PMID: 10913177 PMCID: PMC86071 DOI: 10.1128/mcb.20.16.5939-5946.2000] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report here the characterization of a bypass suppressor of pab1Delta which leads to a fourfold stabilization of the unstable MFA2 mRNA. Cloning of the wild-type gene for that suppressor reveals that it is identical to PAT1 (YCR077c), a gene whose product was reported to interact with Top2p. PAT1 is not an essential gene, but its deletion leads to a thermosensitive phenotype. Further analysis has shown that PAT1 is allelic with mrt1-3, a mutation previously reported to affect decapping and to bypass suppress pab1Delta, as is also the case for dcp1, spb8, and mrt3. Coimmunoprecipitation experiments show that Pat1p is associated with Spb8p. On sucrose gradients, the two proteins cosediment with fractions containing the polysomes. In the absence of Pat1p, however, Spb8p no longer cofractionates with the polysomes, while the removal of Spb8p leads to a sharp decrease in the level of Pat1p. Our results suggest that some of the factors involved in mRNA degradation could be associated with the mRNA that is still being translated, awaiting a specific signal to commit the mRNA to the degradation pathway.
Collapse
Affiliation(s)
- C Bonnerot
- Centre de Recherche de Biochimie Macromoléculaire du CNRS, 34293 Montpellier, France.
| | | | | |
Collapse
|
147
|
Winstall E, Sadowski M, Kuhn U, Wahle E, Sachs AB. The Saccharomyces cerevisiae RNA-binding protein Rbp29 functions in cytoplasmic mRNA metabolism. J Biol Chem 2000; 275:21817-26. [PMID: 10764794 DOI: 10.1074/jbc.m002412200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here we report that the Saccharomyces cerevisiae RBP29 (SGN1, YIR001C) gene encodes a 29-kDa cytoplasmic protein that binds to mRNA in vivo. Rbp29p can be co-immunoprecipitated with the poly(A) tail-binding protein Pab1p from crude yeast extracts in a dosage- and RNA-dependent manner. In addition, recombinant Rbp29p binds preferentially to poly(A) with nanomolar binding affinity in vitro. Although RBP29 is not essential for cell viability, its deletion exacerbates the slow growth phenotype of yeast strains harboring mutations in the eIF4G genes TIF4631 and TIF4632. Furthermore, overexpression of RBP29 suppresses the temperature-sensitive growth phenotype of specific tif4631, tif4632, and pab1 alleles. These data suggest that Rbp29p is an mRNA-binding protein that plays a role in modulating the expression of cytoplasmic mRNA.
Collapse
Affiliation(s)
- E Winstall
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
148
|
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 2000; 68:913-63. [PMID: 10872469 DOI: 10.1146/annurev.biochem.68.1.913] [Citation(s) in RCA: 1642] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
Collapse
Affiliation(s)
- A C Gingras
- Department of Biochemistry McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
149
|
Mbella EG, Bertrand S, Huez G, Octave JN. A GG nucleotide sequence of the 3' untranslated region of amyloid precursor protein mRNA plays a key role in the regulation of translation and the binding of proteins. Mol Cell Biol 2000; 20:4572-9. [PMID: 10848584 PMCID: PMC85851 DOI: 10.1128/mcb.20.13.4572-4579.2000] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alternative polyadenylation of the mRNA encoding the amyloid precursor protein (APP) involved in Alzheimer's disease generates two molecules, with the first of these containing 258 additional nucleotides in the 3' untranslated region (3'UTR). We have previously shown that these 258 nucleotides increase the translation of APP mRNA injected in Xenopus oocytes (5). Here, we demonstrate that this mechanism occurs in CHO cells as well. We also present evidence that the 3'UTR containing 8 nucleotides more than the short 3'UTR allows the recovery of an efficiency of translation similar to that of the long 3'UTR. Moreover, the two guanine residues located at the 3' ends of these 8 nucleotides play a key role in the translational control. Using gel retardation mobility shift assay, we show that proteins from Xenopus oocytes, CHO cells, and human brain specifically bind to the short 3'UTR but not to the long one. The two guanine residues involved in the translational control inhibit this specific binding by 65%. These results indicate that there is a correlation between the binding of proteins to the 3'UTR of APP mRNA and the efficiency of mRNA translation, and that a GG motif controls both binding of proteins and translation.
Collapse
Affiliation(s)
- E G Mbella
- Laboratoire de Pharmacologie Expérimentale, Université Catholique de Louvain, UCL 54.10, B-1200 Brussels, Belgium
| | | | | | | |
Collapse
|
150
|
Paynton BV. RNA-binding proteins in mouse oocytes and embryos: expression of genes encoding Y box, DEAD box RNA helicase, and polyA binding proteins. DEVELOPMENTAL GENETICS 2000; 23:285-98. [PMID: 9883581 DOI: 10.1002/(sici)1520-6408(1998)23:4<285::aid-dvg4>3.0.co;2-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Growth and differentiation of early embryos depends almost entirely on information which is maternally inherited in the form of macromolecules accumulated by the female gamete during its growth phase. Most of the maternal mRNAs synthesized by growing oocytes are not immediately recruited onto polysomes but are stored as translationally dormant messenger ribonucleoprotein (mRNP) particles. mRNA binding proteins which have been associated with masked mRNP complexes in Xenopus oocytes fall into two main categories, those having affinity for a variety of RNA sequences (members of the Y box and DEAD box RNA helicase families) and those which interact more specifically with 3' polyA tails (the polyA binding proteins or PABPs). The objective of this study was to determine whether mouse oocytes and embryos express sequences encoding a Y box protein, (MSY1); on RNA helicase, (RCK/p54); and a universally expressed PABP and testis specific isoform (PABP1 and PABPt, respectively). RNAs were amplified by RT/PCR and the identities of targeted cDNAs were confirmed by restriction analysis and/or direct sequencing. Relative steady state levels and time courses of accumulation/decay were compared by Northern hybridization. All of the sequences are transcribed as maternal mRNAs. MSY1 transcripts accumulated during the growth phase appear to be degraded in parallel with the bulk of maternal mRNAs by the mid-late two-cell stage. RCK/p54 mRNAs are most abundant in growing oocytes; steady state levels decline in primary and secondary oocytes, and degradation appears to be complete by the mid-late two-cell stage. Zygotic transcription of MSY1 and RCK/p54 is evident in four-cell stage embryos. Most of the PABP1 message accumulated by growing oocytes decays during meiotic maturation with transcription resuming in two-cell embryos. PABPt is expressed at very low levels in oocytes and embryos. Based on the temporal patterns of expression and the reported activities of homologous sequences in other systems, we suggest that these RNA binding proteins may participate in the post-transcriptional regulation of gene expression during the period of maternal control of development in the mouse.
Collapse
Affiliation(s)
- B V Paynton
- Albert Einstein Medical Center, Philadelphia, PA 19141, USA.
| |
Collapse
|