101
|
Chen B, Young J, Leng F. DNA bending by the mammalian high-mobility group protein AT hook 2. Biochemistry 2010; 49:1590-5. [PMID: 20108983 DOI: 10.1021/bi901881c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mammalian high-mobility group protein AT hook 2 (HMGA2) is a DNA binding protein that specifically recognizes the minor groove of AT-rich DNA sequences. Disruption of its expression pattern is directly linked to oncogenesis and obesity. In this paper, we constructed a new plasmid pBendAT to study HMGA2-induced DNA bending. pBendAT carries a 230 bp DNA segment containing five pairs of restriction enzyme sites, which can be used to produce a set of DNA fragments of identical length to study protein-induced DNA bending. The DNA fragments of identical length can also be generated using PCR amplification. Since pBendAT does not contain more than three consecutive AT base pairs, it is suitable for the assessment of DNA bending induced by proteins recognizing AT-rich DNA sequences. Indeed, using pBendAT, we demonstrated that HMGA2 is a DNA bending protein and bends all three tested DNA binding sequences of HMGA2, SELEX1, SELEX2, and PRDII. The DNA bending angles were estimated to be 34.2 degrees , 33.5 degrees , and 35.4 degrees , respectively.
Collapse
Affiliation(s)
- Bo Chen
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, Florida 33199, USA
| | | | | |
Collapse
|
102
|
Mu G, Liu H, Zhou F, Xu X, Jiang H, Wang Y, Qu Y. Correlation of overexpression of HMGA1 and HMGA2 with poor tumor differentiation, invasion, and proliferation associated with let-7 down-regulation in retinoblastomas. Hum Pathol 2009; 41:493-502. [PMID: 20004941 DOI: 10.1016/j.humpath.2009.08.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 08/11/2009] [Accepted: 08/14/2009] [Indexed: 10/20/2022]
Abstract
In addition to RB1, the causative genes involved in the tumorigenesis and progression of retinoblastomas remain to be elucidated. High-mobility group A1 and high-mobility group A2 proteins are expressed at high levels in various benign and malignant tumors and are associated with expressions of malignant phenotypes and poor prognoses. Reduction in let-7 expression levels was detected in cancers; it may be related to high-mobility group A1 and high-mobility group A2 overexpressions. Little is known about the correlations among high-mobility group A1, high-mobility group A2, and let-7 expression and clinicopathologic features of retinoblastoma. In our study, the expressions of high-mobility group A1 and high-mobility group A2 were studied in 44 retinoblastomas by immunohistochemical analysis. Semiquantitative reverse transcription-polymerase chain reaction was used to assay the let-7 expression levels in 28 nontumor retina and 44 tumor samples. Nuclear immunostaining of high-mobility group A1 and high-mobility group A2 was frequently observed in retinoblastomas (68% and 75%, respectively). Expression levels of both high-mobility group A1 and high-mobility group A2 were significantly higher in poorly differentiated retinoblastomas than in well-differentiated retinoblastomas (P < .05 and P < .0001, respectively). In addition, overexpressions of high-mobility group A1 and high-mobility group A2 were more frequently detected in poorly differentiated tumors than in well-differentiated tumors (P < .01 and P = .0001, respectively). High-mobility group A2 expression levels were significantly higher in invasive tumors than in noninvasive tumors (P < .05). In addition, the MIB-1 labeling index was higher in poorly differentiated tumors than in well-differentiated tumors (P < .0001). Our study revealed that high-mobility group A1 and high-mobility group A2 expressions correlated with the MIB-1 labeling index (R = 0.327, P = .029; R = 0.602, P < .0001; respectively). The let-7 was expressed in high levels in all 28 nontumor retina samples. However, reduced expression levels of let-7 were observed in 17 (39%) tumors. A potentially inverse correlation exists between the expression levels of let-7 and high-mobility group A1 (r = -0.247, P = .105). In addition, a significantly inverse association was detected between let-7 and high-mobility group A2 and MIB-1 labeling index (r = -0.31, P = .04; r = -0.392, P = .007, respectively). Our findings imply that the overexpressions of high-mobility group A1, high-mobility group A2, and down-regulation of let-7 may be associated with tumorigenesis and progression of retinoblastomas.
Collapse
Affiliation(s)
- Guoying Mu
- Department of Ophthalmology, Jinan Central Hospital affiliated to Shandong University, No. 105, Jiefang Road, Jinan 250013, China
| | | | | | | | | | | | | |
Collapse
|
103
|
Esposito F, Pierantoni GM, Battista S, Melillo RM, Scala S, Chieffi P, Fedele M, Fusco A. Interaction between HMGA1 and retinoblastoma protein is required for adipocyte differentiation. J Biol Chem 2009; 284:25993-6004. [PMID: 19633359 DOI: 10.1074/jbc.m109.034280] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is generally accepted that the regulation of adipogenesis prevents obesity. However, the mechanisms controlling adipogenesis have not been completely defined. We have previously demonstrated that HMGA1 proteins play a critical role in adipogenesis. In fact, suppression of HMGA1 protein synthesis by antisense technology dramatically increased growth rate and impaired adipocyte differentiation in 3T3-L1 cells. Furthermore, we showed that HMGA1 strongly potentiates the capacity of the CCAAT/enhancer-binding protein beta (C/EBPbeta) transcriptional factor to transactivate the leptin promoter, an adipocytic-specific promoter. In this study we demonstrate that HMGA1 physically interacts with retinoblastoma protein (RB), which is also required in adipocyte differentiation. Moreover, we show that RB, C/EBPbeta, and HMGA1 proteins all cooperate in controlling both Id1 and leptin gene transcriptions, which are down- and up-regulated during adipocyte differentiation, respectively. We also demonstrate that HMGA1/RB interaction regulates CDC25A and CDC6 promoter activities, which are induced by E2F-1 protein during early adipocyte differentiation, by displacing HDAC1 from the RB-E2F1 complex. Furthermore, by using Hmga1(-/-) embryonic stem cells, which failed to undergo adipocyte differentiation, we show the crucial role of HMGA1 proteins in adipocyte differentiation due to its pivotal involvement in the formation of the RB-C/EBPbeta complex. Altogether these data demonstrate a key role of the interaction between HMGA1 and RB in adipocyte differentiation.
Collapse
Affiliation(s)
- Francesco Esposito
- Istituto di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Facoltà di Medicina e Chirurgia di Napoli, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Waryah AM, Rehman A, Ahmed ZM, Bashir ZH, Khan SY, Zafar AU, Riazuddin S, Friedman TB, Riazuddin S. DFNB74, a novel autosomal recessive nonsyndromic hearing impairment locus on chromosome 12q14.2-q15. Clin Genet 2009; 76:270-5. [PMID: 19650862 DOI: 10.1111/j.1399-0004.2009.01209.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Autosomal recessive nonsyndromic hearing impairment (ARNSHI) segregating in three unrelated, large consanguineous Pakistani families (PKDF528, PKDF859 and PKDF326) is linked to markers on chromosome 12q14.2-q15. This novel locus is designated DFNB74. Maximum two-point limit of detection (LOD) scores of 5.6, 5.7 and 2.6 were estimated for markers D12S313,D12S83 and D12S75 at theta = 0 for recessive deafness segregating in these three families. Haplotype analyses identified a critical linkage interval of 5.35 cM (5.36 Mb) defined by D12S329 at 74.58 cM and D12S313 at 79.93 cM. DFNB74 is the second ARNSHI locus mapped to chromosome 12, but the physical intervals do not overlap with one another. A locus contributing to the early onset, rapidly progressing hearing loss of A/J mice (ahl4, age-related hearing loss 4) was reported to map to chromosome 10 in a region of conserved synteny to DFNB74, suggesting that ahl4 and DFNB74 may be due to mutations of the same gene in these two species.
Collapse
Affiliation(s)
- A M Waryah
- National Centre of Excellence in Molecular Biology, Punjab University, Lahore 53700, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
|
106
|
Qian ZR, Asa SL, Siomi H, Siomi MC, Yoshimoto K, Yamada S, Wang EL, Rahman MM, Inoue H, Itakura M, Kudo E, Sano T. Overexpression of HMGA2 relates to reduction of the let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 2009; 22:431-41. [PMID: 19136928 DOI: 10.1038/modpathol.2008.202] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
High-mobility group A2 is highly expressed during embryogenesis and in various benign and malignant tumors. Recent studies report that high-mobility group A2 is negatively regulated by the let-7 microRNAs (miRNAs) family in vitro. The development of pituitary adenomas in high-mobility group A2 transgenic mice showed that high-mobility group A2 may be involved in pituitary tumorigenesis. However, no studies have investigated the clinical significance of high-mobility group A2 and its relationship to the let-7 miRNA family in human pituitary adenomas. Using immunohistochemistry, we analyzed high-mobility group A2 expression with respect to various clinicopathologic factors in 98 pituitary adenomas. Overexpression of high-mobility group A2 was observed in 39% (38/98) of pituitary adenomas compared with normal adenohypophysial tissue and was frequently found in adenomas including prolactin (PRL), adrenocorticotrophic hormone, or follicle-stimulating hormone/luteinizing hormone and in null cell adenomas, but relatively rare in growth hormone (GH) and mixed GH/PRL adenomas. High-mobility group A2 expression was significantly associated with tumor invasion (P<0.05) and was significantly higher in grade IV than in grades I, II, and III adenomas (P<0.05). High levels of high-mobility group A2 expression were more frequently observed in macroadenomas than in microadenomas (P<0.05). High levels of high-mobility group A2 expression also significantly correlated with the proliferation marker Ki-67 (P<0.0001). Real-time quantitative RT-PCR analysis was carried out to evaluate the expression of let-7 in 55 pituitary adenomas. Subsequently, decreased expression of let-7 was confirmed in 23 of 55 (42%) adenomas and was correlated with high-grade tumors (P<0.05). An inverse correlation between let-7 and high-mobility group A2 expression was evident (R=-0.33, P<0.05). These findings support a causal link between let-7 and high-mobility group A2 whereby loss of let-7 expression induces high-mobility group A2 upregulation that represents an important mechanism in pituitary tumorigenesis and progression.
Collapse
Affiliation(s)
- Zhi Rong Qian
- Department of Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School of Medicine, Tokushima, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Rotavirus antagonizes cellular antiviral responses by inhibiting the nuclear accumulation of STAT1, STAT2, and NF-kappaB. J Virol 2009; 83:4942-51. [PMID: 19244315 DOI: 10.1128/jvi.01450-08] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A vital arm of the innate immune response to viral infection is the induction and subsequent antiviral effects of interferon (IFN). Rotavirus reduces type I IFN induction in infected cells by the degradation of IFN regulatory factors. Here, we show that the monkey rotavirus RRV and human rotavirus Wa also block gene expression induced by type I and II IFNs through a mechanism allowing signal transducer and activator of transcription 1 (STAT1) and STAT2 activation but preventing their nuclear accumulation. In infected cells, this may allow rotavirus to block the antiviral actions of IFN produced early in infection or by activated immune cells. As the intracellular expression of rotavirus nonstructural proteins NSP1, NSP3, and NSP4 individually did not inhibit IFN-stimulated gene expression, their involvement in this process is unlikely. RRV and Wa rotaviruses also prevented the tumor necrosis factor alpha-stimulated nuclear accumulation of NF-kappaB and NF-kappaB-driven gene expression. In addition, NF-kappaB was activated by rotavirus infection, confirming earlier findings by others. As NF-kappaB is important for the induction of IFN and other cytokines during viral infection, this suggests that rotavirus prevents cellular transcription as a means to evade host responses. To our knowledge, this is the first report of the use of this strategy by a double-stranded RNA virus.
Collapse
|
108
|
Rahman MM, Qian ZR, Wang EL, Sultana R, Kudo E, Nakasono M, Hayashi T, Kakiuchi S, Sano T. Frequent overexpression of HMGA1 and 2 in gastroenteropancreatic neuroendocrine tumours and its relationship to let-7 downregulation. Br J Cancer 2009; 100:501-10. [PMID: 19156147 PMCID: PMC2658538 DOI: 10.1038/sj.bjc.6604883] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The molecular pathogenesis of gastroenteropancreatic (GEP) neuroendocrine tumours (NETs) remains to be elucidated. High-mobility group A (HMGA) proteins play important roles in the regulation of transcription, differentiation, and neoplastic transformation. In this study, the expression of HMGA1 and HMGA2 was studied in 55 GEP NETs. Overexpression of HMGA1 and 2 was frequently detected in GEP NETs compared with normal tissues. Nuclear immunostaining of HMGA1 and 2 was observed in GEP NETs (38 of 55, 69%; 40 of 55, 73%, respectively). High-mobility group A2 expression increased from well-differentiated NET (WNET) to well-differentiated neuroendocrine carcinoma (WNEC) and poorly differentiated NEC (PNEC) (P<0.005) and showed the highest level in stage IV tumours (P<0.01). In WNECs, the expression of HMGA1 and 2 was significantly higher in metastatic tumours than those without metastasis (P<0.05). Gastroenteropancreatic NETs in foregut showed the highest level of HMGA1 and 2 expressions. MIB-1 labelling index (MIB-1 LI) correlated with HMGA1 and 2 overexpression (R=0.28, P<0.05; R=0.434, P<0.001; respectively) and progressively increased from WNETs to WNECs and PNECs (P<0.001). Let-7 expression was addressed in 6 normal organs, 30 tumour samples, and 24 tumour margin non-tumour tissues. Compared with normal tissues, let-7 downregulation was frequent in NETs (19 of 30, 63%). Higher expression of HMGA1 and 2 was frequently observed in tumours with let-7 significant reduction (53, 42%, respectively). The reverse correlation could be detected between HMGA1 and let-7 (P<0.05). Our findings suggested that HMGA1 and 2 overexpression and let-7 downregulation might relate to pathogenesis of GEP NETs.
Collapse
Affiliation(s)
- M M Rahman
- Department of Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
How the Dorsal gradient works: insights from postgenome technologies. Proc Natl Acad Sci U S A 2008; 105:20072-6. [PMID: 19104040 DOI: 10.1073/pnas.0806476105] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gradients of extracellular signaling molecules and transcription factors are used in a variety of developmental processes, including the patterning of the Drosophila embryo, the establishment of diverse neuronal cell types in the vertebrate neural tube, and the anterior-posterior patterning of vertebrate limbs. Here, we discuss how a gradient of the maternal transcription factor Dorsal produces complex patterns of gene expression across the dorsal-ventral (DV) axis of the early Drosophila embryo. The identification of 60-70 Dorsal target genes, along with the characterization of approximately 35 associated regulatory DNAs, suggests that there are at least six different regulatory codes driving diverse DV expression profiles.
Collapse
|
110
|
Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med 2008; 14:476-84. [PMID: 18431461 PMCID: PMC2323334 DOI: 10.2119/2008-00034.klune] [Citation(s) in RCA: 616] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 04/10/2008] [Indexed: 12/20/2022] Open
Abstract
While foreign pathogens and their products have long been known to activate the innate immune system, the recent recognition of a group of endogenous molecules that serve a similar function has provided a framework for understanding the overlap between the inflammatory responses activated by pathogens and injury. These endogenous molecules, termed alarmins, are normal cell constituents that can be released into the extracellular milieu during states of cellular stress or damage and subsequently activate the immune system. One nuclear protein, High mobility group box-1 (HMGB1), has received particular attention as fulfilling the functions of an alarmin by being involved in both infectious and non-infectious inflammatory conditions. Once released, HMGB1 signals through various receptors to activate immune cells involved in the immune process. Although initial studies demonstrated HMGB1 as a late mediator of sepsis, recent findings indicate HMGB1 to have an important role in models of non-infectious inflammation, such as autoimmunity, cancer, trauma, and ischemia reperfusion injury. Furthermore, in contrast to its pro-inflammatory functions, there is evidence that HMGB1 also has restorative effects leading to tissue repair and regeneration. The complex functions of HMGB1 as an archetypical alarmin are outlined here to review our current understanding of a molecule that holds the potential for treatment in many important human conditions.
Collapse
Affiliation(s)
- John R Klune
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
111
|
Friedman CS, O'Donnell MA, Legarda-Addison D, Ng A, Cárdenas WB, Yount JS, Moran TM, Basler CF, Komuro A, Horvath CM, Xavier R, Ting AT. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 2008; 9:930-6. [PMID: 18636086 PMCID: PMC2529351 DOI: 10.1038/embor.2008.136] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/09/2022] Open
Abstract
On detecting viral RNAs, the RNA helicase retinoic acid-inducible gene I (RIG-I) activates the interferon regulatory factor 3 (IRF3) signalling pathway to induce type I interferon (IFN) gene transcription. How this antiviral signalling pathway might be negatively regulated is poorly understood. Microarray and bioinformatic analysis indicated that the expression of RIG-I and that of the tumour suppressor CYLD (cylindromatosis), a deubiquitinating enzyme that removes Lys 63-linked polyubiquitin chains, are closely correlated, suggesting a functional association between the two molecules. Ectopic expression of CYLD inhibits the IRF3 signalling pathway and IFN production triggered by RIG-I; conversely, CYLD knockdown enhances the response. CYLD removes polyubiquitin chains from RIG-I as well as from TANK binding kinase 1 (TBK1), the kinase that phosphorylates IRF3, coincident with an inhibition of the IRF3 signalling pathway. Furthermore, CYLD protein level is reduced in the presence of tumour necrosis factor and viral infection, concomitant with enhanced IFN production. These findings show that CYLD is a negative regulator of RIG-I-mediated innate antiviral response.
Collapse
Affiliation(s)
- Constantin S Friedman
- Immunology Institute, Mount Sinai School of Medicine, Box 1630, One Gustave L Levy Place, New York, New York 10029, USA
- These authors contributed equally to this work
| | - Marie Anne O'Donnell
- Immunology Institute, Mount Sinai School of Medicine, Box 1630, One Gustave L Levy Place, New York, New York 10029, USA
- These authors contributed equally to this work
| | - Diana Legarda-Addison
- Immunology Institute, Mount Sinai School of Medicine, Box 1630, One Gustave L Levy Place, New York, New York 10029, USA
| | - Aylwin Ng
- Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, 7th Floor, Boston, Massachusetts 02114, USA
| | - Washington B Cárdenas
- Department of Microbiology, Mount Sinai School of Medicine, Box 1630, One Gustave L Levy Place, New York, New York 10029, USA
| | - Jacob S Yount
- Department of Microbiology, Mount Sinai School of Medicine, Box 1630, One Gustave L Levy Place, New York, New York 10029, USA
| | - Thomas M Moran
- Department of Microbiology, Mount Sinai School of Medicine, Box 1630, One Gustave L Levy Place, New York, New York 10029, USA
| | - Christopher F Basler
- Department of Microbiology, Mount Sinai School of Medicine, Box 1630, One Gustave L Levy Place, New York, New York 10029, USA
| | - Akihiko Komuro
- Department of Medicine
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Pancoe Pavilion, Room 4401, 2200 Campus Drive, Evanston, Illinois 60208, USA
| | - Curt M Horvath
- Department of Medicine
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Pancoe Pavilion, Room 4401, 2200 Campus Drive, Evanston, Illinois 60208, USA
| | - Ramnik Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, 7th Floor, Boston, Massachusetts 02114, USA
| | - Adrian T Ting
- Immunology Institute, Mount Sinai School of Medicine, Box 1630, One Gustave L Levy Place, New York, New York 10029, USA
- These authors contributed equally to this work
| |
Collapse
|
112
|
High-mobility group protein A1 binds herpes simplex virus gene regulatory sequences and affects their expression. Arch Virol 2008; 153:1251-62. [PMID: 18506571 DOI: 10.1007/s00705-008-0112-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
The high-mobility group protein A1 (HMGA1), which regulates mammalian gene expression by altering chromatin architecture, was found to bind at multiple sites within the promoter regions of all of the herpes simplex virus type 1 (HSV-1) immediate early genes, as well as a representative early (tk) gene and one late (gC) gene, both in vitro and in vivo. Infected cell polypeptide (ICP) 4, the major HSV-1 regulatory protein, binds these promoters both in vitro and in vivo, and HMGA1 enhances its in vitro binding. In transient expression experiments, HMGA1 modified the effects of both ICP4 and ICP0, another virus transactivator, on virus gene expression in a promoter-specific manner, but it had no effect on the transactivation of immediate-early promoters by VP16. These data indicate that host-cell architectural chromatin proteins could influence the interactions of host-cell and viral transcription factors with the virus DNA regulatory elements and affect HSV-1 gene expression.
Collapse
|
113
|
Chen LC, Yeh TM, Wu HN, Lin YY, Shyu HW. Dengue virus infection induces passive release of high mobility group box 1 protein by epithelial cells. J Infect 2008; 56:143-50. [PMID: 18076993 DOI: 10.1016/j.jinf.2007.10.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 10/17/2007] [Accepted: 10/18/2007] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) are severe complications of secondary dengue virus (DV) infection. In the current study, we provide the first evidence of induction of cellular necrosis by DV type 2 (DV-2). METHODS AND RESULTS The epithelial cell line A549 can support replication of dengue virus as demonstrated by expression of viral NS1 antigen and virus plaque assay. DV-2 infection of cells induced cell death in approximately half of the cells that were actively infected. Using sodium 3'-[1-(phenylaminocarbonyl)-3, 4-tetrazolium]-bis(4-methoxy-6-nitro) benzene sulfonic acid hydrate [XTT]-based cell viability assays, we found that DV-2 infection at a multiplicity of infection (MOI) of 10 resulted in significant death of cells as well as high extracellular lactate dehydrogenase (LDH) activity and leakage of the high mobility group 1 (HMGB1) protein into the extracellular space. CONCLUSIONS These results suggest that HMGB1 may be a signal of tissue or cellular injury by DV-2, which in turn is likely to induce and/or enhance an immune reaction.
Collapse
Affiliation(s)
- Lien-Cheng Chen
- Institute of Basic Medical Sciences, National Cheng Kung University, Taiwan, ROC
| | | | | | | | | |
Collapse
|
114
|
Franco R, Esposito F, Fedele M, Liguori G, Pierantoni GM, Botti G, Tramontano D, Fusco A, Chieffi P. Detection of high-mobility group proteins A1 and A2 represents a valid diagnostic marker in post-pubertal testicular germ cell tumours. J Pathol 2008; 214:58-64. [PMID: 17935122 DOI: 10.1002/path.2249] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The high-mobility group A (HMGA) non-histone chromosomal proteins HMGA1 and HMGA2 are architectural factors. They are abundantly expressed during embryogenesis and in most malignant neoplasias, whereas their expression is low or absent in normal adult tissues. Their over-expression is known to have a causal role in cellular neoplastic transformation. Previous studies from our group have shown that their expression is restricted to specific germinal cells. In this study we have evaluated, by immunohistochemistry, the expression of HMGA1 and HMGA2 in a series of post-pubertal testicular tumours of different histological types, including 30 seminomas, 15 teratomas, 15 embryonal carcinomas and 10 mixed germinal tumours with a prominent yolk sac tumour component. HMGA1 protein expression was detected in all seminomas and embryonal carcinomas analysed, but not in teratomas or yolk sac carcinomas. Conversely, HMGA2 was present only in embryonal carcinomas and yolk sac carcinomas, but not in seminomas or teratomas. The immunohistochemical data were further confirmed by Western blot and, at the mRNA level, by RT-PCR analyses. These findings indicate that HMGA1 and HMGA2 are differently expressed with respect to the state of differentiation of testicular germ cell tumours (TGCTs), with over-expression of both proteins in pluripotential embryonal carcinoma cells and loss of expression of HMGA1 in yolk sac tumours and of both proteins in the mature adult tissue of teratoma areas. Therefore, the different profiles of HMGA1 and HMGA2 protein expression could represent a valuable diagnostic tool in some cases in which the histological differential diagnosis is problematic.
Collapse
Affiliation(s)
- R Franco
- Istituto Nazionale dei Tumori Fondazione G Pascale, 80131, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
NALP proteins, also known as NLRPs, belong to the CATERPILLER protein family involved, like Toll-like receptors, in the recognition of microbial molecules and the subsequent activation of inflammatory and immune responses. Current advances in the function of NALPs support the recently proposed model of a disease continuum bridging autoimmune and autoinflammatory disorders. Among these diseases, hereditary periodic fevers (HPFs) are Mendelian disorders associated with sequence variations in very few genes; these variations are mostly missense mutations whose deleterious effect, which is particularly difficult to assess, is often questionable. The growing number of identified sporadic cases of periodic fever syndrome, together with the lack of discriminatory clinical criteria, has greatly hampered the identification of new disease-causing genes, a step that is, however, essential for appropriate management of these disorders. Using a candidate gene approach, we identified nonambiguous mutations in NALP12 (i.e., nonsense and splice site) in two families with periodic fever syndromes. As shown by means of functional studies, these two NALP12 mutations have a deleterious effect on NF-kappaB signaling. Overall, these data identify a group of HPFs defined by molecular defects in NALP12, opening up new ways to manage these disorders. The identification of these first NALP12 mutations in patients with autoinflammatory disorder also clearly demonstrates the crucial role of NALP12 in inflammatory signaling pathways, thereby assigning a precise function to this particular member of an emerging family of proteins whose putative biological properties are currently inferred essentially through in vitro means.
Collapse
|
116
|
Lim PO, Kim Y, Breeze E, Koo JC, Woo HR, Ryu JS, Park DH, Beynon J, Tabrett A, Buchanan-Wollaston V, Nam HG. Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:1140-53. [PMID: 17971039 DOI: 10.1111/j.1365-313x.2007.03317.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Leaf senescence is the final stage of leaf development and is finely regulated via a complex genetic regulatory network incorporating both developmental and environmental factors. In an effort to identify negative regulators of leaf senescence, we screened activation-tagged Arabidopsis lines for mutants that exhibit a delayed leaf senescence phenotype. One of the mutants (ore7-1D) showed a highly significant delay of leaf senescence in the heterozygous state, leading to at least a twofold increase in leaf longevity. The activated gene (ORE7/ESC) encoded a protein with an AT-hook DNA-binding motif; such proteins are known to co-regulate transcription of genes through modification of chromatin architecture. We showed that ORE7/ESC, in addition to binding to a plant AT-rich DNA fragment, could also modify the chromatin architecture, as illustrated by an altered distribution of a histone-GFP fusion protein in the nucleus of the mutant. Globally altered gene expression, shown by microarray analysis, also indicated that activation of ORE7/ESC results in a younger condition in the mutant leaves. We propose that ectopically expressed ORE7/ESC is negatively regulating leaf senescence and suggest that the resulting chromatin alteration may have a role in controlling leaf longevity. Interestingly, activation of ORE7/ESC also led to a highly extended post-harvest storage life.
Collapse
Affiliation(s)
- Pyung Ok Lim
- Department of Science Education, Cheju National University, Jeju, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Abstract
The high mobility group A (HMGA) non-histone chromatin proteins alter chromatin structure and thereby regulate the transcription of several genes by either enhancing or suppressing transcription factors. This protein family is implicated, through different mechanisms, in both benign and malignant neoplasias. Rearrangements of HMGA genes are a feature of most benign human mesenchymal tumours. Conversely, unrearranged HMGA overexpression is a feature of malignant tumours and is also causally related to neoplastic cell transformation. Here, we focus on the role of the HMGA proteins in human neoplastic diseases, the mechanisms by which they contribute to carcinogenesis, and therapeutic strategies based on targeting HMGA proteins.
Collapse
Affiliation(s)
- Alfredo Fusco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina e Chirurgia, Università degli Studi di Napoli "Federico II", via Pansini, 5, 80131, Naples, Italy.
| | | |
Collapse
|
118
|
Wan F, Anderson DE, Barnitz RA, Snow A, Bidere N, Zheng L, Hegde V, Lam LT, Staudt LM, Levens D, Deutsch WA, Lenardo MJ. Ribosomal Protein S3: A KH Domain Subunit in NF-κB Complexes that Mediates Selective Gene Regulation. Cell 2007; 131:927-39. [DOI: 10.1016/j.cell.2007.10.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2007] [Revised: 07/24/2007] [Accepted: 10/03/2007] [Indexed: 12/11/2022]
|
119
|
Pascal V, Nathan NR, Claudio E, Siebenlist U, Anderson SK. NF-kappa B p50/p65 affects the frequency of Ly49 gene expression by NK cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:1751-9. [PMID: 17641041 DOI: 10.4049/jimmunol.179.3.1751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In mice, acquisition of Ly49 receptors characterizes one of the developmental stages of NK cells. We previously described a novel Ly49 promoter, Pro1, involved in Ly49 gene regulation in immature NK cells. Pro1 transcriptional activity requires a NF-kappaB binding site; however, only NF-kappaB/p50 binding to this element was observed. Cotransfection of NF-kappaB/p65 with Ly49g Pro1 in LNK cells induced a decrease in the transcriptional activity of the core promoter. Moreover, decreasing NF-kappaB/p65 protein expression by RNA interference increases Pro1 transcriptional activity. A high rate of NF-kappaB/p65 degradation in LNK cells correlates with Pro1 activity, since treatment with the proteasome inhibitor MG132 increased levels of NF-kappaB/p65 protein and decreased Pro1 activity. In addition, analysis of the Ly49 repertoire in NF-kappaB/p50 null mice reveals a decrease in the proportion of NK cells expressing a given Ly49 molecule. The defect in Ly49 expression is observed in the bone marrow and the spleen with a similar altered pattern of developmental stages in each tissue. The frequency of Ly49 expression in NF-kappaB/p52 null mice is slightly increased, indicating the specific role of NF-kappaB/p50 in Ly49 gene activation. These results suggest that NF-kappaB p50/p65 plays a major role in the initiation of Ly49 gene expression in NK cells.
Collapse
MESH Headings
- Animals
- Antigens, Ly/biosynthesis
- Antigens, Ly/genetics
- Cell Aggregation/genetics
- Cell Aggregation/immunology
- Cell Line
- Cell Line, Tumor
- Cytotoxicity, Immunologic/genetics
- Down-Regulation/genetics
- Down-Regulation/immunology
- Gene Expression Regulation/immunology
- Gene Frequency/immunology
- Interferon-gamma/biosynthesis
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lectins, C-Type/antagonists & inhibitors
- Lectins, C-Type/biosynthesis
- Lectins, C-Type/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B p50 Subunit/deficiency
- NF-kappa B p50 Subunit/genetics
- NF-kappa B p50 Subunit/physiology
- NF-kappa B p52 Subunit/biosynthesis
- NF-kappa B p52 Subunit/genetics
- NK Cell Lectin-Like Receptor Subfamily A
- Promoter Regions, Genetic/immunology
- Receptors, NK Cell Lectin-Like
- Transcription Factor RelA/physiology
- Transcriptional Activation/immunology
Collapse
Affiliation(s)
- Véronique Pascal
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
120
|
Panne D, Maniatis T, Harrison SC. An atomic model of the interferon-beta enhanceosome. Cell 2007; 129:1111-23. [PMID: 17574024 PMCID: PMC2020837 DOI: 10.1016/j.cell.2007.05.019] [Citation(s) in RCA: 463] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 04/26/2007] [Accepted: 05/11/2007] [Indexed: 02/07/2023]
Abstract
Transcriptional activation of the interferon-beta (IFN-beta) gene requires assembly of an enhanceosome containing ATF-2/c-Jun, IRF-3/IRF-7, and NFkappaB. These factors bind cooperatively to the IFN-beta enhancer and recruit coactivators and chromatin-remodeling proteins to the IFN-beta promoter. We describe here a crystal structure of the DNA-binding domains of IRF-3, IRF-7, and NFkappaB, bound to one half of the enhancer, and use a previously described structure of the remaining half to assemble a complete picture of enhanceosome architecture in the vicinity of the DNA. Association of eight proteins with the enhancer creates a continuous surface for recognizing a composite DNA-binding element. Paucity of local protein-protein contacts suggests that cooperative occupancy of the enhancer comes from both binding-induced changes in DNA conformation and interactions with additional components such as CBP. Contacts with virtually every nucleotide pair account for the evolutionary invariance of the enhancer sequence.
Collapse
Affiliation(s)
- Daniel Panne
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Howard Hughes Medical Institute, 250 Longwood Ave, Boston, 02115 MA
| | - Tom Maniatis
- Harvard University, Department of Molecular and Cellular Biology, 7 Divinity Ave, Cambridge MA, 02138
| | - Stephen C. Harrison
- Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology, Howard Hughes Medical Institute, 250 Longwood Ave, Boston, 02115 MA
- Corresponding author , fax: 617 432 5600, tel: 617 432 5607
| |
Collapse
|
121
|
Hu J, Sealfon SC, Hayot F, Jayaprakash C, Kumar M, Pendleton AC, Ganee A, Fernandez-Sesma A, Moran TM, Wetmur JG. Chromosome-specific and noisy IFNB1 transcription in individual virus-infected human primary dendritic cells. Nucleic Acids Res 2007; 35:5232-41. [PMID: 17675303 PMCID: PMC1976463 DOI: 10.1093/nar/gkm557] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The induction of interferon beta (IFNB1) is a key event in the antiviral immune response. We studied the role of transcriptional noise in the regulation of the IFNB1 locus in primary cultures of human dendritic cells (DCs), which are important ‘first responders’ to viral infection. In single cell assays, IFNB1 mRNA expression in virus-infected DCs showed much greater cell-to-cell variation than that of a housekeeping gene, another induced transcript and viral RNA. We determined the contribution of intrinsic noise by measuring the allelic origin of transcripts in each cell and found that intrinsic noise is a very significant part of total noise. We developed a stochastic model to investigate the underlying mechanisms. We propose that the surprisingly high levels of IFNB1 transcript noise originate from the complexity of IFNB1 enhanceosome formation, which leads to a range up to many minutes in the differences within each cell in the time of activation of each allele.
Collapse
Affiliation(s)
- Jianzhong Hu
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Stuart C. Sealfon
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Fernand Hayot
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Ciriyam Jayaprakash
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Madhu Kumar
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Audrey C. Pendleton
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Arnaud Ganee
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas M. Moran
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
| | - James G. Wetmur
- Department of Microbiology, Mount Sinai School of Medicine, Department of Neurology, Mount Sinai School of Medicine, New York 10029 USA, Center for Translational Systems Biology, Mount Sinai School of Medicine and Department of Physics, Ohio State University, Columbus, Ohio 43210, USA
- *To whom correspondence should be addressed.
| |
Collapse
|
122
|
Cleynen I, Brants JR, Peeters K, Deckers R, Debiec-Rychter M, Sciot R, Van de Ven WJM, Petit MMR. HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-kappaB. Mol Cancer Res 2007; 5:363-72. [PMID: 17426251 DOI: 10.1158/1541-7786.mcr-06-0331] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
IMP2 (insulin-like growth factor-II mRNA binding protein 2) is an oncofetal protein that is aberrantly expressed in several types of cancer. We recently identified the Imp2 gene as a target gene of the architectural transcription factor HMGA2 (high mobility group A2) and its tumor-specific truncated form HMGA2Tr. In this study, we investigated the mechanism via which HMGA2 regulates Imp2 gene expression. We show that HMGA2 and HMGA2Tr directly regulate transcription of the Imp2 gene by binding to an AT-rich regulatory region located in the first intron. In reporter experiments, we show that this AT-rich regulatory region mimics the response of the endogenous Imp2 gene to HMGA2 and HMGA2Tr. Furthermore, we show that a consensus nuclear factor-kappaB (NF-kappaB) binding site located immediately adjacent to the AT-rich regulatory region binds NF-kappaB and that NF-kappaB and HMGA2 cooperate to regulate Imp2 gene expression. Finally, we provide evidence that there is a strong and statistically significant correlation between HMGA2 and IMP2 gene expression in human liposarcomas.
Collapse
Affiliation(s)
- Isabelle Cleynen
- Department of Human Genetics, Flanders Interuniversity Institute for Biotechnology, University of Leuven, Herestraat 49, Box 602, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
123
|
Gupta V, Yeo G, Kawakubo H, Rangnekar V, Ramaswamy P, Hayashida T, MacLaughlin DT, Donahoe PK, Maheswaran S. Mullerian-inhibiting substance induces Gro-beta expression in breast cancer cells through a nuclear factor-kappaB-dependent and Smad1-dependent mechanism. Cancer Res 2007; 67:2747-56. [PMID: 17363596 DOI: 10.1158/0008-5472.can-06-2312] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mullerian-inhibiting substance (MIS), a transforming growth factor-beta family member, activates the nuclear factor-kappaB (NF-kappaB) pathway and induces the expression of B-cell translocation gene 2 (BTG2), IFN regulatory factor-1 (IRF-1), and the chemokine Gro-beta. Inhibiting NF-kappaB activation with a phosphorylation-deficient IkappaBalpha mutant abrogated MIS-mediated induction of all three genes. Expression of dominant-negative Smad1, in which serines at the COOH-terminal SSVS motif are converted to alanines, suppressed MIS-induced Smad1 phosphorylation and impaired MIS-stimulated Gro-beta promoter-driven reporter expression and Gro-beta mRNA. Suppressing Smad1 expression using small interfering RNA also mitigated MIS-induced Gro-beta mRNA, suggesting that regulation of Gro-beta expression by MIS was dependent on activation of NF-kappaB as well as Smad1. However, induction of IRF-1 and BTG2 mRNAs by MIS was independent of Smad1 activation. Characterization of kappaB-binding sequences within Gro-beta, BTG2, and IRF-1 promoters showed that MIS stimulated binding of p50 and p65 subunits to all three sites, whereas phosphorylated Smad1 (phospho-Smad1) protein was detectable only in the NF-kappaB complex bound to the kappaB site of the Gro-beta promoter. Consistent with these observations, chromatin immunoprecipitation assays showed recruitment of both phospho-Smad1 and p65 to the Gro-beta promoter in vivo, whereas p65, but not phospho-Smad1, was recruited to the BTG2 promoter. These results show a novel interaction between MIS-stimulated Smad1 and NF-kappaB signaling in which enhancement of NF-kappaB DNA binding and gene expression by phospho-Smad1 is dependent on the sequence of the kappaB consensus site within the promoter.
Collapse
Affiliation(s)
- Vandana Gupta
- Department of Surgical Oncology, Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Tsytsykova AV, Falvo JV, Schmidt-Supprian M, Courtois G, Thanos D, Goldfeld AE. Post-induction, Stimulus-specific Regulation of Tumor Necrosis Factor mRNA Expression. J Biol Chem 2007; 282:11629-38. [PMID: 17303559 DOI: 10.1074/jbc.m611418200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The tumor necrosis factor (TNF) gene is activated by multiple extracellular signals in a stimulus- and cell type-specific fashion. Based on the presence of kappaB-like DNA motifs in the region upstream of the TNF gene, some have proposed a direct role for NF-kappaB in lipopolysaccharide (LPS)-induced TNF gene transcription in cells of the monocyte/macrophage lineage. However, we have previously demonstrated a general and critical role for a minimal TNF promoter region bearing only one of the kappaB-like motifs, kappa3, which is bound by nuclear factor of activated T cell proteins in lymphocytes and fibroblasts in response to multiple stimuli and Ets proteins in LPS-stimulated macrophages. Here, in an effort to resolve these contrasting findings, we used a combination of site-directed mutagenesis of the TNF promoter, quantitative DNase I footprinting, and analysis of endogenous TNF mRNA production in response to multiple stimuli under conditions that inhibit NF-kappaB activation (using the proteasome inhibitor lactacystin and using cells lacking either functional NF-kappaB essential modulator, which is the IkappaB kinase regulatory subunit, or the Nemo gene itself). We find that TNF mRNA production in response to ionophore is NF-kappaB-independent, but inhibition of NF-kappaB activation attenuates virus- and LPS-induced TNF mRNA levels after initial induction. We conclude that induction of TNF gene transcription by virus or LPS does not depend upon NF-kappaB binding to the proximal promoter; rather, a stimulus-specific post-induction mechanism involving NF-kappaB, yet to be characterized, is involved in the maintenance of maximal TNF mRNA levels.
Collapse
Affiliation(s)
- Alla V Tsytsykova
- CBR Institute for Biomedical Research, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
125
|
Weaver JR, Good K, Walters RD, Kugel JF, Goodrich JA. Characterization of the sequence and architectural constraints of the regulatory and core regions of the human interleukin-2 promoter. Mol Immunol 2007; 44:2813-9. [PMID: 17337059 PMCID: PMC1924494 DOI: 10.1016/j.molimm.2007.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 01/19/2007] [Indexed: 11/21/2022]
Abstract
The cytokine interleukin-2 (IL-2) is produced by T cells when they recognize a foreign antigen. Transcription of the IL-2 gene is tightly controlled by the combined actions of multiple transcriptional activators. However, the contribution of sequences in the IL-2 core promoter and the architecture of the IL-2 regulatory region to setting levels of IL-2 transcription are not understood. We have probed these properties of the human IL-2 promoter to understand how the regulatory and core promoter regions cooperate in response to T cell stimulation, thereby setting high levels of inducible transcription. We found that the IL-2 core promoter contains a TATA box that is critical for inducible expression. Moreover, the spacing and orientation between the IL-2 regulatory and core promoter regions is important for setting the level of transcription. The regulatory region of the IL-2 promoter is capable of mediating high levels of expression even when the helical phasing between transcription factor binding sites is perturbed. Although long considered an enhancer, our studies indicate that the regulatory region in the IL-2 promoter is better considered as a proximal regulatory element, since it lacks multiple properties associated with enhancer elements.
Collapse
Affiliation(s)
| | | | | | - Jennifer F. Kugel
- *To whom correspondence should be addressed: JAG: Phone, 303-492-3273; FAX, 303-492-5894; Email, JFK: Phone, 303-492-3596; FAX, 303-492-5894; Email,
| | - James A. Goodrich
- *To whom correspondence should be addressed: JAG: Phone, 303-492-3273; FAX, 303-492-5894; Email, JFK: Phone, 303-492-3596; FAX, 303-492-5894; Email,
| |
Collapse
|
126
|
Johnson J, Albarani V, Nguyen M, Goldman M, Willems F, Aksoy E. Protein kinase Calpha is involved in interferon regulatory factor 3 activation and type I interferon-beta synthesis. J Biol Chem 2007; 282:15022-32. [PMID: 17296604 DOI: 10.1074/jbc.m700421200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein kinase C (PKC) isoforms are critically involved in the regulation of innate immune responses. Herein, we investigated the role of conventional PKCalpha in the regulation of IFN-beta gene expression mediated by the Toll-like receptor 3 (TLR3) signaling pathway. Inhibition of conventional PKC (cPKC) activity in monocyte-derived dendritic cells or TLR3-expressing cells by an isoform-specific inhibitor, Gö6976, selectively inhibited IFN-beta synthesis induced by double-stranded RNA polyinosine-polycytidylic acid. Furthermore, reporter gene assays confirmed that PKCalpha regulates IFN-beta promoter activity, since overexpression of dominant negative PKCalpha but not PKCbeta(I) repressed interferon regulatory factor 3 (IRF-3)-dependent but not NF-kappaB-mediated promoter activity upon TLR3 engagement in HEK 293 cells. Dominant negative PKCalpha inhibited IRF-3 transcriptional activity mediated by overexpression of TIR domain-containing adapter inducing IFN-beta and Tank-binding kinase-1. Additional biochemical analysis demonstrated that Gö6976-treated dendritic cells exhibited IRF-3 phosphorylation, dimerization, nuclear translocation, and DNA binding activity analogous to their control counterparts in response to polyinosine-polycytidylic acid. In contrast, co-immunoprecipitation experiments revealed that TLR3-induced cPKC activity is essential for mediating the interaction of IRF-3 but not p65/RelA with the co-activator CREB-binding protein. Furthermore, PKCalpha knock-down with specific small interfering RNA inhibited IFN-beta expression and down-regulated IRF-3-dependent promoter activity, establishing PKCalpha as a component of TLR3 signaling that regulates IFN-beta gene expression by targeting IRF-3-CREB-binding protein interaction. Finally, we analyzed the involvement of cPKCs in other signaling pathways leading to IFN-beta synthesis. These experiments revealed that cPKCs play a role in the synthesis of IFN-beta induced via both TLR-dependent and -independent pathways.
Collapse
Affiliation(s)
- Jolyn Johnson
- Institute for Medical Immunology, Université Libre de Bruxelles, 8 Rue Adrienne Bolland, 6041 Charleroi, Belgium
| | | | | | | | | | | |
Collapse
|
127
|
Singh M, D'Silva L, Holak TA. DNA-binding properties of the recombinant high-mobility-group-like AT-hook-containing region from human BRG1 protein. Biol Chem 2006; 387:1469-78. [PMID: 17081121 DOI: 10.1515/bc.2006.184] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The hBRG1 protein, a central ATPase of the human switching/sucrose non-fermenting (SWI/SNF) remodeling complex, has a catalytic ATPase domain, an AT-hook motif and a bromodomain. Bromodomains, found in many chromatin-associated proteins, recognize N-acetyl-lysine in histones and other proteins. The AT-hook motif, first described in the high-mobility group of non-histone chromosomal proteins HMGA1/2, is a DNA-binding motif. The AT-hook binds to the AT-rich DNA sequences in the minor groove of B-DNA in a non-sequence specific manner. AT-hook motifs have been identified in many other DNA-binding proteins. In this study we cloned and purified a fragment of hBRG1 encompassing the AT-hook region and the bromodomain. Nuclear magnetic resonance (NMR) and circular dichroism (CD) analyses show that the recombinant domains are structured. The functionality of subdomains was checked by assessing their interactions with N-acetylated peptides from histones and with DNA. Isothermal titration calorimetric (ITC) analysis demonstrates that the primary micromolar interaction is through the AT-hook motif. The AT-hook region binds to linear DNA by unwinding it. These properties resemble the characteristics of the HMGA1/2 proteins and their interaction with DNA.
Collapse
Affiliation(s)
- Mahavir Singh
- Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
128
|
Sax CM, Piatigorsky J. Expression of the alpha-crystallin/small heat-shock protein/molecular chaperone genes in the lens and other tissues. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 69:155-201. [PMID: 7817868 DOI: 10.1002/9780470123157.ch5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- C M Sax
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD
| | | |
Collapse
|
129
|
Hiscott J, Nguyen TLA, Arguello M, Nakhaei P, Paz S. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25:6844-67. [PMID: 17072332 PMCID: PMC7100320 DOI: 10.1038/sj.onc.1209941] [Citation(s) in RCA: 207] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Viral and microbial constituents contain specific motifs or pathogen-associated molecular patterns (PAMPs) that are recognized by cell surface- and endosome-associated Toll-like receptors (TLRs). In addition, intracellular viral double-stranded RNA is detected by two recently characterized DExD/H box RNA helicases, RIG-I and Mda-5. Both TLR-dependent and -independent pathways engage the IkappaB kinase (IKK) complex and related kinases TBK-1 and IKKvarepsilon. Activation of the nuclear factor kappaB (NF-kappaB) and interferon regulatory factor (IRF) transcription factor pathways are essential immediate early steps of immune activation; as a result, both pathways represent prime candidates for viral interference. Many viruses have developed strategies to manipulate NF-kappaB signaling through the use of multifunctional viral proteins that target the host innate immune response pathways. This review discusses three rapidly evolving areas of research on viral pathogenesis: the recognition and signaling in response to virus infection through TLR-dependent and -independent mechanisms, the involvement of NF-kappaB in the host innate immune response and the multitude of strategies used by different viruses to short circuit the NF-kappaB pathway.
Collapse
Affiliation(s)
- J Hiscott
- Terry Fox Molecular Oncology Group, Lady Davis Institute for Medical Research, McGill University, Montreal, Canada.
| | | | | | | | | |
Collapse
|
130
|
Paonessa F, Foti D, Costa V, Chiefari E, Brunetti G, Leone F, Luciano F, Wu F, Lee AS, Gulletta E, Fusco A, Brunetti A. Activator protein-2 overexpression accounts for increased insulin receptor expression in human breast cancer. Cancer Res 2006; 66:5085-93. [PMID: 16707431 DOI: 10.1158/0008-5472.can-05-3678] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Various studies have shown that the insulin receptor (IR) is increased in most human breast cancers, and both ligand-dependent malignant transformation and increased cell growth occur in cultured breast cells overexpressing the IR. However, although numerous in vivo and in vitro observations have indicated an important contributory role for the IR in breast cancer cell biology, the molecular mechanisms accounting for increased IR expression in breast tumors have not previously been elucidated. Herein, we did immunoblot analyses of nuclear protein from cultured breast cancer cells and normal and tumoral tissues from breast cancer patients combined with promoter studies by using a series of human wild-type and mutant IR promoter constructs. We provide evidence that IR overexpression in breast cancer is dependent on the assembly of a transcriptionally active multiprotein-DNA complex, which includes the high-mobility group A1 (HMGA1) protein, the developmentally regulated activator protein-2 (AP-2) transcription factor and the ubiquitously expressed transcription factor Sp1. In cultured breast cancer cells and human breast cancer specimens, the expression of AP-2 was significantly higher than that observed in cells and tissues derived from normal breast, and this overexpression paralleled the increase in IR expression. However, AP-2 DNA-binding activity was undetectable with the IR gene promoter, suggesting that transactivation of this gene by AP-2 might occur indirectly through physical and functional cooperation with HMGA1 and Sp1. Our findings support this hypothesis and suggest that in affected individuals, hyperactivation of the AP-2 gene through the overexpression of IR may play a key role in breast carcinogenesis.
Collapse
Affiliation(s)
- Francesco Paonessa
- Dipartimento di Medicina Sperimentale e Clinica G. Salvatore, Università di Catanzaro Magna Graecia, Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Romanenkov AS, Ustyugov AA, Zatsepin TS, Nikulova AA, Kolesnikov IV, Metelev VG, Oretskaya TS, Kubareva EA. Analysis of DNA-protein interactions in complexes of transcription factor NF-kappaB with DNA. BIOCHEMISTRY (MOSCOW) 2006; 70:1212-22. [PMID: 16336179 DOI: 10.1007/s10541-005-0249-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
We have applied bioinformatic analysis of X-ray 3D structures of complexes of transcription factor NF-kappaB with DNAs. We determined the number of possible Van der Waals contacts and hydrogen bonds between amino acid residues and nucleotides. Conservative contacts in the NF-kappaB dimer-DNA complex composed of p50 and/or p65 NF-kappaB subunit and DNA sequences like 5 -GGGAMWTTCC-3 were revealed. Based on these results, we propose a novel scheme for interactions between NF-kappaB p50 homodimer and the kappaB region of the immunoglobulin light chain gene enhancer (Ig-kappaB). We applied a chemical cross-linking technique to study the proximity of some Lys and Cys residues of NF-kappaB p50 subunit with certain reactive nucleotides into its recognition site. In all cases, the experimentally determined protein-DNA contacts were in good agreement with the predicted ones.
Collapse
Affiliation(s)
- A S Romanenkov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119992, Russia
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Massa PT, Aleyasin H, Park DS, Mao X, Barger SW. NFkappaB in neurons? The uncertainty principle in neurobiology. J Neurochem 2006; 97:607-18. [PMID: 16573643 PMCID: PMC2063440 DOI: 10.1111/j.1471-4159.2006.03810.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nuclear factor kappaB (NFkappaB) is a dynamically modulated transcription factor with an extensive literature pertaining to widespread actions across species, cell types and developmental stages. Analysis of NFkappaB in a complex environment such as neural tissue suffers from a difficulty in simultaneously establishing both activity and location. Much of the available data indicate a profound recalcitrance of NFkappaB activation in neurons, as compared with most other cell types. Few studies to date have sought to distinguish between the various combinatorial dimers of NFkappaB family members. Recent research has illuminated the importance of these problems, as well as opportunities to move past them to the nuances manifest through variable activation pathways, subunit complexity and target sequence preferences.
Collapse
Affiliation(s)
- Paul T Massa
- Department of Neurology, State University of New York-Upstate Medical University, Syracuse, New York, USA
| | | | | | | | | |
Collapse
|
133
|
Jéru I, Hayrapetyan H, Duquesnoy P, Sarkisian T, Amselem S. PYPAF1 nonsense mutation in a patient with an unusual autoinflammatory syndrome: role of PYPAF1 in inflammation. ACTA ACUST UNITED AC 2006; 54:508-14. [PMID: 16447225 DOI: 10.1002/art.21618] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE To gain insight into the pathophysiology of an unusual autoinflammatory syndrome, in a patient of Armenian origin, that mimicked familial Mediterranean fever (FMF) but with episodes triggered by generalized exposure to cold, and to further elucidate the controversial function of the protein encoded by PYPAF1, whose mutations (exclusively missense to date) have been identified in 3 hereditary recurrent fever syndromes. METHODS The patient's DNA was screened for mutations in both MEFV, the gene responsible for FMF, and PYPAF1. The ability of different recombinant PYPAF1 isoforms, expressed in HEK 293 cells, to regulate NF-kappaB signaling was subsequently assessed. RESULTS No disease-causing mutation was found in MEFV. However, a nonsense mutation (p.Arg554X) was identified in PYPAF1; this defect resulted in a truncated protein lacking all leucine-rich repeats. Study of the wild-type and mutant PYPAF1 recombinant proteins revealed that PYPAF1 inhibited NF-kappaB proinflammatory pathways, and that the identified nonsense mutation impaired this property. CONCLUSION These molecular and clinical findings, together with the clinical manifestations in the patient, which call into question the current nosology of the hereditary recurrent fever syndromes, are consistent with the hypothesis that PYPAF1 acts as an inhibitor of NF-kappaB signaling. They also provide a clear elucidation of the functional consequences of this nonsense PYPAF1 mutation not previously described in the literature, which result in a partial loss of function and may thereby explain the pathophysiology of the autoinflammatory syndrome observed in this patient.
Collapse
Affiliation(s)
- I Jéru
- INSERM U.654, Hôpital Henri-Mondor, Creteil, France
| | | | | | | | | |
Collapse
|
134
|
Nowak DE, Tian B, Brasier AR. Two-step cross-linking method for identification of NF-kappaB gene network by chromatin immunoprecipitation. Biotechniques 2006; 39:715-25. [PMID: 16315372 DOI: 10.2144/000112014] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The chromatin immunoprecipitation (ChIP) assay has recently been exploited as a powerful and versatile technique for probing protein-DNA interactions within the chromatin environment. In this method, intact cells are fixed with a reversible DNA-protein cross-linking agent (formaldehyde), and associated DNA is enriched by immunoprecipitating a target DNA binding protein. The bound DNA in the immune complexes is then used to identify that specific DNA binding protein's endogenous genomic targets. Nuclear factor kappaB (NF-kappaB) is a highly inducible transcription factor that controls genetic networks important for pathogen- or cytokine-induced inflammation, immune response, and cellular survival. In our studies of the genetic network under control of the inducible NF-kappaB transcription factor, we found that the conventional ChIP technique using a single formaldehyde cross-linking step did not reproducibly cross-link it to DNA. As a result, we have developed a novel ChIP assay using a two-step cross-linking procedure, incorporating N-hydroxysuccinimide (NHS)-ester-mediated protein-protein cross-linking prior to conventional DNA-protein cross-linking. We demonstrate that this technique is highly efficient, cross-linking virtually all NF-kappaB/Rel A into covalent complexes, resulting in quantitative and robust identification of inducible NF-kappaB family binding to a variety of validated NF-kappaB-dependent genomic targets. To demonstrate the general utility of this two-step cross-linking procedure, we performed enhanced capture of cytokine-inducible signal transducer and activator of transcription-3 (STAT3) binding to one of its known target genes. Our method represents a significant improvement in the efficiency of ChIP analysis in the study of endogenous targets for rare transcription factors.
Collapse
Affiliation(s)
- David E Nowak
- The University of Texas Medical Branch, Galveston 77555-1060, USA
| | | | | |
Collapse
|
135
|
Chang TH, Liao CL, Lin YL. Flavivirus induces interferon-beta gene expression through a pathway involving RIG-I-dependent IRF-3 and PI3K-dependent NF-kappaB activation. Microbes Infect 2006; 8:157-71. [PMID: 16182584 DOI: 10.1016/j.micinf.2005.06.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 02/07/2023]
Abstract
In this study, we found that infection with flaviviruses, such as Japanese encephalitis virus (JEV) and dengue virus serotype 2 (DEN-2), leads to interferon-beta (IFN-beta) gene expression in a virus-replication- and de novo protein-synthesis-dependent manner. NF-kappaB activation is essential for IFN-beta induction in JEV- and DEN-2-infected cells. However, these two viruses seem to preferentially target different members of the interferon regulatory factor (IRF) family. The activation of constitutively expressed IRF-3, characterized by slower gel mobility, dimer formation, and nuclear translocation, is more evident in JEV-infected cells. Other members of the IRF family, such as IRF-1 and IRF-7 are also induced by DEN-2, but not by JEV infection. The upstream molecules responsible for IRF-3 and NF-kappaB activation were further studied. Evidently, a cellular RNA helicase, retinoic acid-inducible gene I (RIG-I), and a cellular kinase, phosphatidylinositol-3 kinase (PI3K), are required for flavivirus-induced IRF-3 and NF-kappaB activation, respectively. Therefore, we suggest that JEV and DEN-2 initiate the host innate immune response through a molecular mechanism involving RIG-I/IRF-3 and PI3K/NF-kappaB signaling pathways.
Collapse
Affiliation(s)
- Tsung-Hsien Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
136
|
Chang ZG, Yang LY, Wang W, Peng JX, Huang GW, Tao YM, Ding X. Determination of high mobility group A1 (HMGA1) expression in hepatocellular carcinoma: a potential prognostic marker. Dig Dis Sci 2005; 50:1764-70. [PMID: 16187170 DOI: 10.1007/s10620-005-2934-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 02/24/2005] [Indexed: 01/04/2023]
Abstract
Our objective was to investigate the expression of HMGA1 mRNA and protein in hepatocellular carcinoma (HCC) and the correlation between its expression and clinical pathological characteristics and prognosis. HMGA1 expression was determined at both the mRNA level and the protein level in 30 HCC tissues and their corresponding paracancer liver tissues (PCLTs) and 2 normal liver tissues by RT-PCR and IHC. Follow-up study was done on the 30 patients involved in this research. HMGA1 mRNA was detected in nine cases of HCC tissues and two PCLTs, for a positivity rate of 30% and 6.7%, respectively (P < 0.05), whereas no HMGA1 mRNA expression was found in normal liver tissues. Clinicopathological analysis revealed that HMGA1 mRNA expression was significantly correlated with Edmondson's grade (P < 0.05). HMGA1 protein was detected in four HCC tissues by IHC and located mainly in the nuclei; no positive staining was found in PCLTs. Follow-up study showed that HMGA1 mRNA-positive patients had a higher risk of recurrence/metastasis and a shorter survival than negative cases (P < 0.05). Our findings indicate that HMGA1 may be involved in the carcinogenesis and invasiveness of HCC and the determination of HMGA1 can be of great value in predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Zhi-Gang Chang
- Liver Cancer Laboratory and Department of General Surgery, Xiangya Hospital, Central South University, Hunan, PR China
| | | | | | | | | | | | | |
Collapse
|
137
|
Swaminathan V, Kishore AH, Febitha KK, Kundu TK. Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Mol Cell Biol 2005; 25:7534-45. [PMID: 16107701 PMCID: PMC1190275 DOI: 10.1128/mcb.25.17.7534-7545.2005] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Histone chaperones are a group of proteins that aid in the dynamic chromatin organization during different cellular processes. Here, we report that the human histone chaperone nucleophosmin interacts with the core histones H3, H2B, and H4 but that this histone interaction is not sufficient to confer the chaperone activity. Significantly, nucleophosmin enhances the acetylation-dependent chromatin transcription and it becomes acetylated both in vitro and in vivo. Acetylation of nucleophosmin and the core histones was found to be essential for the enhancement of chromatin transcription. The acetylated NPM1 not only shows an increased affinity toward acetylated histones but also shows enhanced histone transfer ability. Presumably, nucleophosmin disrupts the nucleosomal structure in an acetylation-dependent manner, resulting in the transcriptional activation. These results establish nucleophosmin (NPM1) as a human histone chaperone that becomes acetylated, resulting in the enhancement of chromatin transcription.
Collapse
Affiliation(s)
- V Swaminathan
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Jakkur, Bangalore, India
| | | | | | | |
Collapse
|
138
|
Dryer RL, Covey LR. A Novel NF-κB-Regulated Site within the Human Iγ1 Promoter Requires p300 for Optimal Transcriptional Activity. THE JOURNAL OF IMMUNOLOGY 2005; 175:4499-507. [PMID: 16177093 DOI: 10.4049/jimmunol.175.7.4499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Transcriptional activation of germline (GL) promoters occurs through binding of NF-kappaB to three evolutionarily conserved sites within a CD40 response region in the human and mouse GL Igamma and Iepsilon promoters. Here we identify and characterize a novel NF-kappaB binding site (kappaB6) within the human GL Igamma1 promoter that plays an essential role in basal- and CD40-induced transcription. This site is adjacent to identified CREB/activating transcription factor (ATF) sites, present in the Igamma1 but not the Igamma3 promoter, which are important for the amplification of transcription. Our data suggest a cohesive protein complex regulating Igamma1 promoter activity because disruption of any individual NF-kappaB or CREB/ATF site markedly lowers the overall inducible activity of the promoter. In addition, alteration of helical phasing within the promoter indicates spatial orientation of CREB/ATF and NF-kappaB, proteins contributes directly to promoter activity. We found that CREB and p50 transactivators, as well as coactivator p300, interact in vivo with the Igamma1 promoter in the presence and absence of CD40 signaling in Ramos and primary B cells. However, the level of CREB and p300 binding differs as a consequence of activation in primary B cells. Furthermore, overexpression of p300, and not a mutant lacking acetyltransferase activity, significantly increases Igamma1 construct-specific transcription. Together these data support a model whereby CREB and multiple NF-kappaB complexes bind to the Igamma1 promoter and recruit p300. CD40 signals induce p300-dependent changes that result in optimal Igamma1 promoter activity.
Collapse
Affiliation(s)
- Rebecca L Dryer
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
139
|
Crombez KRMO, Vanoirbeek EMR, Van de Ven WJM, Petit MMR. Transactivation functions of the tumor-specific HMGA2/LPP fusion protein are augmented by wild-type HMGA2. Mol Cancer Res 2005; 3:63-70. [PMID: 15755872 DOI: 10.1158/1541-7786.mcr-04-0181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The gene encoding the architectural transcription factor HMGA2 is frequently rearranged in several benign tumors of mesenchymal origin. The lipoma preferred partner (LPP) gene is the most frequent translocation partner of HMGA2 in a subgroup of lipomas, which are benign tumors of adipose tissue. In these lipomas, HMGA2/LPP fusion transcripts are expressed, which encode for the three AT-hooks of HMGA2 followed by the two most carboxyl-terminal LIM domains (protein-protein interaction domains) of LPP. Identical fusion transcripts are also expressed in other benign mesenchymal tumors. Previous studies revealed that the LIM domains of LPP have transcriptional activation capacity in GAL4-based luciferase reporter assays. Here, we show that the HMGA2/LPP fusion protein retains the transactivation functions of the LPP LIM domains and thus functions as transcription factor. The HMGA2/LPP fusion protein activates transcription from the well-characterized PRDII element, which is a part of the IFN-beta enhancer and which is known to bind to HMGA2. We also show that HMGA2/LPP activates transcription from the BAT-1 element of the rhodopsin promoter, a HMGA1-binding element. HMGA1 is a closely related family member of HMGA2. Finally, in a number of lipomas, HMGA2/LPP and HMGA2 are coexpressed, and HMGA2 augments the transactivation functions of HMGA2/LPP. These results support the concept that the transactivation functions of the novel HMGA2/LPP transcription factor contribute to lipomagenesis.
Collapse
Affiliation(s)
- Koen R M O Crombez
- Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Herestraat 49 bus 602, B-3000 Leuven, Belgium
| | | | | | | |
Collapse
|
140
|
Aksoy E, Vanden Berghe W, Detienne S, Amraoui Z, Fitzgerald KA, Haegeman G, Goldman M, Willems F. Inhibition of phosphoinositide 3-kinase enhances TRIF-dependent NF-κB activation and IFN-β synthesis downstream of Toll-like receptor 3 and 4. Eur J Immunol 2005; 35:2200-9. [PMID: 15940673 DOI: 10.1002/eji.200425801] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Phosphoinositide 3-kinases (PI3K) are known to regulate Toll-like receptor (TLR)-mediated inflammatory responses, but their impact on the different pathways of TLR signaling remains to be clarified. Here, we investigated the consequences of pharmacological inhibition of PI3K on Toll-IL-1 receptor domain-containing adapter-inducing IFN-beta (TRIF)-dependent signaling, which induces IFN-beta gene expression downstream of TLR3 and TLR4. First, treatment of monocyte-derived dendritic cells (DC) with wortmannin or LY294002 was found to enhance IFN-beta expression upon TLR3 or TLR4 engagement. In the same models of DC activation, PI3K inhibition increased DNA-binding activity of NF-kappaB, but not interferon response factor (IRF)-3, the key transcription factors required for TLR-mediated IFN-beta synthesis. In parallel, wortmannin-treated DC exhibited enhanced levels of IkappaB kinase (IKK)-alpha/beta phosphorylation and IkappaB-alpha degradation with a concomitant increase in NF-kappaB nuclear translocation. Experiments carried out in HEK 293T cells stably expressing TLR3 or TLR4 confirmed that inhibition of PI3K activity enhances NF-kappaB-dependent promoters as well as IFN-beta promoter activities without interfering with transcription at the positive regulatory domain III-I. Furthermore, wortmannin enhanced NF-kappaB activity induced by TRIF overexpression in HEK 293T cells, while overexpression of catalytically active PI3K selectively attenuated TRIF-mediated NF-kappaB transcriptional activity. Finally, in co-immunoprecipitation experiments, we showed that PI3K physically interacted with TRIF. We conclude that inhibition of PI3K activity enhances TRIF-dependent NF-kappaB activity, and thereby increases IFN-beta synthesis elicited by TLR3 or TLR4 ligands.
Collapse
Affiliation(s)
- Ezra Aksoy
- Institute for Medical Immunology, Université Libre de Bruxelles, Charleroi, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
141
|
Fedele M, Pentimalli F, Baldassarre G, Battista S, Klein-Szanto AJP, Kenyon L, Visone R, De Martino I, Ciarmiello A, Arra C, Viglietto G, Croce CM, Fusco A. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005; 24:3427-35. [PMID: 15735694 DOI: 10.1038/sj.onc.1208501] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Overexpression of HMGA1 proteins is a constant feature of human carcinomas. Moreover, rearrangements of this gene have been detected in several human benign tumors of mesenchymal origin. To define the role of these proteins in cell transformation in vivo, we have generated transgenic mice overexpressing ubiquitously the HMGA1 gene. These mice developed mixed growth hormone/prolactin cell pituitary adenomas and natural killer (NK)-T/NK cell lymphomas. The HMGA1-induced expression of IL-2 and IL-15 proteins and their receptors may account for the onset of these lymphomas. At odds with mice overexpressing a wild-type or a truncated HMGA2 protein, adrenal medullar hyperplasia and pancreatic islet cell hyperplasia frequently occurred and no increase in body size and weight was observed in HMGA1 mice. Taken together, these data indicate an oncogenic role of the HMGA1 gene also in vivo.
Collapse
Affiliation(s)
- Monica Fedele
- Istituto di Endocrinologia ed Oncologia Sperimentale del CNR c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università di Napoli Federico II, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Foti D, Chiefari E, Fedele M, Iuliano R, Brunetti L, Paonessa F, Manfioletti G, Barbetti F, Brunetti A, Croce CM, Fusco A, Brunetti A. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat Med 2005; 11:765-73. [PMID: 15924147 DOI: 10.1038/nm1254] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 05/03/2005] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus is a widespread disease, affecting millions of people globally. Although genetics and environmental factors seem to have a role, the cause of this metabolic disorder is largely unknown. Here we report a genetic flaw that markedly reduced the intracellular expression of the high mobility group A1 (HMGA1) protein, and adversely affected insulin receptor expression in cells and tissues from four subjects with insulin resistance and type 2 diabetes. Restoration of HMGA1 protein expression in subjects' cells enhanced INSR gene transcription, and restored cell-surface insulin receptor protein expression and insulin-binding capacity. Loss of Hmga1 expression, induced in mice by disrupting the Hmga1 gene, considerably decreased insulin receptor expression in the major targets of insulin action, largely impaired insulin signaling and severely reduced insulin secretion, causing a phenotype characteristic of human type 2 diabetes.
Collapse
Affiliation(s)
- Daniela Foti
- Dipartimento di Medicina Sperimentale e Clinica G. Salvatore, Università di Catanzaro Magna Graecia, via T. Campanella 115, 88100 Catanzaro, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Sandberg AA. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: leiomyoma. ACTA ACUST UNITED AC 2005; 158:1-26. [PMID: 15771900 DOI: 10.1016/j.cancergencyto.2004.08.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 08/11/2004] [Accepted: 08/11/2004] [Indexed: 12/22/2022]
Affiliation(s)
- Avery A Sandberg
- Department of DNA Diagnostics, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013, USA.
| |
Collapse
|
144
|
Akai T, Ueda Y, Sasagawa Y, Hamada T, Date T, Katsuda S, Iizuka H, Okada Y, Chada K. High mobility group I-C protein in astrocytoma and glioblastoma. Pathol Res Pract 2005; 200:619-24. [PMID: 15497774 DOI: 10.1016/j.prp.2004.06.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
High mobility group I-C (HMGI-C) protein is a non-histone DNA-binding factor that organizes active chromatin. This protein is expressed during the limited phase of embryonic development and may regulate the expression of genes critical for embryonic cell growth and differentiation. As embryonic mechanisms are also known to play a role in the development of some neoplasms, we investigated human brain tumors for the expression of HMGI-C to determine its role in the differentiation of glial cell tumors. Immunohistochemical analysis revealed HMGI-C in all of the low-grade astrocytomas, in 2 of 3 anaplastic astrocytomas (grade 3), but in only one of 8 glioblastomas. The results were confirmed at the mRNA level by nested reverse-transcription polymerase chain reaction analyses. Loss of HMGI-C was also demonstrated in a case of glioblastoma transformed from the low-grade astrocytoma strongly expressing HMGI-C protein. These results suggest that HMGI-C may be involved in the differentiation of glial tumor cells, and that loss of HMGI-C expression may contribute to the transformation of low-grade astrocytoma into glioblastoma.
Collapse
Affiliation(s)
- Takuya Akai
- Department of Neurosurgery, Kanazawa Medical University, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Roth W, Sustmann C, Kieslinger M, Gilmozzi A, Irmer D, Kremmer E, Turck C, Grosschedl R. PIASy-deficient mice display modest defects in IFN and Wnt signaling. THE JOURNAL OF IMMUNOLOGY 2004; 173:6189-99. [PMID: 15528356 DOI: 10.4049/jimmunol.173.10.6189] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein inhibitors of activated STATs (PIAS) represent a small family of nuclear proteins that modulate the activity of many transcription factors and act as E3 ligases for covalent modification of proteins with the small ubiquitin-like modifier (SUMO). In particular, PIASy has been shown to inhibit the activation of gene expression by the IFN-responsive transcription factor STAT1 and the Wnt-responsive transcription factor LEF1. To assess the function of PIASy in vivo, we generated and analyzed mice carrying a targeted mutation of the Piasy gene. We find that homozygous mutant mice have no obvious morphological defects and have a normal distribution of lymphocyte populations. Molecular analysis of signaling in response to IFN-gamma and Wnt agonists revealed a modest reduction in the activation of endogenous and transfected target genes. Two-dimensional analysis of total proteins and SUMO-modified proteins in transformed pre-B cells showed no significant differences between wild-type mice and homozygous mutant mice. Taken together, our data indicate that PIASy has a modest effect on cytokine and Wnt signaling, suggesting a redundancy with other members of the family of PIAS proteins.
Collapse
Affiliation(s)
- Wera Roth
- Gene Center and Institute of Biochemistry, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
146
|
Shiels BR, McKellar S, Katzer F, Lyons K, Kinnaird J, Ward C, Wastling JM, Swan D. A Theileria annulata DNA binding protein localized to the host cell nucleus alters the phenotype of a bovine macrophage cell line. EUKARYOTIC CELL 2004; 3:495-505. [PMID: 15075278 PMCID: PMC387639 DOI: 10.1128/ec.3.2.495-505.2004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The apicomplexan parasite Theileria annulata is the only intracellular eukaryote that is known to induce the proliferation of mammalian cells. However, as the parasite undergoes stage differentiation, host cell proliferation is inhibited, and the leukocyte is eventually destroyed. We have isolated a parasite gene (SuAT1) encoding an AT hook DNA binding polypeptide that has a predicted signal peptide, PEST motifs, nuclear localization signals, and domains which indicate interaction with regulatory components of the higher eukaryotic cell cycle. The polypeptide is localized to the nuclei of macroschizont-infected cells and was detected at significant levels in cells that were undergoing parasite stage differentiation. Transfection of an uninfected transformed bovine macrophage cell line, BoMac, demonstrated that SuAT1 can modulate cellular morphology and alter the expression pattern of a cytoskeletal polypeptide in a manner similar to that found during the infection of leukocytes by the parasite. Our findings indicate that Theileria parasite molecules that are transported to the leukocyte nucleus have the potential to modulate the phenotype of infected cells.
Collapse
Affiliation(s)
- Brian R Shiels
- Department of Veterinary Parasitology, Institute of Comparative Medicine, University of Glasgow, Glasgow G61 1QH, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
147
|
Saleh A, Davies GE, Pascal V, Wright PW, Hodge DL, Cho EH, Lockett SJ, Abshari M, Anderson SK. Identification of probabilistic transcriptional switches in the Ly49 gene cluster: a eukaryotic mechanism for selective gene activation. Immunity 2004; 21:55-66. [PMID: 15345220 DOI: 10.1016/j.immuni.2004.06.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 05/11/2004] [Accepted: 05/18/2004] [Indexed: 11/17/2022]
Abstract
Murine natural killer cells selectively express members of the Ly49 family of class I MHC receptors; however, the molecular mechanism controlling probabilistic expression of Ly49 proteins has not been defined. A pair of overlapping, divergent promoters discovered in the Ly49g gene functions as a molecular switch that can produce a forward transcript containing the coding region of the gene (on position) or a noncoding transcript in the opposite direction (off position), and this element maintains transcription in the chosen direction. Competition of C/EBP and TBP transcription factors for overlapping binding sites determines the relative strength of the competing promoters and the probability of transcription in a given direction. Similar elements precede all Ly49 family members, and the relative strength of the forward promoter in each inhibitory Ly49 gene correlates with the percentage of natural killer cells that express a given receptor, supporting a promoter competition model of selective gene activation.
Collapse
Affiliation(s)
- Ali Saleh
- Laboratory of Experimental Immunology, Center for Cancer Research, National Cancer Institute, National Cancer Institute-Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Yang H, Ma G, Lin CH, Orr M, Wathelet MG. Mechanism for transcriptional synergy between interferon regulatory factor (IRF)-3 and IRF-7 in activation of the interferon-β gene promoter. ACTA ACUST UNITED AC 2004; 271:3693-703. [PMID: 15355347 DOI: 10.1111/j.1432-1033.2004.04310.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The interferon-beta promoter has been studied extensively as a model system for combinatorial transcriptional regulation. In virus-infected cells the transcription factors ATF-2, c-Jun, interferon regulatory factor (IRF)-3, IRF-7 and NF-kappaB, and the coactivators p300/CBP play critical roles in the activation of this and other promoters. It remains unclear, however, why most other combinations of AP-1, IRF and Rel proteins fail to activate the interferon-beta gene. Here we have explored how different IRFs may cooperate with other factors to activate transcription. First we showed in undifferentiated embryonic carcinoma cells that ectopic expression of either IRF-3 or IRF-7, but not IRF-1, was sufficient to allow virus-dependent activation of the interferon-beta promoter. Moreover, the activity of IRF-3 and IRF-7 was strongly affected by promoter context, with IRF-7 preferentially being recruited to the natural interferon-beta promoter. We fully reconstituted activation of this promoter in insect cells. Maximal synergy required IRF-3 and IRF-7 but not IRF-1, and was strongly dependent on the presence of p300/CBP, even when these coactivators only modestly affected the activity of each factor by itself. These results suggest that specificity in activation of the interferon-beta gene depends on a unique promoter context and on the role played by coactivators as architectural factors.
Collapse
Affiliation(s)
- Hongmei Yang
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0576, USA
| | | | | | | | | |
Collapse
|
149
|
Balcerczak M, Pasz-Walczak G, Balcerczak E, Wojtylak M, Kordek R, Mirowski M. HMGI(Y) gene expression in colorectal cancer: comparison with some histological typing, grading, and clinical staging. Pathol Res Pract 2004; 199:641-6. [PMID: 14666966 DOI: 10.1078/0344-0338-00475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We investigated HMGI(Y) gene expression in 81 pairs of frozen samples obtained from colorectal carcinomas and adjacent normal colorectal mucosas and in four samples from colorectal mucosa from patients without neoplastic diseases. In this group, HMGI(Y)-positive/-negative expression was compared with some histological features, grading, and clinical staging of neoplasms investigated to assess its potential role as a prognostic marker for colorectal cancer. Expression of HMGI(Y) gene was found in 51 of 81 cases of colorectal cancers, while, in normal mucosa, expression of this gene was not observed. HMGI(Y) gene expression was associated with more advanced tumors (T3, T4) and metastases to lymph nodes (N1, N2). The most interesting finding was that expression of this gene correlated with distant metastases. HMGI(Y) gene expression was detected in all cases classified as M1 (n = 19, p = 0.0008). We did not find any association between age, gender, tumor localization, histological type and this gene expression.
Collapse
Affiliation(s)
- M Balcerczak
- Department of Pharmaceutical Biochemistry, Molecular Biology Laboratory, Lodz, Poland
| | | | | | | | | | | |
Collapse
|
150
|
Takaha N, Resar LMS, Vindivich D, Coffey DS. High mobility group protein HMGI(Y) enhances tumor cell growth, invasion, and matrix metalloproteinase-2 expression in prostate cancer cells. Prostate 2004; 60:160-7. [PMID: 15162382 DOI: 10.1002/pros.20049] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The high mobility group protein HMGI(Y) has oncogenic properties and correlates with an aggressive phenotype in prostate cancer. The molecular mechanisms involved in transformation associated with HMGI(Y) overexpression remain unknown. METHODS The HMG-I isoform was transfected and overexpressed in nonmetastatic Dunning prostate cancer cells (G cells) without detectable HMGI(Y). The assays of cell proliferation, tumor formation, in vitro invasion, and cDNA microarray were performed to assess the effect of HMGI(Y) overexpression in the transfected G cells. RESULTS Overexpression of HMG-I in G cells significantly increases cell proliferation and tumor growth and also modestly enhances in vitro invasion compared to mock transfectant. cDNA microarray revealed that expression of the matrix metalloproteinase-2 (MMP-2) proform was increased eightfold in G cells overexpressing HMG-I. CONCLUSIONS Overexpression of HMG-I in prostate cancer cells enhances cell growth, invasion, and expression of the proform of MMP-2, which may initiate early steps involved in the metastatic cascade.
Collapse
Affiliation(s)
- Natsuki Takaha
- Department of Urology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|