101
|
Sotiropoulou PA, Blanpain C. Development and homeostasis of the skin epidermis. Cold Spring Harb Perspect Biol 2012; 4:a008383. [PMID: 22751151 DOI: 10.1101/cshperspect.a008383] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin epidermis is a stratified epithelium that forms a barrier that protects animals from dehydration, mechanical stress, and infections. The epidermis encompasses different appendages, such as the hair follicle (HF), the sebaceous gland (SG), the sweat gland, and the touch dome, that are essential for thermoregulation, sensing the environment, and influencing social behavior. The epidermis undergoes a constant turnover and distinct stem cells (SCs) are responsible for the homeostasis of the different epidermal compartments. Deregulation of the signaling pathways controlling the balance between renewal and differentiation often leads to cancer formation.
Collapse
|
102
|
Bose A, Teh MT, Hutchison IL, Wan H, Leigh IM, Waseem A. Two mechanisms regulate keratin K15 expression in keratinocytes: role of PKC/AP-1 and FOXM1 mediated signalling. PLoS One 2012; 7:e38599. [PMID: 22761689 PMCID: PMC3384677 DOI: 10.1371/journal.pone.0038599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/08/2012] [Indexed: 01/24/2023] Open
Abstract
Background Keratin 15 (K15) is a type I keratin that is used as a marker of stem cells. Its expression is restricted to the basal layer of stratified epithelia, and the bulge in hair follicles. However, in certain clinical situations including oral lichen planus, K15 is induced in suprabasal layers, which is inconsistent with the role of a stem cell marker. This study provides insights into the mechanisms of K15 expression in the basal and differentiating keratinocytes. Methodology/Principal Findings Human keratinocytes were differentiated by three different methods; suspension in methylcellulose, high cell density and treatment with phorbol ester. The expression of mRNA was determined by quantitative PCR and protein by western blotting and immunostaining. Keratinocytes in suspension suppressed β1-integrin expression, induced differentiation-specific markers and K15, whereas FOXM1 (a cell cycle regulated protein) and K14 were downregulated. Rescuing β1-integrin by either fibronectin or the arginine-glycine-aspartate peptide suppressed K15 but induced K14 and FOXM1 expression. Specific inhibition of PKCδ, by siRNA, and AP-1 transcription factor, by TAM67 (dominant negative c-Jun), suppressed K15 expression, suggesting that PKC/AP-1 pathway plays a role in the differentiation-specific expression of K15. The basal cell-specific K15 expression may involve FOXM1 because ectopic expression of the latter is known to induce K15. Using chromatin immunoprecipitation, we have identified a single FOXM1 binding motif in the K15 promoter. Conclusions/Significance The data suggests that K15 is induced during terminal differentiation mediated by the down regulation of β1-integrin. However, this cannot be the mechanism of basal/stem cell-specific K15 expression in stratified epithelia, because basal keratinocytes do not undergo terminal differentiation. We propose that there are two mechanisms regulating K15 expression in stratified epithelia; differentiation-specific involving PKC/AP-1 pathway, and basal-specific mediated by FOXM1, and therefore the use of K15 expression as a marker of stem cells must be viewed with caution.
Collapse
Affiliation(s)
- Amrita Bose
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Iain L. Hutchison
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Hong Wan
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Irene M. Leigh
- Division of Cancer, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Ahmad Waseem
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
103
|
Abstract
This is a chronicle of concepts in the field of epidermal stem cell biology and a historic look at their development over time. The past 25 years have seen the evolution of epidermal stem cell science, from first fundamental studies to a sophisticated science. The study of epithelial stem cell biology was aided by the ability to visualize the distribution of stem cells and their progeny through lineage analysis studies. The excellent progress we have made in understanding epidermal stem cell biology is discussed in this article. The challenges we still face in understanding epidermal stem cells include defining molecular markers for stem and progenitor sub-populations, determining the locations and contributions of the different stem cell niches, and mapping regulatory pathways of epidermal stem cell proliferation and differentiation. However, our rapidly evolving understanding of epidermal stem cells has many potential uses that promise to translate into improved patient therapy.
Collapse
Affiliation(s)
- Ruby Ghadially
- Department of Dermatology and Epithelial Section, UCSF Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California 94121, USA.
| |
Collapse
|
104
|
Amini-Nik S, Glancy D, Boimer C, Whetstone H, Keller C, Alman BA. Pax7 expressing cells contribute to dermal wound repair, regulating scar size through a β-catenin mediated process. Stem Cells 2012; 29:1371-9. [PMID: 21739529 DOI: 10.1002/stem.688] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During skin wound healing, fibroblast-like cells reconstitute the dermal compartment of the repaired skin filling the wound gap. A subset of these cells are transcriptionally active for β-catenin/T-cell factor (TCF) signaling during the proliferative phase of the repair process, and β-catenin levels control the size of the scar that ultimately forms by regulating the number of dermal fibroblasts. Here, we performed cell lineage studies to reveal a source of the dermal cells in which β-catenin signaling is activated during wound repair. Using a reporter mouse, we found that cells in the early wound in which TCF-dependent transcription is activated express genes involved in muscle development. Using mice in which cells express Pax7 (muscle progenitors) or Mck (differentiated myocytes) are permanently labeled, we showed that one quarter of dermal cells in the healing wound are Pax7 expressing progeny, but none are Mck progeny. Removing one allele of β-catenin in Pax7 expressing progeny resulted in a significantly smaller scar size with fewer Pax7 expressing progeny cell contributing to wound repair. During wound healing, β-catenin activation causes muscle satellite cells to adopt a fibrotic phenotype and this is a source of dermal cells in the repair process.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
105
|
Ohyama M, Kobayashi T. Isolation and characterization of stem cell-enriched human and canine hair follicle keratinocytes. Methods Mol Biol 2012; 879:389-401. [PMID: 22610573 DOI: 10.1007/978-1-61779-815-3_24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The epithelial (keratinocyte) stem cells locating at the bulge region of hair follicles have been reported to possess high proliferative capacity in vitro and multipotency to repopulate hair follicles, sebaceous glands, and the epidermis, indicating the importance of those cells for the clinical applications including gene therapy and regenerative medicine. However, most of previous investigations adopted rodent bulge cells. The biological properties of human and rodent bulge cells have been reported to be distinct. Accordingly, it is crucial to directly isolate and characterize human bulge cells. However, the supply of human hair follicles for investigative purposes may be extremely limited in some situation. Dogs share analogous hair loss disorders with humans. Recent investigations have uncovered the biological similarities between canine bulge cells, suggesting that canine bulge cells are valuable substitute for the biological characterization of human bulge cells. Here, we provided the protocols for the isolation and characterization of human and canine hair follicle stem cell-enriched keratinocytes. Manual microdissection still represents the most commonly used technique to enrich bulge cells from human and canine hair follicles. Positive selection using a cell surface marker, CD200, should enable further enrichment of human bulge cells. Confirmation of successful isolation and molecular and cellular biological characterization of bulge cells are possible by real-time PCR and flow cytometry analyses described here. Colony-forming assay enables not only the evaluation of in vitro proliferative capacity but also the subcloning of holoclone keratinocytes, putative keratinocyte stem cells. Finally, hair reconstitution assay is available for the assessment of multipotency in vivo and sets a basis for tissue engineering of hair follicles.
Collapse
Affiliation(s)
- Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
106
|
Rasmussen C, Thomas-Virnig C, Allen-Hoffmann BL. Classical human epidermal keratinocyte cell culture. Methods Mol Biol 2012; 945:161-75. [PMID: 23097107 DOI: 10.1007/978-1-62703-125-7_11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
It has been more than 30 years since the serial cultivation of human keratinocytes in monolayer culture was first described by Rheinwald and Green. Initially, isolation of primary keratinocytes from disaggregated human skin tissue and subsequent propagation was promoted through use of replication-inactivated murine fibroblast feeder layers. Since then numerous advances have been made to the cultivation of human keratinocytes in both two-dimensional monolayer and three-dimensional organotypic culture. Monolayer culture facilitates keratinocyte proliferation, whereas organotypic culturing techniques promote keratinocyte differentiation using conditions permissive for stratification. The protocols presented here describe traditional culturing methods, providing guidance for isolation and serial cultivation of primary human keratinocytes and dermal fibroblasts, as well as the use of these cells types for generation of stratified skin tissue.
Collapse
Affiliation(s)
- Cathy Rasmussen
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | |
Collapse
|
107
|
Comparison of stem cell properties in cell populations isolated from human central and limbal corneal epithelium. Cornea 2011; 30:1155-62. [PMID: 21849892 DOI: 10.1097/ico.0b013e318213796b] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The limbus of the cornea is said to be the niche for limbal stem cells (LSCs) and the primary source of corneal epithelial maintenance. Previously, we aimed to have shown that central human epithelial cells are capable of corneal regeneration after wounding. In this study, we aimed to investigate whether central epithelial cells in human corneas have LSC properties. METHODS Human corneal epithelial cells were separated from the central cornea and the limbus. Isolated cells were collected for sphere-forming assay, and spheres formed subsequently were analyzed using immunohistochemistry. Fluorescence-activated cell sorting (FACS) was also used to analyze epithelial cells from central cornea, limbal rim, older donors, younger donors, and dissociated spheres. These analyses were based on cell size and Hoechst 33342 dye efflux ability, and side populations and non-side populations were isolated for colony growth measurement and sphere-forming assay. RESULTS Human central and limbal epithelial cells were capable of forming spheres, in a 1:2 ratio, that were positive for p63 immunolabeling. In FACS, central and limbal epithelial cells showed no significant difference in cell size and dye efflux ability. There were almost 10 times more large cells with good dye efflux ability from younger donors than from older donors, and the gated side population showed more than 4 times faster rate of colony growth than the non-side population. Dissociated sphere cells, however, did not follow a similar pattern to tissue-derived cells using FACS analysis. In these, there were more than twice as many large cells than small cells with good dye efflux ability. CONCLUSIONS Both limbal and central epithelial cells are capable of forming spheres in cultures that have stem cell properties. Central and limbal epithelial cells cannot be differentiated using FACS, but younger donor tissues give rise to greater numbers of large cells with high dye efflux. Therefore, results indicate that human central corneal epithelium contains cells with stem/progenitor properties, and these stem properties decline with age.
Collapse
|
108
|
Chang SC, Hsu CK, Tzeng YS, Teng SC, Fu JP, Dai NT, Chen SG, Chen TM, Feng CC. Deep sole burns in several participants in a traditional festival of the firewalking ceremony in Kee-lung, Taiwan--clinical experiences and prevention strategies. Burns 2011; 38:1079-83. [PMID: 22115980 DOI: 10.1016/j.burns.2011.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/19/2011] [Accepted: 11/01/2011] [Indexed: 12/21/2022]
Abstract
PURPOSE Firewalking is a common Taoist cleansing ceremony in Taiwan, but burns associated with the practice have rarely been reported. We analyzed the patients with plantar burns from one firewalking ceremony. MATERIALS AND METHODS In one firewalking ceremony, 12 Taoist disciples suffered from contact burns to the soles of their feet while walking over burning coals. Eight of them had at least second-degree burns over areas larger than 1% of their total body surface areas (TBSAs). The age, sex, medical history, date of injury, time taken to traverse the fire pit, depth and TBSA of the burns, treatment, length of stay, and outcome were recorded and analyzed. RESULTS Deep, disseminated second- to third-degree burns were noted and healing took as long as three weeks in some patients. Because disseminated hypertrophic scars form after burns, the soles involved regain much of their tensile strength while walking. The patients experienced only a few difficulties in their daily lives three months after injury. CONCLUSION From our experience treating patients with deep disseminated second- to third-degree plantar burns caused by firewalking, we conclude that they should be treated conservatively, with secondary healing rather than a skin graft.
Collapse
Affiliation(s)
- Shun-Cheng Chang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Abstract
The extended longevity of many mammals imposes the need for an effective tissue renewal capacity within the vital organs to maintain optimal function. Resident adult stem cells are instrumental in delivering this renewal capacity by virtue of their characteristic ability to maintain themselves long-term as a population (self-renewal), whilst also supplying all functional cell-lineages of the respective tissue (multipotency). The homeostatic activity of these adult stem cell reservoirs is tailored to meet the specific renewal requirements of individual tissues through a combination of intrinsic genetic programming and local cues delivered from the surrounding environment (the niche). Considerable phenotypic diversity therefore exists between adult stem cell populations in different organs, making it a considerable challenge to identify broadly applicable markers that facilitate their identification and characterization. However, the 7-transmembrane receptor, Lgr5 has recently gained prominence as a marker of Wnt-regulated adult stem cell populations in the hair-follicle, intestine and stomach. A closely-related protein, Lgr6 marks adult stem cells responsible for fueling the renewal of the sebaceous gland and skin. The discovery of these markers has already greatly improved our understanding of stem cell biology in these rapidly renewing tissues and has major implications for the identification and isolation of human adult stem cell populations for exploitation of their regenerative medicine potential in the clinic.
Collapse
|
110
|
Chaudhury H, Raborn E, Goldie LC, Hirschi KK. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine. Cells Tissues Organs 2011; 195:41-7. [PMID: 22005724 DOI: 10.1159/000331423] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources including human embryonic stem cells and induced pluripotent stem cells. We review the vascular potential of these human pluripotent stem cells, the mechanisms by which they are induced to differentiate toward a vascular endothelial cell fate, and their applications in regenerative medicine.
Collapse
Affiliation(s)
- Hera Chaudhury
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Tex., USA
| | | | | | | |
Collapse
|
111
|
Inoue H, Takenaga M, Ohta Y, Tomioka M, Watabe YI, Aihara M, Kumagai N. Improvement of hind-limb paralysis following traumatic spinal cord injury in rats by grafting normal human keratinocytes: new cell-therapy strategy for nerve regeneration. J Artif Organs 2011; 14:375-80. [DOI: 10.1007/s10047-011-0598-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Accepted: 07/28/2011] [Indexed: 12/28/2022]
|
112
|
Tan L, Sui X, Deng H, Ding M. Holoclone forming cells from pancreatic cancer cells enrich tumor initiating cells and represent a novel model for study of cancer stem cells. PLoS One 2011; 6:e23383. [PMID: 21826251 PMCID: PMC3149653 DOI: 10.1371/journal.pone.0023383] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Accepted: 07/15/2011] [Indexed: 02/06/2023] Open
Abstract
Background Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells. Methodology/Principal Findings Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted. Conclusions/Significance Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3 cell line. Generation of holoclones can serve as a novel model for studying cancer stem cells, and attribute to developing new anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Tan
- College of Life Sciences, Peking University, Beijing, China
| | - Xin Sui
- College of Life Sciences, Peking University, Beijing, China
| | - Hongkui Deng
- College of Life Sciences, Peking University, Beijing, China
| | - Mingxiao Ding
- College of Life Sciences, Peking University, Beijing, China
- * E-mail:
| |
Collapse
|
113
|
Abstract
Marx's line is a line of mucosal staining behind the mucocutaneous junction. It can be demonstrated throughout life in all normal lids by staining with lissamine green and related dyes. Of all the body orifices, only the mucosae of the eye and mouth are directly exposed to the atmosphere. In this paper, we suggest that for the eye, this exposure leads to the formation of Marx's line. The tear meniscus thins progressively toward its apex, where it is pinned at the mucocutaneous junction of the lid. It also thins toward the black line, which segregates the meniscus from the tear film after the blink. We predict that, because of the geometry of the tear meniscus, evaporation generates a solute gradient across the meniscus profile in the anteroposterior plane, which peaks at the meniscus apices at the end of the interblink. One outcome would be to amplify the level of tear molarity at these sites so that they reach hyperosmolar proportions. Preliminary mathematical modeling suggests that dilution of this effect by advection and diffusion of solute away from the meniscus apex at the mucocutaneous junction will be restricted by spatial constraints, the presence of tear and surface mucins at this site, and limited fluid flow. We conclude that evaporative water loss from the tear meniscus may result in a physiological zone of hyperosmolar and related stresses to the occlusal conjunctiva, directly behind the mucocutaneous junction. We hypothesize that this stimulates a high epithelial cell turnover at this site, incomplete epithelial maturation, and a failure to express key molecules such as MUC 16 and galectin-3, which, with the tight junctions between surface epithelial cells, are necessary to seal the ocular surface and prevent penetration of dyes and other molecules into the epithelium. This is proposed as the basis for Marx's line. In Part II of this paper (also published in this issue of The Ocular Surface), we address additional pathophysiological consequences of this mechanism, affecting lid margins.
Collapse
|
114
|
Kunicher N, Tzur T, Amar D, Chaouat M, Yaacov B, Panet A. Characterization of factors that determine lentiviral vector tropism in skin tissue using an ex vivo model. J Gene Med 2011; 13:209-20. [DOI: 10.1002/jgm.1554] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
115
|
Xue S, Li L. Upregulation of collagen type 1 in aged murine dermis after transplantation of dermal multipotent cells. Clin Exp Dermatol 2011; 36:775-81. [DOI: 10.1111/j.1365-2230.2011.04071.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
116
|
Zhang Z, Li W, Cheng S, Yao H, Zhang F, Chang Q, Ke Z, Wang X, Son YO, Luo J, Shi X. Nickel-induced down-regulation of ΔNp63 and its role in the proliferation of keratinocytes. Toxicol Appl Pharmacol 2011; 253:235-43. [PMID: 21466819 DOI: 10.1016/j.taap.2011.03.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 03/23/2011] [Accepted: 03/25/2011] [Indexed: 02/07/2023]
Abstract
Epidemiological, animal, and cell studies have demonstrated that nickel compounds are human carcinogens. The mechanisms of their carcinogenic actions remain to be investigated. p63, a close homologue of the p53 tumor suppressor protein, has been linked to cell fate determination and/or maintenance of self-renewing populations in several epithelial tissues, including skin, mammary gland, and prostate. ΔNp63, a dominant negative isoform of p63, is amplified in a variety of epithelial tumors including squamous cell carcinomas and carcinomas of the prostate and mammary glands. The present study shows that nickel suppressed ΔNp63 expression in a short-time treatment (up to 48 h). Nickel treatment caused activation of NF-κB. Blockage of NF-κB partially reversed nickel-induced ΔNp63 suppression. Nickel decreased interferon regulatory factor (IRF) 3 and IRF7, IKKε, and Sp100. Over-expression of IRF3 increased ΔNp63 expression suppressed by nickel. Nickel was able to activate p21, and its activation was offset by the over-expression of ΔNp63. In turn, elevated p63 expression counteracted the ability of nickel to restrict cell growth. The present study demonstrated that nickel decreased interferon regulatory proteins IRF3 and IRF7, and activated NF-κB, resulting in ΔNp63 suppression and then p21 up-regulation. ΔNp63 plays an important role in nickel-induced cell proliferation.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Preventive Medicine and Environmental Health, University of Kentucky, 121 Washington Avenue, Lexington, KY 40536, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Barker N, Bartfeld S, Clevers H. Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 2011; 7:656-70. [PMID: 21112561 DOI: 10.1016/j.stem.2010.11.016] [Citation(s) in RCA: 269] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 09/08/2010] [Accepted: 11/09/2010] [Indexed: 12/17/2022]
Abstract
The epithelial lining of the intestine, stomach, and skin is continuously exposed to environmental assault, imposing a requirement for regular self-renewal. Resident adult stem cell populations drive this renewal, and much effort has been invested in revealing their identity. Reliable adult stem cell biomarkers would accelerate our understanding of stem cell roles in tissue homeostasis and cancer. Membrane-expressed markers would also facilitate isolation of these adult stem cell populations for exploitation of their regenerative potential. Here, we review recent advances in adult stem cell biology, highlighting the promise and pitfalls of the candidate biomarkers of the various stem cell populations.
Collapse
Affiliation(s)
- Nick Barker
- Hubrecht Institute, Utrecht, the Netherlands.
| | | | | |
Collapse
|
118
|
Hsu YC, Pasolli HA, Fuchs E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell 2011; 144:92-105. [PMID: 21215372 DOI: 10.1016/j.cell.2010.11.049] [Citation(s) in RCA: 480] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 10/01/2010] [Accepted: 11/17/2010] [Indexed: 12/16/2022]
Abstract
Here, we exploit the hair follicle to define the point at which stem cells (SCs) become irreversibly committed along a differentiation lineage. Employing histone and nucleotide double-pulse-chase and lineage tracing, we show that the early SC descendents en route to becoming transit-amplifying cells retain stemness and slow-cycling properties and home back to the bulge niche when hair growth stops. These become the primary SCs for the next hair cycle, whereas initial bulge SCs become reserves for injury. Proliferating descendents further en route irreversibly lose their stemness, although they retain many SC markers and survive, unlike their transit-amplifying progeny. Remarkably, these progeny also home back to the bulge. Combining purification and gene expression analysis with differential ablation and functional experiments, we define critical functions for these non-SC niche residents and unveil the intriguing concept that an irreversibly committed cell in an SC lineage can become an essential contributor to the niche microenvironment.
Collapse
Affiliation(s)
- Ya-Chieh Hsu
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
119
|
Changes in corneal basal epithelial phenotypes in an altered basement membrane. PLoS One 2011; 6:e14537. [PMID: 21264285 PMCID: PMC3021502 DOI: 10.1371/journal.pone.0014537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 12/20/2010] [Indexed: 12/13/2022] Open
Abstract
Background To examine the corneal epithelial phenotype in an altered basement membrane. Methodology/Principal Findings Corneas from 9 patients with symptoms of continuous unstable corneal curvature (CUCC) were harvested by penetrating keratoplasty and subjected to histology examination and immunohistochemical staining with transactivating and N-terminally truncated pP63 transcript (ΔNp63), cytokeratin 3 (Krt3), ATP-binding cassette sub-family G member 2 (ABCG2), connexin 43 (CX43), p38 mitogen-activated protein kinases (p38MAPK), activating protein 2 (TFAP2), and extracellular signal-regulated kinase (Erk1/2) monoclonal antibodies. Positive immunostaining with ABCG2, p38MAPK, and TFAP2 monoclonal antibodies was observed in the basal epithelial cells of CUCC patients, and CX43 and ΔNp63 were detected in the full-thickness epithelial cells of CUCC patients. Conclusions/Significance Our results indicate that alteration of the corneal basement membrane induces a de-differentiation-like phenotype in corneal basal epithelial cells.
Collapse
|
120
|
Kim JH, Kong WH, Kim JG, Kim HJ, Seo SW. Possibility of skin epithelial cell transdifferentiation in tracheal reconstruction. Artif Organs 2010; 35:122-30. [PMID: 20946312 DOI: 10.1111/j.1525-1594.2010.01047.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In tissue engineering, injured tissue is normally reconstructed with cells obtained from that tissue itself. However, it is difficult to obtain cells for reconstruction of the trachea because of its shape and limited accessibility. Therefore, other cell sources having similar form and function or stem cells are used for tracheal reconstruction. In a previous study, we used autologous skin epithelial cells and successfully reconstructed canine tracheas. We found that the tracheal epithelial layer was completely covered with ciliated cells, which is a remarkable finding because skin and tracheal epithelial cells originate from different germinal layers and have very different forms. In this study, to elucidate the origin of the ciliated cells, we identified the stem cell contents of skin epithelial cells on primary culture, marked the skin epithelial cells with PKH26 dye, and transplanted them onto canine tracheas. After 5 months, we identified PKH26 fluorescence on the tracheal epithelial layers, especially over the tracheal cartilages. Consequently, we demonstrated that transplanted autologous skin epithelial stem cells can remain viable on the trachea for a few months and can transdifferentiate into tracheal epithelial cells and chondrocytes.
Collapse
Affiliation(s)
- Jin Hoon Kim
- SungKyunKwan University, School of Medicine, Biomedical Engineering Interdisciplinary Course, Samsung Biomedical Research Institute, Seoul, Korea
| | | | | | | | | |
Collapse
|
121
|
The pathogenesis of Barrett's metaplasia and the progression to esophageal adenocarcinoma. Recent Results Cancer Res 2010; 182:39-63. [PMID: 20676870 DOI: 10.1007/978-3-540-70579-6_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The most important risk factor for the development of Barrett's esophagus is the reflux of both gastric and duodenal contents into the esophagus. The reason why Barrett's metaplasia develops only in a minority of patients suffering from gastroesophageal reflux disease remains unknown.The exact mechanism behind the transition of normal squamous epithelium into specialized columnar epithelium is also unclear. It is likely that stem cells are involved in this metaplastic change, as they are the only permanent residents of the epithelium. Several tumorigenic steps that lead to the underlying genetic instability, which is indispensable in the progression from columnar metaplasia to esophageal adenocarcinoma have been described. This review outlines the process of pathogenesis of Barrett's metaplasia and its progression to esophageal adenocarcinoma.
Collapse
|
122
|
Krishnan S, Sudha B, Krishnakumar S. Isoforms of p63 in corneal stem cells cultured on human amniotic membrane. Biologicals 2010; 38:570-6. [DOI: 10.1016/j.biologicals.2010.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 05/06/2010] [Accepted: 05/11/2010] [Indexed: 12/12/2022] Open
|
123
|
Abstract
Mammalian skin epidermis contains different epidermal stem cell pools which contribute to the homeostasis and repair of skin epithelium. Epidermal stem cells possess two essential features common to all stem cells: self-renewal and differentiation. Disturbing the balance between self-renewal and differentiation of epidermal stem cell often causes tumors or other skin diseases. Epidermal stem cell niches provide a special microenvironment that maintains a balance of stem cell quiescence and activity. This review primarily concentrates on the following points of the epidermal stem cells: the existing evidences, the self-renewal and differentiation, the division pattern, the signal pathways regulating self-renewal and differentiation, and the microenvironment (niche) and macroenvironment maintaining the homeostasis of stem cells.
Collapse
Affiliation(s)
- Li-Juan Wang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Academy of Military Medical Sciences, Beijing 100071, China.
| | | | | |
Collapse
|
124
|
Bonfanti P, Claudinot S, Amici AW, Farley A, Blackburn CC, Barrandon Y. Microenvironmental reprogramming of thymic epithelial cells to skin multipotent stem cells. Nature 2010; 466:978-82. [PMID: 20725041 DOI: 10.1038/nature09269] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2009] [Accepted: 06/07/2010] [Indexed: 01/01/2023]
Abstract
The thymus develops from the third pharyngeal pouch of the anterior gut and provides the necessary environment for thymopoiesis (the process by which thymocytes differentiate into mature T lymphocytes) and the establishment and maintenance of self-tolerance. It contains thymic epithelial cells (TECs) that form a complex three-dimensional network organized in cortical and medullary compartments, the organization of which is notably different from simple or stratified epithelia. TECs have an essential role in the generation of self-tolerant thymocytes through expression of the autoimmune regulator Aire, but the mechanisms involved in the specification and maintenance of TECs remain unclear. Despite the different embryological origins of thymus and skin (endodermal and ectodermal, respectively), some cells of the thymic medulla express stratified-epithelium markers, interpreted as promiscuous gene expression. Here we show that the thymus of the rat contains a population of clonogenic TECs that can be extensively cultured while conserving the capacity to integrate in a thymic epithelial network and to express major histocompatibility complex class II (MHC II) molecules and Aire. These cells can irreversibly adopt the fate of hair follicle multipotent stem cells when exposed to an inductive skin microenvironment; this change in fate is correlated with robust changes in gene expression. Hence, microenvironmental cues are sufficient here to re-direct epithelial cell fate, allowing crossing of primitive germ layer boundaries and an increase in potency.
Collapse
Affiliation(s)
- Paola Bonfanti
- Laboratory of Stem Cell Dynamics, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
125
|
Kobayashi T, Iwasaki T, Amagai M, Ohyama M. Canine follicle stem cell candidates reside in the bulge and share characteristic features with human bulge cells. J Invest Dermatol 2010; 130:1988-95. [PMID: 20357816 DOI: 10.1038/jid.2010.68] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hair follicle bulge has attracted great interest as a stem cell repository. Previous studies have focused on rodent or human bulge stem cells, and our understanding of those in other species is limited. In this study, we attempted to localize and characterize stem cell candidates in canine hair follicles. The canine skin xenografting study located label-retaining cells in the outer root sheath around the insertion point of the arrector pili muscle, where the immunoreactivity of human bulge markers, keratin 15 and follistatin, were detected. Canine bulge cell-enriched keratinocytes up-regulated human bulge biomarkers CD200 and DIO2, and conserved key cell regulators of bulge stem cells, such as SOX9 and LHX2. Importantly, canine bulge-derived keratinocytes were highly proliferative in vitro and, when combined with trichogenic dermal cells, reconstituted pilosebaceous structures as well as the epidermis in vivo. Successful detection of canine specific DNA sequences suggested that the regenerated tissue was of canine origin. In addition, canine specific bulge cell and sebocyte lineage markers were expressed in reconstituted pilosebaceous units, implying the multipotency of canine bulge cells. Our findings demonstrate a unique strategy utilizing canine bulge cells to investigate human stem cell biology and intractable hair disorders that involve the bulge region.
Collapse
Affiliation(s)
- Tetsuro Kobayashi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
126
|
|
127
|
|
128
|
Tiede S, Bohm K, Meier N, Funk W, Paus R. Endocrine controls of primary adult human stem cell biology: thyroid hormones stimulate keratin 15 expression, apoptosis, and differentiation in human hair follicle epithelial stem cells in situ and in vitro. Eur J Cell Biol 2010; 89:769-77. [PMID: 20656376 DOI: 10.1016/j.ejcb.2010.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 06/17/2010] [Accepted: 06/21/2010] [Indexed: 01/08/2023] Open
Abstract
Here we demonstrate that physiological concentrations of the thyroid hormones T3 and T4 enhance the KERATIN 15 promoter activity and expression in epithelial stem cells of adult human scalp hair follicles in situ and in vitro. Additionally, T3 and T4 stimulate expression of the immuno-inhibitory surface molecule CD200. Subsequently, T3 and T4 induce apoptosis and differentiation and inhibit clonal growth of these progenitor cells in vitro. These data suggest that human hair follicle bulge-derived epithelial stem cells underlie profound, previously unknown hormonal regulation by thyroid hormones, and show that primary human keratin 15-GFP+ progenitor cells can be exploited to further elucidate fundamental endocrine controls of human epithelial stem cells.
Collapse
Affiliation(s)
- S Tiede
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
129
|
Yang JH, Lee SH, Heo YT, Uhm SJ, Lee HT. Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells. Biochem Biophys Res Commun 2010; 397:679-84. [DOI: 10.1016/j.bbrc.2010.05.158] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 05/30/2010] [Indexed: 12/27/2022]
|
130
|
Aractingi S, Gluckman E, Le Goué C, Dubertret L, Carosella ED. Lymphocytes, cytokines and adhesion molecules in chronic graft versus host disease. Mol Pathol 2010; 49:M225-31. [PMID: 16696080 PMCID: PMC408064 DOI: 10.1136/mp.49.4.m225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aims-To determine which inflammatory and immune pathways are implicated in the development of chronic graft versus host disease (GvHD) and whether differences between these pathways are responsible for the different presentations of chronic GvHD.Methods-Biopsy specimens of diseased and normal skin were obtained from patients presenting with lichen planus-like and sclerodermatous type chronic GvHD. Expression of epidermal cytokines, adhesion molecules and lymphoid surface markers was analysed by means of immunohistochemistry. Apoptosis was detected using the in situ nick endlabelling method.Results-In both GvHD lesion types, CD8+ cells predominated in the epidermis, whereas CD4+ cells were the most prevalentin the dermis. Apoptotickeratinocytes were found in diseased skin only and Fas antibodies labelled a considerable number of keratinocytes. The epidermis in both types of lesions expressed interleukin (IL) 1alpha, tumour necrosis factor (TNF) alpha and intercellular adhesion molecule (ICAM)-1, but dermal vascular cell adhesion molecule (VCAM)-1 expression was restricted to specimens of lichen planus-like GvHD. IL1alpha and E-selectin were expressed in normal looking skin of 55% and 80%, respectively, of patients with lichen planus-like GvHD.Conclusion-The similarity between expression of epidermal cytokines and adhesion molecules (with the exception of VCAM-1) and lymphocyte phenotype in lichen planus-like and sclerodermatous GvHD strongly suggests that the latter occurs as a consequence of the healing process. VCAM-1 distinguishes between lichen planus-like and sclerodermatous lesions. IL1alpha and E-selectin are potential early markers of chronic GvHD.
Collapse
Affiliation(s)
- S Aractingi
- Service de Recherche en Hémato-Immunologie (DRM-DSV, CEA), Hôpital St Louis, Centre Hayem, 1 Avenue Claude Vellefaux, 75475 Paris, France
| | | | | | | | | |
Collapse
|
131
|
Abstract
Barrett's oesophagus is a metaplastic pre-malignant disorder and the only established precursor lesion for oesophageal adenocarcinoma. Barrett's oesophagus develops when the normal stratified squamous epithelium of the lower oesophagus is replaced by a columnar lined mucosa with intestinal differentiation, usually in the context of chronic gastro-oesophageal reflux disease. The cellular and molecular mechanisms by which this metaplastic transformation occurs are poorly understood. Abnormal differentiation of multipotent stem cells in the squamous oesophagus, triggered by exposure to refluxate, is one potential mechanism. These stem cells could be located in the basal layer of the squamous oesophageal epithelium and/or in the neck region of the oesophageal submucosal gland ducts; however, their exact location and identification are still matter of discussion. Three-dimensional models combined with state-of-the-art imaging techniques are now applied to characterize the squamous epithelium in human oesophageal samples, and this could unveil essential information to identify these progenitor cells. Locating stem cells in human squamous oesophagus could have important implications for our understanding of Barrett's oesophagus and remarkably improve our future strategies for its prevention.
Collapse
|
132
|
Piérard-Franchimont C, Petit L, Loussouarn G, Saint-Léger D, Piérard GE. The hair eclipse phenomenon: sharpening the focus on the hair cycle chronobiology. Int J Cosmet Sci 2010; 25:295-9. [PMID: 18494912 DOI: 10.1111/j.1467-2494.2003.00198.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronobiology governing the hair cycle is a fascinating and complex process. Both the hair growth cycle and the hair shaft growth are coordinated and depend on the interplay of different biological signals and various exogenous stimuli. A latency period may occur between hair shedding (teloptosis, exogen phase) and the early emergence of the next anagen VI stage. This lag time referred to on the hair eclipse phenomenon likely depends on the influence of a series of distinct synchronizers, and does not represent per se a peculiar hair cycle phase. It is the result of some dysregulations of the hair cycling, involving early teloptosis, delayed anagen I initiation or stunted hair growth at any stage between the anagen I and anagen V phases. As such, the hair eclipse phenomenon may be an erratic process occurring in physiopathological conditions affecting hair follicles singly or in focal to generalized patterns. It may be more frequent when it follows synchronized teloptosis occurring in telogen effluvium (newborn alopecia, post-partum alopecia, seasonal alopecia and alopecia areata). It may also be prominent when microinflammation is abutted on the permanent portion of the hair follicle as in dandruff, seborrhoeic dermatitis, androgenic alopecia and photoageing baldness. Local synchronizers such as growth factors and other mediators may eventually be lacking or involved in the hair eclipse phenomenon. Their identification and characterization might drive new corrective or preventive applications.
Collapse
Affiliation(s)
- C Piérard-Franchimont
- Department of Dermatopathology, University Hospital Sart Tilman, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
133
|
Gutiérrez-Rivera A, Pavón-Rodríguez A, Jiménez-Acosta F, Poblet E, Braun KM, Cormenzana P, Ciria JP, Larretxea R, Cárdenas JM, Izeta A. Functional characterization of highly adherent CD34+ keratinocytes isolated from human skin. Exp Dermatol 2010; 19:685-8. [PMID: 20500767 DOI: 10.1111/j.1600-0625.2010.01075.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Compared to murine models, data on cells responsible for the homeostasis of human epidermis are scarce and often contradictory. Given the conflicting results and the availability of clinical grade protocols to purify CD34 cells from a given tissue, we pursued to phenotypically characterize human epidermal CD34+ population. After magnetic separation of whole skin CD34+ and CD34- cell fractions and selection for cells highly adherent to extracellular matrix, both CD34+/- fractions retained the ability to form a stratified epidermis in organotypic cultures and presented similar in vitro migratory phenotypes. However CD34- cells showed higher clonogenic potential and in vitro proliferative capacity. These results indicated that CD34- cell fraction contains stem/early progenitor cells, while CD34+ cells might be a transit-amplifying precursor for hair follicle (HF) sheath cells. The ability to isolate living cells using differential cell adhesion and surface markers provides an opportunity to study cells from different morphological regions of the HF.
Collapse
|
134
|
Titeux M, Pendaries V, Zanta-Boussif MA, Décha A, Pironon N, Tonasso L, Mejia JE, Brice A, Danos O, Hovnanian A. SIN retroviral vectors expressing COL7A1 under human promoters for ex vivo gene therapy of recessive dystrophic epidermolysis bullosa. Mol Ther 2010; 18:1509-18. [PMID: 20485266 DOI: 10.1038/mt.2010.91] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is caused by loss-of-function mutations in COL7A1 encoding type VII collagen which forms key structures (anchoring fibrils) for dermal-epidermal adherence. Patients suffer since birth from skin blistering, and develop severe local and systemic complications resulting in poor prognosis. We lack a specific treatment for RDEB, but ex vivo gene transfer to epidermal stem cells shows a therapeutic potential. To minimize the risk of oncogenic events, we have developed new minimal self-inactivating (SIN) retroviral vectors in which the COL7A1 complementary DNA (cDNA) is under the control of the human elongation factor 1alpha (EF1alpha) or COL7A1 promoters. We show efficient ex vivo genetic correction of primary RDEB keratinocytes and fibroblasts without antibiotic selection, and use either of these genetically corrected cells to generate human skin equivalents (SEs) which were grafted onto immunodeficient mice. We achieved long-term expression of recombinant type VII collagen with restored dermal-epidermal adherence and anchoring fibril formation, demonstrating in vivo functional correction. In few cases, rearranged proviruses were detected, which were probably generated during the retrotranscription process. Despite this observation which should be taken under consideration for clinical application, this preclinical study paves the way for a therapy based on grafting the most severely affected skin areas of patients with fully autologous SEs genetically corrected using a SIN COL7A1 retroviral vector.
Collapse
|
135
|
Jaks V, Kasper M, Toftgård R. The hair follicle-a stem cell zoo. Exp Cell Res 2010; 316:1422-8. [PMID: 20338163 DOI: 10.1016/j.yexcr.2010.03.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 12/16/2022]
Abstract
Recent studies on stem cells in the adult hair follicle (HF) have uncovered a veritable menagerie of exceptionally diverse and dynamic keratinocytes with stem cell properties located in distinct regions of the HF. Although endowed with specific functions during normal hair follicle maintenance, the majority of these cells can act as multipotent stem cells in stress situations, such as physical injury, which argues for an unanticipated degree of plasticity of these cells. This review provides an overview of the different epithelial stem cell populations, identified in the mouse HF, and their relationships with one another, and envisions possible cellular mechanisms underlying normal HF maintenance and skin regeneration.
Collapse
Affiliation(s)
- Viljar Jaks
- Karolinska Institutet, Center for Biosciences and Department of Biosciences and Nutrition, Novum, SE-141 57 Huddinge, Sweden
| | | | | |
Collapse
|
136
|
Fortunel NO, Cadio E, Vaigot P, Chadli L, Moratille S, Bouet S, Roméo PH, Martin MT. Exploration of the functional hierarchy of the basal layer of human epidermis at the single-cell level using parallel clonal microcultures of keratinocytes. Exp Dermatol 2010; 19:387-92. [PMID: 20201955 DOI: 10.1111/j.1600-0625.2009.01046.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The basal layer of human epidermis contains both stem cells and keratinocyte progenitors. Because of this cellular heterogeneity, the development of methods suitable for investigations at a clonal level is dramatically needed. Here, we describe a new method that allows multi-parallel clonal cultures of basal keratinocytes. Immediately after extraction from tissue samples, cells are sorted by flow cytometry based on their high integrin-alpha 6 expression and plated individually in microculture wells. This automated cell deposition process enables large-scale characterization of primary clonogenic capacities. The resulting clonal growth profile provided a precise assessment of basal keratinocyte hierarchy, as the size distribution of 14-day-old clones ranged from abortive to highly proliferative clones containing 1.7 x 10(5) keratinocytes (17.4 cell doublings). Importantly, these 14-day-old primary clones could be used to generate three-dimensional reconstructed epidermis with the progeny of a single cell. In long-term cultures, a fraction of highly proliferative clones could sustain extensive expansion of >100 population doublings over 14 weeks and exhibited long-term epidermis reconstruction potency, thus fulfilling candidate stem cell functional criteria. In summary, parallel clonal microcultures provide a relevant model for single-cell studies on interfollicular keratinocytes, which could be also used in other epithelial models, including hair follicle and cornea. The data obtained using this system support the hierarchical model of basal keratinocyte organization in human interfollicular epidermis.
Collapse
Affiliation(s)
- Nicolas O Fortunel
- CEA, Institut de Radiobiologie Cellulaire et Moléculaire, Laboratoire de Génomique et Radiobiologie de la Kératinopoïèse, Evry, France.
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Abstract
Mammalian epidermis is maintained by self-renewal of stem cells and terminal differentiation of their progeny. New data reveal a diversity amongst stem cells that was previously unrecognized. Different stem cell populations have different locations and differ in whether they are quiescent or actively cycling. During normal epidermal homeostasis, each stem cell population feeds a restricted number of differentiated lineages. However, in response to injury or genetic manipulation the different pools of stem cells demonstrate multi-lineage differentiation ability. While it is well established that Wnt signalling promotes hair follicle (HF) differentiation, new observations suggest a role for EGF receptor signalling in promoting differentiation of interfollicular epidermis. NFATc1 maintains quiescence in the HF, while Lrig1 exerts the same function in the junctional zone. The stage is now set for exploring the relationship between the different epidermal stem cell populations and between quiescence and lineage selection.
Collapse
Affiliation(s)
- Fiona M Watt
- Wellcome Trust Centre for Stem Cell Research, Tennis Court Road, Cambridge, UK.
| | | |
Collapse
|
138
|
Schrader S, Notara M, Beaconsfield M, Tuft SJ, Daniels JT, Geerling G. Tissue engineering for conjunctival reconstruction: established methods and future outlooks. Curr Eye Res 2010; 34:913-24. [PMID: 19958107 DOI: 10.3109/02713680903198045] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reconstruction of the conjunctiva is an essential part of ocular surface regeneration, especially if an extensive area or the whole ocular surface is affected, such as in patients with ocular cicatricial pemphigoid, Stevens-Johnson syndrome, toxic epidermal necrolysis, or chemical/thermal burns. In these situations, corneal reconstruction almost inevitably fails unless the conjunctival surface is first repaired and a deep fornix is restored. The growing field of tissue engineering and advances in stem cell research offer promising new alternatives for these challenges. This article reviews the present approaches for reconstruction of the conjunctival surface, considering the established strategies and new potential methodologies.
Collapse
Affiliation(s)
- Stefan Schrader
- Cells for Sight Transplantation and Research Programme, Department of Ocular Biology and Therapeutics, UCL Institute of Ophthalmology, London, UK.
| | | | | | | | | | | |
Collapse
|
139
|
Tiede S, Koop N, Kloepper JE, Fässler R, Paus R. Nonviral in situ green fluorescent protein labeling and culture of primary, adult human hair follicle epithelial progenitor cells. Stem Cells 2010; 27:2793-803. [PMID: 19750535 DOI: 10.1002/stem.213] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this article we show that cloning of the human K15 promoter before a green fluorescence protein (GFP)/geneticin-resistance cassette and transfection of microdissected, organ-cultured adult human scalp hair follicles generates specific K15 promoter-driven GFP expression in their stem cell-rich bulge region. K15-GFP+ cells can be visualized in situ by GFP fluorescence and 2-photon laser scanning microscopy. Vital K15-GFP+ progenitor cells can then be selected by using the criteria of their green fluorescence, adhesion to collagen type IV and fibronectin, and geneticin resistance. Propagated K15-GFP+ cells express epithelial progenitor markers, show the expected differential gene expression profile of human bulge epithelium, and form holoclones. This application of nonretroviral, K15 promoter-driven, GFP labeling to adult human hair follicles facilitates the characterization and manipulation of human epithelial stem cells, both in situ and in vitro, and should be transferable to other complex human tissues.
Collapse
Affiliation(s)
- Stephan Tiede
- Department of Dermatology, University of Lübeck, D-23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
140
|
Functional investigations of keratinocyte stem cells and progenitors at a single-cell level using multiparallel clonal microcultures. Methods Mol Biol 2010; 585:13-23. [PMID: 19907993 DOI: 10.1007/978-1-60761-380-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The basal layer of human interfollicular epidermis is thought to contain a minor compartment of quiescent or slowly cycling epithelial stem cells. These primitive keratinocytes give rise to the progenitors, which are the proliferating keratinocytes and which can be defined as early to late progenitors, according to their differentiation status. Because of the intrinsic heterogeneity of the basal layer, the development of new methods suitable for functional analysis of basal keratinocytes directly isolated from skin samples is greatly needed. We describe here a new method that allows a rapid and multiparallel deposition of single keratinocytes into 96-well plates, using flow cytometry. The first step of the process allows the clonal analysis of the growth potential of freshly isolated epithelial cells in primary cultures. In a second step, various techniques of functional characterization can be performed on the progeny of the cloned cell, including the generation of reconstructed epidermis, colony assays, and secondary cloning. In a third step, a long-term characterization of the progeny of the cloned keratinocytes can be performed, either by successive subclonings or mass expansion cultures.
Collapse
|
141
|
Shevchenko RV, James SL, James SE. A review of tissue-engineered skin bioconstructs available for skin reconstruction. J R Soc Interface 2009; 7:229-58. [PMID: 19864266 DOI: 10.1098/rsif.2009.0403] [Citation(s) in RCA: 414] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Situations where normal autografts cannot be used to replace damaged skin often lead to a greater risk of mortality, prolonged hospital stay and increased expenditure for the National Health Service. There is a substantial need for tissue-engineered skin bioconstructs and research is active in this field. Significant progress has been made over the years in the development and clinical use of bioengineered components of the various skin layers. Off-the-shelf availability of such constructs, or production of sufficient quantities of biological materials to aid rapid wound closure, are often the only means to help patients with major skin loss. The aim of this review is to describe those materials already commercially available for clinical use as well as to give a short insight to those under development. It seeks to provide skin scientists/tissue engineers with the information required to not only develop in vitro models of skin, but to move closer to achieving the ultimate goal of an off-the-shelf, complete full-thickness skin replacement.
Collapse
Affiliation(s)
- Rostislav V Shevchenko
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, UK.
| | | | | |
Collapse
|
142
|
Kobayashi T, Shimizu A, Nishifuji K, Amagai M, Iwasaki T, Ohyama M. Canine hair-follicle keratinocytes enriched with bulge cells have the highly proliferative characteristic of stem cells. Vet Dermatol 2009; 20:338-46. [DOI: 10.1111/j.1365-3164.2009.00815.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
143
|
Coppes RP, van der Goot A, Lombaert IMA. Stem cell therapy to reduce radiation-induced normal tissue damage. Semin Radiat Oncol 2009; 19:112-21. [PMID: 19249649 DOI: 10.1016/j.semradonc.2008.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Normal tissue damage after radiotherapy is still a major problem in cancer treatment. Stem cell therapy may provide a means to reduce radiation-induced side effects and improve the quality of life of patients. This review discusses the current status in stem cell research with respect to their potential to reduce radiation toxicity. A number of different types of stem cells are being investigated for their potential to treat a variety of disorders. Their current status, localization, characterization, isolation, and potential in stem cell-based therapies are addressed. Although clinical adult stem cell research is still at an early stage, preclinical experiments show the potential these therapies may have. Based on the major advances made in this field, stem cell-based therapy has great potential to allow prevention or treatment of normal tissue damage after radiotherapy.
Collapse
Affiliation(s)
- Rob P Coppes
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
144
|
Aframian DJ, Palmon A. Current status of the development of an artificial salivary gland. TISSUE ENGINEERING PART B-REVIEWS 2009; 14:187-98. [PMID: 18471085 DOI: 10.1089/ten.teb.2008.0044] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Salivary glands (SGs) secrete more than half a liter of saliva daily. Saliva has many functions in maintaining the normal homeostasis of the oral cavity. Several causes underlie salivary impairment, where irradiation therapy to head and neck cancer patients is one of the most debilitating causes leading to considerable decrease in the patients' quality of life. In the last decade, others and we have focused on implementing tissue engineering principles combined with gene transfer and stem cell methodologies to develop an artificial SG device. This manuscript provides an overview of the current status of engineering an artificial SG.
Collapse
Affiliation(s)
- Doron J Aframian
- Department of Oral Medicine, Salivary Gland Clinic, Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
145
|
Differential expression of stem-cell-associated markers in human hair follicle epithelial cells. J Transl Med 2009; 89:844-56. [PMID: 19506554 DOI: 10.1038/labinvest.2009.48] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Several putative biomarkers have been suggested for identifying murine follicular stem cells; however, human hair follicles have a different pattern of biomarker expression, and follicular stem cell isolation methods have not been established. To isolate a stem cell population applicable to clinical settings, we conducted a comprehensive survey of the expression of stem-cell-associated (K15, CD200, CD34, and CD271) and other biomarkers (K1, K14, CD29, and CD49f) in immunohistological sections of the human epidermis and follicular outer root sheath (ORS). We also examined freshly isolated and cultured epidermal or follicular cells with single- and multicolor flow cytometry or immunocytochemistry. After sorting cells by CD200, CD34, and forward scatter (FSC) values (cell size), colony-forming assays were performed. We found that biomarkers were differentially expressed in the epidermis and ORS. Basal bulge cells were mainly K15+CD200+CD34(-)CD271(-), and suprabasal cells were K15(-)CD200+CD34(-)CD271(-). We categorized follicular cells into nine subpopulations according to biomarker expression profiles. The CD200+CD34(-) bulge cells had much higher colony-forming abilities than the CD34+ population, and were divided into two subpopulations: a CD200+CD34(-)FSC(high) (K15-rich, basal) and a CD200+CD34(-)FSC(low) (K15-poor, suprabasal) population. The former formed fewer but larger-sized colonies than the latter. Follicular epithelial cell cultivation resulted in loss of K15, CD200, CD34, and CD271 expression, but maintenance of K14, CD29, and CD49f expression. We found that the bulge contained two populations with different localizations, cell sizes, and colony-forming abilities. We showed that K15, CD200, CD34, and CD271 were useful biomarkers for characterizing freshly isolated human follicular epithelial cells in diverse stages of differentiation.
Collapse
|
146
|
|
147
|
De Luca M, Pellegrini G, Mavilio F. Gene therapy of inherited skin adhesion disorders: a critical overview. Br J Dermatol 2009; 161:19-24. [PMID: 19466960 DOI: 10.1111/j.1365-2133.2009.09243.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M De Luca
- Centre for Regenerative Medicine Stefano Ferrari, Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena 41100, Italy.
| | | | | |
Collapse
|
148
|
|
149
|
Peng J, Li W, Li H, Jia Y, Liu Z. Inhibition of p38 MAPK facilitates ex vivo expansion of skin epithelial progenitor cells. In Vitro Cell Dev Biol Anim 2009; 45:558-65. [PMID: 19551450 DOI: 10.1007/s11626-009-9223-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 06/03/2009] [Indexed: 11/29/2022]
Abstract
Ex vivo expansion of skin epithelial stem cells has long attracted great interest because of the potential utilization in transplantation and gene therapy. The use of cultured stem or progenitor cells was limited by the lack of applicable culturing system with both satisfactory expansion efficacy and well suppressed differentiation ex vivo. The p38 mitogen-activated protein kinase (MAPK) pathways are responsible for cell growth and differentiation process. We investigated the function of p38 inhibitor SB203580 in the ex vivo expansion of skin epithelial progenitor cells by comparing media with or without addition of this inhibitor. Our results showed that the culturing medium with murine 3T3 feeder layers added with 10 microM SB203580 was more effective in promoting clonal growth of human skin epithelial progenitors or stem cells than the conventional medium without SB203580. The clone initial day in cells treated with 10 microM SB203580 came 2 d earlier with higher colony formation efficiency. The skin epithelial progenitor cells treated with 10 microM SB203580 formed clones that were uniformly smaller in size, longer in sustained proliferation, shorter in clone doubling time, higher in S-phase cells percentage, and lower in levels of differentiation markers such as K10 along with higher levels of stem-cell-associated markers such as p63, K15, and ABCG2 than those cultured in the conventional medium. Collectively, these results indicate that the p38 MAPK pathways inhibitor SB203580 can be used as a culture medium additive that helps to achieve more effective ex vivo expansion of skin epithelial progenitor cells.
Collapse
Affiliation(s)
- Juan Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Ocular Surface Department, Sun Yat-sen University, Guangzhou 510060, China
| | | | | | | | | |
Collapse
|
150
|
Guerra L, Dellambra E, Panacchia L, Paionni E. Tissue Engineering for Damaged Surface and Lining Epithelia: Stem Cells, Current Clinical Applications, and Available Engineered Tissues. TISSUE ENGINEERING PART B-REVIEWS 2009; 15:91-112. [DOI: 10.1089/ten.teb.2008.0418] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Liliana Guerra
- Tissue Engineering and Cutaneous Physiopathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Elena Dellambra
- Tissue Engineering and Cutaneous Physiopathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Laura Panacchia
- Tissue Engineering and Cutaneous Physiopathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Emanuel Paionni
- Tissue Engineering and Cutaneous Physiopathology Laboratory, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| |
Collapse
|