101
|
Xiao ZM, Sun L, Liu YM, Zhang JJ, Huang J. Estrogen regulation of the neprilysin gene through a hormone-responsive element. J Mol Neurosci 2009; 39:22-6. [PMID: 19127446 DOI: 10.1007/s12031-008-9168-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 12/10/2008] [Indexed: 02/05/2023]
Abstract
Our previous data showed that neprilysin (NEP), a zinc metalloendopeptidase, which can degrade amyloid-beta peptide (Abeta) whose central nerve system accumulation is the primary cause of Alzheimer's disease (AD), responds to estrogen in the brain. Recently, it has been shown that the transcription of the neprilysin gene can be up regulated by progesterone, androgens, and glucocorticoids through two androgen response elements within the NEP gene--an androgen response region (ARR) and an androgen response element (ARE). Through a yeast report gene system, we now find that the ARR but not the ARE respond to estrogen. However, androgen could efficiently enhance the expression of the report gene mainly through ARE. Our results indicate that the decrease of NEP, caused by the decline of estrogen or androgen with aging, may be an important factor leading to Abeta accumulation and AD.
Collapse
Affiliation(s)
- Zhi-Min Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | | | | | | | | |
Collapse
|
102
|
Spencer B, Marr RA, Rockenstein E, Crews L, Adame A, Potkar R, Patrick C, Gage FH, Verma IM, Masliah E. Long-term neprilysin gene transfer is associated with reduced levels of intracellular Abeta and behavioral improvement in APP transgenic mice. BMC Neurosci 2008; 9:109. [PMID: 19014502 PMCID: PMC2596170 DOI: 10.1186/1471-2202-9-109] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 11/12/2008] [Indexed: 01/24/2023] Open
Abstract
Background Proteolytic degradation has emerged as a key pathway involved in controlling levels of the Alzheimer's disease (AD)-associated amyloid-β (Aβ) peptide in the brain. The endopeptidase, neprilysin, has been implicated as a major Aβ degrading enzyme in mice and humans. Previous short and intermediate term studies have shown the potential therapeutic application of neprilysin by delivering this enzyme into the brain of APP transgenic mice using gene transfer with viral vectors. However the effects of long-term neprilysin gene transfer on other aspects of Aβ associated pathology have not been explored yet in APP transgenic mice. Results We show that the sustained expression of neprilysin for up to 6 months lowered not only the amyloid plaque load but also reduced the levels of intracellular Aβ immunoreactivity. This was associated with improved behavioral performance in the water maze and ameliorated the dendritic and synaptic pathology in the APP transgenic mice. Conclusion These data support the possibility that long-term neprilysin gene therapy improves behavioral and neurodegenerative pathology by reducing intracellular Aβ.
Collapse
Affiliation(s)
- Brian Spencer
- Department of Neurosciences, University of California San Diego, La Jolla, California 92093, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Taguchi H, Planque S, Sapparapu G, Boivin S, Hara M, Nishiyama Y, Paul S. Exceptional amyloid beta peptide hydrolyzing activity of nonphysiological immunoglobulin variable domain scaffolds. J Biol Chem 2008; 283:36724-33. [PMID: 18974093 DOI: 10.1074/jbc.m806766200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleophilic sites in the paired variable domains of the light and heavy chains (VL and VH domains) of Ig can catalyze peptide bond hydrolysis. Amyloid beta (Abeta)-binding Igs are under consideration for immunotherapy of Alzheimer disease. We searched for Abeta-hydrolyzing human IgV domains (IgVs) in a library containing a majority of single chain Fv clones mimicking physiological VL-VH-combining sites and minority IgV populations with nonphysiological structures generated by cloning errors. Random screening and covalent selection of phage-displayed IgVs with an electrophilic Abeta analog identified rare IgVs that hydrolyzed Abeta mainly at His14-Gln15. Inhibition of IgV catalysis and irreversible binding by an electrophilic hapten suggested a nucleophilic catalytic mechanism. Structural analysis indicated that the catalytic IgVs are nonphysiological structures, a two domain heterodimeric VL (IgVL2-t) and single domain VL clones with aberrant polypeptide tags (IgVL-t'). The IgVs hydrolyzed Abeta at rates superior to naturally occurring Igs by 3-4 orders of magnitude. Forced pairing of the single domain VL with VH or VL domains resulted in reduced Abeta hydrolysis, suggesting catalysis by the unpaired VL domain.Angstrom level amino acid displacements evident in molecular models of the two domain and unpaired VL domain clones explain alterations of catalytic activity. In view of their superior catalytic activity, the VL domain IgVs may help attain clearance of medically important antigens more efficiently than natural Igs.
Collapse
Affiliation(s)
- Hiroaki Taguchi
- Chemical Immunology Research Center, Department of Pathology and Laboratory Medicine, University of Texas Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
104
|
Portelius E, Zetterberg H, Gobom J, Andreasson U, Blennow K. Targeted proteomics in Alzheimer's disease: focus on amyloid-beta. Expert Rev Proteomics 2008; 5:225-37. [PMID: 18466053 DOI: 10.1586/14789450.5.2.225] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diagnosis and monitoring of sporadic Alzheimer's disease (AD) have long depended on clinical examination of individuals with end-stage disease. However, upcoming anti-AD therapies are optimally initiated when individuals show very mild signs of neurodegeneration. There is a developing consensus for cerebrospinal fluid amyloid-beta (Abeta) as a core biomarker for the mild cognitive impairment stage of AD. Abeta is directly involved in the pathogenesis of AD or tightly correlated with other primary pathogenic factors. It is produced from amyloid precursor protein (APP) by proteolytic processing that depends on the beta-site APP-cleaving enzyme 1 and the gamma-secretase complex, and is degraded by a broad range of proteases. This review summarizes targeted proteomic studies of Abeta in biological fluids and identifies clinically useful markers of disrupted Abeta homeostasis in AD. The next 5 years will see a range of novel assays developed on the basis of these results. From a longer perspective, establishment of the most effective combinations of different biomarkers and other diagnostic modalities may be foreseen.
Collapse
Affiliation(s)
- Erik Portelius
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, The Sahlgrenska Academy at Göteborg University, Mölndal, Sweden.
| | | | | | | | | |
Collapse
|
105
|
Aggregation and catabolism of disease-associated intra-Abeta mutations: reduced proteolysis of AbetaA21G by neprilysin. Neurobiol Dis 2008; 31:442-50. [PMID: 18602473 DOI: 10.1016/j.nbd.2008.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 06/04/2008] [Accepted: 06/05/2008] [Indexed: 01/23/2023] Open
Abstract
Five point mutations within the amyloid beta-protein (Abeta) sequence of the APP gene are associated with hereditary diseases which are similar or identical to Alzheimer's disease and encode: the A21G (Flemish), E22G (Arctic), E22K (Italian), E22Q (Dutch) and the D23N (Iowa) amino acid substitutions. Although a substantial body of data exists on the effects of these mutations on Abeta production, whether or not intra-Abeta mutations alter degradation and how this relates to their aggregation state remain unclear. Here we report that the E22G, E22Q and the D23N substitutions significantly increase fibril nucleation and extension, whereas the E22K substitution exhibits only an increased rate of extension and the A21G substitution actually causes a decrease in the extension rate. These substantial differences in aggregation together with our observation that aggregated wild type Abeta(1-40) was much less well degraded than monomeric wild type Abeta(1-40), prompted us to assess whether or not disease-associated intra-Abeta mutations alter proteolysis independent of their effects on aggregation. Neprilysin (NEP), insulin degrading enzyme (IDE) and plasmin play a major role in Abeta catabolism, therefore we compared the ability of these enzymes to degrade wild type and mutant monomeric Abeta peptides. Experiments investigating proteolysis revealed that all monomeric peptides are degraded similarly by IDE and plasmin, but that the Flemish peptide was degraded significantly more slowly by NEP than wild type Abeta or any of the other mutant peptides. This finding suggests that resistance to NEP-mediated proteolysis may underlie the pathogenicity associated with the A21G mutation.
Collapse
|
106
|
Huang JY, Bruno AM, Patel CA, Huynh AM, Philibert KD, Glucksman MJ, Marr RA. Human membrane metallo-endopeptidase-like protein degrades both beta-amyloid 42 and beta-amyloid 40. Neuroscience 2008; 155:258-62. [PMID: 18571334 DOI: 10.1016/j.neuroscience.2008.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 04/30/2008] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
Beta-amyloid (Abeta) degrading endopeptidases are thought to protect against Alzheimer's disease (AD) and are potentially therapeutic. Of particular interest are endopeptidases that are blocked by thiorphan and phosphoramidon (T/P), as these inhibitors rapidly induce Abeta deposition in rodents. Neprilysin (NEP) is the best known target of T/P; however neprilysin knockout results in only modest Abeta increases insufficient to induce deposition. Therefore, other endopeptidases targeted by T/P must be critical for Abeta catabolism. Another candidate is the T/P sensitive membrane metallo-endopeptidase-like protein (MMEL), a close homolog of neprilysin. The endopeptidase properties of beta and gamma splice forms of human MMEL were determined in HEK293T cells transduced with the human cDNAs for the two splice forms; this showed degradation of both Abeta(42) and Abeta(40) by hMMEL-beta but not hMMEL-gamma. hMMEL-beta activity was found at the extracellular surface with no significant secreted activity. hMMEL-gamma was not expressed at the extracellular surface. Finally, it was found that hMMEL cleaves Abeta near the alpha-secretase site (producing Abeta(1-17)>>Abeta(1-16)). These data establish hMMEL as a mediator of Abeta catabolism and raise the possibility of its involvement in the etiology of AD and as a target for intervention.
Collapse
Affiliation(s)
- J Y Huang
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | | | | | | | | | | |
Collapse
|
107
|
Broccolini A, Gidaro T, De Cristofaro R, Morosetti R, Gliubizzi C, Ricci E, Tonali PA, Mirabella M. Hyposialylation of neprilysin possibly affects its expression and enzymatic activity in hereditary inclusion-body myopathy muscle. J Neurochem 2008; 105:971-81. [DOI: 10.1111/j.1471-4159.2007.05208.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
108
|
Sun X, Becker M, Pankow K, Krause E, Ringling M, Beyermann M, Maul B, Walther T, Siems WE. Catabolic attacks of membrane-bound angiotensin-converting enzyme on the N-terminal part of species-specific amyloid-beta peptides. Eur J Pharmacol 2008; 588:18-25. [PMID: 18495113 DOI: 10.1016/j.ejphar.2008.03.058] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 03/14/2008] [Accepted: 03/31/2008] [Indexed: 10/22/2022]
Abstract
Catabolic processes play a crucial role in the steady state of the amyloid-beta peptide (Abeta). Neprilysin (NEP) and angiotensin-converting enzyme (ACE), two transmembranal enzymes with greatest importance in peptide pharmacology, are known to play a role in Abeta catabolism. This paper focuses on the N-terminal part of Abeta. This region contains the three amino acid residues that determine the differences between human (hAbeta) and murine Abeta (mAbeta). Moreover, the N-terminal part of Abeta contains the zinc-binding site of the molecule. Consequently, all hydrolytic attacks on this part of the Alzheimer peptide should be of exceptional interest. We investigated domain-selective forms of ACE in HPLC-monitored peptide degradation studies and used mass spectrometry for product analyses. We found that ACE-evoked a hydrolysis of the N-terminal part of m- and hAbeta. The hAbeta sequence hAbeta (4-15) was found to be a better substrate for ACE compared to the corresponding murine form. Moreover, we localized the corresponding cleavage sites in the N-terminal part of Abeta as well as in the full-length molecule and identified new sites of endopeptidolytic attack by ACE. Finally, we demonstrate that both catalytic domains of mACE have similar hydrolytic activity on the N-terminal part of Abeta. Our results show that ACE besides its typical function as a dipeptidyl-carboxypeptidase has also unequivocal endopeptidolytic activities.
Collapse
Affiliation(s)
- Xiaoou Sun
- Leibniz-Institut für Molekulare Pharmakologie (FMP), D-13125 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Miners JS, Ashby E, Van Helmond Z, Chalmers KA, Palmer LE, Love S, Kehoe PG. Angiotensin-converting enzyme (ACE) levels and activity in Alzheimer's disease, and relationship of perivascular ACE-1 to cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2008; 34:181-93. [DOI: 10.1111/j.1365-2990.2007.00885.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
110
|
Spencer B, Rockenstein E, Crews L, Marr R, Masliah E. Novel strategies for Alzheimer's disease treatment. Expert Opin Biol Ther 2007; 7:1853-67. [PMID: 18034651 DOI: 10.1517/14712598.7.12.1853] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Considerable progress has been made in recent years towards better understanding the pathogenesis of Alzheimer's disease (AD), a dementing neurodegenerative disorder that affects > 10 million individuals in the US and Europe combined. Recent studies suggest that alterations in the processing of amyloid precursor protein (APP), resulting in the accumulation of amyloid-beta protein (Abeta) and the formation of oligomers leads to synaptic damage and neurodegeneration. Therefore, strategies for treatment development have been focused on reducing Abeta accumulation using, among other approaches, antiaggregation molecules, regulators of the APP proteolysis and processing, reducing APP production (e.g., small-interfering RNA), and increasing Abeta clearance with antibodies, apolipoprotein E and Abeta-degrading enzymes (e.g., neprilysin). The main focus of this review is on novel treatments for AD with a special emphasis on delivering neuroprotective and antiamyloidogenic molecules by gene therapy and by promoting neurogenesis.
Collapse
Affiliation(s)
- Brian Spencer
- University of California, Department of Neurosciences, San Diego, La Jolla, CA 92093-0624, USA
| | | | | | | | | |
Collapse
|
111
|
Portelius E, Tran AJ, Andreasson U, Persson R, Brinkmalm G, Zetterberg H, Blennow K, Westman-Brinkmalm A. Characterization of amyloid beta peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry. J Proteome Res 2007; 6:4433-9. [PMID: 17927230 DOI: 10.1021/pr0703627] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pathogenic events in Alzheimer's disease are believed to involve an imbalance between the production and clearance of the neurotoxic 42 amino acid form of the beta-amyloid peptide (Abeta1-42). Although much is known about the production of Abeta1-42, many questions remain about its degradation. Here, we describe an optimized automated immunoprecipitation mass spectrometry method that enables accurate and rapid monitoring of the major Abeta isoforms in cerebrospinal fluid. Furthermore, we describe a technique of antibody immobilization, minimizing background signals. The identities of these Abeta products were confirmed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoflow liquid chromatography and tandem mass spectrometry with a hybrid linear trap Fourier transform ion cyclotron resonance mass spectrometer. Finally, we report the finding of two novel Abeta peptides (Abeta2-17 and Abeta3-17).
Collapse
Affiliation(s)
- Erik Portelius
- Clinical Neurochemistry Laboratory, Department of Neuroscience and Physiology, University of Göteborg, Sahlgrenska University Hospital, S-431 80 Mölndal, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Clamagirand C, El Abida B, Der Garabedian PA, Hanquez C, Dubost L, Marie A, Rholam M, Friguet B, Cohen P. Endogenous C-terminal fragments of beta-amyloid precursor protein from Xenopus laevis skin exudate. Comp Biochem Physiol B Biochem Mol Biol 2007; 146:530-9. [PMID: 17270477 DOI: 10.1016/j.cbpb.2006.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 11/25/2022]
Abstract
Using a monoclonal antibody against the entire C-terminal end of human APP(695) (643-695 sequence) and a monoclonal antibody directed against human beta[1-40] amyloid peptide (betaA), we show the existence of endogenous peptides proteolytically derived from APP in skin exudate of the non transgenic Xenopus laevis frog. The majority of the immunoreactivity is found associated with a 30 kDa molecular species. Biochemical fractionation followed by mass spectrometry identification allowed us to assign this molecular species to C-terminal APP fragments containing all or part of betaA. According to the nature of N- and C-terminal amino acids we identified endogenous beta-, gamma-, epsilon-secretase-like activities, caspase-like activity and numerous endogenous cleavage sites within the beta-amyloid sequence at same sites as those observed in human betaA sequence. All these homologies with human indicate that X. laevis skin exudate is a good natural model to study betaA metabolism. In this way, interestingly, we identified endogenous cleavages at prohormone convertase-like sites not yet described at the same sites in human. Finally, all identified peptide fragments were stably associated with a 20.2 kDa protein. These new observed features suggest new research pathways concerning human betaA metabolism and carriage of hydrophobic peptide fragments issued from APP processing.
Collapse
Affiliation(s)
- Christine Clamagirand
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires and Moléculaires, Université Pierre et Marie Curie-Paris6, FRE 2621 CNRS, 96 Bd Raspail, Paris, F-75006 France.
| | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Madani R, Poirier R, Wolfer DP, Welzl H, Groscurth P, Lipp HP, Lu B, El Mouedden M, Mercken M, Nitsch RM, Mohajeri MH. Lack of neprilysin suffices to generate murine amyloid-like deposits in the brain and behavioral deficit in vivo. J Neurosci Res 2007; 84:1871-8. [PMID: 16998901 DOI: 10.1002/jnr.21074] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Accumulation of the beta-amyloid peptide (Abeta) in the brain is a major pathological hallmark of Alzheimer's disease (AD), leading to synaptic dysfunction, neuronal death, and memory impairment. The levels of neprilysin, a major Abeta-degrading enzyme, are decreased in AD brains and during aging. Because neprilysin cleaves Abeta in vivo, its down-regulation may contribute to the pathophysiology of AD. The aim of this study was to assess the consequences of neprilysin deficiency on accumulation of murine Abeta in brains and associated pathologies in vivo by investigating neprilysin-deficient mice on biochemical, morphological, and behavioral levels. Aged neprilysin-deficient mice expressed physiological amyloid precursor protein (APP) levels and exhibited elevated brain Abeta concentrations and amyloid-like deposits in addition to signs of neuronal degeneration in their brains. Behaviorally, neprilysin-deficient mice acquired a significantly weaker conditioned taste aversion that extinguished faster than the aversion of age-matched controls. Our data establish that, under physiological APP expression levels, neprilysin deficiency is associated with increased Abeta accumulation in the brain and leads to deposition of amyloid-like structures in vivo as well as with signs of AD-like pathology and with behavioral deficits.
Collapse
Affiliation(s)
- Rime Madani
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Poirier R, Wolfer DP, Welzl H, Tracy J, Galsworthy MJ, Nitsch RM, Mohajeri MH. Neuronal neprilysin overexpression is associated with attenuation of Aβ-related spatial memory deficit. Neurobiol Dis 2006; 24:475-83. [PMID: 17008108 DOI: 10.1016/j.nbd.2006.08.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 07/27/2006] [Accepted: 08/14/2006] [Indexed: 01/07/2023] Open
Abstract
Converging evidence links abnormally high brain concentrations of amyloid-beta peptides (Abeta) to the pathology of Alzheimer's disease (AD). Lowering brain Abeta levels, therefore, is a therapeutic strategy for the treatment of AD. Neuronal neprilysin upregulation led to increased degradation of Abeta, reduced the formation of Abeta-plaques and the associated cytopathology, but whether overexpression of neprilysin can improve cognition is unknown. We show that neuronal overexpression of neprilysin improved the Morris water maze memory performance in mice with memory deficits resulting from overexpression of the AD-causing mutated human amyloid precursor protein (APP). This improvement was associated with decreased brain levels of Abeta and with unchanged endoproteolytic processing of APP. These results provide the evidence that lowering of brain Abeta levels by increasing its degradation can improve cognitive functions in vivo, and suggest that increasing the activity of neprilysin in brain may be effective in preventing cognitive decline in AD.
Collapse
Affiliation(s)
- Raphael Poirier
- Division of Psychiatry Research, University of Zurich, August Forel-Strasse 1, Zurich 8008, Switzerland
| | | | | | | | | | | | | |
Collapse
|
115
|
Goodman OB, Febbraio M, Simantov R, Zheng R, Shen R, Silverstein RL, Nanus DM. Neprilysin Inhibits Angiogenesis via Proteolysis of Fibroblast Growth Factor-2. J Biol Chem 2006; 281:33597-605. [PMID: 16940054 DOI: 10.1074/jbc.m602490200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neprilysin is a cell surface peptidase that catalytically inactivates neuropeptide substrates and functions as a tumor suppressor via its enzymatic function and multiple protein-protein interactions. We investigated whether neutral endopeptidase could inhibit angiogenesis in vivo utilizing a murine corneal pocket angiogenesis model and found that it reduced fibroblast growth factor-2-induced angiogenesis by 85% (p < 0.01) but had no effect on that of vascular endothelial growth factor. Treatment with recombinant neprilysin, but not enzymatically inactive neprilysin, resulted in a slight increase in basic fibroblast growth factor electrophoretic mobility from proteolytic cleavage between amino acids Leu-135 and Gly-136, which was inhibited by the neutral endopeptidase inhibitor CGS24592 and heparin. Cleavage kinetics were rapid, comparable with that of other known neprilysin substrates. Functional studies involving neprilysin-expressing vascular endothelial cells demonstrated that neutral endopeptidase inhibition significantly enhanced fibroblast growth factor-mediated endothelial cell growth, capillary array formation, and signaling, whereas exogenous recombinant neprilysin inhibited signaling. Recombinant constructs confirmed that cleavage products neither promoted capillary array formation nor induced signaling. Moreover, mutation of the cleavage site resulted in concomitant loss of cleavage and increased the potency of fibroblast growth factor-2 to induce capillary array formation. These data indicate that neprilysin proteolytically inactivates fibroblast growth factor-2, resulting in negative regulation of angiogenesis.
Collapse
Affiliation(s)
- Oscar B Goodman
- Urologic Oncology Research Laboratory, Department of Urology, Weil Medical College of Cornell University-New York Presbyterian Hospital, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
116
|
Alemany R, Perona JS, Sánchez-Dominguez JM, Montero E, Cañizares J, Bressani R, Escribá PV, Ruiz-Gutierrez V. G protein-coupled receptor systems and their lipid environment in health disorders during aging. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1768:964-75. [PMID: 17070497 DOI: 10.1016/j.bbamem.2006.09.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 09/22/2006] [Accepted: 09/27/2006] [Indexed: 02/05/2023]
Abstract
Cells, tissues and organs undergo phenotypic changes and deteriorate as they age. Cell growth arrest and hyporesponsiveness to extrinsic stimuli are all hallmarks of senescent cells. Most such external stimuli received by a cell are processed by two different cell membrane systems: receptor tyrosine kinases (RTKs) and G protein-coupled receptors (GPCRs). GPCRs form the largest gene family in the human genome and they are involved in most relevant physiological functions. Given the changes observed in the expression and activity of GPCRs during aging, it is possible that these receptors are directly involved in aging and certain age-related pathologies. On the other hand, both GPCRs and G proteins are associated with the plasma membrane and since lipid-protein interactions regulate their activity, they can both be considered to be sensitive to the lipid environment. Changes in membrane lipid composition and structure have been described in aged cells and furthermore, these membrane changes have been associated with alterations in GPCR mediated signaling in some of the main health disorders in elderly subjects. Although senescence could be considered a physiologic process, not all aging humans develop the same health disorders. Here, we review the involvement of GPCRs and their lipid environment in the development of the major human pathologies associated with aging such as cancer, neurodegenerative disorders and cardiovascular pathologies.
Collapse
Affiliation(s)
- Regina Alemany
- Laboratory of Molecular and Cellular Biomedicine, Institut Universitary d'Investigació en Ciències de la Salut, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
117
|
Miners JS, Van Helmond Z, Chalmers K, Wilcock G, Love S, Kehoe PG. Decreased Expression and Activity of Neprilysin in Alzheimer Disease Are Associated With Cerebral Amyloid Angiopathy. J Neuropathol Exp Neurol 2006; 65:1012-21. [PMID: 17021406 DOI: 10.1097/01.jnen.0000240463.87886.9a] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Neprilysin (NEP) degrades amyloid-beta (Abeta) and is thought to contribute to its clearance from the brain. In Alzheimer disease (AD), downregulation of NEP has been suggested to contribute to the development of cerebral amyloid angiopathy (CAA). We examined the relationship among NEP, CAA, and APOE status in AD and elderly control cases. NEP was most abundant in the tunica media of cerebrocortical blood vessels and in pyramidal neurons. In homogenates of the frontal cortex, NEP protein levels were reduced in AD but not significantly; NEP enzymatic activity was significantly reduced in AD. Immunohistochemistry revealed a reduction of both vascular and parenchymal NEP. The loss of vessel-associated NEP in AD was inversely related to the severity of CAA, and analysis of cases with severe CAA showed that levels of vascular NEP were reduced to the same extent in Abeta-free and Abeta-laden vessels, strongly suggesting that the reduction in NEP is not simply secondary to CAA. Possession of APOE epsilon4 was associated with significantly lower levels of both parenchymal and vascular NEP. Colinearity of epsilon4 with the presence of moderate to severe CAA precluded assessment of the independence of this association from NEP levels. However, logistic regression analysis showed low NEP levels to be a significant independent predictor of moderate to severe CAA.
Collapse
Affiliation(s)
- James Scott Miners
- Dementia Research Group, Institute of Clinical Neurosciences, Clinical Science at North Bristol, University of Bristol, Frenchay Hospital, Frenchay, Bristol, United Kingdom.
| | | | | | | | | | | |
Collapse
|
118
|
Yan P, Hu X, Song H, Yin K, Bateman RJ, Cirrito JR, Xiao Q, Hsu FF, Turk JW, Xu J, Hsu CY, Holtzman DM, Lee JM. Matrix metalloproteinase-9 degrades amyloid-beta fibrils in vitro and compact plaques in situ. J Biol Chem 2006; 281:24566-74. [PMID: 16787929 DOI: 10.1074/jbc.m602440200] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The pathological hallmark of Alzheimer disease is the senile plaque principally composed of tightly aggregated amyloid-beta fibrils (fAbeta), which are thought to be resistant to degradation and clearance. In this study, we explored whether proteases capable of degrading soluble Abeta (sAbeta) could degrade fAbeta as well. We demonstrate that matrix metalloproteinase-9 (MMP-9) can degrade fAbeta and that this ability is not shared by other sAbeta-degrading enzymes examined, including endothelin-converting enzyme, insulin-degrading enzyme, and neprilysin. fAbeta was decreased in samples incubated with MMP-9 compared with other proteases, assessed using thioflavin-T. Furthermore, fAbeta breakdown with MMP-9 but not with other proteases was demonstrated by transmission electron microscopy. Proteolytic digests of purified fAbeta were analyzed with matrix-assisted laser desorption ionization time-of-flight mass spectrometry to identify sites of Abeta that are cleaved during its degradation. Only MMP-9 digests contained fragments (Abeta(1-20) and Abeta(1-30)) from fAbeta(1-42) substrate; the corresponding cleavage sites are thought to be important for beta-pleated sheet formation. To determine whether MMP-9 can degrade plaques formed in vivo, fresh brain slices from aged APP/PS1 mice were incubated with proteases. MMP-9 digestion resulted in a decrease in thioflavin-S (ThS) staining. Consistent with a role for endogenous MMP-9 in this process in vivo, MMP-9 immunoreactivity was detected in astrocytes surrounding amyloid plaques in the brains of aged APP/PS1 and APPsw mice, and increased MMP activity was selectively observed in compact ThS-positive plaques. These findings suggest that MMP-9 can degrade fAbeta and may contribute to ongoing clearance of plaques from amyloid-laden brains.
Collapse
Affiliation(s)
- Ping Yan
- Department of Neurology and the Hope Center for Neurological Disorders, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
White AR, Du T, Laughton KM, Volitakis I, Sharples RA, Xilinas ME, Hoke DE, Holsinger RMD, Evin G, Cherny RA, Hill AF, Barnham KJ, Li QX, Bush AI, Masters CL. Degradation of the Alzheimer Disease Amyloid β-Peptide by Metal-dependent Up-regulation of Metalloprotease Activity. J Biol Chem 2006; 281:17670-80. [PMID: 16648635 DOI: 10.1074/jbc.m602487200] [Citation(s) in RCA: 222] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biometals play an important role in Alzheimer disease, and recent reports have described the development of potential therapeutic agents based on modulation of metal bioavailability. The metal ligand clioquinol (CQ) has shown promising results in animal models and small phase clinical trials; however, the actual mode of action in vivo has not been determined. We now report a novel effect of CQ on amyloid beta-peptide (Abeta) metabolism in cell culture. Treatment of Chinese hamster ovary cells overexpressing amyloid precursor protein with CQ and Cu(2+) or Zn(2+) resulted in an approximately 85-90% reduction of secreted Abeta-(1-40) and Abeta-(1-42) compared with untreated controls. Analogous effects were seen in amyloid precursor protein-overexpressing neuroblastoma cells. The secreted Abeta was rapidly degraded through up-regulation of matrix metalloprotease (MMP)-2 and MMP-3 after addition of CQ and Cu(2+). MMP activity was increased through activation of phosphoinositol 3-kinase and JNK. CQ and Cu(2+) also promoted phosphorylation of glycogen synthase kinase-3, and this potentiated activation of JNK and loss of Abeta-(1-40). Our findings identify an alternative mechanism of action for CQ in the reduction of Abeta deposition in the brains of CQ-treated animals and potentially in Alzheimer disease patients.
Collapse
Affiliation(s)
- Anthony R White
- Department of Pathology, University of Melbourne, Cnr. Grattan Street and Royal Parade, Victoria 3010, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Portelius E, Westman-Brinkmalm A, Zetterberg H, Blennow K. Determination of beta-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry. J Proteome Res 2006; 5:1010-6. [PMID: 16602710 DOI: 10.1021/pr050475v] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Early pathogenic events in Alzheimer's disease (AD) involve increased production and/or reduced clearance of beta-amyloid (Abeta), especially the 42 amino acid fragment Abeta1-42. The Abeta1-42 peptide is generated through cleavage of the amyloid precursor protein by beta- and gamma-secretase and is catabolised by a variety of proteolytic enzymes such as insulin-degrading enzyme and neprilysin. Here, we describe a method that employs immunoprecipitation combined with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry to determine the pattern of C-terminally truncated Abeta peptides in cerebrospinal fluid (CSF). Using antibodies coupled to magnetic beads, we have detected 18 C-terminally and 2 N-terminally truncated Abeta peptides in CSF. By determining the identity and profile of the truncated Abeta peptides, more insight may be gained about differences in the metabolism and structural properties of Abeta in AD. Finally, the Abeta fragment signatures may prove useful as a diagnostic test for AD.
Collapse
Affiliation(s)
- Erik Portelius
- Institute of Clinical Neuroscience, Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 43180 Mölndal, Sweden.
| | | | | | | |
Collapse
|
121
|
ABRAHAM CARMELAR, McGRAW WALKERT, SLOT FRANCHOT, YAMIN RINA. α1-Antichymotrypsin Inhibits Aβ Degradation in Vitro and in Vivo. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2000.tb06930.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
122
|
Mandel RJ, Manfredsson FP, Foust KD, Rising A, Reimsnider S, Nash K, Burger C. Recombinant adeno-associated viral vectors as therapeutic agents to treat neurological disorders. Mol Ther 2006; 13:463-83. [PMID: 16412695 DOI: 10.1016/j.ymthe.2005.11.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 11/12/2005] [Accepted: 11/13/2005] [Indexed: 12/11/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) is derived from a small human parvovirus with an excellent safety profile. In addition, this viral vector efficiently transduces and supports long-term transgene expression in the nervous system. These properties make rAAV a reasonable candidate vector for treating neurological disorders. Indeed, rAAV is currently being used in five early stage clinical trials for various neurodegenerative disorders. Therefore, we will review the currently available preclinical data using rAAV in animal models of central nervous system (CNS) disorders. Moreover, potential caveats for rAAV-based gene therapy in the CNS are also presented.
Collapse
Affiliation(s)
- Ronald J Mandel
- Department of Neuroscience, and McKnight Brain Institute, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| | | | | | | | | | | | | |
Collapse
|
123
|
Broccolini A, Gidaro T, Morosetti R, Gliubizzi C, Servidei T, Pescatori M, Tonali PA, Ricci E, Mirabella M. Neprilysin participates in skeletal muscle regeneration and is accumulated in abnormal muscle fibres of inclusion body myositis. J Neurochem 2006; 96:777-89. [PMID: 16405511 DOI: 10.1111/j.1471-4159.2005.03584.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neprilysin (NEP, EP24.11), a metallopeptidase originally shown to modulate signalling events by degrading small regulatory peptides, is also an amyloid-beta- (Abeta) degrading enzyme. We investigated a possible role of NEP in inclusion body myositis (IBM) and other acquired and hereditary muscle disorders and found that in all myopathies NEP expression was directly associated with the degree of muscle fibre regeneration. In IBM muscle, NEP protein was also strongly accumulated in Abeta-bearing abnormal fibres. In vitro, during the experimental differentiation of myoblasts, NEP protein expression was regulated at the post-transcriptional level with a rapid increase in the early stage of myoblast differentiation followed by a gradual reduction thereafter, coincident with the progression of the myogenic programme. Treatment of differentiating muscle cells with the NEP inhibitor dl-3-mercapto-2-benzylpropanoylglycine resulted in impaired differentiation that was mainly associated with an abnormal regulation of Akt activation. Therefore, NEP may play an important role during muscle cell differentiation, possibly through the regulation, either directly or indirectly, of the insulin-like growth factor I-driven myogenic programme. In IBM muscle increased NEP may be instrumental in (i) reducing the Abeta accumulation in vulnerable fibres and (ii) promoting a repair/regenerative attempt of muscle fibres possibly through the modulation of insulin-like growth factor I-dependent pathways.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Amyloid beta-Peptides/metabolism
- Blotting, Northern/methods
- Blotting, Western/methods
- Cell Cycle/physiology
- Cells, Cultured
- Cycloheximide/pharmacology
- Desmin/metabolism
- Dose-Response Relationship, Drug
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Gene Expression Regulation/physiology
- Humans
- Immunohistochemistry/methods
- Insulin-Like Growth Factor Binding Proteins/metabolism
- Middle Aged
- Muscle Fibers, Skeletal/metabolism
- Muscle Fibers, Skeletal/pathology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Myoblasts
- Myosins/metabolism
- Myositis, Inclusion Body/metabolism
- Myositis, Inclusion Body/pathology
- Myositis, Inclusion Body/physiopathology
- Neprilysin/metabolism
- Neprilysin/physiology
- Oncogene Protein v-akt/metabolism
- Protein Synthesis Inhibitors/pharmacology
- RNA, Messenger/biosynthesis
- Regeneration/physiology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Thiophanate/pharmacology
- Time Factors
Collapse
|
124
|
Aβ-degrading enzymes: modulators of Alzheimer's disease pathogenesis and targets for therapeutic intervention. Biochem Soc Trans 2005. [DOI: 10.1042/bst0331101] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The accumulation of Aβ (amyloid β-protein) peptides in the brain is a pathological hallmark of all forms of AD (Alzheimer's disease) and reducing Aβ levels can prevent or reverse cognitive deficits in mouse models of the disease. Aβ is produced continuously and its concentration is determined in part by the activities ofseveral degradative enzymes, including NEP (neprilysin), IDE (insulin-degrading enzyme), ECE-1 (endothelinconverting enzyme 1) and ECE-2, and probably plasmin. Decreased activity of any of these enzymes due to genetic mutation, or age- or disease-related alterations in gene expression or proteolytic activity, may increase the risk for AD. Conversely, increased expression of these enzymes may confer a protective effect. Increasing Aβ degradation through gene therapy, transcriptional activation or even pharmacological activation of the Aβ-degrading enzymes represents a novel therapeutic strategy for the treatment of AD that is currently being evaluated in cell-culture and animal models. In this paper, we will review the roles of NEP, IDE, ECE and plasmin in determining endogenous Aβ concentration, highlighting recent results concerning the regulation of these enzymes and their potential as therapeutic targets.
Collapse
|
125
|
Carter TL, Pedrini S, Ghiso J, Ehrlich ME, Gandy S. Brain neprilysin activity and susceptibility to transgene-induced Alzheimer amyloidosis. Neurosci Lett 2005; 392:235-9. [PMID: 16233955 DOI: 10.1016/j.neulet.2005.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Revised: 09/08/2005] [Accepted: 09/10/2005] [Indexed: 11/20/2022]
Abstract
Neprilysin (NEP) is a zinc metalloproteinase that degrades enkephalins, endothelins, and the Alzheimer's disease amyloid beta (Abeta) peptides. NEP-deficient mice possess increased levels of brain Abeta(1-40) and Abeta(1-42). The objective of this study was to determine whether tissue NEP specific activity differs according to age and/or across mouse strains, especially those strains predisposed toward formation of Abeta-amyloid plaques following overexpression of the human Alzheimer amyloid precursor protein (APP). The C57Bl/6J mouse strain appears to be relatively susceptible to cerebral amyloidosis, whereas the Swiss Webster (SW) strain appears more resistant. We investigated whether NEP specific activity in brain and kidney homogenates from SW and C57 mice of 6, 40, and 80 weeks old varied according to mouse strain, age, and gender. Among the variables tested, NEP specific activity varied most dramatically across mouse strain, with the kidney and brain of SW mice displaying the highest activities. Aging was associated with a reduction in brain NEP specific activity in both strains. Gender-specific differences were identified in kidney but not in brain. We conclude that aging- and strain-dependent differences in NEP specific activity may play a role in the differential susceptibility of some mouse strains for developing cerebral amyloidosis following human APP overexpression.
Collapse
Affiliation(s)
- Troy L Carter
- Farber Institute for Neurosciences and Department of Neurology, Thomas Jefferson University, 900 Walnut Street, Suite 400, Philadelphia, PA 19107, USA
| | | | | | | | | |
Collapse
|
126
|
Iwata N, Higuchi M, Saido TC. Metabolism of amyloid-beta peptide and Alzheimer's disease. Pharmacol Ther 2005; 108:129-48. [PMID: 16112736 DOI: 10.1016/j.pharmthera.2005.03.010] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2005] [Indexed: 12/17/2022]
Abstract
The accumulation of amyloid-beta peptide (Abeta), a physiological peptide, in the brain is a triggering event leading to the pathological cascade of Alzheimer's disease (AD) and appears to be caused by an increase in the anabolic activity, as seen in familial AD cases or by a decrease in catabolic activity. Neprilysin is a rate-limiting peptidase involved in the physiological degradation of Abeta in the brain. As demonstrated by reverse genetics studies, disruption of the neprilysin gene causes elevation of endogenous Abeta levels in mouse brain in a gene-dose-dependent manner. Thus, the reduction of neprilysin activity will contribute to Abeta accumulation and consequently to AD development. Evidence that neprilysin in the hippocampus and cerebral cortex is down-regulated with aging and from an early stage of AD development supports a close association of neprilysin with the etiology and pathogenesis of AD. Therefore, the up-regulation of neprilysin represents a promising strategy for therapy and prevention. Recently, somatostatin, which acts via a G-protein-coupled receptor (GPCR), has been identified as a modulator that increases brain neprilysin activity, resulting in a decrease of Abeta levels. Thus, it may be possible to pharmacologically control brain Abeta levels with somatostatin receptor agonists.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
127
|
Tomidokoro Y, Lashley T, Rostagno A, Neubert TA, Bojsen-Møller M, Braendgaard H, Plant G, Holton J, Frangione B, Révész T, Ghiso J. Familial Danish dementia: co-existence of Danish and Alzheimer amyloid subunits (ADan AND A{beta}) in the absence of compact plaques. J Biol Chem 2005; 280:36883-94. [PMID: 16091362 DOI: 10.1074/jbc.m504038200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Familial Danish dementia is an early onset autosomal dominant neurodegenerative disorder linked to a genetic defect in the BRI2 gene and clinically characterized by dementia and ataxia. Cerebral amyloid and preamyloid deposits of two unrelated molecules (Danish amyloid (ADan) and beta-amyloid (Abeta)), the absence of compact plaques, and neurofibrillary degeneration indistinguishable from that observed in Alzheimer disease (AD) are the main neuropathological features of the disease. Biochemical analysis of extracted amyloid and preamyloid species indicates that as the solubility of the deposits decreases, the heterogeneity and complexity of the extracted peptides exponentially increase. Nonfibrillar deposits were mainly composed of intact ADan-(1-34) and its N-terminally modified (pyroglutamate) counterpart together with Abeta-(1-42) and Abeta-(4-42) in approximately 1:1 mixture. The post-translational modification, glutamate to pyroglutamate, was not present in soluble circulating ADan. In the amyloid fractions, ADan was heavily oligomerized and highly heterogeneous at the N and C terminus, and, when intact, its N terminus was post-translationally modified (pyroglutamate), whereas Abeta was mainly Abeta-(4-42). In all cases, the presence of Abeta-(X-40) was negligible, a surprising finding in view of the prevalence of Abeta40 in vascular deposits observed in sporadic and familial AD, Down syndrome, and normal aging. Whether the presence of the two amyloid subunits is imperative for the disease phenotype or just reflects a conformational mimicry remains to be elucidated; nonetheless, a specific interaction between ADan oligomers and Abeta molecules was demonstrated in vitro by ligand blot analysis using synthetic peptides. The absence of compact plaques in the presence of extensive neuro fibrillar degeneration strongly suggests that compact plaques, fundamental lesions for the diagnosis of AD, are not essential for the mechanism of dementia.
Collapse
Affiliation(s)
- Yasushi Tomidokoro
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Higuchi M, Iwata N, Saido TC. Understanding molecular mechanisms of proteolysis in Alzheimer's disease: Progress toward therapeutic interventions. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1751:60-7. [PMID: 16054018 DOI: 10.1016/j.bbapap.2005.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/04/2005] [Accepted: 02/27/2005] [Indexed: 10/25/2022]
Abstract
Amyloid beta peptide (Abeta) is not only a major constituent of extracellular fibrillary pathologies in Alzheimer's disease (AD) brains, but is also physiologically produced and metabolized in neurons. This fact led us to the notion that an age-related decrease in Abeta catabolism may contribute to the molecular pathogenesis of AD, providing a rationale for seeking proteolytic enzymes that degrade Abeta in the brain. Our recent studies have demonstrated that neprilysin is the most potent Abeta-degrading enzyme in vivo. Deficiency of endogenous neprilysin elevates the level of Abeta in brains of neprilysin-knockout mice in a gene dose-dependent manner, and an age-associated decline of neprilysin occurs in several regions of mouse brain. Neuropathological alterations in these same regions have been implicated in cognitive impairments of AD patients at an early stage of the disease. Furthermore, the level of neprilysin mRNA has been found to be significantly and selectively reduced in the hippocampus and temporal cortex of AD patients. A clarification of the role played by decreased neprilysin activity in the pathogenesis of AD has opened up the possibility of neprilysin up-regulation as a novel preventive and therapeutic approach to AD. Since the expression level and activity of neprilysin are likely to be regulated by neuropeptides and their receptors, non-peptidic agonists for these receptors might be effective agents to maintain a sufficient level of Abeta catabolism in brains of the elderly. In addition to Abeta deposits, intraneuronal fibrillary lesions, such as neurofibrillary tangles, are also a pathological hallmark of AD, and the extent of the resultant cytoskeletal disruptions may be dependent upon the activity levels of proteolytic enzymes. Among proteases for which major cytoskeletal components are good substrates, calpains were shown to participate in excitotoxic stress-induced neuritic degeneration in our recent analysis using genetically engineered mice. Moreover, we have found that this pathology can be reduced by controlling the activity of an endogenous calpain inhibitor known as calpastatin, providing a possible approach for the treatment of diverse neurodegenerative disorders, including AD.
Collapse
Affiliation(s)
- Makoto Higuchi
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | |
Collapse
|
129
|
Morelli L, Bulloj A, Leal MC, Castaño EM. Amyloid beta degradation: a challenging task for brain peptidases. Subcell Biochem 2005; 38:129-45. [PMID: 15709476 DOI: 10.1007/0-387-23226-5_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
Amyloid beta (Abeta) accumulates in the neuropil and within the walls of cerebral vessels in association with normal aging, dementia or stroke. Abeta is released from its precursor protein as soluble monomeric species yet, under pathological conditions, it self-aggregates to form soluble oligomers or insoluble fibrils that may be toxic to neurons and vascular cells. Abeta levels could be lowered by inhibiting its generation or by promoting its clearance by transport or degradation. Here we will summarize recent findings on brain proteases capable of degrading Abeta, with a special focus on those enzymes for which there is genetic, transgenic or biochemical evidence supporting a role in the proteolysis of Abeta in vivo.
Collapse
Affiliation(s)
- Laura Morelli
- Instituto de Química y Fisicoquímica Biológicas, CONICET, Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
130
|
Marr RA, Guan H, Rockenstein E, Kindy M, Gage FH, Verma I, Masliah E, Hersh LB. Neprilysin regulates amyloid Beta peptide levels. J Mol Neurosci 2004; 22:5-11. [PMID: 14742905 DOI: 10.1385/jmn:22:1-2:5] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Accepted: 08/18/2003] [Indexed: 11/11/2022]
Abstract
That neprilysin (NEP) is a major Abeta peptide-degrading enzyme in vivo is shown by higher Abeta peptide levels in the brain of an NEP knockout mouse. In addition, we show that infusion of an NEPinhibitor, but not inhibitors of other peptidases, into the brains of an APP transgenic mouse elevates Abeta levels. We have investigated the use of NEP as a potential therapeutic agent to prevent the accumulation of Abeta peptides in the brain. Lentivirus expressing NEP was initially used to demonstrate the ability of the enzyme to reduce Abeta levels in a model CHO cell line and to make primary hippocampal neurons resistant to Abeta-mediated neurotoxicity. Injection of NEPexpressing lentivirus, but not inactive NEP-expressing lentivirus, GFP-expressing lentivirus, or vehicle, into the hippocampus of 12-20-mo-old hAPP transgenic mice led to an approx 50% reduction in the number of amyloid plaques. These studies provide the impetus for further investigating of the use of NEP in a gene transfer therapy paradigm to prevent the accumulation of Abeta and prevent or delay the onset of Alzheimer's disease.
Collapse
Affiliation(s)
- Robert A Marr
- Laboratory of Genetics, Salk Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Farris W, Mansourian S, Leissring MA, Eckman EA, Bertram L, Eckman CB, Tanzi RE, Selkoe DJ. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1425-34. [PMID: 15039230 PMCID: PMC1615329 DOI: 10.1016/s0002-9440(10)63229-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The causes of cerebral accumulation of amyloid beta-protein (Abeta) in most cases of Alzheimer's disease (AD) remain unknown. We recently found that homozygous deletion of the insulin-degrading enzyme (IDE) gene in mice results in an early and marked elevation of cerebral Abeta. Both genetic linkage and allelic association in the IDE region of chromosome 10 have been reported in families with late-onset AD. For IDE to remain a valid candidate gene for late-onset AD on functional grounds, it must be shown that partial loss of function of IDE can still alter Abeta degradation, but without causing early, severe elevation of brain Abeta. Here, we show that naturally occurring IDE missense mutations in a well-characterized rat model of type 2 diabetes mellitus (DM2) result in decreased catalytic efficiency and a significant approximately 15 to 30% deficit in the degradation of both insulin and Abeta. Endogenously secreted Abeta(40) and Abeta(42) are significantly elevated in primary neuronal cultures from animals with the IDE mutations, but there is no increase in steady-state levels of rodent Abeta in the brain up to age 14 months. We conclude that naturally occurring, partial loss-of-function mutations in IDE sufficient to cause DM2 also impair neuronal regulation of Abeta levels, but the brain can apparently compensate for the partial deficit during the life span of the rat. Our findings have relevance for the emerging genetic evidence suggesting that IDE may be a late-onset AD-risk gene, and for the epidemiological relationships among hyperinsulinemia, DM2, and AD.
Collapse
Affiliation(s)
- Wesley Farris
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Macours N, Poels J, Hens K, Francis C, Huybrechts R. Structure, evolutionary conservation, and functions of angiotensin- and endothelin-converting enzymes. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 239:47-97. [PMID: 15464852 PMCID: PMC7126198 DOI: 10.1016/s0074-7696(04)39002-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Angiotensin-converting enzyme, a member of the M2 metalloprotease family, and endothelin-converting enzyme, a member of the M13 family, are key components in the regulation of blood pressure and electrolyte balance in mammals. From this point of view, they serve as important drug targets. Recently, the involvement of these enzymes in the development of Alzheimer's disease was discovered. The existence of homologs of these enzymes in invertebrates indicates that these enzyme systems are highly conserved during evolution. Most invertebrates lack a closed circulatory system, which excludes the need for blood pressure regulators. Therefore, these organisms represent excellent targets for gaining new insights and revealing additional physiological roles of these important enzymes. This chapter reviews the structural and functional aspects of ACE and ECE and will particularly focus on these enzyme homologues in invertebrates.
Collapse
Affiliation(s)
- Nathalie Macours
- Laboratory for Developmental Physiology, Genomics and Proteomics, Katholieke Universteit Leuven, Naamsestraat 59, B-3000 Leuven, Belgium
| | | | | | | | | |
Collapse
|
133
|
Leissring MA, Lu A, Condron MM, Teplow DB, Stein RL, Farris W, Selkoe DJ. Kinetics of amyloid beta-protein degradation determined by novel fluorescence- and fluorescence polarization-based assays. J Biol Chem 2003; 278:37314-20. [PMID: 12867419 DOI: 10.1074/jbc.m305627200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteases that degrade the amyloid beta-protein (Abeta) are important regulators of brain Abeta levels in health and in Alzheimer's disease, yet few practical methods exist to study their detailed kinetics. Here, we describe robust and quantitative Abeta degradation assays based on the novel substrate, fluorescein-Abeta-(1-40)-Lys-biotin (FAbetaB). Liquid chromatography/mass spectrometric analysis shows that FAbetaB is hydrolyzed at closely similar sites as wild-type Abeta by neprilysin and insulin-degrading enzyme, the two most widely studied Abeta-degrading proteases. The derivatized peptide is an avid substrate and is suitable for use with biological samples and in high throughput compound screening. The assays we have developed are easily implemented and are particularly useful for the generation of quantitative kinetic data, as we demonstrate by determining the kinetic parameters of FAbetaB degradation by several Abeta-degrading proteases, including plasmin, which has not previously been characterized. The use of these assays should yield additional new insights into the biology of Abeta-degrading proteases and facilitate the identification of activators and inhibitors of such enzymes.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
134
|
Tucker HM, Kihiko-Ehmann M, Estus S. Urokinase-type plasminogen activator inhibits amyloid-beta neurotoxicity and fibrillogenesis via plasminogen. J Neurosci Res 2002; 70:249-55. [PMID: 12271474 DOI: 10.1002/jnr.10417] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Amyloid-beta (Abeta) appears central to Alzheimer's disease (AD), aggregates spontaneously, and is neurotoxic to neurons in vitro. Recently, several groups reported a familial AD locus on chromosome 10. Here, we note that urokinase-type plasminogen activator (uPA) is located within this locus. Previously, we reported that uPA and its functional homolog, tissue-type plasminogen activator, are induced by Abeta treatment of neurons in vitro as well as in a mouse model of Abeta accumulation in vivo. Moreover, the target of plasminogen activators, plasmin, degraded nonaggregated and aggregated Abeta and modulated Abeta toxicity and deposition. Here, we have evaluated the effects of uPA and plasminogen on Abeta fibril formation and neurotoxicity. We report that the combination of uPA and plasminogen, but neither alone, inhibits Abeta toxicity, reduces Abeta deposition in vitro, and inhibits Abeta fibrillogenesis. We interpret these observations as suggesting that uPA represents a possible candidate gene for the chromosome 10 familial AD locus.
Collapse
Affiliation(s)
- H Michael Tucker
- Department of Physiology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
135
|
Morelli L, Llovera R, Ibendahl S, Castaño EM. The degradation of amyloid beta as a therapeutic strategy in Alzheimer's disease and cerebrovascular amyloidoses. Neurochem Res 2002; 27:1387-99. [PMID: 12512943 DOI: 10.1023/a:1021679817756] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The deposition of 4-kDa amyloid beta peptide in the brain is a prominent feature of several human diseases. Such process is heterogeneous in terms of causative factors, biochemical phenotype, localization and clinical manifestations. Amyloid beta accumulates in the neuropil or within the walls of cerebral vessels, and associates with dementia or stroke, both hereditary and sporadic. Amyloid beta is normally released by cells as soluble monomeric-dimeric species yet, under pathological conditions, it self-aggregates as soluble oligomers or insoluble fibrils that may be toxic to neurons and vascular cells. Lowering amyloid beta levels may be achieved by inhibiting its generation from the amyloid beta-precursor protein or by promoting its clearance by transport or degradation. We will summarize recent findings on brain proteases capable of degrading amyloid beta with a special focus on those enzymes for which there is genetic, transgenic or biochemical evidence suggesting that they may participate in the proteolysis of amyloid beta in vivo. We will also put in perspective their possible utilization as therapeutic agents in amyloid beta diseases.
Collapse
Affiliation(s)
- Laura Morelli
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), CONICET, Cátedra de Química Biológica Patológica, Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
136
|
Carpentier M, Robitaille Y, DesGroseillers L, Boileau G, Marcinkiewicz M. Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002; 61:849-56. [PMID: 12387451 DOI: 10.1093/jnen/61.10.849] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular, genetic, and pharmacological studies have shown that neprilysin (also called NEP) catabolizes amyloid beta peptides (A beta) in healthy conditions. However, in Alzheimer disease (AD), A beta accumulates forming senile plaques in brain parenchyma and amyloid deposition around blood vessels. In this study, we tested at cellular level the relationship between neprilysin and A beta in human healthy and AD brain. Our results provided evidence for declining levels of neprilysin in AD brains as compared to healthy controls in parallel with increasing deposition of A beta. In hippocampus of AD individuals we observed a significant down-regulation of neprilysin expression in pyramidal neurons, consistent with the possibility that neprilysin controls the level of A beta accumulation and plaque formation in this area. In the cortex and leptomeninges, neprilysin was expressed in the smooth muscle cells of blood vessels. In sections from AD patients we observed a clear inverse relationship between neprilysin and A beta peptide levels in the vasculature, implicating neprilysin in cerebral amyloid angiopathy.
Collapse
Affiliation(s)
- Mélanie Carpentier
- Département de biochimie, Faculté de médecine, Université de Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
137
|
Clamagirand C, Joulie C, Panchal M, Sekhri R, Hanquez C, Cohen P, Rholam M. Specific cleavage of beta-amyloid peptides by a metallopeptidase from Xenopus laevis skin secretions. Comp Biochem Physiol B Biochem Mol Biol 2002; 132:751-9. [PMID: 12128061 DOI: 10.1016/s1096-4959(02)00093-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dactylysin (EC 3.5.24.60) is a metalloendopeptidase first isolated from the skin granular gland secretions of Xenopus laevis. This peptidase hydrolyzes bonds on the amino-terminus of singlets and between doublets of hydrophobic amino acids and was considered to play a role in the in vivo inactivation of biologically active regulatory peptides. Here, we show that dactylysin has also the ability to cleave human beta[1-40]-amyloid peptide and related peptides. Cleavage of the wild type beta[1-40]-amyloid peptide form, and to a lesser extent Flemish and Dutch mutants, occurred predominantly at the His14-Glu15 bond. We demonstrate that frog skin exudate contains a full-length amyloid protein precursor detected by immunochemical cross-reactivity with monoclonal antibody against C-terminal human amyloid protein precursor. The possibility that dactylysin, might be involved in normal catabolism of beta amyloid peptide of Xenopus laevis is discussed.
Collapse
Affiliation(s)
- Christine Clamagirand
- Laboratoire de Biochimie des Signaux Régulateurs Cellulaires et Moléculaires, Unité Mixte de Recherche 7631 du Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
138
|
Fukami S, Iwata N, Saido TC. Therapeutic strategies of Alzheimer's disease through manipulation of A? metabolism: a focus on A?-degrading peptidase, neprilysin. Drug Dev Res 2002. [DOI: 10.1002/ddr.10073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
139
|
Abstract
The steady-state level of amyloid beta-peptide (Abeta) represents a balance between its biosynthesis from the amyloid precursor protein (APP) through the action of the beta- and gamma-secretases and its catabolism by a variety of proteolytic enzymes. Recent attention has focused on members of the neprilysin (NEP) family of zinc metalloproteinases in amyloid metabolism. NEP itself degrades both Abeta(1-40) and Abeta(1-42) in vitro and in vivo, and this metabolism is prevented by NEP inhibitors. Other NEP family members, for example endothelin-converting enzyme, may contribute to amyloid catabolism and may also play a role in neuroprotection. Another metalloproteinase, insulysin (insulin-degrading enzyme) has also been advocated as an amyloid-degrading enzyme and may contribute more generally to metabolism of amyloid-forming peptides. Other candidate enzymes proposed include angiotensin-converting enzyme, some matrix metalloproteinases, plasmin and, indirectly, thimet oligopeptidase (endopeptidase-24.15). This review critically evaluates the evidence relating to proteinases implicated in amyloid catabolism. Therapeutic strategies aimed at promoting A,beta degradation may provide a novel approach to the therapy of Alzheimer's disease.
Collapse
Affiliation(s)
- Julie A Carson
- Proteolysis Research Group, School of Biochemistry and Molecular Biology, University of Leeds, UK
| | | |
Collapse
|
140
|
Matsumoto A, Itoh K, Seki T, Motozaki K, Matsuyama S. Human brain carboxypeptidase B, which cleaves β-amyloid peptidesin vitro, is expressed in the endoplasmic reticulum of neurons. Eur J Neurosci 2001; 13:1653-7. [PMID: 11359517 DOI: 10.1046/j.0953-816x.2001.01540.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular localization of novel human brain carboxypeptidase B (HBCPB) was investigated in human hippocampus, using immunohistochemistry by confocal laser microscopy and biochemical purification of the homogenate by density gradient ultracentrifugation. The former revealed that the majority of HBCPB was expressed in the endoplasmic reticulum, in which the HBCPB-specific C14-module immunoreactivity was colocalized with GRP78 immunoreactivity, a stress 70 heat shock protein specifically expressed in the endoplasmic reticulum. The latter showed that anti-C14-module immunoreactivity and prepro-HBCPB immunoreactivity were both enriched in the microsome fraction, especially in that of the endoplasmic reticulum-density fraction of normal human hippocampal homogenates from various sources. However, HBCPB prepared from human hippocampus showed exopeptidase activity for synthetic beta-amyloid 1-42 peptide, in which Abeta X-42 C-terminus immunoreactivity was decreased in a fashion dose-dependent of the amount of the protease added. These findings indicate that HBCPB, which is expressed in the endoplasmic reticulum of a group of neuronal perikarya, may play an important physiological role in degradation of beta-amyloid 1-42, which is specifically generated in the endoplasmic reticulum of human and rodent neurons and is also regarded as the most pathogenic and aggregatable species among all beta-amyloid peptides.
Collapse
Affiliation(s)
- A Matsumoto
- Department of Radiation Biophysics and Genetics, Kobe University School of Medicine, Kusunoki-cho 7-5-1, Chuo-ku, Kobe, 650-0017 Japan.
| | | | | | | | | |
Collapse
|
141
|
Abstract
Elevated cerebral levels of amyloid beta-protein occur universally in Alzheimer's disease, yet only a few patients show evidence of increased Abeta production. Therefore, defects in proteases that degrade Abeta could underlie some or many cases of familial and sporadic AD. This previously neglected topic has begun receiving serious attention. Understanding how proteolysis regulates Abeta levels in the cerebral cortex has implications for both the pathogenesis and the treatment of this protean disorder.
Collapse
Affiliation(s)
- D J Selkoe
- Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
142
|
Eckman EA, Reed DK, Eckman CB. Degradation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme. J Biol Chem 2001; 276:24540-8. [PMID: 11337485 DOI: 10.1074/jbc.m007579200] [Citation(s) in RCA: 238] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deposition of beta-amyloid (Abeta) peptides in the brain is an early and invariant feature of all forms of Alzheimer's disease. As with any secreted protein, the extracellular concentration of Abeta is determined not only by its production but also by its catabolism. A major focus of Alzheimer's research has been the elucidation of the mechanisms responsible for the generation of Abeta. Much less, however, is known about the mechanisms responsible for Abeta removal in the brain. In this report, we describe the identification of endothelin-converting enzyme-1 (ECE-1) as a novel Abeta-degrading enzyme. We show that treatment of endogenous ECE-expressing cell lines with the metalloprotease inhibitor phosphoramidon causes a 2-3-fold elevation in extracellular Abeta concentration that appears to be due to inhibition of intracellular Abeta degradation. Furthermore, we show that overexpression of ECE-1 in Chinese hamster ovary cells, which lack endogenous ECE activity, reduces extracellular Abeta concentration by up to 90% and that this effect is completely reversed by treatment of the cells with phosphoramidon. Finally, we show that recombinant soluble ECE-1 is capable of hydrolyzing synthetic Abeta40 and Abeta42 in vitro at multiple sites.
Collapse
Affiliation(s)
- E A Eckman
- Mayo Clinic Jacksonville, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| | | | | |
Collapse
|
143
|
Shirotani K, Tsubuki S, Iwata N, Takaki Y, Harigaya W, Maruyama K, Kiryu-Seo S, Kiyama H, Iwata H, Tomita T, Iwatsubo T, Saido TC. Neprilysin degrades both amyloid beta peptides 1-40 and 1-42 most rapidly and efficiently among thiorphan- and phosphoramidon-sensitive endopeptidases. J Biol Chem 2001; 276:21895-901. [PMID: 11278416 DOI: 10.1074/jbc.m008511200] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To identify the amyloid beta peptide (Abeta) 1-42-degrading enzyme whose activity is inhibited by thiorphan and phosphoramidon in vivo, we searched for neprilysin (NEP) homologues and cloned neprilysin-like peptidase (NEPLP) alpha, NEPLP beta, and NEPLP gamma cDNAs. We expressed NEP, phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PEX), NEPLPs, and damage-induced neuronal endopeptidase (DINE) in 293 cells as 95- to 125-kDa proteins and found that the enzymatic activities of PEX, NEPLP alpha, and NEPLP beta, as well as those of NEP and DINE, were sensitive to thiorphan and phosphoramidon. Among the peptidases tested, NEP degraded both synthetic and cell-secreted Abeta1-40 and Abeta1-42 most rapidly and efficiently. PEX degraded cold Abeta1-40 and NEPLP alpha degraded both cold Abeta1-40 and Abeta1-42, although the rates and the extents of the digestion were slower and less efficient than those exhibited by NEP. These data suggest that, among the endopeptidases whose activities are sensitive to thiorphan and phosphoramidon, NEP is the most potent Abeta-degrading enzyme in vivo. Therefore, manipulating the activity of NEP would be a useful approach in regulating Abeta levels in the brain.
Collapse
Affiliation(s)
- K Shirotani
- Laboratory for Proteolytic Neuroscience, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Neprilysin (NEP), a thermolysin-like zinc metalloendopeptidase, plays an important role in turning off peptide signalling events at the cell surface. It is involved in the metabolism of a number of regulatory peptides of the mammalian nervous, cardiovascular, inflammatory and immune systems. Examples include enkephalins, tachykinins, natriuretic and chemotactic peptides. NEP is an integral plasma membrane ectopeptidase of the M13 family of zinc peptidases. Other related mammalian NEP-like enzymes include the endothelin-converting enzymes (ECE-1 and ECE-2), KELL and PEX. A number of novel mammalian homologues of NEP have also recently been described. NEP family members are potential therapeutic targets, for example in cardiovascular and inflammatory disorders, and potent and selective inhibitors such as phosphoramidon have contributed to understanding enzyme function. Inhibitor design should be facilitated by the recent three-dimensional structural solution of the NEP-phosphoramidon complex. For several of the family members, however, a well-defined physiological function or substrate is lacking. Knowledge of the complete genomes of Caenorhabditis elegans and Drosophila melanogaster allows the full complement of NEP-like activities to be analysed in a single organism. These model organisms also provide convenient systems for examining cell-specific expression, developmental and functional roles of this peptidase family, and reveal the power of functional genomics.
Collapse
Affiliation(s)
- A J Turner
- School of Biochemistry and Molecular Biology, University of Leeds, Leeds, UK.
| | | | | |
Collapse
|
145
|
Insulysin hydrolyzes amyloid beta peptides to products that are neither neurotoxic nor deposit on amyloid plaques. J Neurosci 2001. [PMID: 11102481 DOI: 10.1523/jneurosci.20-23-08745.2000] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Insulysin (EC. 3.4.22.11) has been implicated in the clearance of beta amyloid peptides through hydrolytic cleavage. To further study the action of insulysin on Abeta peptides recombinant rat insulysin was used. Cleavage of both Abeta(1-40) and Abeta(1-42) by the recombinant enzyme was shown to initially occur at the His(13)-His(14), His(14)-Gln(15), and Phe(19)-Phe(20) bonds. This was followed by a slower cleavage at the Lys(28)-Gly(29), Val(18)-Phe(19), and Phe(20)-Ala(21) positions. None of the products appeared to be further metabolized by insulysin. Using a rat cortical cell system, the action of insulysin on Abeta(1-40) and Abeta(1-42) was shown to eliminate the neurotoxic effects of these peptides. Insulysin was further shown to prevent the deposition of Abeta(1-40) onto a synthetic amyloid. Taken together these results suggest that the use of insulysin to hydrolyze Abeta peptides represents an alternative gene therapeutic approach to the treatment of Alzheimer's disease.
Collapse
|
146
|
Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M, Hosoki E, Kawashima-Morishima M, Lee HJ, Hama E, Sekine-Aizawa Y, Saido TC. Identification of the major Abeta1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 2000; 6:143-50. [PMID: 10655101 DOI: 10.1038/72237] [Citation(s) in RCA: 488] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alzheimer amyloid beta-peptide (Abeta) is a physiological peptide constantly anabolized and catabolized under normal conditions. We investigated the mechanism of catabolism by tracing multiple-radiolabeled synthetic peptide injected into rat hippocampus. The Abeta1-42 peptide underwent full degradation through limited proteolysis conducted by neutral endopeptidase (NEP) similar or identical to neprilysin as biochemically analyzed. Consistently, NEP inhibitor infusion resulted in both biochemical and pathological deposition of endogenous Abeta42 in brain. This NEP-catalyzed proteolysis therefore limits the rate of Abeta42 catabolism, up-regulation of which could reduce the risk of developing Alzheimer's disease by preventing Abeta accumulation.
Collapse
Affiliation(s)
- N Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Pérez A, Morelli L, Cresto JC, Castaño EM. Degradation of soluble amyloid beta-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem Res 2000; 25:247-55. [PMID: 10786709 DOI: 10.1023/a:1007527721160] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Insulin degrading enzyme (IDE) is a metalloprotease that has been involved in amyloid beta peptide (A(beta)) degradation in the brain. We analyzed the ability of human brain soluble fraction to degrade A(beta) analogs 1-40, 1-42 and the Dutch variant 1-40Q at physiological concentrations (1 nM). The rate of synthetic 125I-A(beta) degradation was similar among the A(beta) analogs, as demonstrated by trichloroacetic acid precipitation and SDS-PAGE. A 110 kDa protein, corresponding to the molecular mass of IDE, was affinity labeled with either 125I-insulin, 125I-Abeta 1-40 or 125I-A(beta) 1-42 and both A(beta) degradation and cross-linking were specifically inhibited by an excess of each peptide. Sensitivity to inhibitors was consistent with the reported inhibitor profile of IDE. Taken together, these results suggested that the degradation of A(beta) analogs was due to IDE or a closely related protease. The apparent Km, as determined using partially purified IDE from rat liver, were 2.2 +/- 0.4, 2.0 +/- 0.1 and 2.3 +/- 0.3 microM for A(beta) 1-40, A(beta) 1-42 and A(beta) 1-40Q, respectively. Comparison of IDE activity from seven AD brain cytosolic fractions and six age-matched controls revealed a significant decrease in A(beta) degrading activity in the first group, supporting the hypothesis that a reduced IDE activity may contribute to A(beta) accumulation in the brain.
Collapse
Affiliation(s)
- A Pérez
- Centro de Investigaciones Endocrinológicas (CEDIE), Hospital Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
148
|
Qiu WQ, Walsh DM, Ye Z, Vekrellis K, Zhang J, Podlisny MB, Rosner MR, Safavi A, Hersh LB, Selkoe DJ. Insulin-degrading enzyme regulates extracellular levels of amyloid beta-protein by degradation. J Biol Chem 1998; 273:32730-8. [PMID: 9830016 DOI: 10.1074/jbc.273.49.32730] [Citation(s) in RCA: 631] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive cerebral accumulation of the 42-residue amyloid beta-protein (Abeta) is an early and invariant step in the pathogenesis of Alzheimer's disease. Many studies have examined the cellular production of Abeta from its membrane-bound precursor, including the role of the presenilin proteins therein, but almost nothing is known about how Abeta is degraded and cleared following its secretion. We previously screened neuronal and nonneuronal cell lines for the production of proteases capable of degrading naturally secreted Abeta under biologically relevant conditions and concentrations. The major such protease identified was a metalloprotease released particularly by a microglial cell line, BV-2. We have now purified and characterized the protease and find that it is indistinguishable from insulin-degrading enzyme (IDE), a thiol metalloendopeptidase that degrades small peptides such as insulin, glucagon, and atrial natriuretic peptide. Degradation of both endogenous and synthetic Abeta at picomolar to nanomolar concentrations was completely inhibited by the competitive IDE substrate, insulin, and by two other IDE inhibitors. Immunodepletion of conditioned medium with an IDE antibody removed its Abeta-degrading activity. IDE was present in BV-2 cytosol, as expected, but was also released into the medium by intact, healthy cells. To confirm the extracellular occurrence of IDE in vivo, we identified intact IDE in human cerebrospinal fluid of both normal and Alzheimer subjects. In addition to its ability to degrade Abeta, IDE activity was unexpectedly found be associated with a time-dependent oligomerization of synthetic Abeta at physiological levels in the conditioned media of cultured cells; this process, which may be initiated by IDE-generated proteolytic fragments of Abeta, was prevented by three different IDE inhibitors. We conclude that a principal protease capable of down-regulating the levels of secreted Abeta extracellularly is IDE.
Collapse
Affiliation(s)
- W Q Qiu
- Department of Neurology and Program in Neuroscience, Harvard Medical School and Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115-5716, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Mains RE, Berard CA, Denault JB, Zhou A, Johnson RC, Leduc R. PACE4: a subtilisin-like endoprotease with unique properties. Biochem J 1997; 321 ( Pt 3):587-93. [PMID: 9032441 PMCID: PMC1218110 DOI: 10.1042/bj3210587] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PACE4 is one of the neuroendocrine-specific mammalian subtilisin-related endoproteases believed to function in the secretory pathway. The biosynthesis and secretion of PACE4 have been studied using transfected neuroendocrine and fibroblast cell lines. as well as primary pituitary cultures. ProPACE4 (approx. 106 kDa) is cleaved intracellularly before secretion of PACE4 (approx. 97 kDa); the N-terminal propeptide cleavage is accelerated in a truncated form of PACE4 lacking the Cys-rich C-terminal region (PACE4s). Neither PACE4 nor PACE4s is stored in regulated neuroendocrine secretory granules, whereas pro-opiomelanocortin-derived peptides and prohormone convertase I enter the regulated secretory pathway efficiently. The relatively slow cleavage of the proregion of proPACE4 in primary anterior pituitary cells, followed by rapid secretion of PACE4, is similar to the results for proPACE4 in transfected cell lines. The enzyme activity of PACE4 is distinct from furin and prohormone convertases, both in the marked sensitivity of PACE4 to inhibition by leupeptin and the relative insensitivity of PACE4 to inhibition by Ca2+ chelators and dithiothreitol; PACE4 is not inhibited by the alpha1-antitrypsin Portland variant that is very potent at inhibiting furin. The unique biosynthetic and enzymic patterns seen for PACE4 suggest a role for this neuroendocrine-specific subtilisin-like endoprotease outside the pathway for peptide biosynthesis.
Collapse
Affiliation(s)
- R E Mains
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2185, U.S.A
| | | | | | | | | | | |
Collapse
|
150
|
McDermott JR, Gibson AM. Degradation of Alzheimer's beta-amyloid protein by human and rat brain peptidases: involvement of insulin-degrading enzyme. Neurochem Res 1997; 22:49-56. [PMID: 9021762 DOI: 10.1023/a:1027325304203] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We examined the degradation of Alzheimer's beta-amyloid protein (1-40) by soluble and synaptic membrane fractions from post mortem human and fresh rat brain using HPLC. Most of the activity at neutral pH was in the soluble fraction. The activity was thiol and metal dependent, with a similar inhibition profile to insulin-degrading enzyme. Immunoprecipitation of insulin-degrading enzyme from the human soluble fraction using a monoclonal antibody removed over 85% of the beta-amyloid protein degrading activity. Thus insulin-degrading enzyme is the main soluble beta-amyloid degrading enzyme at neutral pH in human brain. The highest beta-amyloid protein degrading activity in the soluble fractions occurred between pH 4-5, and this activity was inhibited by pepstatin, implicating an aspartyl protease. Synaptic membranes had much lower beta-amyloid protein degrading activity than the soluble fraction. EDTA (2mM) caused over 85% inhibition of the degrading activity but inhibitors of endopeptidases -24.11, -24.15, -24.16, angiotensin converting enzyme, aminopeptidases, and carboxypeptidases had little or no effect.
Collapse
Affiliation(s)
- J R McDermott
- MRC Neurochemical Pathology Unit, Newcastle General Hospital, Newcastle upon Tyne, UK
| | | |
Collapse
|