101
|
Shibatani T, Kramer G, Hardesty B, Horowitz PM. Domain separation precedes global unfolding of rhodanese. J Biol Chem 1999; 274:33795-9. [PMID: 10559274 DOI: 10.1074/jbc.274.47.33795] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme rhodanese was investigated for the conformational transition associated with its urea unfolding. When rhodanese was treated with 0 or 3 M urea, the activity was not significantly affected. 4.25 M urea treatment led to a time-dependent loss of activity in 60 min. Rhodanese was completely inactivated within 2 min in 6 M urea. The 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid fluorescence intensity was not significantly increased during 0, 3, and 6 M urea equilibrations, and the fluorescence was dramatically increased with 4.25 M urea, indicating that hydrophobic surfaces are exposed. After 0 and 3 M urea equilibration, rhodanese was not significantly proteolyzed with trypsin. Treatment with 4.25 M urea led to simultaneous formation of major 12-, 15.9-, 17-, and 21.2-kDa fragments, followed by progressive emergence of smaller peptides. The N termini of the 17- and 21.2-kDa bands were those of intact rhodanese. The N terminus of the 15.9-kDa band starts at the end of the interdomain tether. The 12-kDa band begins with either residue 183 or residue 187. The size and sequence information suggest that the 17- and 15.9-kDa bands correspond to the two domains. The 21.2- and 12-kDa bands appear to be generated through one-site tryptic cleavage. It is concluded that urea disrupts interaction between the two domains, increasing the accessibility of the interdomain tether that can be digested by trypsin. The released domains have increased proteolytic susceptibility and produce smaller peptides, which may represent subdomains of rhodanese.
Collapse
Affiliation(s)
- T Shibatani
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78284-7760, USA
| | | | | | | |
Collapse
|
102
|
Knoops B, Clippe A, Bogard C, Arsalane K, Wattiez R, Hermans C, Duconseille E, Falmagne P, Bernard A. Cloning and characterization of AOEB166, a novel mammalian antioxidant enzyme of the peroxiredoxin family. J Biol Chem 1999; 274:30451-8. [PMID: 10521424 DOI: 10.1074/jbc.274.43.30451] [Citation(s) in RCA: 195] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Using two-dimensional electrophoresis, we have recently identified in human bronchoalveolar lavage fluid a novel protein, termed B166, with a molecular mass of 17 kDa. Here, we report the cloning of human and rat cDNAs encoding B166, which has been renamed AOEB166 for antioxidant enzyme B166. Indeed, the deduced amino acid sequence reveals that AOEB166 represents a new mammalian subfamily of AhpC/TSA peroxiredoxin antioxidant enzymes. Human AOEB166 shares 63% similarity with Escherichia coli AhpC22 alkyl hydroperoxide reductase and 66% similarity with a recently identified Saccharomyces cerevisiae alkyl hydroperoxide reductase/thioredoxin peroxidase. Moreover, recombinant AOEB166 expressed in E. coli exhibits a peroxidase activity, and an antioxidant activity comparable with that of catalase was demonstrated with the glutamine synthetase protection assay against dithiothreitol/Fe3+/O(2) oxidation. The analysis of AOEB166 mRNA distribution in 30 different human tissues and in 10 cell lines shows that the gene is widely expressed in the body. Of interest, the analysis of N- and C-terminal domains of both human and rat AOEB166 reveals amino acid sequences presenting features of mitochondrial and peroxisomal targeting sequences. Furthermore, human AOEB166 expressed as a fusion protein with GFP in HepG2 cell line is sorted to these organelles. Finally, acute inflammation induced in rat lung by lipopolysaccharide is associated with an increase of AOEB166 mRNA levels in lung, suggesting a protective role for AOEB166 in oxidative and inflammatory processes.
Collapse
Affiliation(s)
- B Knoops
- Laboratory of Cell Biology, Department of Biology, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Brini M, Pinton P, Pozzan T, Rizzuto R. Targeted recombinant aequorins: tools for monitoring [Ca2+] in the various compartments of a living cell. Microsc Res Tech 1999; 46:380-9. [PMID: 10504215 DOI: 10.1002/(sici)1097-0029(19990915)46:6<380::aid-jemt6>3.0.co;2-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the last decade, the study of Ca2+ homeostasis within organelles in living cells has been greatly enhanced by the utilisation of a recombinant Ca(2+)-sensitive photoprotein, aequorin. Aequorin is a Ca2+ sensitive photoprotein of a coelenterate that, in the past, was widely employed to measure Ca2+ concentration in living cells. In fact, the purified protein was widely used to monitor cytoplasmic [Ca2+] changes in invertebrate muscle cells after microinjection. However, due to the time-consuming and traumatic procedure of microinjection, the role of aequorin in the study of Ca2+ homeostasis remained confined to a limited number of cells (giant cells) susceptible to microinjection. Thus, in most instances, it was replaced by the fluorescent indicators developed by Roger Tsien and coworkers. The cloning of aequorin cDNA [Inouye et al. (1985) Proc. Natl. Acad. Sci. U.S.A. 82:3154-3158] and the explosive development of molecular biology offered new possibilities in the use of aequorin, as microinjection has been replaced by the simpler technique of cDNA transfection. As a polypeptide, aequorin allows the endogenous production of the photoprotein in cell systems as diverse as bacteria, yeast, slime molds, plants, and mammalian cells. Moreover, it is possible to specifically localise it within the cell by including defined targeting signals in the amino acid sequence. Targeted recombinant aequorins represent to date the most specific means of monitoring [Ca2+] in subcellular organelles. In this review, we will not discuss the procedure of aequorin microinjection and its use as purified protein but we will present the new advances provided by recombinant aequorin in the study of intracellular Ca2+ homeostasis, discussing in greater detail the advantages and disadvantages in the use of this probe.
Collapse
Affiliation(s)
- M Brini
- Department of Biochemistry, University of Padova, 35121 Padova, Italy.
| | | | | | | |
Collapse
|
104
|
Kontani Y, Sakata SF, Matsuda K, Ohyama T, Sano K, Tamaki N. The mature size of rat 4-aminobutyrate aminotransferase is different in liver and brain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:218-22. [PMID: 10447691 DOI: 10.1046/j.1432-1327.1999.00612.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The amino acid sequence predicted from a rat liver cDNA library indicated that the precursor of beta-AlaAT I (4-aminobutyrate aminotransferase, beta-alanine-oxoglutarate aminotransferase) consists of a mature enzyme of 466 amino acid residues and a 34-amino acid terminal segment, with amino acids attributed to the leader peptide. However, the mass of beta-AlaAT I from rat brain was larger than that from rat liver and kidney, as assessed by Western-blot analysis, mass spectroscopy and N-terminal sequencing. The mature form of beta-AlaAT I from the brain had an ISQAAAK- peptide on the N-terminus of the liver mature beta-AlaAT I. Brain beta-AlaAT I was cleaved to liver beta-AlaAT I when incubated with fresh mitochondrial extract from rat liver. These results imply that mature rat liver beta-AlaAT I is proteolytically cleaved in two steps. The first cleavage of the motif XRX( downward arrow)XS is performed by a mitochondrial processing peptidase, yielding an intermediate-sized protein which is the mature brain beta-AlaAT I. The second cleavage, which generates the mature liver beta-AlaAT I, is also carried out by a mitochondrial endopeptidase. The second peptidase is active in liver but lacking in brain.
Collapse
Affiliation(s)
- Y Kontani
- Faculty of Nutrition, Kobe-Gakuin University, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
105
|
Pineda AO, Ellington WR. Structural and functional implications of the amino acid sequences of dimeric, cytoplasmic and octameric mitochondrial creatine kinases from a protostome invertebrate. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:67-73. [PMID: 10447674 DOI: 10.1046/j.1432-1327.1999.00577.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cDNA and deduced amino-acid sequences for dimeric and octameric isoforms of creatine kinase (CK) from a protostome, the polychaete Chaetopterus variopedatus, were elucidated and then analysed in the context of available vertebrate CK sequences and the recently determined crystal structure of chicken sarcomeric mitochondrial CK (MiCK). As protostomes last shared a common ancestor with vertebrates roughly 700 million years ago, observed conserved residues may serve to confirm or reject contemporary hypotheses about the roles of particular amino acids in functional/structural processes such as dimer/octamer formation and membrane binding. The isolated cDNA from the dimeric CK consisted of 1463 nucleotides with an open reading frame of 1116 nucleotides encoding a 372-amino-acid protein having a calculated molecular mass of 41.85 kDa. The percentage identity of C. variopedatus dimeric CK to vertebrate CK is as high as 69%. The octameric MiCK cDNA is composed of 1703 nucleotides with an open reading frame of 1227 nucleotides. The first 102 nucleotides of the open reading frame encode a 34-amino-acid leader peptide whereas the mature protein is composed of 375 amino acids with a calculated molecular mass of 42.17 kDa. The percentage identity of C. variopedatus MiCK to vertebrate CK is as high as 71%. This similarity is also evident in residues purported to be important in the structure and function of dimeric and octameric CK: (a) presence of seven basic amino acids in the C-terminal end thought to be important in binding of MiCK to membranes; (b) presence of a lysine residue (Lys110 in chicken MiCK) also thought to be involved in membrane binding; and (c) presence of a conserved tryptophan thought to be important in dimer stabilization which is present in all dimeric and octameric guanidino kinases. However, C. variopedatus MiCK lacks the N-terminal heptapeptide present in chicken MiCK, which is thought to mediate octamer stabilization. In contrast with vertebrate MiCK, polychaete octamers are very stable indicating that dimer binding into octamers may be mediated by additional and/or other residues. Phylogenetic analyses showed that both octamer and dimer evolved very early in the CK lineage, well before the divergence of deuterostomes and protostomes. These results indicate that the octamer is a primitive feature of CK rather than being a derived and advanced character.
Collapse
Affiliation(s)
- A O Pineda
- Department of Biological Science and Institute of Molecular Biophysics, Florida State University, Tallhassee 32306-4370, USA
| | | |
Collapse
|
106
|
Watabe S, Makino Y, Ogawa K, Hiroi T, Yamamoto Y, Takahashi SY. Mitochondrial thioredoxin reductase in bovine adrenal cortex its purification, properties, nucleotide/amino acid sequences, and identification of selenocysteine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:74-84. [PMID: 10447675 DOI: 10.1046/j.1432-1327.1999.00578.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mitochondrial thioredoxin reductase was purified from bovine adrenal cortex. The enzyme is a first protein component in the mitochondrial thioredoxin-dependent peroxide reductase system. The purified reductase exhibited an apparent molecular mass of 56 kDa on SDS/PAGE, whereas the native protein was about 100 kDa, suggesting a homodimeric structure. It catalysed NADPH-dependent reduction of 5, 5'dithiobis(2-nitrobenzoic acid) and thioredoxins from various origins but not glutathione, oxidized dithiothreitol, DL-alpha-lipoic acid, or insulin. Amino acid and nucleotide sequence analyses revealed that it had a presequence composed of 21 amino acids which had features characteristic of a mitochondrial targeting signal. The amino acid sequence of the mature protein was similar to that of bovine cytosolic thioredoxin reductase (57%) and of human glutathione reductase (34%) and less similar to that of Escherichia coli (19%) or yeast (17%) enzymes. Human and bovine cytosolic thioredoxin reductase were recently identified to contain selenocysteine (Sec) as one of their amino acid constituents. We also identified Sec in the C-terminal region of mitochondrial (mt)-thioredoxin reductase by means of MS and amino acid sequence analyses of the C-terminal fragment. The four-amino acid motif, Gly-Cys-Sec-Gly, which is conserved among all Sec-containing thioredoxin reductases, probably functions as the third redox centre of the enzyme, as the mitochondrial reductase was inhibited by 1-chloro-2,4-dinitrobenzene, which was reported to modify Sec and Cys covalently. It is known that mammalian thioredoxin reductase is different from bacterial or yeast enzyme in, for example, their subunit molecular masses and domain structures. These two different types of enzymes with similar activity are suggested to have evolved convergently. Our data clearly show that mitochondria, which might have originated from symbiotic prokaryotes, contain thioredoxin reductase similar to the cytosolic enzyme and different from the bacterial one.
Collapse
Affiliation(s)
- S Watabe
- Radioisotope Laboratory, Faculty of Agriculture, Yamaguchi University, Japan.
| | | | | | | | | | | |
Collapse
|
107
|
Poon WW, Barkovich RJ, Hsu AY, Frankel A, Lee PT, Shepherd JN, Myles DC, Clarke CF. Yeast and rat Coq3 and Escherichia coli UbiG polypeptides catalyze both O-methyltransferase steps in coenzyme Q biosynthesis. J Biol Chem 1999; 274:21665-72. [PMID: 10419476 DOI: 10.1074/jbc.274.31.21665] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquinone (coenzyme Q or Q) is a lipid that functions in the electron transport chain in the inner mitochondrial membrane of eukaryotes and the plasma membrane of prokaryotes. Q-deficient mutants of Saccharomyces cerevisiae harbor defects in one of eight COQ genes (coq1-coq8) and are unable to grow on nonfermentable carbon sources. The biosynthesis of Q involves two separate O-methylation steps. In yeast, the first O-methylation utilizes 3, 4-dihydroxy-5-hexaprenylbenzoic acid as a substrate and is thought to be catalyzed by Coq3p, a 32.7-kDa protein that is 40% identical to the Escherichia coli O-methyltransferase, UbiG. In this study, farnesylated analogs corresponding to the second O-methylation step, demethyl-Q(3) and Q(3), have been chemically synthesized and used to study Q biosynthesis in yeast mitochondria in vitro. Both yeast and rat Coq3p recognize the demethyl-Q(3) precursor as a substrate. In addition, E. coli UbiGp was purified and found to catalyze both O-methylation steps. Futhermore, antibodies to yeast Coq3p were used to determine that the Coq3 polypeptide is peripherally associated with the matrix-side of the inner membrane of yeast mitochondria. The results indicate that one O-methyltransferase catalyzes both steps in Q biosynthesis in eukaryotes and prokaryotes and that Q biosynthesis is carried out within the matrix compartment of yeast mitochondria.
Collapse
Affiliation(s)
- W W Poon
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
108
|
Kousteni S, Tura-Kockar F, Ramji DP. Sequence and expression analysis of a novel Xenopus laevis cDNA that encodes a protein similar to bacterial and chloroplast ribosomal protein L24. Gene 1999; 235:13-8. [PMID: 10415328 DOI: 10.1016/s0378-1119(99)00221-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report here the cloning and the characterization of a Xenopus laevis cDNA that encodes a basic protein of 276 amino acids with a central core region, which shows a substantial degree of homology to bacterial and chloroplast ribosomal protein L24, and additional diverged N- and C-terminal polypeptide extensions. The N-terminal extension displays similarities to the mitochondrial targetting sequence, thereby suggesting that the cDNA probably codes for a mitochondrial ribosomal protein. Although the gene was expressed ubiquitously, at fairly constant levels, during embryogenesis, the abundance of the transcripts in the different tissues varies with the mRNA levels in the kidney, adipose tissue, muscle and liver being greater than that present in the brain, heart, ovary and lung.
Collapse
Affiliation(s)
- S Kousteni
- Cardiff School of Biosciences, Cardiff University, PO Box 911, Cardiff CF1 3US, UK
| | | | | |
Collapse
|
109
|
Seibel M, Bachmann C, Schmiedel J, Wilken N, Wilde F, Reichmann H, Isaya G, Seibel P, Pfeiler D. Processing of artificial peptide-DNA-conjugates by the mitochondrial intermediate peptidase (MIP). Biol Chem 1999; 380:961-7. [PMID: 10494848 DOI: 10.1515/bc.1999.119] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Import of DNA from the cytoplasm into the mitochondrial matrix is an obligatory step for an in organello site-directed mutagenesis or gene therapy approach on mitochondrial DNA diseases. In this context, we have developed an artificial DNA translocation vector that is composed of the mitochondrial signal peptide of the ornithine transcarbamylase (OTC) and a DNA moiety. While this vector is capable of directing attached passenger molecules to the mitochondrial matrix, the recognition of this artificial molecule by the endogenous mitochondrial signal peptide processing machinery as well as the cleavage of the peptide plays a pivotal role in the release of the attached DNA. To study the proteolytic processing of the artificial vector, various signal peptide-DNA-conjugates were treated with purified mitochondrial intermediate peptidase. When the leader peptide is directly linked to the DNA moiety without an intervening spacer, MIP processing is prevented. Cleavage of the peptide can be restored, however, when the first ten amino acid residues of the mature part of OTC are appended at the carboxy-terminal end of the signal peptide. Our results show that artificial peptide-DNA-conjugates are recognized by the mitochondrial proteolytic machinery, and therefore an interference of the peptide with the DNA function can be excluded.
Collapse
Affiliation(s)
- M Seibel
- Forschungsgruppe Neurobiochemie und Zellbiologie, Neurologische Klinik und Poliklinik, Dresden, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Wang ZG, Schmid KJ, Ackerman SH. The Drosophila gene 2A5 complements the defect in mitochondrial F1-ATPase assembly in yeast lacking the molecular chaperone Atp11p. FEBS Lett 1999; 452:305-8. [PMID: 10386611 DOI: 10.1016/s0014-5793(99)00676-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Assembly of mitochondrial F1-ATPase in Saccharomyces cerevisiae requires the molecular chaperone, Atp11p. Database searches have identified protein sequences from Schizosaccharomyces pombe and two species of Drosophila that are homologous to S. cerevisiae Atp11p. A cDNA encoding the putative Atp11p from Drosophila yakuba was shown to complement the respiratory deficient phenotype of yeast harboring an atp11::HIS3 disruption allele. Furthermore, the product of this Drosophila gene was shown to interact with the S. cerevisiae F1 beta subunit in the yeast two-hybrid assay. These results indicate that Atp11p function is conserved in higher eukaryotes.
Collapse
Affiliation(s)
- Z G Wang
- Department of Surgery, Wayne State University, School of Medicine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
111
|
DeLabre ML, Nett JH, Trumpower BL. The cleaved presequence is not required for import of subunit 6 of the cytochrome bc1 complex into yeast mitochondria or assembly into the complex. FEBS Lett 1999; 449:201-5. [PMID: 10338132 DOI: 10.1016/s0014-5793(99)00415-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Subunit 6 of the yeast cytochrome bc1 complex contains a 25 amino acid presequence that is not present in the mature form of the protein in the bc1 complex. The presequence of subunit 6 is atypical of presequences responsible for targeting proteins to mitochondria. Whereas mitochondrial targeting sequences rarely contain acidic residues and typically contain basic residues that can potentially form an amphiphilic structure, the presequence of subunit 6 contains only one basic amino acid and is enriched in acidic amino acids. If the 25 amino acid presequence is deleted, subunit 6 is imported into mitochondria and assembled into the cytochrome bc1 complex and the activity of the bc1 complex is identical to that from a wild-type yeast strain. However, if the C-terminal 45 amino acids are truncated from the protein, subunit 6 is not present in the mitochondria and the activity of the bc1 complex is diminished by half, identical to that of the bc1 complex from a yeast strain in which the QCR6 gene is deleted. These results indicate that the presequence of subunit 6 is not required for targeting to mitochondria or assembly of the subunit into the bc1 complex and that information necessary for targeting and import into mitochondria may be present in the C-terminus of the protein.
Collapse
Affiliation(s)
- M L DeLabre
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
112
|
The biogenesis and assembly of photosynthetic proteins in thylakoid membranes1. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:21-85. [PMID: 10216153 DOI: 10.1016/s0005-2728(99)00043-2] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
113
|
Pang SS, Duggleby RG. Expression, purification, characterization, and reconstitution of the large and small subunits of yeast acetohydroxyacid synthase. Biochemistry 1999; 38:5222-31. [PMID: 10213630 DOI: 10.1021/bi983013m] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetohydroxyacid synthase (AHAS, EC 4.1.3.18) catalyzes the first step in the biosynthesis of the branched-chain amino acids. In bacteria, the enzyme has a large subunit containing the catalytic machinery and a small subunit with a regulatory role. In eucaryotes, the evidence for a regulatory subunit is largely indirect and circumstantial. We investigated the possibility that the yeast open reading frame YCL009c is an AHAS small subunit. Analysis of the DNA sequence shows that it contains all the appropriate transcription, translation and regulatory signals. YCL009c was shown to be expressed in yeast and the protein localized in mitochondria where it undergoes removal of a transit peptide targeting sequence. This putative small subunit protein (ilv6) and the catalytic subunit of yeast AHAS (ilv2) were each overexpressed in Escherichia coli and purified to near homogeneity. Reconstitution studies showed that the ilv6 protein stimulates the catalytic activity of the ilv2 protein by up to 7-fold (from 6.8 +/- 0.7 to 49.0 +/- 1.8 U/mg) and confers upon it sensitivity to inhibition by valine (Ki = 0.16 +/- 0.02 mM). Valine inhibition is partially reversed by ATP. The reconstitution is favored by high concentrations of potassium phosphate ( approximately 1 M) and at neutral pH. Under optimal conditions for reconstitution, a dissociation constant for the subunits of 70 +/- 7 nM was determined. Valine inhibition is partial, resulting in a specific activity that is similar to that of the ilv2 protein alone. However, measurements of the Km for substrate rule out the possibility that valine inhibition is accomplished by dissociation of the subunits.
Collapse
Affiliation(s)
- S S Pang
- Centre for Protein Structure, Function and Engineering, Department of Biochemistry, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
114
|
Dennis RA, McCammon MT. Acn9 is a novel protein of gluconeogenesis that is located in the mitochondrial intermembrane space. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 261:236-43. [PMID: 10103055 DOI: 10.1046/j.1432-1327.1999.00267.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous studies have indicated that the Acn9 protein is involved in gluconeogenesis. Yeast mutants defective in the ACN9 gene display phenotypes identical with mutants defective in metabolic enzymes required for carbon assimilation. These phenotypes include the inability to utilize acetate as a carbon and energy source, elevated levels of enzymes of the glyoxylate cycle, gluconeogenesis and acetyl-CoA mobilization, and a deficiency in de novo synthesis of glucose from ethanol. The ACN9 gene was isolated by functional complementation of the acetate growth defect of an acn9 mutant. The open reading frame corresponds to YDR511w, and encodes a protein of unknown function. Homologs have been identified in human, mouse, and nematode databases. Two mutant alleles were sequenced. The mutations altered amino acid residues that are conserved among members of the new gene family. ACN9 gene expression was slightly repressed by glucose, and the level of the transcript was approximately 100-fold lower than that of glyoxylate or tricarboxylic acid cycle enzymes. A functional epitope-tagged form of Acn9 was expressed to study expression and the subcellular localization of the protein. The tagged protein was localized to the mitochondrial intermembrane space.
Collapse
Affiliation(s)
- R A Dennis
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AK, USA
| | | |
Collapse
|
115
|
Paret C, Ostermann K, Krause-Buchholz U, Rentzsch A, Rödel G. Human members of the SCO1 gene family: complementation analysis in yeast and intracellular localization. FEBS Lett 1999; 447:65-70. [PMID: 10218584 DOI: 10.1016/s0014-5793(99)00266-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Cytochrome c oxidase is a multiprotein complex in the mitochondrial membrane whose biogenesis requires a number of proteins besides the structural subunits. Several yeast proteins as well as a human disease-related protein have been reported which are involved in cytochrome c oxidase assembly. The S. cerevisiae Sco1p protein has been implicated in the transfer of copper to cytochrome c oxidase subunits Cox1p and/or Cox2p. Here we report on the complementation behavior in yeast of two recently identified ScSco1p homologs of chromosome 17 and chromosome 22 from human. When allotropically expressed in yeast, both genes fail to complement the lack of the ScSCO1 gene. However, a chimera of the N-terminal half of ScSco1p and the C-terminal half of the chromosome 17 homolog does substitute for the ScSco1p function. Interestingly, the respective chimera with the human homolog of chromosome 22 is not able to complement. Expression of EGFP fusions in HeLa cells shows that both human ScSco1p homologs are located in the mitochondria of human cells.
Collapse
Affiliation(s)
- C Paret
- Institut für Genetik, Technische Universität Dresden, Germany
| | | | | | | | | |
Collapse
|
116
|
Zhu Y, Han X, Yang F. Translocation of chicken heart apocytochrome c and its mutants (C17S, H18D) across mitochondrial membrane. SCIENCE IN CHINA. SERIES C, LIFE SCIENCES 1999; 42:1-7. [PMID: 18726491 DOI: 10.1007/bf02881741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/1998] [Indexed: 05/26/2023]
Abstract
The dependence of import of chicken heart apocytochrome c on its transformation to holoform by heme attachment was studied. Results showed that there was no difference in the translocation of apocytochrome c across the mitochondrial membrane in the presence or absence of hemin + dithionite. Furthermore, two heme unattached mutants (H18D. C17S) were prepared, which could still be accumulated in mitochondria, but their import velocity was obviously reduced.
Collapse
Affiliation(s)
- Y Zhu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | | |
Collapse
|
117
|
De Giorgi F, Ahmed Z, Bastianutto C, Brini M, Jouaville LS, Marsault R, Murgia M, Pinton P, Pozzan T, Rizzuto R. Targeting GFP to organelles. Methods Cell Biol 1999; 58:75-85. [PMID: 9891375 DOI: 10.1016/s0091-679x(08)61949-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- F De Giorgi
- Department Biomedical Sciences, University of Padua, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Tanudji M, Sjöling S, Glaser E, Whelan J. Signals required for the import and processing of the alternative oxidase into mitochondria. J Biol Chem 1999; 274:1286-93. [PMID: 9880497 DOI: 10.1074/jbc.274.3.1286] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The critical residues involved in targeting and processing of the soybean alternative oxidase to plant and animal mitochondria was investigated. Import of various site-directed mutants into soybean mitochondria indicated that positive residues throughout the length of the presequence were important for import, not just those in the predicted region of amphiphilicity. The position of the positive residues in the C-terminal end of the presequence was also important for import. Processing assays of the various constructs with purified spinach mitochondrial processing peptidase showed that all the -2-position mutants had a drastic effect on processing. In contrast to the import assay, the position of the positive residue could be changed for processing. Deletion mutants confirmed the site-directed mutagenesis data in that an amphiphilic alpha-helix was not the only determinant of mitochondrial import in this homologous plant system. Import of these constructs into rat liver mitochondria indicated that the degree of inhibition differed and that the predicted region of amphiphilic alpha-helix was more important with rat liver mitochondria. Processing with a rat liver matrix fraction showed little inhibition. These results are discussed with respect to targeting specificity in plant cells and highlight the need to carry out homologous studies and define the targeting requirements to plant mitochondria.
Collapse
Affiliation(s)
- M Tanudji
- Department of Biochemistry, University of Western Australia, Nedlands 6907, Western Australia, Australia
| | | | | | | |
Collapse
|
119
|
Goldraij A, Polacco JC. Arginase is inoperative in developing soybean embryos. PLANT PHYSIOLOGY 1999; 119:297-304. [PMID: 9880372 PMCID: PMC32232 DOI: 10.1104/pp.119.1.297] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/1998] [Accepted: 10/12/1998] [Indexed: 05/18/2023]
Abstract
Arginase (EC 3.5.3.1) transcript level and activity were measured in soybean (Glycine max L.) embryos from the reserve deposition stage to postgermination. Using a cDNA probe for a small soybean arginase gene family, no transcript was detected in developing embryos. However, arginase transcripts increased sharply on germination, reaching a maximum at 3 to 5 d after germination. There was low but measurable in vitro arginase specific activity in developing embryos (less than 6% of seedling maximum). During germination arginase specific activity increased in parallel with the sharply increasing arginase transcript level. Seedling arginase activity was largely localized in cotyledons. Arginase activity was assayed in vivo by measuring urea accumulation in a urease-deficient mutant. No urea was detected in developing embryos, whereas accumulated urea paralleled arginase specific activity and transcript level in germinating seedlings. As in planta embryos, cultured cotyledons did not accumulate urea when arginine (Arg) was provided with other amino acids in a "mock" seed-coat exudate. Arg as the sole nitrogen source was converted to urea but did not support cotyledon growth. There appeared to be a lack of recruitment of the low-level arginase activity to hydrolyze free Arg in developing embryos, thus avoiding a futile urea cycle.
Collapse
Affiliation(s)
- A Goldraij
- Department of Biochemistry and Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
120
|
Kirimura K, Yoda M, Ko I, Oshida Y, Miyake K, Usami S. Cloning and sequencing of the chromosomal DNA and cDNA encoding the mitochondrial citrate synthase of Aspergillus niger WU-2223L. J Biosci Bioeng 1999; 88:237-43. [PMID: 16232605 DOI: 10.1016/s1389-1723(00)80003-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/1999] [Accepted: 05/31/1999] [Indexed: 11/16/2022]
Abstract
The complementary DNA (cDNA) and chromosomal DNA encoding the citrate synthase (EC 4.1.3.7) gene (cit1) of Aspergillus niger WU-2223L, a citric acid-producing strain, were cloned. Synthetic oligonucleotide primers were designed according to the amino acid sequences of already known eukaryotic citrate synthases and the codon bias of A. niger genes. The 920-bp DNA fragment was amplified by polymerase chain reaction with these primers using chromosomal DNA of WU-2223L as a template, and was employed to screen a cDNA library of A. niger. One full-length cDNA clone was isolated and sequenced, within which an ORF of 1425 by encoding a protein of 475 as with a molecular weight of 52,153 Da was found. Its N-terminal region contains a typical mitochondrial-targeting motif. The predicted as sequence was 82, 68, and 65% homologous with the mitochondrial citrate synthases of Neurospora crassa, Saccharomyces cerevisiae, and pig, respectively, but it showed lower homology to bacterial citrate synthases. The full-length cDNA clone was used to screen a chromosomal library of A. niger WU-2223L, and a 7.5 kb-SalI fragment containing the corresponding chromosomal gene was isolated. Comparison of the chromosomal and cDNA sequences revealed that the cit1 gene is interrupted by six introns. In the chromosomal DNA, upstream of the coding region, a CT-rich region, but not the TATAAA or CAAT motifs, was found. Escherichia coli MOB150, a citrate synthase-deficient mutant showing a glutamate-requiring phenotype, was transformed with the plasmid pKAC-35S, which is the expression vector pKK223-3 containing the cDNA fragment encoding a putative mature protein of A. niger citrate synthase. The transformant harboring pKAC-35S showed citrate synthase activity and a glutamate-nonrequiring phenotype.
Collapse
Affiliation(s)
- K Kirimura
- Department of Applied Chemistry, School of Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan
| | | | | | | | | | | |
Collapse
|
121
|
Kojima K, Kitada S, Shimokata K, Ogishima T, Ito A. Cooperative formation of a substrate binding pocket by alpha- and beta-subunits of mitochondrial processing peptidase. J Biol Chem 1998; 273:32542-6. [PMID: 9829989 DOI: 10.1074/jbc.273.49.32542] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial processing peptidase (MPP) specifically recognizes a large variety of mitochondrial precursor proteins and cleaves off N-terminal extension peptides. The enzyme is a metalloprotease and forms a heterodimer consisting of structurally related alpha- and beta-subunits. To investigate the responsibility of MPP subunits for substrate recognition, we monitored interaction of the fluorescent-labeled peptide substrates with the MPP and its subunits. The specific binding of the peptide to the MPP was confirmed by findings of the direct participation of arginine residues in the binding, which are located at position -2 and the position distal to the cleavage site and are essential for the cleavage reaction. MPP bound the substrate peptides with high affinity only in the dimeric complex, and each subunit monomer had about a 30-fold less affinity than the complex. The individual subunit required arginines at different positions in the peptide for binding, although their affinities were much lower than that of MPP. Fluorescence quenching analysis showed that the peptide bound to MPP was buried in the enzyme. Thus, both subunits of MPP might be required for formation of a substrate binding pocket with multiple subsites lying across them.
Collapse
Affiliation(s)
- K Kojima
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
122
|
Perez-Campo FM, Nicaud JM, Gaillardin C, Dominguez A. Cloning and sequencing of the LYS1 gene encoding homocitrate synthase in the yeast Yarrowia lipolytica. Yeast 1998. [PMID: 8948100 DOI: 10.1002/(sici)1097-0061(199611)12:14<1459::aid-yea26>3.0.co;2-m] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- F M Perez-Campo
- Departamento de Microbiología y Genética, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
123
|
Ramos F, Verhasselt P, Feller A, Peeters P, Wach A, Dubois E, Volckaert G. Identification of a gene encoding a homocitrate synthase isoenzyme of Saccharomyces cerevisiae. Yeast 1998. [DOI: 10.1002/(sici)1097-0061(199610)12:13<1315::aid-yea20>3.0.co;2-q] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
124
|
Kitada S, Kojima K, Shimokata K, Ogishima T, Ito A. Glutamate residues required for substrate binding and cleavage activity in mitochondrial processing peptidase. J Biol Chem 1998; 273:32547-53. [PMID: 9829990 DOI: 10.1074/jbc.273.49.32547] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial processing peptidase, a metalloendopeptidase consisting of alpha- and beta-subunits, specifically recognizes a large variety of mitochondrial precursor proteins and cleaves off N-terminal extension peptides. The enzyme requires the basic amino acid residues in the extension peptides for effective and specific cleavage. To elucidate the mechanism involved in the molecular recognition of substrate by the enzyme, several glutamates around the active site of the rat beta-subunit, which has a putative metal-binding motif, H56XXEH60, were mutated to alanines or aspartates, and effects on kinetic parameters, metal binding, and substrate binding of the enzyme were analyzed. None of mutant proteins analyzed was impaired in dimer formation with the alpha-subunit. Mutation of glutamates at positions 79, 129, and 136, in addition to an active-site glutamate at position 59, resulted in a marked decrease in cleavage efficiency. Together with sequence alignment data, glutamate 136 appears to be involved in metal binding. Glutamate 129 is mostly responsible for the catalysis, as there was a considerable decrease in kcat value by the mutation. Mutation of glutamate 79 led to decrease in kcat value and increase in Km values. Substrate binding experiments using an environmentally sensitive fluorescence probe attached to the peptide showed that the mutation caused a remarkable environmental change at the binding site to the N-terminal region of the substrate peptide and decreased binding of the peptide, thereby suggesting that glutamate 79 participates primarily in substrate binding. Thus, some glutamate residues required for substrate binding and cleavage activity have been identified.
Collapse
Affiliation(s)
- S Kitada
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
125
|
Kuroda R, Ikenoue T, Honsho M, Tsujimoto S, Mitoma JY, Ito A. Charged amino acids at the carboxyl-terminal portions determine the intracellular locations of two isoforms of cytochrome b5. J Biol Chem 1998; 273:31097-102. [PMID: 9813010 DOI: 10.1074/jbc.273.47.31097] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Outer mitochondrial membrane cytochrome b5 (OMb), which is an isoform of cytochrome b5 (cyt b5) in the endoplasmic reticulum, is a typical tail-anchored protein of the outer mitochondrial membrane. We cloned cDNA containing the complete amino acid sequence of OMb and found that the protein has no typical structural feature common to the mitochondrial targeting signal at the amino terminus. To identify the region responsible for the mitochondrial targeting of OMb, various mutated proteins were expressed in cultured mammalian cells, and the subcellular localization of the expressed proteins was analyzed. The deletion of more than 11 amino acid residues from the carboxyl-terminal end of OMb abolished the targeting of the protein to the mitochondria. When the carboxyl-terminal 10 amino acids of OMb were fused to the cyt b5 that was previously deleted in the corresponding 10 residues, the fused protein localized in the mitochondria, thereby indicating that the carboxyl-terminal 10 amino acid residues of OMb have sufficient information to transport OMb to the mitochondria. The replacement of either of the two positively charged residues within the carboxyl-terminal 10 amino acids by alanine resulted in the transport of the mutant proteins to the endoplasmic reticulum. The mutant cyt b5, in which the acidic amino acid in its carboxyl-terminal end was replaced by basic amino acid, could be transported to the mitochondria. It would thus seem that charged amino acids in the carboxyl-terminal portion of these proteins determine their locations in the cell.
Collapse
Affiliation(s)
- R Kuroda
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | |
Collapse
|
126
|
Yukioka H, Inagaki S, Tanaka R, Katoh K, Miki N, Mizutani A, Masuko M. Transcriptional activation of the alternative oxidase gene of the fungus Magnaporthe grisea by a respiratory-inhibiting fungicide and hydrogen peroxide. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1442:161-9. [PMID: 9804939 DOI: 10.1016/s0167-4781(98)00159-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alternative oxidase (AOX) is dramatically induced when the fungus Magnaporthe grisea is incubated with the fungicide SSF-126, which interacts with the cytochrome bc1 complex in the electron transport system of mitochondria. A full-length cDNA for the alternative oxidase gene (AOX) was obtained, and the deduced amino acid sequence revealed marked similarity to other AOXs, but lacks two cysteine residues at corresponding sites which are conserved in plant AOXs and play essential roles in the post-translational regulation. Northern blot experiments showed that treatment of M. grisea cells with SSF-126 induces accumulation of AOX mRNA in a dose-dependent manner, and the level was correlated with the activity of alternative respiration. H2O2 also induced the accumulation of the transcript with a short half-life (<15 min). Nuclear run-on experiments showed that the AOX gene was transcribed constitutively in unstimulated cells. Cycloheximide did not change the basal level of transcription, but induced the accumulation of the transcript, indicating that active degradation of the transcript occurs by factor(s) sensitive to cycloheximide. On the other hand, SSF-126 enhanced the transcriptional activity of AOX gene threefold compared to that of control cells, and H2O2 was also potent for enhancement of the transcription. From these results, it is concluded that the respiratory inhibitor-dependent activation of the transcription is a primary determinant for the induction of alternative respiration in M. grisea. Because we have previously shown that SSF-126 treatment of M. grisea mitochondria induced the generation of superoxide, active oxygen species are thought to be signal mediators to activate AOX gene transcription in M. grisea.
Collapse
Affiliation(s)
- H Yukioka
- Aburahi Laboratories, Shionogi and Co., Ltd., 1405 Gotanda, Koka, Shiga 520-3423, Japan.
| | | | | | | | | | | | | |
Collapse
|
127
|
Trevino RJ, Tsalkova T, Kramer G, Hardesty B, Chirgwin JM, Horowitz PM. Truncations at the NH2 terminus of rhodanese destabilize the enzyme and decrease its heterologous expression. J Biol Chem 1998; 273:27841-7. [PMID: 9774394 DOI: 10.1074/jbc.273.43.27841] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhodanese mutants containing sequential NH2-terminal deletions were constructed to test the distinct contributions of this region of the protein to expression, folding, and stability. The results indicate that the first 11 residues are nonessential for folding to the active conformation, but they are necessary for attaining an active, stable structure when expressed in Escherichia coli. Rhodanese species with up to 9 residues deleted were expressed and purified. Kinetic parameters for the mutants were similar to those of the full-length enzyme. Compared with shorter truncations, mutants missing 7 or 9 residues were (a) increasingly inactivated by urea denaturation, (b) more susceptible to inactivation by dithiothreitol, (c) less able to be reactivated, and (d) less rapidly inactivated by incubation at 37 degreesC. Immunoprecipitation showed that mutants lacking 10-23 NH2-terminal amino acids were expressed as inactive species of the expected size but were rapidly eliminated. Cell-free transcription/translation at 37 degreesC showed mutants deleted through residue 9 were enzymatically active, but they were inactive when deleted further, just as in vivo. However, at 30 degreesC in vitro, both Delta1-10 and Delta1-11 showed considerable activity. Truncations in the NH2 terminus affect the chemical stability of the distantly located active site. Residues Ser-11 through Gly-22, which form the NH2-proximal alpha-helix, contribute to folding to an active conformation, to resisting degradation during heterologous expression, and to chemical stability in vitro.
Collapse
Affiliation(s)
- R J Trevino
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, Texas 78284, USA
| | | | | | | | | | | |
Collapse
|
128
|
Shimokata K, Kitada S, Ogishima T, Ito A. Role of alpha-subunit of mitochondrial processing peptidase in substrate recognition. J Biol Chem 1998; 273:25158-63. [PMID: 9737975 DOI: 10.1074/jbc.273.39.25158] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial processing peptidase is a heterodimer consisting of alpha-mitochondrial processing peptidase (alpha-MPP) and beta-MPP. We investigated the role of alpha-MPP in substrate recognition using a recombinant yeast MPP. Disruption of amino acid residues between 10 and 129 of the alpha-MPP did not essentially impair binding activity with beta-MPP and processing activity, whereas truncation of the C-terminal 41 amino acids led to a significant loss of binding and processing activity. Several acidic amino acids in the region conserved among the enzymes from various species were mutated to asparagine or glutamine, and effects on processing of the precursors were analyzed. Glu353 is required for processing of malate dehydrogenase, aspartate aminotransferase, and adrenodoxin precursors. Glu377 and Asp378 are needed only for the processing of aspartate aminotransferase and adrenodoxin precursors, both of which have a longer extension peptide than the others studied. However, processing of the yeast alpha-MPP precursor, which has a short extension peptide of nine amino acids, was not affected by these mutations. Thus, effects of substitution of acidic amino acids on the processing differed with the precursor protein and depended on length of the extension peptides. alpha-MPP may function as a substrate-recognizing subunit by interacting mainly with basic amino acids at a region distal to the cleavage site in precursors with a longer extension peptide.
Collapse
Affiliation(s)
- K Shimokata
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | |
Collapse
|
129
|
|
130
|
Affiliation(s)
- M Mori
- Department of Molecular Genetics, Kumamoto University School of Medicine, Kuhonji 4-24-1, Kumamoto 862, Japan.
| | | |
Collapse
|
131
|
Avelange-Macherel MH, Joyard J. Cloning and functional expression of AtCOQ3, the Arabidopsis homologue of the yeast COQ3 gene, encoding a methyltransferase from plant mitochondria involved in ubiquinone biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 14:203-13. [PMID: 9628017 DOI: 10.1046/j.1365-313x.1998.00109.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
A mutant of Saccharomyces cerevisiae deleted for the COQ3 gene was constructed. COQ3 encodes a 3,4-dihydroxy-5-hexaprenylbenzoate (DHHB) methyltransferase that catalyses the fourth step in the biosynthesis of ubiquinone from p-hydroxybenzoic acid. A full length cDNA encoding a homologue of DHHB-methyltransferase was cloned from an Arabidopsis thaliana cDNA library by functional complementation of a yeast coq3 deletion mutant. The Arabidopsis thaliana cDNA (AtCOQ3) was able to restore the respiration ability and ubiquinone synthesis of the mutant. The product of the 1372 bp cDNA contained 322 amino acids and had a molecular mass of 35,360 Da. The predicted amino acid sequence contained all consensus regions for S-adenosyl methionine methyltransferases and presented 26% identity with Saccharomyces cerevisiae DHHB-methyltransferase and 38% identity with the rat protein, as well as with a bacterial (Escherichia coli and Salmonella typhimurium) methyltransferase encoded by the UBIG gene. Southern analysis showed that the Arabidopsis thaliana enzyme was encoded by a single nuclear gene. The NH2-terminal part of the cDNA product contained features consistent with a putative mitochondrial transit sequence. The cDNA in Escherichia coli was overexpressed and antibodies were raised against the recombinant protein. Western blot analysis of Arabidopsis thaliana and pea protein extracts indicated that the AtCOQ3 gene product is localized within mitochondrial membranes. This result suggests that at least this step of ubiquinone synthesis takes place in mitochondria.
Collapse
Affiliation(s)
- M H Avelange-Macherel
- Laboratoire de Physiologie Cellulaire Végétale, URA 576, CEA/CNRS/Université Joseph Fourier-Grenoble, France
| | | |
Collapse
|
132
|
Jonassen T, Proft M, Randez-Gil F, Schultz JR, Marbois BN, Entian KD, Clarke CF. Yeast Clk-1 homologue (Coq7/Cat5) is a mitochondrial protein in coenzyme Q synthesis. J Biol Chem 1998; 273:3351-7. [PMID: 9452453 DOI: 10.1074/jbc.273.6.3351] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mutations in the clk-1 gene result in slower development and increased life span in Caenorhabditis elegans. The Saccharomyces cerevisiae homologue COQ7/CAT5 is essential for several metabolic pathways including ubiquinone biosynthesis, respiration, and gluconeogenic gene activation. We show here that Coq7p/Cat5p is a mitochondrial inner membrane protein directly involved in ubiquinone biosynthesis, and that the defect in gluconeogenic gene activation in coq7/cat5 null mutants is a general consequence of a defect in respiration. These results obtained in the yeast model suggest that the effects on development and life span in C. elegans clk-1 mutants may relate to changes in the amount of ubiquinone, an essential electron transport component and a lipid soluble antioxidant.
Collapse
Affiliation(s)
- T Jonassen
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
133
|
Bandlow W, Strobel G, Schricker R. Influence of N-terminal sequence variation on the sorting of major adenylate kinase to the mitochondrial intermembrane space in yeast. Biochem J 1998; 329 ( Pt 2):359-67. [PMID: 9425120 PMCID: PMC1219052 DOI: 10.1042/bj3290359] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Major adenylate kinase (Aky2p) from yeast has no cleavable presequence and occurs in identical form in the mitochondrial intermembrane space (6-8%) and in the cytoplasm (approx. 90%). To identify the signal(s) on Aky2p that might be required for mitochondrial import, the N-terminal region was examined. The N-terminus of Aky2p can guide at least two cytoplasmic passengers, dihydrofolate reductase from mouse and UMP kinase (Ura6p) from yeast, to the intermembrane space in vivo, showing that the N-terminus harbours import information. In contrast, deletion of the eight N-terminal amino acid residues or the introduction of two compensating frameshifts into this segment does not abolish translocation into the organelle's intermembrane space. Thus internal targeting and sorting information must be present in Aky2p as well. Neither a pronounced amphiphilic alpha-helical moment nor positive charges in the N-terminal region is a necessary prerequisite for Aky2p to reach the intermembrane space. Even a surplus of negative charges in mutant N-termini does not impede basal import into the correct submitochondrial compartment. The potential to form an amphipathic alpha-helical structure of five to eight residues close to the N-terminus significantly improves import efficiency, whereas extension of this amphipathic structure, e.g. by replacing it with the homologous segment of Aky3p, a mitochondrial matrix protein from yeast, leads to misdirection of the chimaera to the matrix compartment. This shows that the topogenic N-terminal signal of Aky3p is dominant over the presumptive internal intermembrane space-targeting signal of Aky2p and argues that the sorting of wild-type Aky2p to the intermembrane space is not due to the presence in the protein of a specific sorting sequence for the intermembrane space, but rather is the consequence of being imported but not being sorted to the inner compartment. Some Aky2 mutant proteins are susceptible to proteolysis in the cytoplasm, indicating incorrect folding. They are nevertheless efficiently rescued by uptake into mitochondria, suggesting a negative correlation between folding velocity (or folding stability) and efficiency of import.
Collapse
Affiliation(s)
- W Bandlow
- Institut für Genetik und Mikrobiologie, Universität München, Maria-Ward-Strasse 1a, D-80638 München, Federal Republic of Germany
| | | | | |
Collapse
|
134
|
Crabeel M, Abadjieva A, Hilven P, Desimpelaere J, Soetens O. Characterization of the Saccharomyces cerevisiae ARG7 gene encoding ornithine acetyltransferase, an enzyme also endowed with acetylglutamate synthase activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 250:232-41. [PMID: 9428669 DOI: 10.1111/j.1432-1033.1997.0232a.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have cloned by functional complementation and characterized the yeast ARG7 gene encoding mitochondrial ornithine acetyltransferase, the enzyme catalyzing the fifth step in arginine biosynthesis. While forming ornithine, this enzyme regenerates acetylglutamate, also produced in the first step by the ARG2-encoded acetylglutamate synthase. Interestingly, total deletion of the genomic ARG7 ORF resulted in an arginine-leaky phenotype, indicating that yeast cells possess an alternative route for generating ornithine from acetylornithine. Yeast ornithine acetyltransferase has been purified and characterized previously as a heterodimer of two subunits proposed to derive from a single precursor protein [Liu, Y-S., Van Heeswijck R., Hoj, P. & Hoogenraad, N. (1995) Eur. J. Biochem. 228, 291-296]; those authors further suggested that the internal processing of Arg7p, which is a mitochondrial enzyme, might occur in the matrix, while the leader peptide would be of the non-cleavable-type. The characterization of the gene (a) establishes that Arg7p is indeed encoded by a single gene, (b) demonstrates the existence of a cleaved mitochondrial prepeptide of eight residues, and (c) shows that the predicted internal processing site is unlike the mitochondrial proteolytic peptidase target sequence. Yeast Arg7p shares between 32-43% identity in pairwise comparisons with the ten analogous bacterial ArgJ enzymes characterized. Among these evolutionarily related enzymes, some but not all appear bifunctional, being able to produce acetylglutamate not only from acetylornithine but also from acetyl-CoA, thus catalyzing the same reaction as the apparently unrelated acetylglutamate synthase. We have addressed the question of the bifunctionality of the eucaryotic enzyme, showing that overexpressed ARG7 can complement yeast arg2 and Escherichia coli argA mutations (affecting acetylglutamate synthase). Furthermore, Arg7p-linked acetylglutamate synthase activity was measurable in an assay. The yeast enzyme is thus clearly, albeit modestly, bifunctional. As with several bacterial ornithine acetyltransferases, the activity of Arg7p was practically insensitive to arginine but strongly inhibited by ornithine, which behaved as a competitive inhibitor.
Collapse
Affiliation(s)
- M Crabeel
- Department of Microbiology of the Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | |
Collapse
|
135
|
Watabe S, Hiroi T, Yamamoto Y, Fujioka Y, Hasegawa H, Yago N, Takahashi SY. SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:52-60. [PMID: 9363753 DOI: 10.1111/j.1432-1033.1997.t01-1-00052.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
SP-22 is a mitochondrial antioxidant protein in bovine adrenal cortex. The protein is homologous to thioredoxin peroxidase and other antioxidant proteins. It protects radical-sensitive enzymes from oxidative damage by a radical-generating system (Fe2+/dithiothreitol) in the presence of a small amount of serum. In this study we purified a second mitochondrial protein with Mr 11,777, which cooperates with SP-22 to protect glutamine synthetase and other proteins from Fe2+/dithiothreitol-mediated damage. Without SP-22, the protein had no protecting activity. We determined amino acid and nucleotide sequences of the protein and its cDNA, respectively, and found that it was a protein of the thioredoxin family. The protein, designated as mt-Trx (mitochondrial thioredoxin), had a presequence composed of 59 amino acids that seemed to be a mitochondrial targeting signal. Mitochondrial extract prepared from adrenal cortex contained NADPH-dependent 5,5'dithiobis(2-nitrobenzoic acid) (Nbs2) reductase activity. The enzyme was thought to have thioredoxin reductase activity, since the Nbs2-reducing activity was stimulated by mt-Trx. We partially purified the Nbs2 reductase from bovine adrenocortical mitochondria. In the presence of the partially purified reductase, mt-Trx, and NADPH, SP-22 showed the activity to protect oxyhemoglobin against ascorbate-induced damage. Furthermore, with the three protein components (Nbs2 reductase, mt-Trx, and SP-22) NADPH was oxidized in the presence of hydrogen peroxide or tert-butyl hydroperoxide. The oxidation of NADPH was concomitant with the disappearance of an equimolar amount of hydrogen peroxide. Without any one of the protein components no hemoglobin-protecting and peroxide-dependent NADPH-oxidizing activities were observed. From these results we concluded that SP-22 is thioredoxin-dependent peroxide reductase or so-called thioredoxin peroxidase in mitochondria from the adrenal cortex.
Collapse
Affiliation(s)
- S Watabe
- Radioisotope Laboratory, Faculty of Agriculture, Yamaguchi University, Japan.
| | | | | | | | | | | | | |
Collapse
|
136
|
Schofield JP, Elgar G, Greystrong J, Lye G, Deadman R, Micklem G, King A, Brenner S, Vaudin M. Regions of human chromosome 2 (2q32-q35) and mouse chromosome 1 show synteny with the pufferfish genome (Fugu rubripes). Genomics 1997; 45:158-67. [PMID: 9339372 DOI: 10.1006/geno.1997.4913] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated and sequenced a cosmid clone from the compact genome of the Japanese pufferfish (Fugu rubripes) containing portions of three genes that have the same order as in human. The gene order is microtubule-associated protein (MAP-2), myosin light chain (MYL-1), and carbamoyl phosphate synthetase (CPS III). The intron-exon organization of Fugu CPS III is identical with that of rat CPS I, although the equivalent genomic fragments of rat and Fugu CPS span 87.9 and 21 kb, respectively. This is the first report of a piscine CPS III genomic structure and predicts a close evolutionary link between CPS III and CPS I. The 8-kb intergenic region between MYL-1 and CPS gave no clear areas of transcription factor-binding sites by pairwise comparison with shark or rat CPS promoter regions. However, there was a match with the rat myosin light chain 2 (MLC-2) gene promoter and a MyoD transcription factor-binding site 874 bp upstream of the MYL-1 gene.
Collapse
Affiliation(s)
- J P Schofield
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Dessi P, Whelan J. Temporal regulation of in vitro import of precursor proteins into tobacco mitochondria. FEBS Lett 1997; 415:173-8. [PMID: 9350990 DOI: 10.1016/s0014-5793(97)01116-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein import into isolated tobacco mitochondria was investigated using mitochondria from leaves harvested at different times of the day and night. Efficient import was only detected with mitochondria isolated from leaves harvested during the dark period of the growth cycle, only low levels of import were detected from leaves harvested during the light period. However, this temporal difference seen in import did not appear to be circadian in nature. This implies that the protein import process in mitochondria isolated from leaves is not constitutive. This has important implications for targeting specificity studies performed in transgenic plants, as unless the plants are tested at the time when import is occurring, the true in vivo targeting abilities of chimeric constructs will not be measured.
Collapse
Affiliation(s)
- P Dessi
- Department of Biochemistry, University of Western Australia, Nedlands, Perth
| | | |
Collapse
|
138
|
Ling M, Merante F, Chen HS, Duff C, Duncan AM, Robinson BH. The human mitochondrial elongation factor tu (EF-Tu) gene: cDNA sequence, genomic localization, genomic structure, and identification of a pseudogene. Gene 1997; 197:325-36. [PMID: 9332382 DOI: 10.1016/s0378-1119(97)00279-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human mitochondrial elongation factor Tu (EF-Tu) is nuclear-encoded and functions in the translational apparatus of mitochondria. The complete human EF-Tu cDNA sequence of 1677 base pairs (bp) with a 101 bp 5'-untranslated region, a 1368 bp coding region, and a 207 bp 3'-untranslated region, has been determined and updated. The predicted protein from this cDNA sequence is approximately 49.8 kDa in size and is composed of 455 amino acids (aa) with a putative N-terminal mitochondrial leader sequence of approximately 50 aa residues. The predicted amino acid sequence shows high similarity to other EF-Tu protein sequences from ox, yeast, and bacteria, and also shows limited similarity to human cystolic elongation factor 1 alpha. The complete size of this cDNA (1677 bp) obtained by cloning and sequencing was confirmed by Northern blot analysis, which showed a single transcript (mRNA) of approximately 1.7 kb in human liver. The genomic structure of this EF-Tu gene has been determined for the first time. This gene contains nine introns with a predicted size of approximately 3.6 kilobases (kb) and has been mapped to chromosome 16p11.2. In addition, an intronless pseudogene of approximately 1.7 kb with 92.6% nucleotide sequence similarity to the EF-Tu gene has also been identified and mapped to chromosome 17q11.2.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cell Line
- Chromosome Mapping
- Chromosomes, Human, Pair 16/genetics
- Chromosomes, Human, Pair 17/genetics
- Cloning, Molecular
- Cricetinae
- DNA, Complementary/genetics
- Genes/genetics
- Humans
- Hybrid Cells
- Introns/genetics
- Liver/chemistry
- Molecular Sequence Data
- Peptide Elongation Factor Tu/genetics
- Pseudogenes/genetics
- RNA, Messenger/analysis
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- M Ling
- Department of Genetics, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
139
|
Abstract
Cardiolipin synthase catalyzes the synthesis of the mitochondrial phospholipid cardiolipin. Cardiolipin synthase is a unique membrane-bound enzyme in that it utilizes two phospholipids, both insoluble in water, as substrates. Kinetic analysis suggests that the enzyme forms a ternary complex with the two lipid substrates, and that a divalent metal ion directly associates with cardiolipin synthase to form the active enzyme. While little is known about the regulation of cardiolipin synthase in yeast, activity is reduced in mutants in which the mitochondrial genome is deleted, and in mutants with defective respiratory complexes. In p0 mutants, which contain no mitochondrial DNA and are defective in the assembly of many mitochondrial membrane protein complexes, cardiolipin synthase activity is reduced by 50%. Mutants defective in respiratory complexes, particularly those incapable of cytochrome oxidase assembly, also have reduced cardiolipin synthase activity. Thus it is likely that respiration and cardiolipin formation are interdependent. The enzyme was recently purified from the budding yeast Saccharomyces cerevisiae. Enzyme activity was associated with a 25-30-kDa protein. The amino acid sequence of this protein, combined with the availability of the complete yeast genome sequence, will hopefully lead to the identification of the structural gene for this enzyme in the near future.
Collapse
Affiliation(s)
- M Schlame
- Dept. of Anesthesiology, Charite Hospital, Humboldt University, Berlin, Germany
| | | |
Collapse
|
140
|
Prats E, Noël M, Létourneau J, Tiranti V, Vaqué J, Debón R, Zeviani M, Cornudella L, Ruiz-Carrillo A. Characterization and expression of the mouse endonuclease G gene. DNA Cell Biol 1997; 16:1111-22. [PMID: 9324313 DOI: 10.1089/dna.1997.16.1111] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Endonuclease G (Endo G) is a nuclease of prokaryotic lineage found in the mitochondria of vertebrates that has been suggested to play a role in mitochondrial DNA (mtDNA) replication. We have isolated and sequenced the entire mouse endo G gene, determined the limits of the mRNA, and mapped the promoter region. The coding sequence of the single copy gene is interrupted by two introns and analysis of the transcripts does not support a model by which more than one Endo G isoform could be produced by alternative splicing. We have also characterized a full-length human Endo G cDNA and comparison at the protein level of the human, bovine, and murine nucleases indicates a high degree of conservation except in the respective mitochondrial targeting signals. Endo G is ubiquitously expressed and the steady-state levels of its mRNA vary by a factor greater than seven between different tissues. The relationship between the mtDNA copy number and Endo G mRNA levels is not strictly proportional but tissues richer in mtDNA have higher amounts of the mRNA and vice versa.
Collapse
Affiliation(s)
- E Prats
- Department of Molecular and Cell Biology, C.I.D., C.S.I.C., Biotechnology Reference Center of the Generalitat de Catalunya, Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Watanabe Y, Kita K, Ueda T, Watanabe K. cDNA sequence of a translational elongation factor Ts homologue from Caenorhabditis elegans: mitochondrial factor-specific features found in the nematode homologue peptide. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1353:7-12. [PMID: 9256058 DOI: 10.1016/s0167-4781(97)00075-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cDNA for a homologue of elongation factor Ts which probably functions in mitochondria has been sequenced from a nematode Caenorhabditis elegans. The deduced amino acid sequence (316 amino acids long) has a possible transit peptide sequence at the amino terminus and several common specific features for mammalian mitochondrial EF-Ts. The amino acid identities in the protein from C. elegans compared with those of bovine mitochondria and Escherichia coli are 29.5% and 24.0%, respectively. The C. elegans sequence was classified as a long EF-Ts (ca. 280 amino acids long) similar to peptides from mammalian mitochondria and eubacteria other than Thermus and cyanobacteria (except Spirulina platensis), rather than short EF-Ts (ca. 200 amino acids long) as those of Thermus, cyanobacteria and plastids.
Collapse
Affiliation(s)
- Y Watanabe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, the University of Tokyo, Bunkyo-ku, Japan.
| | | | | | | |
Collapse
|
142
|
Kato A, Sugiura N, Saruta Y, Hosoiri T, Yasue H, Hirose S. Targeting of endopeptidase 24.16 to different subcellular compartments by alternative promoter usage. J Biol Chem 1997; 272:15313-22. [PMID: 9182559 DOI: 10.1074/jbc.272.24.15313] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endopeptidase 24.16 or mitochondrial oligopeptidase, abbreviated here as EP 24.16 (MOP), is a thiol- and metal-dependent oligopeptidase that is found in multiple intracellular compartments in mammalian cells. From an analysis of the corresponding gene, we found that the distribution of the enzyme to appropriate subcellular locations is achieved by the use of alternative sites for the initiation of transcription. The pig EP 24.16 (MOP) gene spans over 100 kilobases and is organized into 16 exons. The core protein sequence is encoded by exons 5-16 which match perfectly with exons 2-13 of the gene for endopeptidase 24.15, another member of the thimet oligopeptidase family. These two sets of 11 exons share the same splice sites, suggesting a common ancestor. Multiple species of mRNA for EP 24.16 (MOP) were detected by the 5'-rapid amplification of cDNA ends and they were shown to have been generated from a single gene by alternative choices of sites for the initiation of transcription and splicing. Two types of transcript were prepared, corresponding to transcription from distal and proximal sites. Their expression in vitro in COS-1 cells indicated that they encoded two isoforms (long and short) which differed only at their amino termini: the long form contained a cleavable mitochondrial targeting sequence and was directed to mitochondria; the short form, lacking such a signal sequence, remained in the cytosol. The complex structure of the EP 24.16 (MOP) gene thus allows, by alternative promoter usage, a fine transcriptional regulation of coordinate expression, in the different subcellular compartments, of the two isoforms arising from a single gene.
Collapse
Affiliation(s)
- A Kato
- Department of Biological Sciences, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226, Japan
| | | | | | | | | | | |
Collapse
|
143
|
Abstract
A mitochondrial DNA topoisomerase (type I, ATP-independent) can be biochemically distinguished from the nuclear enzyme DNA topoisomerase I. This conclusion is based on the subcellular localization of the mitochondrial enzyme, its optimal reaction conditions and sensitivity to enzyme inhibitors. Unlike its nuclear counterpart, the mitochondrial DNA topoisomerase exhibits an absolute requirement for a divalent cation (Mg2+ and Ca2+ work equally well in vitro). In addition, it is slightly more sensitive to monovalent salts, with optimal activity obtained in 50-100 mM KCl. The mitochondrial enzyme is equally active at pH 7.5 or pH 9.5, but unlike its nuclear equivalent, is inactivated at higher pH values. The mitochondrial DNA topoisomerase is sensitive to coumermycin, berenil, camptothecin and 2,2,5,5-tetramethyl-4-imidazolidinone, a chemical that has no inhibitory effect on DNA topoisomerase I. Immunoblotting studies show that mitochondrial DNA topoisomerase activity is associated with a polypeptide (M(r) approximately 79,000) that cross-reacts with the antiserum against DNA topoisomerase I. Thus, the mitochondrial DNA topoisomerase may be derived by the differential expression of the DNA topoisomerase I gene or from the expression of a gene that is homologous to the DNA topoisomerase I gene.
Collapse
Affiliation(s)
- A Tua
- Department of Chemistry, Auburn University, AL 36849-5312, USA
| | | | | | | |
Collapse
|
144
|
Mashkevich G, Repetto B, Glerum DM, Jin C, Tzagoloff A. SHY1, the yeast homolog of the mammalian SURF-1 gene, encodes a mitochondrial protein required for respiration. J Biol Chem 1997; 272:14356-64. [PMID: 9162072 DOI: 10.1074/jbc.272.22.14356] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
C173 and W125 are pet mutants of Saccharomyces cerevisiae, partially deficient in cytochrome oxidase but with elevated concentrations of cytochrome c. Assays of electron transport chain enzymes indicate that the mutations exert different effects on the terminal respiratory pathway, including an inefficient transfer of electrons between the bc1 and the cytochrome oxidase complexes. A cloned gene capable of restoring respiration in C173/U1 and W125 is identical to reading frame YGR112w of yeast chromosome VII (GenBank Z72897Z72897). The encoded protein is homologous to the product of the mammalian SURF-1 gene. In view of the homology, the yeast gene has been designated SHY1 (Surf Homolog of Yeast). An antibody against the carboxyl-terminal half of Shy1p has been used to localize the protein in the inner mitochondrial membrane. Deletion of part of SHY1 produces a phenotype similar to that of G91 mutants. Disruption of SHY1 at a BamHI site, located approximately 2/3 of the way into the gene, has no obvious phenotypic consequence. This evidence, together with the ability of a carboxyl-terminal coding sequence starting from the BamHI site to complement a shy1 mutant, suggests that the Shy1p contains two domains that can be separately expressed to form a functional protein.
Collapse
Affiliation(s)
- G Mashkevich
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | |
Collapse
|
145
|
Steenaart NA, Shore GC. Alteration of a mitochondrial outer membrane signal anchor sequence that permits its insertion into the inner membrane. Contribution of hydrophobic residues. J Biol Chem 1997; 272:12057-61. [PMID: 9115273 DOI: 10.1074/jbc.272.18.12057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Tom70p is targeted and inserted into the mitochondrial outer membrane in the Nin-Ccyto orientation, via an NH2-terminal signal anchor sequence. The signal anchor is comprised of two domains: an NH2-terminal hydrophilic region which is positively charged (amino acids 1-10) followed by the predicted transmembrane segment (amino acids 11-29). Substitution of the NH2-terminal domain with a matrix-targeting signal caused the signal anchor to adopt the reverse orientation in the outer membrane (Ncyto-Cin) or, if presented to mitoplasts, to arrest protein translocation at the inner membrane without insertion. Physically separating the transmembrane segment from the matrix-targeting signal by moving it downstream within the protein resulted in a failure to arrest in either membrane, and consequently the protein was imported to the matrix. However, if the mean hydrophobicity of the Tom70p transmembrane segment was increased in these constructs, the protein inserted into the inner membrane with an Nin-Cout orientation. Therefore we have determined conditions that allow the Tom70p transmembrane domain to insert in either membrane, pass through both membranes, or arrest without insertion in the inner membrane. These results identify the mean hydrophobicity of potential transmembrane domains within bitopic proteins as an important determinant for insertion into the mitochondrial inner membrane.
Collapse
Affiliation(s)
- N A Steenaart
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | |
Collapse
|
146
|
Komori K, Kuroe K, Yanagisawa K, Tanaka Y. Cloning and characterization of the gene encoding a mitochondrially localized DNA topoisomerase II in Dictyostelium discoideum. Western blot analysis. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:63-72. [PMID: 9177484 DOI: 10.1016/s0167-4781(96)00229-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We cloned a gene (topA) encoding DNA topoisomerase II from Dictyostelium discoideum nuclear DNA using oligo probes corresponding to the consensus amino acid sequences found in the gene in other eukaryotes. The gene encoding a predicted polypeptide of 1282 amino acids with M(r) of about 146 kDa, is a single copy that is expressed as a polyadenylated 4.5 kb RNA. The predicted amino acid sequence shares similarity with those of other eukaryotes with identity between 32 and 46%. The protein is 260-300 amino acids shorter in the C-terminal region and 50-80 longer in the N-terminal region than those of other eukaryotes. In TopA of D. discoideum, the N-terminal region with stretches of charged and hydrophilic amino acids is predicted to fold into an amphiphilic alpha-helix which is characteristic of a mitochondrial targeting signal presequence. Four independent polyclonal antibodies against bacterially expressed GST fusion proteins containing four portions of the polypeptide detected a single band on Western blots at about 135 kDa. Western blots analysis of subcellular fractions revealed that this protein is localized in mitochondria. The protein and the mRNA are present in growth phase and during development, although levels of both declined as development proceeded.
Collapse
Affiliation(s)
- K Komori
- Institute of Biological Sciences, University of Tsukuba, Ibaraki, Japan
| | | | | | | |
Collapse
|
147
|
Gieffers C, Korioth F, Heimann P, Ungermann C, Frey J. Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. Exp Cell Res 1997; 232:395-9. [PMID: 9168817 DOI: 10.1006/excr.1997.3539] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitofilin, also known as heart muscle protein, is a recently identified mitochondrial protein. We have isolated two human cDNAs that encode different isoforms of mitofilin. Using reverse PCR, we provide evidence that both isoforms are derived by alternative splicing and encode two proteins of 88 and 90 kDa that are detected in immunoblot analyses with mitofilin-specific antibodies. Immunofluorescence microscopy, fractionating of human osteosarcoma cells, and protease protection experiments with isolated mitochondria and mitoplasts indicate that mitofilin is an integral membrane protein of the inner mitochondrial membrane. 35S-labeled mitofilin is transported into isolated yeast mitochondria in a reaction that depends on the membrane potential across the inner mitochondrial membrane (delta psi). During mitochondrial in vitro import, mitofilin is proteolytically processed to the mature protein that is also detected in cellular fractions, indicating that the amino-terminal leader sequence is removed. Sequence analysis and our results suggest that mitofilin is anchored in the inner mitochondrial membrane with an amino-terminal transmembrane domain, while the majority of the protein is extruding into the intermembrane space.
Collapse
Affiliation(s)
- C Gieffers
- Faculty of Chemistry, Department of Biochemistry, University of Bielefeld, Germany
| | | | | | | | | |
Collapse
|
148
|
Wiesenberger G, Fox TD. Pet127p, a membrane-associated protein involved in stability and processing of Saccharomyces cerevisiae mitochondrial RNAs. Mol Cell Biol 1997; 17:2816-24. [PMID: 9111353 PMCID: PMC232133 DOI: 10.1128/mcb.17.5.2816] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Nuclear mutations that inactivate the Saccharomyces cerevisiae gene PET127 dramatically increased the levels of mutant COX3 and COX2 mitochondrial mRNAs that were destabilized by mutations in their 5' untranslated leaders. The stabilizing effect of pet127 delta mutations occurred both in the presence and in the absence of translation. In addition, pet127 delta mutations had pleiotropic effects on the stability and 5' end processing of some wild-type mRNAs and the 15S rRNA but produced only a leaky nonrespiratory phenotype at 37 degrees C. Overexpression of PET127 completely blocked respiratory growth and caused cells to lose wild-type mitochondrial DNA, suggesting that too much Pet127p prevents mitochondrial gene expression. Epitope-tagged Pet127p was specifically located in mitochondria and associated with membranes. These findings suggest that Pet127p plays a role in RNA surveillance and/or RNA processing and that these functions may be membrane bound in yeast mitochondria.
Collapse
Affiliation(s)
- G Wiesenberger
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853-2703, USA
| | | |
Collapse
|
149
|
Beilharz T, Beddoe T, Landl K, Cartwright P, Lithgow T. The protein encoded by the MFT1 gene is a targeting factor for mitochondrial precursor proteins, and not a core ribosomal protein. FEBS Lett 1997; 407:220-4. [PMID: 9166903 DOI: 10.1016/s0014-5793(97)00349-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Yeast cells harboring mft1 mutations are compromised in mitochondrial protein targeting, and Mft1p has previously been identified as a ribosomal protein. However, two genes, PLC2 and YML062C, are present in the MFT1 locus, and we show that mft1 mutant cells are compromised in the function of the cytosolic protein encoded by YML062C. The ribosomal protein (YS3a) is actually encoded by the tightly linked PLC2 gene, and does not play a role in targeting proteins to the mitochondria.
Collapse
Affiliation(s)
- T Beilharz
- School of Biochemistry, La Trobe University, Bundoora, Australia
| | | | | | | | | |
Collapse
|
150
|
Bledsoe RK, Dawson PA, Hutson SM. Cloning of the rat and human mitochondrial branched chain aminotransferases (BCATm). BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1339:9-13. [PMID: 9165094 DOI: 10.1016/s0167-4838(97)00044-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The rat and human mitochondrial branched chain aminotransferase (BCAT(m)) cDNAs have been isolated and shown to encode mature proteins of 41.2 and 41.3 kDa with presequences of 27 amino acids. When rat BCAT(m) is overexpressed in COS-1 cells, the protein exhibits BCAT activity and correct processing of the mitochondrial targeting sequence. Southern blot analysis of genomic DNA from a panel of rodent-human somatic cell hybrids revealed that the human BCAT(m) gene resides on chromosome 19 and the human cytosolic enzyme (BCAT(c)) gene on chromosome 12. Finally, the nomenclature BCAT1 for the cytosolic gene and BCAT2 for the mitochondrial BCAT gene is proposed.
Collapse
Affiliation(s)
- R K Bledsoe
- Department of Biochemistry, Wake Forest University Medical Center, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|