101
|
Charles C, Hovorakova M, Ahn Y, Lyons DB, Marangoni P, Churava S, Biehs B, Jheon A, Lesot H, Balooch G, Krumlauf R, Viriot L, Peterkova R, Klein OD. Regulation of tooth number by fine-tuning levels of receptor-tyrosine kinase signaling. Development 2011; 138:4063-73. [PMID: 21862563 DOI: 10.1242/dev.069195] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Much of our knowledge about mammalian evolution comes from examination of dental fossils, because the highly calcified enamel that covers teeth causes them to be among the best-preserved organs. As mammals entered new ecological niches, many changes in tooth number occurred, presumably as adaptations to new diets. For example, in contrast to humans, who have two incisors in each dental quadrant, rodents only have one incisor per quadrant. The rodent incisor, because of its unusual morphogenesis and remarkable stem cell-based continuous growth, presents a quandary for evolutionary biologists, as its origin in the fossil record is difficult to trace, and the genetic regulation of incisor number remains a largely open question. Here, we studied a series of mice carrying mutations in sprouty genes, the protein products of which are antagonists of receptor-tyrosine kinase signaling. In sprouty loss-of-function mutants, splitting of gene expression domains and reduced apoptosis was associated with subdivision of the incisor primordium and a multiplication of its stem cell-containing regions. Interestingly, changes in sprouty gene dosage led to a graded change in incisor number, with progressive decreases in sprouty dosage leading to increasing numbers of teeth. Moreover, the independent development of two incisors in mutants with large decreases in sprouty dosage mimicked the likely condition of rodent ancestors. Together, our findings indicate that altering genetic dosage of an antagonist can recapitulate ancestral dental characters, and that tooth number can be progressively regulated by changing levels of activity of a single signal transduction pathway.
Collapse
Affiliation(s)
- Cyril Charles
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Kettunen P, Furmanek T, Chaulagain R, Kvinnsland IH, Luukko K. Developmentally regulated expression of intracellular Fgf11-13, hormone-like Fgf15 and canonical Fgf16, -17 and -20 mRNAs in the developing mouse molar tooth. Acta Odontol Scand 2011; 69:360-6. [PMID: 21449687 DOI: 10.3109/00016357.2011.568968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To investigate and compare the cellular expression of non-secreted Fgf11-14 and secreted Fgf15-18 and -20 mRNAs during tooth formation. MATERIALS AND METHODS mRNA expression was analyzed from the morphological initiation of the mouse mandibular first molar development to the onset of crown calcification using sectional in situ hybridization. RESULTS This study found distinct, differentially regulated expression patterns for the Fgf11-13, -15-17 and -20, in particular in the epithelial-mesenchymal interface, whereas Fgf14 and 18 mRNAs were not detected. Fgf11, -15, -16, -17 and -20 were seen in the epithelium, whereas Fgf12 and -13 signals were restricted to the mesenchymal tissue component of the tooth. Fgf11 was observed in the putative epithelial signaling areas, the tertiary enamel knots and enamel free areas of the calcifying crown. Fgf15, Fgf17 and -20 were transiently colocalized in the thickened dental epithelium at E11.5. Later Fgf15 and -20 were exclusively expressed in the epithelial enamel knot signaling centers. In contrast, Fgf13 was present in the dental mesenchyme including odontoblasts cell lineage, whereas Fgf12 appeared transiently in the preodontoblasts. CONCLUSIONS The expression of the Fgf11-13, -15, -17 and -20 in the epithelial signaling centers and/or epithelial-mesenchymal interfaces at key stages of the tooth formation suggest important functions in odontogenesis. Future analyses of the transgenic mice will help elucidate in vivo functions of the studied Fgfs during odontogenesis and whether any of the functions of the tooth expressed epithelial and mesenchymal Fgfs of different sub-families are redundant.
Collapse
Affiliation(s)
- Päivi Kettunen
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, Norway.
| | | | | | | | | |
Collapse
|
103
|
Cai X, Gong P, Huang Y, Lin Y. Notch signalling pathway in tooth development and adult dental cells. Cell Prolif 2011; 44:495-507. [PMID: 21973022 DOI: 10.1111/j.1365-2184.2011.00780.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Notch signalling is a highly conserved intercellular signal transfer mechanism that includes canonical and non-canonical pathways. It regulates differentiation and proliferation of stem/progenitor cells by means of para-inducing effects. Expression and activation of Notch signalling factors (receptors and ligands) are critical not only for development of the dental germ but also for regeneration of injured tissue associated with mature teeth. Notch signalling plays key roles in differentiation of odontoblasts and osteoblasts, calcification of tooth hard tissue, formation of cusp patterns and generation of tooth roots. After tooth eruption, Notch signalling can also be triggered in dental stem cells of the pulp, where it induces them to differentiate into odontoblasts, thus generating fresh dentine tissue. Other signalling pathways, such as TGFβ, NF-κB, Wnt, Fgf and Shh also interact with Notch signalling during tooth development.
Collapse
Affiliation(s)
- X Cai
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu
| | | | | | | |
Collapse
|
104
|
Handrigan GR, Richman JM. Unicuspid and bicuspid tooth crown formation in squamates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:598-608. [DOI: 10.1002/jez.b.21438] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 11/08/2022]
|
105
|
Zhu MH, Dong WB, Dong GY, Zhang P, Chen YJ, Wu BL, Han H. Disturbed tooth germ development in the absence of MINT in the cultured mouse mandibular explants. Mol Biol Rep 2011; 38:777-84. [PMID: 20393883 DOI: 10.1007/s11033-010-0166-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 03/30/2010] [Indexed: 10/19/2022]
Abstract
The Msx2-interacting nuclear target protein (MINT) is a nuclear matrix protein that regulates the development of many tissues. However, little is known regarding the role of MINT in tooth development. In this study, we prepared polyclonal antibodies against MINT, and found that that MINT was expressed in different cells at each stage of tooth germ development by immunohistochemistry. The role of MINT in tooth development was further illustrated by the misshapen and severely hypoplastic tooth organ in the cultured mandibular explants of MINT deficient mice. From the initiation to cap stage, the differences between mutants and wild-type molars were more and more distinguished histologically. In the MINT-deficient mandibular explants, the tooth germ was reduced in the overall size and lacked enamel knot, with abnormal dental lamina and collapsed stellate reticulum. Furthermore, the BrdU incorporation experiment showed that the proliferation activity was significantly reduced in MINT-deficient dental epithelium. Our results suggest that MINT plays an important role in tooth development, in particular, epithelial morphogenesis.
Collapse
Affiliation(s)
- Ming-Hui Zhu
- Department of General and Emergency Dentistry, College of Stomatology, Xian, China
| | | | | | | | | | | | | |
Collapse
|
106
|
Hlusko LJ, Sage RD, Mahaney MC. Modularity in the mammalian dentition: mice and monkeys share a common dental genetic architecture. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316:21-49. [PMID: 20922775 PMCID: PMC3095220 DOI: 10.1002/jez.b.21378] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The concept of modularity provides a useful tool for exploring the relationship between genotype and phenotype. Here, we use quantitative genetics to identify modularity within the mammalian dentition, connecting the genetics of organogenesis to the genetics of population-level variation for a phenotype well represented in the fossil record. We estimated the correlations between dental traits owing to the shared additive effects of genes (pleiotropy) and compared the pleiotropic relationships among homologous traits in two evolutionary distant taxa-mice and baboons. We find that in both mice and baboons, who shared a common ancestor >65 Ma, incisor size variation is genetically independent of molar size variation. Furthermore, baboon premolars show independent genetic variation from incisors, suggesting that a modular genetic architecture separates incisors from these posterior teeth as well. Such genetic independence between modules provides an explanation for the extensive diversity of incisor size variation seen throughout mammalian evolution-variation uncorrelated with equivalent levels of postcanine tooth size variation. The modularity identified here is supported by the odontogenic homeobox code proposed for the patterning of the rodent dentition. The baboon postcanine pattern of incomplete pleiotropy is also consistent with predictions from the morphogenetic field model.
Collapse
Affiliation(s)
- Leslea J Hlusko
- Human Evolution Research Center, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
107
|
Siar CH, Nakano K, Han PP, Tomida M, Tsujigiwa H, Nagatsuka H, H. Ng K, Kawakami T. Co-expression of BMP-2 and -7 in the Tumoral Epithelium of CEOT with Selective BMP-7 Expression in Amyloid Materials. J HARD TISSUE BIOL 2011. [DOI: 10.2485/jhtb.20.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
108
|
Diniz MG, Galvão CF, Macedo PS, Gomes CC, Gomez RS. Evidence of loss of heterozygosity of the PTCH gene in orthokeratinized odontogenic cyst. J Oral Pathol Med 2010; 40:277-80. [PMID: 21138481 DOI: 10.1111/j.1600-0714.2010.00977.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The orthokeratinized odontogenic cyst (OOC) is an odontogenic cyst of unknown etiology. Clinical, histological, and biological differences are reported between keratocystic odontogenic tumor (KOT) and OOC. PTCH is a tumor suppressor gene related to sonic hedgehog (SHH) pathway important in embryological development. Considering that alterations in this pathway have been described in sporadic and nevoid basal cell syndrome-associated KOT, we tested the hypothesis that OOC is also associated with loss of heterozygosity (LOH) of the PTCH gene. Seven samples of OOC and seven of KOT were included in the study. D9S287, D9S196, and D9S127 microsatellite markers located in the region of PTCH gene, at chromosome 9q, were investigated for LOH. There was loss in at least one locus in 5/7 KOT and in 4/7 OOC samples. The present finding demonstrates that, despite the existence of clinical, morphological, immunohistochemical, and biological behavior differences between OOC and KOT, both harbor similar genetic alterations at 9q.
Collapse
Affiliation(s)
- Marina Gonçalves Diniz
- Department of Oral Surgery and Pathology, Universidade Federal de Minas Gerais, Belo Horizonte-MG, Minas Gerais, CEP, Brazil
| | | | | | | | | |
Collapse
|
109
|
Moustakas JE, Smith KK, Hlusko LJ. Evolution and development of the mammalian dentition: Insights from the marsupial Monodelphis domestica. Dev Dyn 2010; 240:232-9. [DOI: 10.1002/dvdy.22502] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
110
|
Munne PM, Felszeghy S, Jussila M, Suomalainen M, Thesleff I, Jernvall J. Splitting placodes: effects of bone morphogenetic protein and Activin on the patterning and identity of mouse incisors. Evol Dev 2010; 12:383-92. [PMID: 20618434 DOI: 10.1111/j.1525-142x.2010.00425.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The single large rodent incisor in each jaw quadrant is evolutionarily derived from a mammalian ancestor with many small incisors. The embryonic placode giving rise to the mouse incisor is considerably larger than the molar placode, and the question remains whether this large incisor placode is a developmental requisite to make a thick incisor. Here we used in vitro culture system to experiment with the molecular mechanism regulating tooth placode development and how mice have thick incisors. We found that large placodes are prone to disintegration and formation of two to three small incisor placodes. The balance between one large or multiple small placodes was altered through the regulation of bone morphogenetic protein (BMP) and Activin signaling. Exogenous Noggin, which inhibits BMP signaling, or exogenous Activin cause the development of two to three incisors. These incisors were more slender than normal incisors. Additionally, two inhibitor molecules, Sostdc1 and Follistatin, which regulate the effects of BMPs and Activin and have opposite expression patterns, are likely to be involved in the incisor placode regulation in vivo. Furthermore, inhibition of BMPs by recombinant Noggin has been previously suggested to cause a change in the tooth identity from the incisor to the molar. This evidence has been used to support a homeobox code in determining tooth identity. Our work provides an alternative interpretation, where the inhibition of BMP signaling can lead to splitting of the large incisor placode and the formation of partly separate incisors, thereby acquiring molar-like morphology without a change in tooth identity.
Collapse
Affiliation(s)
- Pauliina M Munne
- Developmental Biology Program, Institute of Biotechnology, University of Helsinki, PO Box 56, FIN-00014, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
111
|
Fang P, Wang X, Zhang L, Yuan G, Chen Z, Zhang Q. Immunohistochemical localization of LIM mineralization protein 1 during mouse molar development. J Mol Histol 2010; 41:199-203. [DOI: 10.1007/s10735-010-9279-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 07/08/2010] [Indexed: 12/18/2022]
|
112
|
Sauk JJ, Nikitakis NG, Scheper MA. Are we on the brink of nonsurgical treatment for ameloblastoma? ACTA ACUST UNITED AC 2010; 110:68-78. [DOI: 10.1016/j.tripleo.2010.01.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 01/06/2010] [Accepted: 01/26/2010] [Indexed: 12/17/2022]
|
113
|
Catón J, Tucker AS. Current knowledge of tooth development: patterning and mineralization of the murine dentition. J Anat 2010; 214:502-15. [PMID: 19422427 DOI: 10.1111/j.1469-7580.2008.01014.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The integument forms a number of different types of mineralized element, including dermal denticles, scutes, ganoid scales, elasmoid scales, fin rays and osteoderms found in certain fish, reptiles, amphibians and xenarthran mammals. To this list can be added teeth, which are far more widely represented and studied than any of the other mineralized elements mentioned above, and as such can be thought of as a model mineralized system. In recent years the focus for studies on tooth development has been the mouse, with a wealth of genetic information accrued and the availability of cutting edge techniques. It is the mouse dentition that this review will concentrate on. The development of the tooth will be followed, looking at what controls the shape of the tooth and how signals from the mesenchyme and epithelium interact to lead to formation of a molar or incisor. The number of teeth generated will then be investigated, looking at how tooth germ number can be reduced or increased by apoptosis, fusion of tooth germs, creation of new tooth germs, and the generation of additional teeth from existing tooth germs. The development of mineralized tissue will then be detailed, looking at how the asymmetrical deposition of enamel is controlled in the mouse incisor. The continued importance of epithelial-mesenchymal interactions at these later stages of tooth development will also be discussed. Tooth anomalies and human disorders have been well covered by recent reviews, therefore in this paper we wish to present a classical review of current knowledge of tooth development, fitting together data from a large number of recent research papers to draw general conclusions about tooth development.
Collapse
Affiliation(s)
- Javier Catón
- Department of Craniofacial Development and Orthodontics, King's College London, Guy's Hospital, UK
| | | |
Collapse
|
114
|
Development of deciduous and permanent dentitions in the upper jaw of the house shrew (Suncus murinus). Arch Oral Biol 2010; 55:279-87. [PMID: 20303065 DOI: 10.1016/j.archoralbio.2010.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/13/2010] [Accepted: 02/18/2010] [Indexed: 11/27/2022]
Abstract
The diphyodont tooth replacement in mammals is characterized by a single replacement of a deciduous dentition by a permanent dentition. Despite its significance in mammalian biology and paleontology, little is known about the developmental mechanisms regulating the diphyodont replacement. Because the mouse never replaces its teeth, this study used the house shrew, Suncus murinus, as a model to investigate the control of the diphyodont replacement of a deciduous dentition by successions and additions of permanent teeth. Using morphological and gene expression analyses of serial sections, we have demonstrated the development of the upper dentition of the house shrew. In this species, the deciduous tooth germs are formed but soon become vestigial, whereas the successional and accessional (molar) germs are subsequently formed and developed. There are distinct Shh expression domains in the deciduous, successional, and accessional tooth germs, and those of the latter two germs are identified from the appearance of their primary enamel knots. The developmental sequence of tooth germs in the house shrew indicates that two adjacent primary enamel knots of the successional and accessional germs do not develop simultaneously, but with a constant time lag. We suggest that this mode of tooth succession and accession can be explained by a sequential inhibitory cascade model in which the timing of initiation and the spacing of tooth development are determined by the inhibition from the primary enamel knots of developmentally preceding adjacent tooth germs.
Collapse
|
115
|
Honda MJ, Tsuchiya S, Shinohara Y, Shinmura Y, Sumita Y. Recent advances in engineering of tooth and tooth structures using postnatal dental cells. JAPANESE DENTAL SCIENCE REVIEW 2010. [DOI: 10.1016/j.jdsr.2009.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
116
|
Yamaguchi H, Nagano T, Oida S, Arai T. Gene Expression on Developmental Process of Porcine Pulp Cell. J HARD TISSUE BIOL 2010. [DOI: 10.2485/jhtb.19.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
117
|
Town L, McGlinn E, Fiorenza S, Metzis V, Butterfield NC, Richman JM, Wicking C. The metalloendopeptidase genePitrm1is regulated by hedgehog signaling in the developing mouse limb and is expressed in muscle progenitors. Dev Dyn 2009; 238:3175-84. [DOI: 10.1002/dvdy.22126] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
118
|
Wang XP, O'Connell DJ, Lund JJ, Saadi I, Kuraguchi M, Turbe-Doan A, Cavallesco R, Kim H, Park PJ, Harada H, Kucherlapati R, Maas RL. Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 2009; 136:1939-49. [PMID: 19429790 DOI: 10.1242/dev.033803] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The ablation of Apc function or the constitutive activation of beta-catenin in embryonic mouse oral epithelium results in supernumerary tooth formation, but the underlying mechanisms and whether adult tissues retain this potential are unknown. Here we show that supernumerary teeth can form from multiple regions of the jaw and that they are properly mineralized, vascularized, innervated and can start to form roots. Even adult dental tissues can form new teeth in response to either epithelial Apc loss-of-function or beta-catenin activation, and the effect of Apc deficiency is mediated by beta-catenin. The formation of supernumerary teeth via Apc loss-of-function is non-cell-autonomous. A small number of Apc-deficient cells is sufficient to induce surrounding wild-type epithelial and mesenchymal cells to participate in the formation of new teeth. Strikingly, Msx1, which is necessary for endogenous tooth development, is dispensable for supernumerary tooth formation. In addition, we identify Fgf8, a known tooth initiation marker, as a direct target of Wnt/beta-catenin signaling. These studies identify key mechanistic features responsible for supernumerary tooth formation.
Collapse
Affiliation(s)
- Xiu-Ping Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
White J. Geometric morphometric investigation of molar shape diversity in modern lemurs and lorises. Anat Rec (Hoboken) 2009; 292:701-19. [PMID: 19382242 DOI: 10.1002/ar.20900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the study of mammalian adaptation to the environment, teeth are of primary importance due to their role as one of the direct interaction points between an individual and its ecological surroundings. Here, molar shape and function are investigated through traditional multivariate statistics and Thin-Plate Splines deformations to compare the relative location of lower first molar occlusal structures (protoconid, metaconid, hypoconid, entoconid, cristid obliqua, and protolophid) in modern lemurs, lorises, tarsiers, and a non-primate outgroup taxon (Tupaia). Results suggest that shape is based both on tooth size and dietary patterns. Small teeth tend to be short (anteroposteriorally) with wide talonids, whereas larger teeth are generally characterized as being long and narrow. In considering non-size related shape trends, frugivorous and graminivorous taxa generally exhibit a relatively buccal intersection of the cristid obliqua with the base of the protolophid, and a relatively "perpendicular" position of the protolophid in relation to the anteroposterior axis of the tooth (defined as the axis connecting the protolophid and hypoconid). Morphological trends of folivores include a central (midline) position of the cristid obliqua-protolophid base intersection and an oblique angle of the protolophid. Insectivorous taxa (primate and non-primate) generally exhibit a central placement of the cristid obliqua-protolophid base intersection (as in folivores), along with a relatively perpendicular angle of the protolophid (as in frugivores). Omnivorous taxa exhibit shape patterns that are intermediate between these three former groups. This study provides a comparative baseline for the interpretation of morphological trends in fossil primate groups, particularly the Adapiformes.
Collapse
Affiliation(s)
- Jess White
- Department of Sociology and Anthropology, Western Illinois University, Macomb, Illinois 61455, USA.
| |
Collapse
|
120
|
Peterkova R, Churava S, Lesot H, Rothova M, Prochazka J, Peterka M, Klein OD. Revitalization of a diastemal tooth primordium in Spry2 null mice results from increased proliferation and decreased apoptosis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312B:292-308. [PMID: 19127536 PMCID: PMC2880865 DOI: 10.1002/jez.b.21266] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
An understanding of the factors that promote or inhibit tooth development is essential for designing biological tooth replacements. The embryonic mouse dentition provides an ideal system for studying such factors because it consists of two types of tooth primordia. One type of primordium will go on to form a functional tooth, whereas the other initiates development but arrests at or before the bud stage. This developmental arrest contributes to the formation of the toothless mouse diastema. It is accompanied by the apoptosis of the rudimentary diastemal buds, which presumably results from the insufficient activity of anti-apoptotic signals such as fibroblast growth factors (FGFs). We have previously shown that the arrest of a rudimentary tooth bud can be rescued by inactivating Spry2, an antagonist of FGF signaling. Here, we studied the role of the epithelial cell death and proliferation in this process by comparing the development of a rudimentary diastemal tooth bud (R(2)) and the first molar in the mandibles of Spry2(-/-) and wild-type (WT) embryos using histological sections, image analysis and 3D reconstructions. In the WT R(2) at embryonic day 13.5, significantly increased apoptosis and decreased proliferation were found compared with the first molar. In contrast, increased levels of FGF signaling in Spry2(-/-) embryos led to significantly decreased apoptosis and increased proliferation in the R(2) bud. Consequently, the R(2) was involved in the formation of a supernumerary tooth primordium. Studies of the revitalization of rudimentary tooth primordia in mutant mice can help to lay the foundation for tooth regeneration by enhancing our knowledge of mechanisms that regulate tooth formation.
Collapse
Affiliation(s)
- Renata Peterkova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Svatava Churava
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Anthropology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Herve Lesot
- INSERM U595, Faculté de Médecine, Université Louis Pasteur, Strasbourg, France
- Faculté de Chirurgie Dentaire, Université Louis Pasteur, Strasbourg, France
- International Collaborating Centre in Oro-Facial Genetics and Development, University of Liverpool, Liverpool, United Kingdom
| | - Michaela Rothova
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Developmental Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Prochazka
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Developmental Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslav Peterka
- Department of Teratology, Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Anthropology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California, San Francisco, California
- Department of Pediatrics, University of California, San Francisco, California
- Institutes of Human Genetics and Regeneration Medicine, University of California, San Francisco, California
| |
Collapse
|
121
|
Munne PM, Tummers M, Järvinen E, Thesleff I, Jernvall J. Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction. Development 2009; 136:393-402. [PMID: 19141669 DOI: 10.1242/dev.025064] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Like epithelial organs in general, tooth development involves inductive crosstalk between the epithelium and the mesenchyme. Classically, the inductive potential for tooth formation is considered to reside in the mesenchyme during the visible morphogenesis of teeth, and dental mesenchyme can induce tooth formation even when combined with non-dental epithelium. Here, we have investigated induction of mouse incisors using Sostdc1 (ectodin), a putative antagonist of BMP signaling in the mesenchymal induction of teeth. Deletion of Sostdc1 leads to the full development of single extra incisors adjacent to the main incisors. We show that initially, Sostdc1 expression is limited to the mesenchyme, suggesting that dental mesenchyme may limit supernumerary tooth induction. We test this in wild-type incisors by minimizing the amount of mesenchymal tissue surrounding the incisor tooth germs prior to culture in vitro. The cultured teeth phenocopy the extra incisors phenotype of the Sostdc1-deficient mice. Furthermore, we show that minimizing the amount of dental mesenchyme in cultured Sostdc1-deficient incisors causes the formation of additional de novo incisors that resemble the successional incisor development that results from activated Wnt signaling. Finally, Noggin and Dkk1 prevent individually the formation of extra incisors, and we therefore suggest that inhibition of both BMP and Wnt signaling contributes to the inhibitory role of the dental mesenchyme. Considering the role of mesenchyme in tooth induction and the design of tissue engineering protocols, our work may have uncovered how delicate control of tissue quantities alone influences the outcome between induction and inhibition.
Collapse
Affiliation(s)
- Pauliina M Munne
- Developmental Biology Program, Institute of Biotechnology, PO Box 56, University of Helsinki, FIN-00014, Helsinki, Finland
| | | | | | | | | |
Collapse
|
122
|
Charles C, Pantalacci S, Tafforeau P, Headon D, Laudet V, Viriot L. Distinct impacts of Eda and Edar loss of function on the mouse dentition. PLoS One 2009; 4:e4985. [PMID: 19340299 PMCID: PMC2659790 DOI: 10.1371/journal.pone.0004985] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/25/2009] [Indexed: 01/21/2023] Open
Abstract
Background The Eda-A1-Edar signaling pathway is involved in the development of organs with an ectodermal origin, including teeth. In mouse, mutants are known for both the ligand, Eda-A1 (Tabby), and the receptor, Edar (Downless). The adult dentitions of these two mutants have classically been considered to be similar. However, previous studies mentioned differences in embryonic dental development between EdaTa and Edardl-J mutants. A detailed study of tooth morphology in mutants bearing losses of functions of these two genes thus appears necessary to test the pattern variability induced by the developmental modifications. Methodology/Principal Findings 3D-reconstructions of the cheek teeth have been performed at the ESRF (Grenoble, France) by X-ray synchrotron microtomography to assess dental morphology. The morphological variability observed in EdaTa and Edardl-J mutants have then been compared in detail. Despite patchy similarities, our detailed work on cheek teeth in EdaTa and Edardl-J mice show that all dental morphotypes defined in Edardl-J mice resolutely differ from those of EdaTa mice. This study reveals that losses of function of Eda and Edar have distinct impacts on the tooth size and morphology, contrary to what has previously been thought. Conclusion/Signifiance The results indicate that unknown mechanisms of the Eda pathway are implicated in tooth morphogenesis. Three hypotheses could explain our results; an unexpected role of the Xedar pathway (which is influenced by the Eda gene product but not that of Edar), a more complex connection than has been appreciated between Edar and another protein, or a ligand-independent activity for Edar. Further work is necessary to test these hypotheses and improve our understanding of the mechanisms of development.
Collapse
Affiliation(s)
- Cyril Charles
- Institut International de Paléoprimatologie Paléontologie Humaine: Evolution et Paléoenvironnements UMR CNRS 6046, Université de Poitiers, Poitiers, France
| | - Sophie Pantalacci
- Team 〈〈 Molecular Zoology 〉〉, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, UMR CNRS 5242, INRA, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Paul Tafforeau
- European Synchrotron Radiation Facility, Grenoble, France
| | - Denis Headon
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Vincent Laudet
- Team 〈〈 Molecular Zoology 〉〉, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, UMR CNRS 5242, INRA, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Laurent Viriot
- Team 〈〈 Evo-Devo of Vertebrate Dentition 〉〉, Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, UMR CNRS 5242, INRA, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
123
|
Ctip2/Bcl11b controls ameloblast formation during mammalian odontogenesis. Proc Natl Acad Sci U S A 2009; 106:4278-83. [PMID: 19251658 DOI: 10.1073/pnas.0900568106] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transcription factor Ctip2/Bcl11b plays essential roles in developmental processes of the immune and central nervous systems and skin. Here we show that Ctip2 also plays a key role in tooth development. Ctip2 is highly expressed in the ectodermal components of the developing tooth, including inner and outer enamel epithelia, stellate reticulum, stratum intermedium, and the ameloblast cell lineage. In Ctip2(-/-) mice, tooth morphogenesis appeared to proceed normally through the cap stage but developed multiple defects at the bell stage. Mutant incisors and molars were reduced in size and exhibited hypoplasticity of the stellate reticulum. An ameloblast-like cell population developed ectopically on the lingual aspect of mutant lower incisors, and the morphology, polarization, and adhesion properties of ameloblasts on the labial side of these teeth were severely disrupted. Perturbations of gene expression were also observed in the mandible of Ctip2(-/-) mice: expression of the ameloblast markers amelogenin, ameloblastin, and enamelin was down-regulated, as was expression of Msx2 and epiprofin, transcription factors implicated in the tooth development and ameloblast differentiation. These results suggest that Ctip2 functions as a critical regulator of epithelial cell fate and differentiation during tooth morphogenesis.
Collapse
|
124
|
Koussoulakou DS, Margaritis LH, Koussoulakos SL. A curriculum vitae of teeth: evolution, generation, regeneration. Int J Biol Sci 2009; 5:226-43. [PMID: 19266065 PMCID: PMC2651620 DOI: 10.7150/ijbs.5.226] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/21/2009] [Indexed: 12/28/2022] Open
Abstract
The ancestor of recent vertebrate teeth was a tooth-like structure on the outer body surface of jawless fishes. Over the course of 500,000,000 years of evolution, many of those structures migrated into the mouth cavity. In addition, the total number of teeth per dentition generally decreased and teeth morphological complexity increased. Teeth form mainly on the jaws within the mouth cavity through mutual, delicate interactions between dental epithelium and oral ectomesenchyme. These interactions involve spatially restricted expression of several, teeth-related genes and the secretion of various transcription and signaling factors. Congenital disturbances in tooth formation, acquired dental diseases and odontogenic tumors affect millions of people and rank human oral pathology as the second most frequent clinical problem. On the basis of substantial experimental evidence and advances in bioengineering, many scientists strongly believe that a deep knowledge of the evolutionary relationships and the cellular and molecular mechanisms regulating the morphogenesis of a given tooth in its natural position, in vivo, will be useful in the near future to prevent and treat teeth pathologies and malformations and for in vitro and in vivo teeth tissue regeneration.
Collapse
Affiliation(s)
- Despina S Koussoulakou
- University of Athens, Faculty of Biology, Department of Cell Biology and Biophysics, Athens, Greece
| | | | | |
Collapse
|
125
|
Smith MM, Fraser GJ, Chaplin N, Hobbs C, Graham A. Reiterative pattern of sonic hedgehog expression in the catshark dentition reveals a phylogenetic template for jawed vertebrates. Proc Biol Sci 2009; 276:1225-33. [PMID: 19141424 PMCID: PMC2660956 DOI: 10.1098/rspb.2008.1526] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
For a dentition representing the most basal extant gnathostomes, that of the shark can provide us with key insights into the evolution of vertebrate dentitions. To detail the pattern of odontogenesis, we have profiled the expression of sonic hedgehog, a key regulator of tooth induction. We find in the catshark (Scyliorhinus canicula) that intense shh expression first occurs in a bilaterally symmetrical pattern restricted to broad regions in each half of the dentition in the embryo jaw. As in the mouse, there follows a changing temporal pattern of shh spatial restriction corresponding to epithelial bands of left and right dental fields, but also a subfield for symphyseal teeth. Then, intense shh expression is restricted to loci coincident with a temporal series of teeth in iterative jaw positions. The developmental expression of shh reveals previously undetected timing within epithelial stages of tooth formation. Each locus at alternate, even then odd, jaw positions establishes precise sequential timing for successive replacement within each tooth family. Shh appears first in the central cusp, iteratively along the jaw, then reiteratively within each tooth for secondary cusps. This progressive, sequential restriction of shh is shared by toothed gnathostomes and conserved through 500 million years of evolution.
Collapse
Affiliation(s)
- Moya M Smith
- King's College London, MRC Centre of Developmental Neurobiology, London SE1 1UL, UK.
| | | | | | | | | |
Collapse
|
126
|
|
127
|
De Coster PJ, Marks LA, Martens LC, Huysseune A. Dental agenesis: genetic and clinical perspectives. J Oral Pathol Med 2008; 38:1-17. [PMID: 18771513 DOI: 10.1111/j.1600-0714.2008.00699.x] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dental agenesis is the most common developmental anomaly in humans and is frequently associated with several other oral abnormalities. Whereas the incidence of missing teeth may vary considerably depending on dentition, gender, and demographic or geographic profiles, distinct patterns of agenesis have been detected in the permanent dentition. These frequently involve the last teeth of a class to develop (I2, P2, M3) suggesting a possible link with evolutionary trends. Hypodontia can either occur as an isolated condition (non-syndromic hypodontia) involving one (80% of cases), a few (less than 10%) or many teeth (less than 1%), or can be associated with a systemic condition or syndrome (syndromic hypodontia), essentially reflecting the genetically and phenotypically heterogeneity of the condition. Based on our present knowledge of genes and transcription factors that are involved in tooth development, it is assumed that different phenotypic forms are caused by different genes involving different interacting molecular pathways, providing an explanation not only for the wide variety in agenesis patterns but also for associations of dental agenesis with other oral anomalies. At present, the list of genes involved in human non-syndromic hypodontia includes not only those encoding a signaling molecule (TGFA) and transcription factors (MSX1 and PAX9) that play critical roles during early craniofacial development, but also genes coding for a protein involved in canonical Wnt signaling (AXIN2), and a transmembrane receptor of fibroblast growth factors (FGFR1). Our objective was to review the current literature on the molecular mechanisms that are responsible for selective dental agenesis in humans and to present a detailed overview of syndromes with hypodontia and their causative genes. These new perspectives and future challenges in the field of identification of possible candidate genes involved in dental agenesis are discussed.
Collapse
Affiliation(s)
- P J De Coster
- Department of Paediatric Dentistry and Special Care, Paecamed Research, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
128
|
Yu J, Shi J, Jin Y. Current Approaches and Challenges in Making a Bio-Tooth. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:307-19. [PMID: 18665759 DOI: 10.1089/ten.teb.2008.0165] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Jinhua Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Junnan Shi
- Department of Endodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yan Jin
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
- Department of Oral Histology & Pathology, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
129
|
Zahradnicek O, Horacek I, Tucker AS. Viperous fangs: Development and evolution of the venom canal. Mech Dev 2008; 125:786-96. [DOI: 10.1016/j.mod.2008.06.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/03/2008] [Accepted: 06/17/2008] [Indexed: 10/21/2022]
|
130
|
Huysseune A, Takle H, Soenens M, Taerwe K, Witten PE. Unique and shared gene expression patterns in Atlantic salmon (Salmo salar) tooth development. Dev Genes Evol 2008; 218:427-37. [PMID: 18642027 DOI: 10.1007/s00427-008-0237-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
Abstract
To validate the use of Atlantic salmon (Salmo salar L.) as a model species in research on the mechanism of continuous tooth replacement, we have started to collect data on the molecular control underlying tooth formation in this species. This study reports expression patterns in the lower jaw dentition of a number of key regulatory genes such as bmp2, bmp4, and sox9 and structural genes such as col1alpha 1 and osteocalcin (= bgp, Bone Gla Protein) by means of in situ hybridization using salmon-specific, digoxygenin-labeled antisense riboprobes. We compare expression of these genes to that in other skeletogenic cells in the lower jaw (osteoblasts, chondroblasts, and chondrocytes). Our studies reveal both expression patterns that are in accordance to studies on mammalian tooth development and patterns that are specific to salmon, or teleosts. The epithelial expression of sox9 and a shift of the expression of bmp2 from epithelium to mesenchyme have also been observed during mammalian tooth development. Different from previous reports are the expressions of col1alpha 1 and osteocalcin. In contrast to what has been reported for zebrafish, osteocalcin is not expressed in odontoblasts, nor in the osteoblasts involved in the attachment of the teeth. At the lower jaw, osteocalcin is expressed in mature and/or resting osteoblasts only. As expected, col1alpha 1 is expressed in odontoblasts. Surprisingly, it is also strongly expressed in the inner dental epithelium, representing the first report of ameloblast involvement in collagen type I transcription. Whether the collagen is translated and secreted into the enameloid remains to be demonstrated.
Collapse
Affiliation(s)
- Ann Huysseune
- Biology Department, Ghent University, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
131
|
Han D, Gong Y, Wu H, Zhang X, Yan M, Wang X, Qu H, Feng H, Song S. Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis. Eur J Med Genet 2008; 51:536-46. [PMID: 18657636 DOI: 10.1016/j.ejmg.2008.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 06/24/2008] [Indexed: 11/26/2022]
Abstract
Familial non-syndromic hypodontia shows a wide phenotypic heterogeneity and inherits in an autosomal-dominant, autosomal-recessive or X-linked mode. Mutations in genes PAX9, MSX1 and AXIN2 have been determined to be associated with autosomal-dominant tooth agenesis. Recent studies in two families showed that X-linked non-syndromic hypodontia resulted from EDA mutations. In this study, a novel EDA mutation (Thr338Met) that results in X-linked non-syndromic hypodontia in a Chinese family was identified. The patterns of tooth agenesis in these related subjects with defined EDA mutation were analyzed using comparative statistical analysis of tooth agenesis in EDA, MSX1 and PAX9. Statistically significant differences (p<0.001) were observed at eight positions. The resulting data of congenital absence of maxillary and mandibular central incisors, lateral incisors and canines, with the high possibility of persistence of maxillary and mandibular first permanent molars, appears as a pattern of tooth agenesis, suggesting the presence of an EDA mutation.
Collapse
Affiliation(s)
- Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Su CY, Corby PM, Elliot MA, Studen-Pavlovich DA, Ranalli DN, Rosa B, Wessel J, Schork NJ, Hart TC, Bretz WA. Inheritance of occlusal topography: a twin study. Eur Arch Paediatr Dent 2008; 9:19-24. [PMID: 18328234 PMCID: PMC3142568 DOI: 10.1007/bf03321591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM This was to determine the relative contribution of genetic factors on the morphology of occlusal surfaces of mandibular primary first molars by employing the twin study model. METHODS The occlusal morphology of mandibular primary first molar teeth from dental casts of 9 monozygotic (MZ) twin pairs and 12 dizygotic (DZ) twin pairs 4 to 7 years old, were digitized by contact-type three-dimensional (3D) scanner. To compare the similarity of occlusal morphology between twin sets, each twin pair of occlusal surfaces was superimposed to establish the best fit by using computerized least squared techniques. Heritability was computed using a variance component model, adjusted for age and gender. RESULTS DZ pairs demonstrated a greater degree of occlusal morphology variance. The total amount of difference in surface overlap was 0.0508 mm (0.0018 (inches) for the MZ (n=18) sample and 0.095 mm (0.0034 inches) for the DZ (n=24) sample and were not statistically significant (p=0.2203). The transformed mean differences were not statistically significantly different (p=0.2203). Heritability estimates of occlusal surface areas for right and left mandibular primary first molars were 97.5% and 98.2% (p<0.0001), respectively. CONCLUSIONS Occlusal morphology of DZ twin pairs was more variable than that of MZ twin pairs. Heritability estimates revealed that genetic factors strongly influence occlusal morphology of mandibular primary first molars.
Collapse
Affiliation(s)
- C-Y Su
- Dept.Pediatric Dentistry, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Liu F, Chu EY, Watt B, Zhang Y, Gallant NM, Andl T, Yang SH, Lu MM, Piccolo S, Schmidt-Ullrich R, Taketo MM, Morrisey EE, Atit R, Dlugosz AA, Millar SE. Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev Biol 2008; 313:210-24. [PMID: 18022614 PMCID: PMC2843623 DOI: 10.1016/j.ydbio.2007.10.016] [Citation(s) in RCA: 298] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 10/06/2007] [Accepted: 10/16/2007] [Indexed: 01/02/2023]
Abstract
Wnt/beta-catenin signaling plays key roles in tooth development, but how this pathway intersects with the complex interplay of signaling factors regulating dental morphogenesis has been unclear. We demonstrate that Wnt/beta-catenin signaling is active at multiple stages of tooth development. Mutation of beta-catenin to a constitutively active form in oral epithelium causes formation of large, misshapen tooth buds and ectopic teeth, and expanded expression of signaling molecules important for tooth development. Conversely, expression of key morphogenetic regulators including Bmp4, Msx1, and Msx2 is downregulated in embryos expressing the secreted Wnt inhibitor Dkk1 which blocks signaling in epithelial and underlying mesenchymal cells. Similar phenotypes are observed in embryos lacking epithelial beta-catenin, demonstrating a requirement for Wnt signaling within the epithelium. Inducible Dkk1 expression after the bud stage causes formation of blunted molar cusps, downregulation of the enamel knot marker p21, and loss of restricted ectodin expression, revealing requirements for Wnt activity in maintaining secondary enamel knots. These data place Wnt/beta-catenin signaling upstream of key morphogenetic signaling pathways at multiple stages of tooth development and indicate that tight regulation of this pathway is essential both for patterning tooth development in the dental lamina, and for controlling the shape of individual teeth.
Collapse
Affiliation(s)
- Fei Liu
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Emily Y. Chu
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Brenda Watt
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Yuhang Zhang
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Natalie M. Gallant
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Thomas Andl
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Steven H. Yang
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Min-Min Lu
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Stefano Piccolo
- Department of Histology, Microbiology and Medical Biotechnologies, Section of Histology and Embryology, University of Padua, 35121 Padua, Italy
| | | | - Makoto M. Taketo
- Department of Pharmacology, Graduate School of Medicine, Kyoto University, Yoshida-Konoé-cho, Sakyo, Kyoto 606-8501, Japan
| | - Edward E. Morrisey
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| | - Radhika Atit
- Department of Biology, Case Western Reserve University, Cleveland OH 44106, USA
| | - Andrzej A. Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah E. Millar
- Departments of Dermatology and Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia PA 19104, USA
| |
Collapse
|
134
|
Nagatomo KJ, Tompkins KA, Fong H, Zhang H, Foster BL, Chu EY, Murakami A, Stadmeyer L, Canalis E, Somerman MJ. Transgenic overexpression of gremlin results in developmental defects in enamel and dentin in mice. Connect Tissue Res 2008; 49:391-400. [PMID: 19085239 PMCID: PMC2852574 DOI: 10.1080/03008200802325060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone morphogenetic proteins (BMPs) and BMP antagonists play a crucial role in the regulation of tooth development. One of the BMP extracellular antagonists, gremlin, is a highly conserved 20.7-kDa glycoprotein. Previously, researchers reported that transgenic mice overexpressing gremlin under the control of the osteocalcin promoter (gremlin OE) exhibit a skeletal phenotype and tooth fragility. To further define the tooth phenotype, teeth and surrounding supporting tissues, obtained from gremlin OE at ages of 4 weeks, 2 months, and 4 months, were examined. The histological results demonstrate that gremlin OE exhibit an enlarged pulp chamber with ectopic calcification and thinner dentin and enamel compared with wild-type control. In vitro studies using murine pulp cells revealed that gremlin inhibited BMP-4 mediated induction of Dspp. These data provide evidence that balanced interactions between BMP agonists/antagonists are required for proper development of teeth and surrounding tissues. It is clear that these interactions require further investigation to better define the mechanisms controlling tooth root formation (pulp, dentin, cementum, and surrounding tissue) to provide the information needed to successfully regenerate these tissues.
Collapse
Affiliation(s)
- Kanako J Nagatomo
- Department of Periodontics, School of Dentistry, [corrected] University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Suzuki K, Haraguchi R, Ogata T, Barbieri O, Alegria O, Vieux-Rochas M, Nakagata N, Ito M, Mills AA, Kurita T, Levi G, Yamada G. Abnormal urethra formation in mouse models of split-hand/split-foot malformation type 1 and type 4. Eur J Hum Genet 2008; 16:36-44. [PMID: 17878916 DOI: 10.1038/sj.ejhg.5201925] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Urogenital birth defects are one of the common phenotypes observed in hereditary human disorders. In particular, limb malformations are often associated with urogenital developmental abnormalities, as the case for Hand-foot-genital syndrome displaying similar hypoplasia/agenesis of limbs and external genitalia. Split-hand/split-foot malformation (SHFM) is a syndromic limb disorder affecting the central rays of the autopod with median clefts of the hands and feet, missing central fingers and often fusion of the remaining ones. SHFM type 1 (SHFM1) is linked to genomic deletions or rearrangements, which includes the distal-less-related homeogenes DLX5 and DLX6 as well as DSS1. SHFM type 4 (SHFM4) is associated with mutations in p63, which encodes a p53-related transcription factor. To understand that SHFM is associated with urogenital birth defects, we performed gene expression analysis and gene knockout mouse model analyses. We show here that Dlx5, Dlx6, p63 and Bmp7, one of the p63 downstream candidate genes, are all expressed in the developing urethral plate (UP) and that targeted inactivation of these genes in the mouse results in UP defects leading to abnormal urethra formation. These results suggested that different set of transcription factors and growth factor genes play similar developmental functions during embryonic urethra formation. Human SHFM syndromes display multiple phenotypes with variations in addition to split hand foot limb phenotype. These results suggest that different genes associated with human SHFM could also be involved in the aetiogenesis of hypospadias pointing toward a common molecular origin of these congenital malformations.
Collapse
MESH Headings
- Animals
- Bone Morphogenetic Protein 7
- Bone Morphogenetic Proteins/deficiency
- Bone Morphogenetic Proteins/genetics
- Disease Models, Animal
- Foot Deformities, Congenital/embryology
- Foot Deformities, Congenital/genetics
- Gene Expression Regulation, Developmental
- Genitalia/embryology
- Hand Deformities, Congenital/embryology
- Hand Deformities, Congenital/genetics
- Homeodomain Proteins/genetics
- Humans
- Limb Deformities, Congenital/classification
- Limb Deformities, Congenital/embryology
- Limb Deformities, Congenital/genetics
- Mice
- Mice, Knockout
- Phosphoproteins/deficiency
- Phosphoproteins/genetics
- Syndrome
- Trans-Activators/deficiency
- Trans-Activators/genetics
- Transforming Growth Factor beta/deficiency
- Transforming Growth Factor beta/genetics
- Urethra/abnormalities
- Urethra/embryology
Collapse
Affiliation(s)
- Kentaro Suzuki
- Center for Animal Resources and Development, Graduate School of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Nakamura T, de Vega S, Fukumoto S, Jimenez L, Unda F, Yamada Y. Transcription factor epiprofin is essential for tooth morphogenesis by regulating epithelial cell fate and tooth number. J Biol Chem 2007; 283:4825-33. [PMID: 18156176 DOI: 10.1074/jbc.m708388200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In tooth morphogenesis, the dental epithelium and mesenchyme interact reciprocally for growth and differentiation to form the proper number and shapes of teeth. We previously identified epiprofin (Epfn), a gene preferentially expressed in dental epithelia, differentiated ameloblasts, and certain ectodermal organs. To identify the role of Epfn in tooth development, we created Epfn-deficient mice (Epfn-/-). Epfn-/- mice developed an excess number of teeth, enamel deficiency, defects in cusp and root formation, and abnormal dentin structure. Mutant tooth germs formed multiple dental epithelial buds into the mesenchyme. In Epfn-/- molars, rapid proliferation and differentiation of the inner dental epithelium were inhibited, and the dental epithelium retained the progenitor phenotype. Formation of the enamel knot, a signaling center for cusps, whose cells differentiate from the dental epithelium, was also inhibited. However, multiple premature nonproliferating enamel knot-like structures were formed ectopically. These dental epithelial abnormalities were accompanied by dysregulation of Lef-1, which is required for the normal transition from the bud to cap stage. Transfection of an Epfn vector promoted dental epithelial cell differentiation into ameloblasts and activated promoter activity of the enamel matrix ameloblastin gene. Our results suggest that in Epfn-deficient teeth, ectopic nonproliferating regions likely bud off from the self-renewable dental epithelium, form multiple branches, and eventually develop into supernumerary teeth. Thus, Epfn has multiple functions for cell fate determination of the dental epithelium by regulating both proliferation and differentiation, preventing continuous tooth budding and generation.
Collapse
Affiliation(s)
- Takashi Nakamura
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4370, USA
| | | | | | | | | | | |
Collapse
|
137
|
Pacheco MS, Reis AH, Aguiar DP, Lyons KM, Abreu JG. Dynamic analysis of the expression of the TGFbeta/SMAD2 pathway and CCN2/CTGF during early steps of tooth development. Cells Tissues Organs 2007; 187:199-210. [PMID: 18089935 PMCID: PMC2760595 DOI: 10.1159/000112640] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS CCN2 is present during tooth development. However, the relationship between CCN2 and the transforming growth factor beta (TGFbeta)/SMAD2/3 signaling cascade during early stages of tooth development is unclear. Here, we compare the expression of CCN2 and TGFbeta/SMAD2/3 components during tooth development, and analyze the functioning of TGFbeta/SMAD2/3 in wild-type (WT) and Ccn2 null (Ccn2-/-) mice. METHODS Coronal sections of mice on embryonic day (E)11.5, E12.5, E13.5, E14.5 and E18.5 from WT and Ccn2-/- were immunoreacted to detect CCN2 and components of the TGFbeta signaling pathway and assayed for 5'-bromo-2'-deoxyuridine immunolabeling and proliferating cell nuclear antigen immunostaining. RESULTS CCN2 and TGFbeta signaling components such as TGFbeta1, TGFbeta receptor II, SMADs2/3 and SMAD4 were expressed in inducer tissues during early stages of tooth development. Proliferation analysis in these areas showed that epithelial cells proliferate less than mesenchymal cells from E11.5 to E13.5, while at E14.5 they proliferate more than mesenchymal cells. We did not find a correlation between functioning of the TGFbeta1 cascade and CCN2 expression because Ccn2-/- mice showed neither a reduction in SMAD2 phosphorylation nor a difference in cell proliferation. CONCLUSION CCN2 and the TGFbeta/SMAD2/3 signaling pathway are active in signaling centers of tooth development where proliferation is dynamic, but these mechanisms may act independently.
Collapse
Affiliation(s)
- Marcos S Pacheco
- Departamento de Anatomia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
138
|
Yamanaka A, Yasui K, Sonomura T, Uemura M. Development of heterodont dentition in house shrew (Suncus murinus). Eur J Oral Sci 2007; 115:433-40. [DOI: 10.1111/j.1600-0722.2007.00499.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
139
|
Zhang YD, Chen Z, Song YQ, Liu C, Chen YP. Making a tooth: growth factors, transcription factors, and stem cells. Cell Res 2007; 15:301-16. [PMID: 15916718 DOI: 10.1038/sj.cr.7290299] [Citation(s) in RCA: 217] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mammalian tooth development is largely dependent on sequential and reciprocal epithelial-mesenchymal interactions. These processes involve a series of inductive and permissive interactions that result in the determination, differentiation, and organization of odontogenic tissues. Multiple signaling molecules, including BMPs, FGFs, Shh, and Wnt proteins, have been implicated in mediating these tissue interactions. Transcription factors participate in epithelial-mesenchymal interactions via linking the signaling loops between tissue layers by responding to inductive signals and regulating the expression of other signaling molecules. Adult stem cells are highly plastic and multipotent. These cells including dental pulp stem cells and bone marrow stromal cells could be reprogrammed into odontogenic fate and participated in tooth formation. Recent progress in the studies of molecular basis of tooth development, adult stem cell biology, and regeneration will provide fundamental knowledge for the realization of human tooth regeneration in the near future.
Collapse
|
140
|
Bloch-Zupan A. Genetische Störungen der Zahnentwicklung und Dentition. MED GENET-BERLIN 2007. [DOI: 10.1007/s11825-007-0050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Zusammenfassung
Die Zähne sind Organe, die aus ektodermalen epithelialen Aussackungen im Bereich des 1. Kiemenbogens entstehen, gesteuert von epitheliomesenchymalen Interaktionen. Dabei spielen zahlreiche Signalmoleküle speziell der 4 großen Familien TGF-β, FGF, Hedgehog und WNT sowie diverse Transkriptionsfaktoren eine Rolle. Eine Beteiligung der Retinoide an der Odontogenese ist durch umfangreiche Befunde belegt, auch wenn die Inaktivierung relevanter Gene in Mausmodellen meist keine Zahnanomalien verursacht. Die Zahnentwicklung wird klassischerweise in verschiedene Stadien eingeteilt: Entstehung der Zahnleiste, der Zahnknospe, der Schmelzkappe, der Schmelzglocke, die Wurzelbildung und der Zahndurchbruch. Anomalien der Zahnentwicklung können isoliert oder gemeinsam mit anderen Symptomen im Zusammenhang mit Syndromen auftreten. Sie können genetisch bedingt sein oder unter Einwirkung teratogener Stoffe während der Bildung und Mineralisierung der Zahnkeime zustande kommen. Dentibukkale Entwicklungsanomalien treten im Kontext seltener Erkrankungen auf und finden zunehmend Beachtung, da sie bei bestimmten Erkrankungen in der Diagnostik und als prädikative Faktoren wichtige Anhaltspunkte geben können. Allerdings ist hierfür eine interdisziplinäre und internationale Kooperation notwendig, die bislang erst in Ansätzen verwirklicht wurde.
Collapse
Affiliation(s)
- A. Bloch-Zupan
- Aff1_50 Faculté de Chirurgie Dentaire, Université Louis Pasteur, Centre de référence des manifestations odontologiques des maladies rares, Service de Soins Bucco-Dentaires Centre Hospitalier Universitaire, Hopital Civil 1 Place de l’Hopital 67000 Strasbourg Cedex France
- Aff2_50 grid.420255.4 0000000406382716 Département Génétique et Physiologie IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm, U596 CNRS, UMR7104 67400 Illkirch France
- Aff3_50 grid.83440.3b 0000000121901201 Eastman Dental Institute Institute of Child Health, University College London UK
| |
Collapse
|
141
|
Asymmetrical growth, differential cell proliferation, and dynamic cell rearrangement underlie epithelial morphogenesis in mouse molar development. Cell Tissue Res 2007; 330:461-73. [DOI: 10.1007/s00441-007-0502-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 08/29/2007] [Indexed: 10/22/2022]
|
142
|
Yen AHH, Sharpe PT. Stem cells and tooth tissue engineering. Cell Tissue Res 2007; 331:359-72. [PMID: 17938970 DOI: 10.1007/s00441-007-0467-6] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/04/2007] [Indexed: 01/09/2023]
Abstract
The notion that teeth contain stem cells is based on the well-known repairing ability of dentin after injury. Dental stem cells have been isolated according to their anatomical locations, colony-forming ability, expression of stem cell markers, and regeneration of pulp/dentin structures in vivo. These dental-derived stem cells are currently under increasing investigation as sources for tooth regeneration and repair. Further attempts with bone marrow mesenchymal stem cells and embryonic stem cells have demonstrated the possibility of creating teeth from non-dental stem cells by imitating embryonic development mechanisms. Although, as in tissue engineering of other organs, many challenges remain, stem-cell-based tissue engineering of teeth could be a choice for the replacement of missing teeth in the future.
Collapse
Affiliation(s)
- Amanda H-H Yen
- Department of Craniofacial Development, Dental Institute, Guy's Hospital, Kings College London, London Bridge, London, SE1 9RT, UK
| | | |
Collapse
|
143
|
Ko SO, Kim TH, Lee HK, Lee JC, Cho ES. Temporospatial localization of acetylcholinesterase activity in the dental epithelium during mouse tooth development. Life Sci 2007; 81:1235-40. [PMID: 17905311 DOI: 10.1016/j.lfs.2007.08.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/22/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Acetylcholinesterase (AChE), a principal modulator of cholinergic neurotransmission, also has been demonstrated to be involved in the morphogenetic processes of neuronal and non-neuronal tissues. This study shows that AChE exhibits temporospatial activity in the dental epithelium of the developing mouse tooth. To identify the AChE activity in the mouse tooth during development, we performed enzyme histochemistry on the mouse embryos from embryonic day 13 (E13) to E18 and on the incisors and molars of the neonatal mouse at 10 days after birth (P10). In the developing molars of mouse embryos, AChE activity was not found in the dental epithelium at E13 (bud stage). AChE activity first appeared in the developing cervical loops of the enamel organ at E14 (cap stage), but was not found in the enamel knot. At E18 (bell stage), AChE activity was localized in the inner enamel epithelium except the cervical-loop area. In the incisors and molars of neonatal mice (P10), AChE activity was localized in the inner enamel epithelium of the cervical-loop and enamel-free area. Overall, AChE activity was localized in the differentiating dental epithelium while the activity of butyrylcholinesterse, another cholinesterase, was located primarily in the cells of the dental follicle. The results suggest that AChE may play a role in the histo- and cytodifferentiation of dental epithelium during tooth development.
Collapse
Affiliation(s)
- Seung-O Ko
- Laboratory for Craniofacial Biology, Institute of Oral Bioscience, Chonbuk National University, Jeonju, Republic of Korea
| | | | | | | | | |
Collapse
|
144
|
Zhang L, Hua F, Yuan GH, Zhang YD, Chen Z. Sonic hedgehog signaling is critical for cytodifferentiation and cusp formation in developing mouse molars. J Mol Histol 2007; 39:87-94. [PMID: 17786571 DOI: 10.1007/s10735-007-9132-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Accepted: 08/08/2007] [Indexed: 11/28/2022]
Abstract
The present study was designed to investigate the direct role of Shh molecule on cytodifferentiation and cusp formation. Affi-gel blue beads soaked in exogenous Shh-N, Shh antibody or BSA control protein were implanted between the epithelium and mesenchyme of isolated molar germs at the cap stage. The recombinants were grafted for culture under the kidney capsules respectively. In compared to the control, additional Shh-N protein could not enhance the ameloblasts and odontoblasts differentiation of the explanted tooth germs. While, application of Shh antibody retarded these events. After 4 weeks of subrenal culture, the teeth dissected from the explants treated with Shh-N were multicuspid. Most of the teeth harvested from the Shh antibody group were small and single irregularly shaped cusp was visible. The main cusp height in this group was reduced. The results indicated Shh signaling pathway is critical for odontoblast and ameloblast differentiation and patterns cusp formation.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, No. 237 Luo Yu Road, Wuhan, Hubei, PR China
| | | | | | | | | |
Collapse
|
145
|
Buchtová M, Boughner JC, Fu K, Diewert VM, Richman JM. Embryonic development of Python sebae – II: Craniofacial microscopic anatomy, cell proliferation and apoptosis. ZOOLOGY 2007; 110:231-51. [PMID: 17499982 DOI: 10.1016/j.zool.2007.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2006] [Revised: 01/21/2007] [Accepted: 01/23/2007] [Indexed: 10/23/2022]
Abstract
This study explores the microscopic craniofacial morphogenesis of the oviparous African rock python (Python sebae) spanning the first two-thirds of the post-oviposition period. At the time of laying, the python embryo consists of largely undifferentiated mesenchyme and epithelium with the exception of the cranial base and trabeculae cranii, which are undergoing chondrogenesis. The facial prominences are well defined and are at a late stage, close to the time when lip fusion begins. Later (11-12d), specializations in the epithelia begin to differentiate (vomeronasal and olfactory epithelia, teeth). Dental development in snakes is different from that of mammals in several aspects including an extended dental lamina with the capacity to form 4 sets of generational teeth. In addition, the ophidian olfactory system is very different from the mammalian. There is a large vomeronasal organ, a nasal cavity proper and an extraconchal space. All of these areas are lined with a greatly expanded olfactory epithelium. Intramembranous bone differentiation is taking place at stage 3 with some bones already ossifying whereas most are only represented as mesenchymal condensations. In addition to routine histological staining, PCNA immunohistochemistry reveals relatively higher levels of proliferation in the extending dental laminae, in osseous mesenchymal condensations and in the olfactory epithelia. Areas undergoing apoptosis were noted in the enamel organs of the teeth and osseous mesenchymal condensations. We propose that localized apoptosis helps to divide a single condensation into multiple ossification centres and this is a mechanism whereby novel morphology can be selected in response to evolutionary pressures. Several additional differences in head morphology between snakes and other amniotes were noted including a palatal groove separating the inner and outer row of teeth in the upper jaw, a tracheal opening within the tongue and a pharyngeal adhesion that closes off the pharynx from the oral cavity between stages 1 and 4. Our studies on these and other differences in the python will provide valuable insights into in developmental, molecular and evolutionary mechanisms of patterning.
Collapse
Affiliation(s)
- Marcela Buchtová
- Department of Oral Health Sciences, Life Sciences Institute, University of British Columbia, Life Sciences Centre, 2350 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | |
Collapse
|
146
|
Cho SW, Lee HA, Cai J, Lee MJ, Kim JY, Ohshima H, Jung HS. The primary enamel knot determines the position of the first buccal cusp in developing mice molars. Differentiation 2007; 75:441-51. [PMID: 17309607 DOI: 10.1111/j.1432-0436.2006.00153.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The enamel knot (EK), which is located in the center of bud and cap stage tooth germs, is a transitory cluster of non-dividing epithelial cells. The EK acts as a signaling center that provides positional information for tooth morphogenesis and regulates the growth of tooth cusps by inducing secondary EKs. The morphological, cellular, and molecular events leading to the relationship between the primary and secondary EKs have not been described clearly. This study investigated the relationship between the primary and secondary EKs in the maxillary and mandibular first molars of mice. The location of the primary EK and secondary EKs was investigated by chasing Fgf4 expression patterns in tooth germ at some intervals of in vitro culture, and the relationship between the primary EK and secondary EK was examined by tracing the primary EK cells in the E13.5 tooth germs which were frontally half sliced to expose the primary EK. After 48 hr, the primary EK cells in the sliced tooth germs were located on the buccal secondary EKs, which correspond to the future paracone in maxilla and protoconid in mandible. The Bmp4 expression in buccal part of the dental mesenchyme might be related with the lower growth in buccal epithelium than in lingual epithelium, and the Msx2 expressing area in epithelium was overlapped with the enamel cord (or septum) and cell dense area. The enamel cord might connect the primary EK with enamel navel to fix the location of the primary EK in the buccal side during the cap to bell stages. Overall, these results suggest that primary EK cells strictly contribute to form the paracone or protoconid, which are the main cusps of the tooth in the maxilla or mandible.
Collapse
Affiliation(s)
- Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Yonsei Center of Biotechnology, Yonsei University, 134 Shinchon-Dong, Seodaemoon-Gu, Seoul 120-752, Korea
| | | | | | | | | | | | | |
Collapse
|
147
|
Yamashiro T, Zheng L, Shitaku Y, Saito M, Tsubakimoto T, Takada K, Takano-Yamamoto T, Thesleff I. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation 2007; 75:452-62. [PMID: 17286598 DOI: 10.1111/j.1432-0436.2006.00150.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have explored the role of Wnt signaling in dentinogenesis of mouse molar teeth. We found that Wnt10a was specifically associated with the differentiation of odontoblasts and that it showed striking colocalization with dentin sialophosphoprotein (Dspp) expression in secretory odontoblasts. Dspp is a tooth specific non-collagenous matrix protein and regulates dentin mineralization. Transient overexpression of Wnt10 in C3H10T1/2, a pluripotent fibroblast cell line induced Dspp mRNA. Interestingly, this induction occurred only when transfected cells were cultured on Matrigel basement membrane extracts. These findings indicated that Wnt10a is an upstream regulatory molecule for Dspp expression, and that cell-matrix interaction is essential for induction of Dspp expression. Furthermore, Wnt10a was specifically expressed in the epithelial signaling centers regulating tooth development, the primary and secondary enamel knots. The spatial and temporal distribution of Wnt10a mRNA demonstrated that the expression shifts from the secondary enamel knots, to the underlying preodontoblasts in the tips of future cusps. The expression patterns and overexpression studies together indicate that Wnt10a is a key molecule for dentinogenesis and that it is associated with the cell-matrix interactions regulating odontoblast differentiation. We conclude that Wnt10a may link the differentiation of odontoblasts and cusp morphogenesis.
Collapse
Affiliation(s)
- Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Cho SW, Kim JY, Cai J, Lee JM, Kim EJ, Lee HA, Yamamoto H, Jung HS. Temporospatial tissue interactions regulating the regeneration of the enamel knot in the developing mouse tooth. Differentiation 2007; 75:158-65. [PMID: 17316385 DOI: 10.1111/j.1432-0436.2006.00122.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The enamel knot (EK), which is a transient signaling center in the tooth germ, regulates both the differential growth of the dental epithelium and the tooth shape. In this study, the regeneration of the EK was evaluated. The EK regions were removed from the E14 and E16 dental epithelia, and the remaining epithelia were recombined with their original dental mesenchymes. All these tooth germs could develop into calcified teeth after being transplanted into the kidney capsule for 3 weeks. One primary EK was regenerated earlier, and two or three secondary EKs were regenerated later in culture. When simply recombined without removing the EK, the tooth germ, which had four secondary EKs and four cuspal areas of the dental papilla, generated one primary EK first and subsequent secondary EKs. These results indicate that the patterning of the EK in all tooth germs always starts from a primary EK independent of the direct epithelial or mesenchymal control. This suggests that neither the dental epithelium nor the dental mesenchyme can dictate the pattern or number of the EK formation, but the interaction between the dental epithelium and the dental mesenchyme is essential for the regeneration and patterning of the EKs.
Collapse
Affiliation(s)
- Sung-Won Cho
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Research Center for Orofacial Hard Tissue Regeneration, Brain Korea 21 Project, College of Dentistry, Yonsei Center of Biotechnology, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
149
|
Chung IH, Choung PH, Ryu HJ, Kang YH, Choung HW, Chung JH, Choung YH. Regulating the Role of Bone Morphogenetic Protein 4 in Tooth Bioengineering. J Oral Maxillofac Surg 2007; 65:501-7. [PMID: 17307599 DOI: 10.1016/j.joms.2006.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 05/08/2006] [Accepted: 07/13/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE Culture of the whole organ and regulation of its development using biologic and engineering principles can be used to produce structures and organs for reconstructing defects. The application of these bioengineering approaches in artificial tooth development may be the alternative way to replace missing dentition. MATERIALS AND METHODS For the artificial bioengineering of a mouse tooth, tooth buds were dissected and transplanted into the diastema of the developing mandible. The mandiblular primordia containing transplanted tooth buds were culture in vitro and in vivo using a bioengineering method. In addition, to regulate the development of tooth germs, bone morphogenetic protein 4 (BMP4) or its antagonist, Noggin was administered. RESULTS After the period of in vitro and in vivo culture, the transplanted tooth germ in the diastema showed tooth development with supportive structure formation. In the BMP-treated group, the bioengineered tooth was observed with increased maturation of cusp and enamel matrix. However, in the Noggin-treated tooth germs, the developing molar had a crater-like appearance with the immature development of the cusp and suppressed formation of the enamel matrix. CONCLUSIONS This study confirmed that tooth germ transplantation in the diastema and culture with administration of BMP4 could lead to the mature development of the dental structures. In addition, these results suggest the possibility of bioengineering the tooth in morphogenesis and differentiation even in the toothless area.
Collapse
Affiliation(s)
- Il-Hyuk Chung
- Department of Oral and Maxillofacial Surgery, Seoul National University Boramae Hospital, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
150
|
Xu J, Rogers MB. Modulation of Bone Morphogenetic Protein (BMP) 2 gene expression by Sp1 transcription factors. Gene 2007; 392:221-9. [PMID: 17317039 PMCID: PMC1934513 DOI: 10.1016/j.gene.2006.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/20/2006] [Accepted: 12/22/2006] [Indexed: 12/19/2022]
Abstract
Changes in Bone Morphogenetic Protein (BMP) 2 gene expression and activity have been linked to many pathological conditions including cancer, osteoarthritis, and birth defects. BMP2 gene polymorphisms have been linked to osteoporosis and osteoarthritis. Sp1 and related proteins are widely expressed regulators of gene expression whose transcription activating abilities vary in different cells and on different genes. We present data indicating that the ratio of Sp1 and Sp3 isoforms varies in cells that express or do not express BMP2. Furthermore, the orientation of Sp1 sites conserved between four orders of mammals influences BMP2 expression. Together our data indicate that the stoichiometry and orientation of Sp1 and Sp3 complexes on the BMP2 promoter influence BMP2 expression.
Collapse
Affiliation(s)
| | - Melissa B. Rogers
- *Address correspondence and requests for reprints to: Melissa B. Rogers, Ph.D., Biochemistry & Molecular Biology (MSB E627), UMDNJ - New Jersey Medical School, 185 South Orange Ave., P.O. Box 1709, Newark, NJ 07101-1709, Phone: (973) 972-2984, Fax: (973) 972-5594,
| |
Collapse
|