101
|
Ma L, Cantley LC, Janmey PA, Kirschner MW. Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J Cell Biol 1998; 140:1125-36. [PMID: 9490725 PMCID: PMC2132704 DOI: 10.1083/jcb.140.5.1125] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/1997] [Revised: 12/29/1997] [Indexed: 02/06/2023] Open
Abstract
Both phosphoinositides and small GTP-binding proteins of the Rho family have been postulated to regulate actin assembly in cells. We have reconstituted actin assembly in response to these signals in Xenopus extracts and examined the relationship of these pathways. We have found that GTPgammaS stimulates actin assembly in the presence of endogenous membrane vesicles in low speed extracts. These membrane vesicles are required, but can be replaced by lipid vesicles prepared from purified phospholipids containing phosphoinositides. Vesicles containing phosphatidylinositol (4,5) bisphosphate or phosphatidylinositol (3,4,5) trisphosphate can induce actin assembly even in the absence of GTPgammaS. RhoGDI, a guanine-nucleotide dissociation inhibitor for the Rho family, inhibits phosphoinositide-induced actin assembly, suggesting the involvement of the Rho family small G proteins. Using various dominant mutants of these G proteins, we demonstrate the requirement of Cdc42 for phosphoinositide-induced actin assembly. Our results suggest that phosphoinositides may act to facilitate GTP exchange on Cdc42, as well as to anchor Cdc42 and actin nucleation activities. Hence, both phosphoinositides and Cdc42 are required to induce actin assembly in this cell-free system.
Collapse
Affiliation(s)
- L Ma
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
102
|
Harris SD, Kraus PR. Regulation of septum formation in Aspergillus nidulans by a DNA damage checkpoint pathway. Genetics 1998; 148:1055-67. [PMID: 9539424 PMCID: PMC1460027 DOI: 10.1093/genetics/148.3.1055] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In Aspergillus nidulans, germinating conidia undergo multiple rounds of nuclear division before the formation of the first septum. Previous characterization of temperature-sensitive sepB and sepJ mutations showed that although they block septation, they also cause moderate defects in chromosomal DNA metabolism. Results presented here demonstrate that a variety of other perturbations of chromosomal DNA metabolism also delay septum formation, suggesting that this is a general cellular response to the presence of sublethal DNA damage. Genetic evidence is provided that suggests that high levels of cyclin-dependent kinase (cdk) activity are required for septation in A. nidulans. Consistent with this notion, the inhibition of septum formation triggered by defects in chromosomal DNA metabolism depends upon Tyr-15 phosphorylation of the mitotic cdk p34nimX. Moreover, this response also requires elements of the DNA damage checkpoint pathway. A model is proposed that suggests that the DNA damage checkpoint response represents one of multiple sensory inputs that modulates p34nimX activity to control the timing of septum formation.
Collapse
Affiliation(s)
- S D Harris
- Department of Microbiology, University of Connecticut Health Center, Farmington 06030-3205, USA.
| | | |
Collapse
|
103
|
Terada Y, Tatsuka M, Suzuki F, Yasuda Y, Fujita S, Otsu M. AIM-1: a mammalian midbody-associated protein required for cytokinesis. EMBO J 1998; 17:667-76. [PMID: 9450992 PMCID: PMC1170416 DOI: 10.1093/emboj/17.3.667] [Citation(s) in RCA: 330] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mitosis is a highly coordinated process that assures the fidelity of chromosome segregation. Errors in this process result in aneuploidy which can lead to cell death or oncogenesis. In this paper we describe a putative mammalian protein kinase, AIM-1 (Aurora and Ipl1-like midbody-associated protein), related to Drosophila Aurora and Saccharomyces cerevisiae Ipl1, both of which are required for chromosome segregation. AIM-1 message and protein accumulate at G2/M phase. The protein localizes at the equator of central spindles during late anaphase and at the midbody during telophase and cytokinesis. Overexpression of kinase-inactive AIM-1 disrupts cleavage furrow formation without affecting nuclear division. Furthermore, cytokinesis frequently fails, resulting in cell polyploidy and subsequent cell death. These results strongly suggest that AIM-1 is required for proper progression of cytokinesis in mammalian cells.
Collapse
Affiliation(s)
- Y Terada
- Louis Pasteur Center for Medical Research, Department of Molecular Biology, 103-5 Tanaka Monzencho, Sakyo-ku, Kyoto 606.
| | | | | | | | | | | |
Collapse
|
104
|
Giansanti MG, Bonaccorsi S, Williams B, Williams EV, Santolamazza C, Goldberg ML, Gatti M. Cooperative interactions between the central spindle and the contractile ring during Drosophila cytokinesis. Genes Dev 1998; 12:396-410. [PMID: 9450933 PMCID: PMC316479 DOI: 10.1101/gad.12.3.396] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1997] [Accepted: 11/14/1997] [Indexed: 02/05/2023]
Abstract
We analyzed male meiosis in mutants of the chickadee (chic) locus, a Drosophila melanogaster gene that encodes profilin, a low molecular weight actin-binding protein that modulates F-actin polymerization. These mutants are severely defective in meiotic cytokinesis. During ana-telophase of both meiotic divisions, they exhibit a central spindle less dense than wild type; certain chic allelic combinations cause almost complete disappearance of the central spindle. Moreover, chic mutant spermatocytes fail to form an actomyosin contractile ring. To further investigate the relationships between the central spindle and the contractile ring, we examined meiosis in the cytokinesis-defective mutants KLP3A and diaphanous and in testes treated with cytochalasin B. In all cases, we found that the central spindle and the contractile ring in meiotic ana-telophases were simultaneously absent. Together, these results suggest a cooperative interaction between elements of the actin-based contractile ring and the central spindle microtubules: When one of these structures is disrupted, the proper assembly of the other is also affected. In addition to effects on the central spindle and the cytokinetic apparatus, we observed another consequence of chic mutations: A large fraction of chic spermatocytes exhibit abnormal positioning and delayed migration of asters to the cell poles. A similar phenotype was seen in testes treated with cytochalasin B and has been noted previously in mutants at the twinstar locus, a gene that encodes a Drosophila member of the cofilin/ADF family of actin-severing proteins. These observations all indicate that proper actin assembly is necessary for centrosome separation and migration.
Collapse
Affiliation(s)
- M G Giansanti
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Universitá di Roma "La Sapienza," 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
105
|
Grallert A, Grallert B, Ribar B, Sipiczki M. Coordination of initiation of nuclear division and initiation of cell division in Schizosaccharomyces pombe: genetic interactions of mutations. J Bacteriol 1998; 180:892-900. [PMID: 9473044 PMCID: PMC106969 DOI: 10.1128/jb.180.4.892-900.1998] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
sep1+ encodes a Schizosaccharomyces pombe homolog of the HNF-3/forkhead family of the tissue-specific and developmental gene regulators identified in higher eukaryotes. Its mutant allele sep1-1 causes a defect in cytokinesis and confers a mycelial morphology. Here we report on genetic interactions of sep1-1 with the M-phase initiation mutations wee1-, cdc2-1w, and cdc25-22. The double mutants sep1-1 wee1- and sep1-1 cdc2-1w form dikaryon cells at high frequency, which is due to nuclear division in the absence of cell division. The dikaryosis is reversible and suppressible by cdc25-22. We propose that the genes wee1+, cdc2+, cdc25+, and sep1+ form a regulatory link between the initiation of mitosis and the initiation of cell division.
Collapse
Affiliation(s)
- A Grallert
- Department of Genetics, University of Debrecen, Hungary
| | | | | | | |
Collapse
|
106
|
Abstract
Filamentous actin structures possess unique biophysical and biochemical properties and are required for cell locomotion, cell division, compartmentalization and morphological processes. The site-specific assembly and disassembly of these structures are directed by actin-regulatory proteins. This article reviews how structural studies are now defining the atomic details of small modular domains present in actin-regulatory proteins responsible for crosslinking, severing and capping of actin filaments, as well as for localization of actin filament assembly. These studies have identified three modular strategies for the design of proteins that regulate the actin cytoskeleton.
Collapse
Affiliation(s)
- Y A Puius
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
107
|
Lippincott J, Li R. Sequential assembly of myosin II, an IQGAP-like protein, and filamentous actin to a ring structure involved in budding yeast cytokinesis. J Cell Biol 1998; 140:355-66. [PMID: 9442111 PMCID: PMC2132585 DOI: 10.1083/jcb.140.2.355] [Citation(s) in RCA: 305] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/1997] [Revised: 11/10/1997] [Indexed: 02/05/2023] Open
Abstract
We have identified a Saccharomyces cerevisiae protein, Cyk1p, that exhibits sequence similarity to the mammalian IQGAPs. Gene disruption of Cyk1p results in a failure in cytokinesis without affecting other events in the cell cycle. Cyk1p is diffused throughout most of the cell cycle but localizes to a ring structure at the mother-bud junction after the initiation of anaphase. This ring contains filamentous actin and Myo1p, a myosin II homologue. In vivo observation with green fluorescent protein-tagged Myo1p showed that the ring decreases drastically in size during cell division and therefore may be contractile. These results indicate that cytokinesis in budding yeast is likely to involve an actomyosin-based contractile ring. The assembly of this ring occurs in temporally distinct steps: Myo1p localizes to a ring that overlaps the septins at the G1-S transition slightly before bud emergence; Cyk1p and actin then accumulate in this ring after the activation of the Cdc15 pathway late in mitosis. The localization of myosin is abolished by a mutation in Cdc12p, implicating a role for the septin filaments in the assembly of the actomyosin ring. The accumulation of actin in the cytokinetic ring was not observed in cells depleted of Cyk1p, suggesting that Cyk1p plays a role in the recruitment of actin filaments, perhaps through a filament-binding activity similar to that demonstrated for mammalian IQGAPs.
Collapse
Affiliation(s)
- J Lippincott
- Department of Cell Biology, Harvard Medical School, Boston, Massachussetts 02115, USA
| | | |
Collapse
|
108
|
Neujahr R, Heizer C, Albrecht R, Ecke M, Schwartz JM, Weber I, Gerisch G. Three-dimensional patterns and redistribution of myosin II and actin in mitotic Dictyostelium cells. J Biophys Biochem Cytol 1997; 139:1793-804. [PMID: 9412473 PMCID: PMC2132646 DOI: 10.1083/jcb.139.7.1793] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myosin II is not essential for cytokinesis in cells of Dictyostelium discoideum that are anchored on a substrate (Neujahr, R., C. Heizer, and G. Gerisch. 1997. J. Cell Sci. 110:123-137), in contrast to its importance for cell division in suspension (DeLozanne, A., and J.A. Spudich. 1987. Science. 236:1086-1091; Knecht, D.A., and W.F. Loomis. 1987. Science. 236: 1081-1085.). These differences have prompted us to investigate the three-dimensional distribution of myosin II in cells dividing under one of three conditions: (a) in shaken suspension, (b) in a fluid layer on a solid substrate surface, and (c) under mechanical stress applied by compressing the cells. Under the first and second conditions outlined above, myosin II does not form patterns that suggest a contractile ring is established in the furrow. Most of the myosin II is concentrated in the regions that flank the furrow on both sides towards the poles of the dividing cell. It is only when cells are compressed that myosin II extensively accumulates in the cleavage furrow, as has been previously described (Fukui, Y., T.J. Lynch, H. Brzeska, and E.D. Korn. 1989. Nature. 341:328-331), i.e., this massive accumulation is a response to the mechanical stress. Evidence is provided that the stress-associated translocation of myosin II to the cell cortex is a result of the dephosphorylation of its heavy chains. F-actin is localized in the dividing cells in a distinctly different pattern from that of myosin II. The F-actin is shown to accumulate primarily in protrusions at the two poles that ultimately form the leading edges of the daughter cells. This distribution changes dynamically as visualized in living cells with a green fluorescent protein-actin fusion.
Collapse
Affiliation(s)
- R Neujahr
- Max-Planck-Institut für Biochemie, D-82152 Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
109
|
Berger W, Micksche M, Elbling L. Effects of multidrug resistance-related ATP-binding-cassette transporter proteins on the cytoskeletal activity of cytochalasins. Exp Cell Res 1997; 237:307-17. [PMID: 9434626 DOI: 10.1006/excr.1997.3798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Cytochalasins are microfilament-active mould metabolites, widely utilized to study the involvement of the actin cytoskeleton in cellular processes as well as in genotoxicity and cell kinetic research. In this study we have investigated whether multidrug-resistance phenotypes, caused by overexpression of the ATP-binding-cassette transporter proteins P-glycoprotein (P-gp) or multidrug-resistance-associated protein (MRP), influence the microfilament-depolymerizing effect of cytochalasins. Using four well-characterized multidrug-resistance cell models, we have shown that both the microfilament-disrupting (phalloidine staining) and the cytotoxic (MTT-assay) activity of cytochalasins are reduced in parallel with increased P-gp expression and restorable by P-gp-modulating agents. This also applied to the cytochalasin D-mediated induction of polykaryons (microscopic evaluation) which arise as a consequence of impaired cytokinesis but unaffected karyokinesis. The reduced cellular activity of cytochalasins in P-gp-positive cell lines was correlated with decreased intracellular accumulation ([3H]cytochalasin B accumulation) which was also restorable by P-gp modulators. Moreover, the dose-dependent inhibition of P-gp photoaffinity labeling ([3H]-azidopine) suggested cytochalasins as P-gp-binding agents. In contrast, MRP overexpression had no effect on either cytochalasin microfilament activity or cytotoxicity. In conclusion, data indicate that the microfilament-destructive effects of cytochalasins are impaired due to a reduction of the intracellular cytochalasin accumulation by P-gp but not by MRP. Results are discussed with regard to P-gp as a resistance factor when cytochalasins are utilized to study microfilament dynamics, cell cycle kinetics or chromosomal damage. Moreover, the polykaryon-inducing activity of cytochalasin D is suggested as a specific indicator for a P-gp-mediated multidrug-resistance phenotype and the reversing potency of chemosensitizers.
Collapse
Affiliation(s)
- W Berger
- Department of Applied and Experimental Oncology, Vienna University, Austria.
| | | | | |
Collapse
|
110
|
Lauber MH, Waizenegger I, Steinmann T, Schwarz H, Mayer U, Hwang I, Lukowitz W, Jürgens G. The Arabidopsis KNOLLE protein is a cytokinesis-specific syntaxin. J Biophys Biochem Cytol 1997; 139:1485-93. [PMID: 9396754 PMCID: PMC2132613 DOI: 10.1083/jcb.139.6.1485] [Citation(s) in RCA: 402] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In higher plant cytokinesis, plasma membrane and cell wall originate by vesicle fusion in the plane of cell division. The Arabidopsis KNOLLE gene, which is required for cytokinesis, encodes a protein related to vesicle-docking syntaxins. We have raised specific rabbit antiserum against purified recombinant KNOLLE protein to show biochemically and by immunoelectron microscopy that KNOLLE protein is membrane associated. Using immunofluorescence microscopy, KNOLLE protein was found to be specifically expressed during mitosis and, unlike the plasma membrane H+-ATPase, to localize to the plane of division during cytokinesis. Arabidopsis dynamin-like protein ADL1 accumulates at the plane of cell plate formation in knolle mutant cells as in wild-type cells, suggesting that cytokinetic vesicle traffic is not affected. Furthermore, electron microscopic analysis indicates that vesicle fusion is impaired. KNOLLE protein was detected in mitotically dividing cells of various parts of the developing plant, including seedling root, inflorescence meristem, floral meristems and ovules, and the cellularizing endosperm, but not during cytokinesis after the male second meiotic division. Thus, KNOLLE is the first syntaxin-like protein that appears to be involved specifically in cytokinetic vesicle fusion.
Collapse
Affiliation(s)
- M H Lauber
- Lehrstuhl für Entwicklungsgenetik, Universität Tübingen, D-72076 Tübingen, Federal Republic of Germany
| | | | | | | | | | | | | | | |
Collapse
|
111
|
Webb SE, Lee KW, Karplus E, Miller AL. Localized calcium transients accompany furrow positioning, propagation, and deepening during the early cleavage period of zebrafish embryos. Dev Biol 1997; 192:78-92. [PMID: 9405098 DOI: 10.1006/dbio.1997.8724] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Through the injection of f-aequorin (a calcium-specific luminescent reporter) and the use of an imaging photon detector, we see a distinct localized elevation of intracellular calcium that accompanies the appearance of the first furrow arc at the blastodisc surface: the furrow positioning signal. As the leading edges of the arc progress outward toward the margins of the blastodisc, they are accompanied by two subsurface slow calcium waves moving at about 0.2 micron/s: the furrow propagation signal. As these wave fronts approach the edge of the blastodisc, another calcium signal arises in the central region where the positioning signal originally appeared. Like the propagation signal, it extends outward to the margins of the blastodisc, but in this case it also moves downward, accompanying the deepening process that separates the daughter cells: the furrow deepening signal. Both of these furrow deepening progressions move at around 0.1 to 0.2 micron/s. The deepening signal begins to diminish from the center outward, returning to precleavage resting levels on completion of cytokinesis. The signaling sequence is repeated during the second cell division cycle. These localized transients do not require external calcium and they can be dissipated after they have begun by introducing calcium shuttle buffers, resulting in furrow delocalization and regression. They also occur in parthenogenetically activated eggs in which, in an attenuated form, they accompany abortive cleavages.
Collapse
Affiliation(s)
- S E Webb
- Department of Biology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | | | | | |
Collapse
|
112
|
Abstract
Cytokinesis is under active investigation in each of the dominant experimental model systems. During 1996 and 1997, several developments necessitated the reassessment of the prevailing model for cytokinesis. In addition, the inventory of proteins required for cytokinesis has grown considerably. However, a molecular understanding of cytokinesis still remains elusive.
Collapse
Affiliation(s)
- M Glotzer
- Institute for Molecular Pathology, Vienna, Austria.
| |
Collapse
|
113
|
Bezanilla M, Forsburg SL, Pollard TD. Identification of a second myosin-II in Schizosaccharomyces pombe: Myp2p is conditionally required for cytokinesis. Mol Biol Cell 1997; 8:2693-705. [PMID: 9398685 PMCID: PMC25737 DOI: 10.1091/mbc.8.12.2693] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/1997] [Accepted: 10/14/1997] [Indexed: 02/05/2023] Open
Abstract
As in many eukaryotic cells, fission yeast cytokinesis depends on the assembly of an actin ring. We cloned myp2(+), a myosin-II in Schizosaccharomyces pombe, conditionally required for cytokinesis. myp2(+), the second myosin-II identified in S. pombe, does not completely overlap in function with myo2(+). The catalytic domain of Myp2p is highly homologous to known myosin-IIs, and phylogenetic analysis places Myp2p in the myosin-II family. The Myp2p sequence contains well-conserved ATP- and actin-binding motifs, as well as two IQ motifs. However, the tail sequence is unusual, since it is predicted to form two long coiled-coils separated by a stretch of sequence containing 19 prolines. Disruption of myp2(+) is not lethal but under nutrient limiting conditions cells lacking myp2(+) function are multiseptated, elongated, and branched, indicative of a defect in cytokinesis. The presence of salt enhances these morphological defects. Additionally, Deltamyp2 cells are cold sensitive in high salt, failing to form colonies at 17 degrees C. Thus, myp2(+) is required under conditions of stress, possibly linking extracellular growth conditions to efficient cytokinesis and cell growth. GFP-Myp2p localizes to a ring in the middle of late mitotic cells, consistent with a role in cytokinesis. Additionally, we constructed double mutants of Deltamyp2 with temperature-sensitive mutant strains defective in cytokinesis. We observed synthetic lethal interactions between Deltamyp2 and three alleles of cdc11ts, as well as more modest synthetic interactions with cdc14ts and cdc16ts, implicating myp2(+) function for efficient cytokinesis under normal conditions.
Collapse
Affiliation(s)
- M Bezanilla
- Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
114
|
Zang JH, Cavet G, Sabry JH, Wagner P, Moores SL, Spudich JA. On the role of myosin-II in cytokinesis: division of Dictyostelium cells under adhesive and nonadhesive conditions. Mol Biol Cell 1997; 8:2617-29. [PMID: 9398680 PMCID: PMC25732 DOI: 10.1091/mbc.8.12.2617] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated the role of myosin in cytokinesis in Dictyostelium cells by examining cells under both adhesive and nonadhesive conditions. On an adhesive surface, both wild-type and myosin-null cells undergo the normal processes of mitotic rounding, cell elongation, polar ruffling, furrow ingression, and separation of daughter cells. When cells are denied adhesion through culturing in suspension or on a hydrophobic surface, wild-type cells undergo these same processes. However, cells lacking myosin round up and polar ruffle, but fail to elongate, furrow, or divide. These differences show that cell division can be driven by two mechanisms that we term Cytokinesis A, which requires myosin, and Cytokinesis B, which is cell adhesion dependent. We have used these approaches to examine cells expressing a myosin whose two light chain-binding sites were deleted (DeltaBLCBS-myosin). Although this myosin is a slower motor than wild-type myosin and has constitutively high activity due to the abolition of regulation by light-chain phosphorylation, cells expressing DeltaBLCBS-myosin were previously shown to divide in suspension (Uyeda et al., 1996). However, we suspected their behavior during cytokinesis to be different from wild-type cells given the large alteration in their myosin. Surprisingly, DeltaBLCBS-myosin undergoes relatively normal spatial and temporal changes in localization during mitosis. Furthermore, the rate of furrow progression in cells expressing a DeltaBLCBS-myosin is similar to that in wild-type cells.
Collapse
Affiliation(s)
- J H Zang
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | |
Collapse
|
115
|
Spencer S, Dowbenko D, Cheng J, Li W, Brush J, Utzig S, Simanis V, Lasky LA. PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase. J Cell Biol 1997; 138:845-60. [PMID: 9265651 PMCID: PMC2138048 DOI: 10.1083/jcb.138.4.845] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/1997] [Revised: 06/06/1997] [Indexed: 02/05/2023] Open
Abstract
We have investigated proteins which interact with the PEST-type protein tyrosine phosphatase, PTP hematopoietic stem cell fraction (HSCF), using the yeast two-hybrid system. This resulted in the identification of proline, serine, threonine phosphatase interacting protein (PSTPIP), a novel member of the actin- associated protein family that is homologous to Schizosaccharomyces pombe CDC15p, a phosphorylated protein involved with the assembly of the actin ring in the cytokinetic cleavage furrow. The binding of PTP HSCF to PSTPIP was induced by a novel interaction between the putative coiled-coil region of PSTPIP and the COOH-terminal, proline-rich region of the phosphatase. PSTPIP is tyrosine phosphorylated both endogenously and in v-Src transfected COS cells, and cotransfection of dominant-negative PTP HSCF results in hyperphosphorylation of PSTPIP. This dominant-negative effect is dependent upon the inclusion of the COOH-terminal, proline-rich PSTPIP-binding region of the phosphatase. Confocal microscopy analysis of endogenous PSTPIP revealed colocalization with the cortical actin cytoskeleton, lamellipodia, and actin-rich cytokinetic cleavage furrow. Overexpression of PSTPIP in 3T3 cells resulted in the formation of extended filopodia, consistent with a role for this protein in actin reorganization. Finally, overexpression of mammalian PSTPIP in exponentially growing S. pombe results in a dominant-negative inhibition of cytokinesis. PSTPIP is therefore a novel actin-associated protein, potentially involved with cytokinesis, whose tyrosine phosphorylation is regulated by PTP HSCF.
Collapse
Affiliation(s)
- S Spencer
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Tuxworth RI, Cheetham JL, Machesky LM, Spiegelmann GB, Weeks G, Insall RH. Dictyostelium RasG is required for normal motility and cytokinesis, but not growth. J Cell Biol 1997; 138:605-14. [PMID: 9245789 PMCID: PMC2141629 DOI: 10.1083/jcb.138.3.605] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/1997] [Revised: 05/05/1997] [Indexed: 02/04/2023] Open
Abstract
RasG is the most abundant Ras protein in growing Dictyostelium cells and the closest relative of mammalian Ras proteins. We have generated null mutants in which expression of RasG is completely abolished. Unexpectedly, RasG- cells are able to grow at nearly wild-type rates. However, they exhibit defective cell movement and a wide range of defects in the control of the actin cytoskeleton, including a loss of cell polarity, absence of normal lamellipodia, formation of unusual small, punctate polymerized actin structures, and a large number of abnormally long filopodia. Despite their lack of polarity and abnormal cytoskeleton, mutant cells perform normal chemotaxis. However, rasG- cells are unable to perform normal cytokinesis, becoming multinucleate when grown in suspension culture. Taken together, these data suggest a principal role for RasG in coordination of cell movement and control of the cytoskeleton.
Collapse
Affiliation(s)
- R I Tuxworth
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | |
Collapse
|
117
|
Kitayama C, Sugimoto A, Yamamoto M. Type II myosin heavy chain encoded by the myo2 gene composes the contractile ring during cytokinesis in Schizosaccharomyces pombe. J Cell Biol 1997; 137:1309-19. [PMID: 9182664 PMCID: PMC2132538 DOI: 10.1083/jcb.137.6.1309] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We cloned the myo2 gene of Schizosaccharomyces pombe, which encodes a type II myosin heavy chain, by virtue of its ability to promote diploidization in fission yeast cells. The myo2 gene encodes 1,526 amino acids in a single open reading frame. Myo2p shows homology to the head domains and the coiledcoil tail of the conventional type II myosin heavy chain and carries putative binding sites for ATP and actin. It also carries the IQ motif, which is a presumed binding site for the myosin light chain. However, Myo2p apparently carries only one IQ motif, while its counterparts in other species have two. There are nine proline residues, which should break alpha-helix, in the COOH-terminal coiled-coil region of Myo2p. Thus, Myo2p is rather unusual as a type II myosin heavy chain. Disruption of myo2 inhibited cell proliferation. myo2Delta cells showed normal punctate distribution of interphase actin, but they produced irregular actin rings and septa and were impaired in cell separation. Overproduction of Myo2p was also lethal, apparently blocking actin relocation. Nuclear division proceeded without actin ring formation and cytokinesis in cells overexpressing Myo2p, giving rise to multinucleated cells with dumbbell morphology. Analysis using tagged Myo2p revealed that Myo2p colocalizes with actin in the contractile ring, suggesting that Myo2p is a component of the ring and responsible for its contraction. Furthermore, genetic evidence suggested that the acto-myosin system may interact with the Ras pathway, which regulates mating and the maintenance of cell morphology in S. pombe.
Collapse
Affiliation(s)
- C Kitayama
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113, Japan
| | | | | |
Collapse
|
118
|
Walker GR, Shuster CB, Burgess DR. Microtubule-entrained kinase activities associated with the cortical cytoskeleton during cytokinesis. J Cell Sci 1997; 110 ( Pt 12):1373-86. [PMID: 9217323 DOI: 10.1242/jcs.110.12.1373] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Research over the past few years has demonstrated the central role of protein phosphorylation in regulating mitosis and the cell cycle. However, little is known about how the mechanisms regulating the entry into mitosis contribute to the positional and temporal regulation of the actomyosin-based contractile ring formed during cytokinesis. Recent studies implicate p34cdc2 as a negative regulator of myosin II activity, suggesting a link between the mitotic cycle and cytokinesis. In an effort to study the relationship between protein phosphorylation and cytokinesis, we examined the in vivo and in vitro phosphorylation of actin-associated cortical cytoskeletal (CSK) proteins in an isolated model of the sea urchin egg cortex. Examination of cortices derived from eggs or zygotes labeled with 32P-orthophosphate reveals a number of cortex-associated phosphorylated proteins, including polypeptides of 20, 43 and 66 kDa. These three major phosphoproteins are also detected when isolated cortices are incubated with [32P]ATP in vitro, suggesting that the kinases that phosphorylate these substrates are also specifically associated with the cortex. The kinase activities in vivo and in vitro are stimulated by fertilization and display cell cycle-dependent activities. Gel autophosphorylation assays, kinase assays and immunoblot analysis reveal the presence of p34cdc2 as well as members of the mitogen-activated protein kinase family, whose activities in the CSK peak at cell division. Nocodazole, which inhibits microtubule formation and thus blocks cytokinesis, significantly delays the time of peak cortical protein phosphorylation as well as the peak in whole-cell histone H1 kinase activity. These results suggest that a key element regulating cortical contraction during cytokinesis is the timing of protein kinase activities associated with the cortical cytoskeleton that is in turn regulated by the mitotic apparatus.
Collapse
Affiliation(s)
- G R Walker
- Department of Biological Sciences, University of Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|
119
|
Schmidt S, Sohrmann M, Hofmann K, Woollard A, Simanis V. The Spg1p GTPase is an essential, dosage-dependent inducer of septum formation in Schizosaccharomyces pombe. Genes Dev 1997; 11:1519-34. [PMID: 9203579 DOI: 10.1101/gad.11.12.1519] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The spg1 gene (septum-promoting GTPase) was cloned as a multicopy suppressor of a dominant-negative mutant of the Cdc7p kinase. It encodes a small GTPase of the Ras superfamily. spg1 is an essential gene. Null or heat-sensitive alleles do not make a division septum, but growth, S-phase, and mitosis continue in the absence of cell division, producing elongated, multinucleate cells. Increased expression of Spg1p induces septum formation in G2, S-phase, and pre-Start G1-arrested cells. This requires the activity of Cdc7p kinase, but not p34(cdc2). Increased expression of Cdc7p bypasses the requirement for Spg1p. Spg1p and Cdc7p can be coimmunoprecipitated from cell extracts, and interact in the two-hybrid system. These data indicate that Spg1p is a key element in controlling the onset of septum formation in Schizosaccharomyces pombe, and that it acts through the Cdc7p kinase.
Collapse
Affiliation(s)
- S Schmidt
- Cell Cycle Control Laboratory, Swiss Institute for Experimental Cancer Research (ISREC), Epalinges
| | | | | | | | | |
Collapse
|
120
|
Larochelle DA, Vithalani KK, De Lozanne A. Role of Dictyostelium racE in cytokinesis: mutational analysis and localization studies by use of green fluorescent protein. Mol Biol Cell 1997; 8:935-44. [PMID: 9168476 PMCID: PMC276139 DOI: 10.1091/mbc.8.5.935] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The small GTPase racE is essential for cytokinesis in Dictyostelium but its precise role in cell division is not known. To determine the molecular mechanism of racE function, we undertook a mutational analysis of racE. The exogenous expression of either wild-type racE or a constitutively active V20racE mutant effectively rescues the cytokinesis deficiency of racE null cells. In contrast, a constitutively inactive N25racE mutant fails to rescue the cytokinesis deficiency. Thus, cytokinesis requires only the activation of racE by GTP and not the inactivation of racE by hydrolysis of GTP. To determine the spatial distribution of racE, we created a fusion protein with GFP at the amino terminus of racE. Remarkably, GFP-racE fusion protein was fully competent to rescue the phenotype of racE null cells and, therefore, must reside in the same location as native racE. We found that GFP-racE localized to the plasma membrane of the cell throughout the entire cell cycle. Furthermore, constitutively active and inactive GFP-racE fusion proteins also localized to the plasma membrane. We mapped the domain required for plasma membrane localization to the carboxyl-terminal 40 amino acids of racE. This domain, however, is not sufficient to confer racE function onto a closely related GTPase. Taken together, these results suggest that racE functions at the cell cortex but it is not involved in determining the timing or placement of the contractile ring.
Collapse
Affiliation(s)
- D A Larochelle
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
121
|
Chang F, Drubin D, Nurse P. cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J Cell Biol 1997; 137:169-82. [PMID: 9105045 PMCID: PMC2139860 DOI: 10.1083/jcb.137.1.169] [Citation(s) in RCA: 351] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/1996] [Revised: 02/14/1997] [Indexed: 02/04/2023] Open
Abstract
As in many other eukaryotic cells, cell division in fission yeast depends on the assembly of an actin ring that circumscribes the middle of the cell. Schizosaccharomyces pombe cdc12 is an essential gene necessary for actin ring assembly and septum formation. Here we show that cdc12p is a member of a family of proteins including Drosophila diaphanous, Saccharomyces cerevisiae BNI1, and S. pombe fus1, which are involved in cytokinesis or other actin-mediated processes. Using indirect immunofluorescence, we show that cdc12p is located in the cell division ring and not in other actin structures. When overexpressed, cdc12p is located at a medial spot in interphase that anticipates the future ring site. cdc12p localization is altered in actin ring mutants. cdc8 (tropomyosin homologue), cdc3 (profilin homologue), and cdc15 mutants exhibit no specific cdc12p staining during mitosis. cdc4 mutant cells exhibit a medial cortical cdc12p spot in place of a ring. mid1 mutant cells generally exhibit a cdc12p spot with a single cdc12p strand extending in a random direction. Based on these patterns, we present a model in which ring assembly originates from a single point on the cortex and in which a molecular pathway for the functions of cytokinesis proteins is suggested. Finally, we found that cdc12 and cdc3 mutants show a synthetic-lethal genetic interaction, and a proline-rich domain of cdc12p binds directly to profilin cdc3p in vitro, suggesting that one function of cdc12p in ring assembly is to bind profilin.
Collapse
Affiliation(s)
- F Chang
- Imperial Cancer Research Fund, London, United Kingdom.
| | | | | |
Collapse
|
122
|
Amberg DC, Zahner JE, Mulholland JW, Pringle JR, Botstein D. Aip3p/Bud6p, a yeast actin-interacting protein that is involved in morphogenesis and the selection of bipolar budding sites. Mol Biol Cell 1997; 8:729-53. [PMID: 9247651 PMCID: PMC276122 DOI: 10.1091/mbc.8.4.729] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A search for Saccharomyces cerevisiae proteins that interact with actin in the two-hybrid system and a screen for mutants that affect the bipolar budding pattern identified the same gene, AIP3/BUD6. This gene is not essential for mitotic growth but is necessary for normal morphogenesis. MATa/alpha daughter cells lacking Aip3p place their first buds normally at their distal poles but choose random sites for budding in subsequent cell cycles. This suggests that actin and associated proteins are involved in placing the bipolar positional marker at the division site but not at the distal tip of the daughter cell. In addition, although aip3 mutant cells are not obviously defective in the initial polarization of the cytoskeleton at the time of bud emergence, they appear to lose cytoskeletal polarity as the bud enlarges, resulting in the formation of cells that are larger and rounder than normal. aip3 mutant cells also show inefficient nuclear migration and nuclear division, defects in the organization of the secretory system, and abnormal septation, all defects that presumably reflect the involvement of Aip3p in the organization and/or function of the actin cytoskeleton. The sequence of Aip3p is novel but contains a predicted coiled-coil domain near its C terminus that may mediate the observed homo-oligomerization of the protein. Aip3p shows a distinctive localization pattern that correlates well with its likely sites of action: it appears at the presumptive bud site prior to bud emergence, remains near the tips of small bund, and forms a ring (or pair of rings) in the mother-bud neck that is detectable early in the cell cycle but becomes more prominent prior to cytokinesis. Surprisingly, the localization of Aip3p does not appear to require either polarized actin or the septin proteins of the neck filaments.
Collapse
Affiliation(s)
- D C Amberg
- Department of Genetics, Stanford University School of Medicine, California 94305-5120, USA
| | | | | | | | | |
Collapse
|
123
|
Eckley DM, Ainsztein AM, Mackay AM, Goldberg IG, Earnshaw WC. Chromosomal proteins and cytokinesis: patterns of cleavage furrow formation and inner centromere protein positioning in mitotic heterokaryons and mid-anaphase cells. J Cell Biol 1997; 136:1169-83. [PMID: 9087435 PMCID: PMC2132506 DOI: 10.1083/jcb.136.6.1169] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/1996] [Revised: 01/08/1997] [Indexed: 02/04/2023] Open
Abstract
After the separation of sister chromatids in anaphase, it is essential that the cell position a cleavage furrow so that it partitions the chromatids into two daughter cells of roughly equal size. The mechanism by which cells position this cleavage furrow remains unknown, although the best current model is that furrows always assemble midway between asters. We used micromanipulation of human cultured cells to produce mitotic heterokaryons with two spindles fused in a V conformation. The majority (15/19) of these cells cleaved along a single plane that transected the two arms of the V at the position where the metaphase plate had been, a result at odds with current views of furrow positioning. However, four cells did form an additional ectopic furrow between the spindle poles at the open end of the V, consistent with the established view. To begin to address the mechanism of furrow assembly, we have begun a detailed study of the properties of the chromosome passenger inner centromere protein (INCENP) in anaphase and telophase cells. We found that INCENP is a very early component of the cleavage furrow, accumulating at the equatorial cortex before any noticeable cortical shape change and before any local accumulation of myosin heavy chain. In mitotic heterokaryons, INCENP was detected in association with spindle midzone microtubules beneath sites of furrowing and was not detected when furrows were absent. A functional role for INCENP in cytokinesis was suggested in experiments where a nearly full-length INCENP was tethered to the centromere. Many cells expressing the chimeric INCENP failed to complete cytokinesis and entered the next cell cycle with daughter cells connected by a large intercellular bridge with a prominent midbody. Together, these results suggest that INCENP has a role in either the assembly or function of the cleavage furrow.
Collapse
Affiliation(s)
- D M Eckley
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
124
|
Theriot JA. Accelerating on a treadmill: ADF/cofilin promotes rapid actin filament turnover in the dynamic cytoskeleton. J Biophys Biochem Cytol 1997; 136:1165-8. [PMID: 9087434 PMCID: PMC2132515 DOI: 10.1083/jcb.136.6.1165] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- J A Theriot
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02160, USA.
| |
Collapse
|
125
|
Burton K, Taylor DL. Traction forces of cytokinesis measured with optically modified elastic substrata. Nature 1997; 385:450-4. [PMID: 9009194 DOI: 10.1038/385450a0] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Animal cells dividing in culture undergo a dramatic sequence of morphological changes, characterized by cytoskeletal disassembly as cells round up, redistribution of actin, myosins and other cytoplasmic and surface molecules into the cleavage furrow, and respreading, before daughter cells finally separate at the mid-body. Knowledge of forces governing these movements is critical to understanding their mechanisms, including whether formation of the cleavage furrow results from increased force generation at the equator or relaxation at the poles, and whether traction force subsequently mediates cytofission of the intercellular bridge. We have quantitatively mapped traction forces in dividing cells, by extending the silicone-rubber substratum method to detect forces of nanonewtons to micronewtons. We used a new silicone polymer to fabricate substrata whose compliance can be adjusted precisely by ultraviolet irradiation. We show that traction force appears locally at the furrow in the absence of relaxation at the poles during cleavage. Force also rises as connected daughter cells respread and attempt to separate, suggesting that tension contributes to the severing of the intercellular bridge when cytokinesis is completed.
Collapse
Affiliation(s)
- K Burton
- Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| | | |
Collapse
|
126
|
Neujahr R, Heizer C, Gerisch G. Myosin II-independent processes in mitotic cells of Dictyostelium discoideum: redistribution of the nuclei, re-arrangement of the actin system and formation of the cleavage furrow. J Cell Sci 1997; 110 ( Pt 2):123-37. [PMID: 9044043 DOI: 10.1242/jcs.110.2.123] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitosis was studied in multinucleated and mononucleated mutant cells of Dictyostelium discoideum that lack myosin II (Manstein et al. (1989) EMBO J. 8, 923–932). Multinucleated cells were produced by culture in suspension, mononucleated cells were enriched by growth on a solid surface (DeLozanne and Spudich (1987) Science 236, 1086–1091). The multinucleated cells disclosed interactions of mitotic complexes with the cell cortex that were not apparent in normal, mononucleated cells. During the anaphase stage, entire mitotic complexes consisting of spindle, microtubule asters, and separated sets of chromosomes were translocated to the periphery of the cells. These complexes were appended at a distance of about 3 microns from the cell surface, in a way that the spindle became orientated in parallel to the surface. Subsequently, lobes of the cell surface were formed around the asters of microtubules. These lobes were covered with tapered protrusions rich in coronin, an actin associated protein that typically accumulates in dynamic cell-surface projections (DeHostos et al. (1991) EMBO J. 10, 4097–4104). During their growth on a solid surface, mononucleated myosin II-null cells passed through the mitotic cleavage stages with a speed comparable to wild-type cells. Cytokinesis as linked to mitosis is distinguishable by several parameters from traction mediated cytofission, which results in the pinching off of pieces of a multinucleated cell in the interphase. The possibility is discussed that cells can cleave during mitosis without forming a contractile ring at the site of the cleavage furrow.
Collapse
Affiliation(s)
- R Neujahr
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | |
Collapse
|
127
|
|
128
|
Gavin RH. Microtubule-microfilament synergy in the cytoskeleton. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 173:207-42. [PMID: 9127954 DOI: 10.1016/s0074-7696(08)62478-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This review describes examples of structural and functional synergy of the microtubule and actin filament cytoskeleton. An analysis of basal body (centriole)-associated fibrillar networks includes studies of ciliated epithelium, neurosensory epithelium, centrosomes, and ciliated protozoa. Microtubule and actin filament interactions in cell division and development are illustrated by centrosome motility, cleavage furrow positioning, centriole migration, nuclear migration, dynamics in the phragmoplast, growth cone motility, syncytial organization, and ring canals. Model systems currently used for studies on organelle transport are described in relation to mitochondrial transport in axons and vesicular transport in polarized epithelium. Evidence that both anterograde and retrograde motors are associated with one organelle is also discussed. The final section reviews proteins that bind both microtubules and actin filaments and are possible regulators of microtubule-microfilament interactions. Regulatory roles for posttranslational modifications, microtubule and microfilament dynamics, and multisubunit complexes are considered.
Collapse
Affiliation(s)
- R H Gavin
- Department of Biology, Brooklyn College, City University of New York 11210, USA
| |
Collapse
|
129
|
Wong GK, Allen PG, Begg DA. Dynamics of filamentous actin organization in the sea urchin egg cortex during early cleavage divisions: implications for the mechanism of cytokinesis. CELL MOTILITY AND THE CYTOSKELETON 1997; 36:30-42. [PMID: 8986375 DOI: 10.1002/(sici)1097-0169(1997)36:1<30::aid-cm3>3.0.co;2-l] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have used confocal laser scanning microscopy in conjunction with BODIPY-phallacidin staining of filamentous actin to investigate changes in the quantity and organization of cortical actin during the first two cell cycles following fertilization in eggs of the sea urchin Strongylocentrotus purpuratus. Quantification of fluorescent phallacidin staining reveals that the amount of filamentous actin (F-actin) in the cortex undergoes cyclical increases and decreases during early cleavage divisions, peaking near the beginning of the cell cycle and decreasing to a minimum at cytokinesis. Changes in the content of cortical F-actin are accompanied by the growth and disappearance of rootlet-like bundles of actin filaments which extend from the bases of microvilli that cover the surface of the egg. Actin rootlets reach their maximum degree of development by 20 min postfertilization, and then gradually decrease in number and length over the next 40 min. Small actin rootlets persist until cleavage, disappear during cytokinesis, and reform following division. The formation of actin rootlets requires cytoplasmic alkalization and is inhibited by cytochalasin D. Cytochalasin D washout experiments demonstrate that assembly of the cortical actin cytoskeleton can be blocked until 5 min before the onset of cleavage and still allow normal cytokinesis. These results illustrate the dynamic nature of cortical actin organization during early development and demonstrate that cytokinesis occurs at the point of minimum cortical F-actin content. They further demonstrate that cytokinesis can occur in embryos in which the normal developmental sequence of changes in cortical actin organization has been blocked by treatment with cytochalasin D, suggesting that these changes do not function in the establishment of the contractile apparatus for cytokinesis, but rather serve other developmental functions. Cell Motil. Cytoskeleton 36:30-42, 1997.
Collapse
Affiliation(s)
- G K Wong
- Department of Anatomy and Cell Biology, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
130
|
Lin JJ, Warren KS, Wamboldt DD, Wang T, Lin JL. Tropomyosin isoforms in nonmuscle cells. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 170:1-38. [PMID: 9002235 DOI: 10.1016/s0074-7696(08)61619-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vertebrate nonmuscle cells, such as human and rat fibroblasts, express multiple isoforms of tropomyosin, which are generated from four different genes and a combination of alternative promoter activities and alternative splicing. The amino acid variability among these isoforms is primarily restricted to three alternatively spliced exon regions; an amino-terminal region, an internal exon, and a carboxyl-terminal exon. Recent evidence reveals that these variable exon regions encode amino acid sequences that may dictate isoform-specific functions. The differential expression of tropomyosin isoforms found in cell transformation and cell differentiation, as well as the differential localization of tropomyosin isoforms in some types of culture cells and developing neurons suggest a differential isoform function in vivo. Tropomyosin in striated muscle works together with the troponin complex to regulate muscle contraction in a Ca(2+)-dependent fashion. Both in vitro and in vivo evidence suggest that multiple isoforms of tropomyosin in nonmuscle cells may be required for regulating actin filament stability, intracellular granule movement, cell shape determination, and cytokinesis. Tropomyosin-binding proteins such as caldesmon, tropomodulin, and other unidentified proteins may be required for some of these functions. Strong evidence for the distinct functions carried out by different tropomyosin isoforms has been generated from genetic analysis of yeast and Drosophila tropomyosin mutants.
Collapse
Affiliation(s)
- J J Lin
- Department of Biological Sciences, University of Iowa, Iowa City 52242-1324, USA
| | | | | | | | | |
Collapse
|
131
|
WOLF KLAUSWERNER. Centrosome structure is very similar in eupyrene and apyrene spermatocytes ofEphestia kuehniella(Pyralidae, Lepidoptera, Insecta). INVERTEBR REPROD DEV 1997. [DOI: 10.1080/07924259.1997.9672561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
132
|
|
133
|
Emoto K, Kobayashi T, Yamaji A, Aizawa H, Yahara I, Inoue K, Umeda M. Redistribution of phosphatidylethanolamine at the cleavage furrow of dividing cells during cytokinesis. Proc Natl Acad Sci U S A 1996; 93:12867-72. [PMID: 8917511 PMCID: PMC24012 DOI: 10.1073/pnas.93.23.12867] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1996] [Accepted: 08/26/1996] [Indexed: 02/03/2023] Open
Abstract
Ro09-0198 is a tetracyclic polypeptide of 19 amino acids that recognizes strictly the structure of phosphatidylethanolamine (PE) and forms a tight equimolar complex with PE on biological membranes. Using the cyclic peptide coupled with fluorescence-labeled streptavidin, we have analyzed the cell surface localization of PE in dividing Chinese hamster ovary cells. We found that PE was exposed on the cell surface specifically at the cleavage furrow during the late telophase of cytokinesis. PE was exposed on the cell surface only during the late telophase and no alteration in the distribution of the plasma membrane-bound cyclic peptide was observed during the cytokinesis, suggesting that the surface exposure of PE reflects the enhanced scrambling of PE at the cleavage furrow. Furthermore, cell surface immobilization of PE induced by adding the cyclic peptide coupled with streptavidin to prometaphase cells effectively blocked the cytokinesis at late telophase. The peptide-streptavidin complex treatment had no effect on furrowing, rearrangement of microtubules, and nuclear reconstitution, but specifically inhibited both actin filament disassembly at the cleavage furrow and subsequent membrane fusion. These results suggest that the redistribution of the plasma membrane phospholipids is a crucial step for cytokinesis and the cell surface PE may play a pivotal role in mediating a coordinate movement between the contractile ring and plasma membrane to achieve successful cell division.
Collapse
Affiliation(s)
- K Emoto
- Department of Inflammation Research, Tokyo Metropolitan Institute of Medical Science (RINSHOKEN), Japan
| | | | | | | | | | | | | |
Collapse
|
134
|
Wheatley SP, Wang Y. Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J Cell Biol 1996; 135:981-9. [PMID: 8922381 PMCID: PMC2133397 DOI: 10.1083/jcb.135.4.981] [Citation(s) in RCA: 173] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The current model of cytokinesis proposes that spindle poles and associated microtubules determine the cleavage plane, and, once the signal has been delivered to the cortex, the entire mitotic apparatus can be removed without affecting cell division. While supported by compelling data from Echinoderm embryos, recent observations suggest that the model may not be universally applicable. In this study, we have examined the relationship(s) among microtubules, chromosomes, and cleavage activity in living normal rat kidney (NRK) cells with multipolar mitotic figures. We found that cleavage activity correlated with the distribution of midzone microtubule bundles and Telophase Disc 60 protein (TD60) rather than the position of spindle poles. In addition, reduction of midzone microtubules near the cortex, by either nocodazole treatment or spontaneous reorganization in tripolar cells, caused inhibition or regression of furrowing. These results demonstrate that continuous interaction between midzone microtubule bundles and the cortex is required for successful cleavage in tissue culture cells.
Collapse
Affiliation(s)
- S P Wheatley
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | |
Collapse
|
135
|
Sohrmann M, Fankhauser C, Brodbeck C, Simanis V. The dmf1/mid1 gene is essential for correct positioning of the division septum in fission yeast. Genes Dev 1996; 10:2707-19. [PMID: 8946912 DOI: 10.1101/gad.10.21.2707] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Little is known about the mechanisms that establish the position of the division plane in eukaryotic cells. Wild-type fission yeast cells divide by forming a septum in the middle of the cell at the end of mitosis. Dmf1 mutants complete mitosis and initiate septum formation, but the septa that form are positioned at random locations and angles in the cell, rather than in the middle. We have cloned the dmf1 gene as a suppressor of the cdc7-24 mutant. The dmf1 mutant is allelic with mid1. The gene encodes a novel protein containing a putative nuclear localization signal, and a carboxy-terminal PH domain. In wild-type cells, Dmf1p is nuclear during interphase, and relocates to form a medial ring at the cell cortex coincident with the onset of mitosis. This relocalization occurs before formation of the actin ring and is associated with increased phosphorylation of Dmf1p. The Dmf1p ring can be formed in the absence of an actin ring, but depends on some of the genes required for actin ring formation. When the septum is completed and the cells separate, Dmf1p staining is once again nuclear. These data implicate Dmf1p as an important element in assuring correct placement of the division septum in Schizosaccharomyces pombe cells.
Collapse
Affiliation(s)
- M Sohrmann
- Swiss Institute for Experimental Cancer Research, S/Lausanne, Switzerland
| | | | | | | |
Collapse
|
136
|
Smith JL, Silveira LA, Spudich JA. Myosin light chain kinase (MLCK) gene disruption in Dictyostelium: a role for MLCK-A in cytokinesis and evidence for multiple MLCKs. Proc Natl Acad Sci U S A 1996; 93:12321-6. [PMID: 8901579 PMCID: PMC37989 DOI: 10.1073/pnas.93.22.12321] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have created a strain of Dictyostelium that is deficient for the Ca2+/calmodulin-independent MLCK-A. This strain undergoes cytokinesis less efficiently than wild type, which results in an increased frequency of multinucleate cells when grown in suspension. The MLCK-A-cells are able, however, to undergo development and to cap crosslinked surface receptors, processes that require myosin heavy chain. Phosphorylated regulatory light chain (RLC) is still present in MLCK-A-cells, indicating that Dictyostelium has one or more additional protein kinases capable of phosphorylating RLC. Concanavalin A treatment was found to induce phosphorylation of essentially all of the RLC in wild-type cells, but RLC phosphorylation levels in MLCK-A-cells are unaffected by concanavalin A. Thus MLCK-A is regulated separately from the other MLCK(s) in the cell.
Collapse
Affiliation(s)
- J L Smith
- Department of Biochemistry, Beckman Center, Stanford University Medical Center, CA 94305-5307, USA
| | | | | |
Collapse
|
137
|
Fishkind DJ, Silverman JD, Wang YL. Function of spindle microtubules in directing cortical movement and actin filament organization in dividing cultured cells. J Cell Sci 1996; 109 ( Pt 8):2041-51. [PMID: 8856500 DOI: 10.1242/jcs.109.8.2041] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mitotic spindle has long been recognized to play an essential role in determining the position of the cleavage furrow during cell division, however little is known about the mechanisms involved in this process. One attractive hypothesis is that signals from the spindle may function to induce reorganization of cortical structures and transport of actin filaments to the equator during cytokinesis. While an important idea, few experiments have directly tested this model. In the present study, we have used a variety of experimental approaches to identify microtubule-dependent effects on key cortical events during normal cell cleavage, including cortical flow, reorientation of actin filaments, and formation of the contractile apparatus. Single-particle tracking experiments showed that the microtubule disrupting drug nocodazole induces an inhibition of the movements of cell surface receptors following anaphase onset, while the microtubule stabilizing drug taxol causes profound changes in the overall pattern of receptor movements. These effects were accompanied by a related set of changes in the organization of the actin cytoskeleton. In nocodazole-treated cells, the three-dimensional organization of cortical actin filaments appeared less ordered than in controls. Measurements with fluorescence-detected linear dichroism indicated a decrease in the alignment of filaments along the spindle axis. In contrast, actin filaments in taxol-treated cells showed an increased alignment along the equator on both the ventral and dorsal cortical surfaces, mirroring the redistribution pattern of surface receptors. Together, these experiments show that spindle microtubules are involved in directing bipolar flow of surface receptors and reorganization of actin filaments during cell division, thus acting as a stimulus for positioning cortical cytoskeletal components and organizing the contractile apparatus of dividing tissue culture cells.
Collapse
Affiliation(s)
- D J Fishkind
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, MA 01545, USA
| | | | | |
Collapse
|
138
|
DeBiasio RL, LaRocca GM, Post PL, Taylor DL. Myosin II transport, organization, and phosphorylation: evidence for cortical flow/solation-contraction coupling during cytokinesis and cell locomotion. Mol Biol Cell 1996; 7:1259-82. [PMID: 8856669 PMCID: PMC275977 DOI: 10.1091/mbc.7.8.1259] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanism of cytokinesis has been difficult to define because of the short duration and the temporal-spatial dynamics involved in the formation, activation, force production, and disappearance of the cleavage furrow. We have investigated the structural and chemical dynamics of myosin II in living Swiss 3T3 cells from prometaphase through the separation and migration of daughter cells. The structural and chemical dynamics of myosin II have been defined using the semiautomated, multimode light microscope, together with a fluorescent analogue of myosin II and a fluorescent biosensor of myosin II regulatory light chain (RLC) phosphorylation at serine 19. The correlation of image data from live cells using different modes of light microscopy allowed interpretations not possible from single-mode investigations. Myosin II transported toward the equatorial plane from adjacent regions, forming three-dimensional fibers that spanned the volume of the equator during anaphase and telophase. A global phosphorylation of myosin II at serine 19 of the RLC was initiated at anaphase when cortical myosin II transport started. The phosphorylation of myosin II remained high near the equatorial plane through telophase and into cytokinesis, whereas the phosphorylation of myosin II at serine 19 of the RLC decreased at the poles. The timing and pattern of phosphorylation was the same as the shortening of myosin II-based fibers in the cleavage furrow. Myosin II-based fibers shortened and transported out of the cleavage furrow into the tails of the two daughter cells late in cytokinesis. The patterns of myosin II transport, phosphorylation, and shortening of fibers in the migrating daughter cells were similar to that previously defined for cells migrating in a wound in vitro. The temporal-spatial patterns and dynamics of myosin II transport, phosphorylation at serine 19 of the RLC, and the shortening and disappearance of myosin II-based fibers support the proposal that a combination of the cortical flow hypothesis and the solation-contraction coupling hypothesis explain key aspects of cytokinesis and polarized cell locomotion.
Collapse
Affiliation(s)
- R L DeBiasio
- Division of Molecular Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
139
|
Leoncini L, Spina D, Close P, Megha T, Pacenti L, Tosi P, Pileri S, De Vivo A, Kraft R, Laissue JA, Cottier H. Abortive mitoses and nuclear DNA fragmentation in CD30+ large cells of Hodgkin's disease. Leuk Lymphoma 1996; 22:119-24, follow. 186, color plate XI. [PMID: 8724538 DOI: 10.3109/10428199609051738] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
This study was undertaken to better comprehend the reasons for the scarcity of Hodgkin and Reed-Sternberg (H-RS) cells in Hodgkin's disease (HD) despite their expression of "proliferation-associated antigens". To this end, we assessed the relative frequency of mitotic phases and nuclear damage (detected by in situ end-labeling of DNA strand breaks) in CD30+ large cells of nodular sclerosis and mixed cellularity HD. Our results show that a) most CD30+ cells in HD exhibit abortive mitoses, with a highly significant arrest at the metaphase-ana/telophase transition, and b) many of these elements, i.e. mainly H-RS cells, show fragmentation of nuclear DNA, suggesting imminent or actual death. Percentages of CD30+ cells that entered mitosis and those with DNA strand breaks were of a similar order of magnitude and correlated significantly in a linear fashion. These findings are consistent with the concept that cell deletion is the major cause of the paucity of H-RS cells in HD.
Collapse
Affiliation(s)
- L Leoncini
- Institute of Pathologic Anatomy and Histology, University of Siena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Abe H, Obinata T, Minamide LS, Bamburg JR. Xenopus laevis actin-depolymerizing factor/cofilin: a phosphorylation-regulated protein essential for development. J Biophys Biochem Cytol 1996; 132:871-85. [PMID: 8603919 PMCID: PMC2120733 DOI: 10.1083/jcb.132.5.871] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Two cDNAs, isolated from a Xenopus laevis embryonic library, encode proteins of 168 amino acids, both of which are 77% identical to chick cofilin and 66% identical to chick actin-depolymerizing factor (ADF), two structurally and functionally related proteins. These Xenopus ADF/cofilins (XADs) differ from each other in 12 residues spread throughout the sequence but do not differ in charge. Purified GST-fusion proteins have pH-dependent actin-depolymerizing and F-actin-binding activities similar to chick ADF and cofilin. Similarities in the developmental and tissue specific expression, embryonic localization, and in the cDNA sequence of the noncoding regions, suggest that the two XACs arise from allelic variants of the pseudotetraploid X. laevis. Immunofluorescence localization of XAC in oocyte sections with an XAC-specific monoclonal antibody shows it to be diffuse in the cortical cytoplasm. After fertilization, increased immunostaining is observed in two regions: along the membrane, particularly that of the vegetal hemisphere, and at the interface between the cortical and animal hemisphere cytoplasm. The cleavage furrow and the mid-body structure are stained at the end of first cleavage. Neuroectoderm derived tissues, notochord, somites, and epidermis stain heavily either continuously or transiently from stages 18-34. A phosphorylated form of XAC (pXAC) was identified by 2D Western blotting, and it is the only species found in oocytes. Dephosphorylation of >60% of the pXAC occurs within 30 min after fertilization. Injection of one blastomere at the 2 cell stage, either with constitutively active XAC or with an XAC inhibitory antibody, blocked cleavage of only the injected blastomere in a concentration-dependent manner without inhibiting nuclear division. The cleavage furrow of eggs injected with constitutively active XAC completely regressed. Blastomeres injected with neutralized antibody developed normally. These results suggest that XAC is necessary for cytokinesis and that its activity must be properly regulated for cleavage to occur.
Collapse
Affiliation(s)
- H Abe
- Department of Biology, Chiba University, Japan
| | | | | | | |
Collapse
|
141
|
Abstract
During the past two years, major advances have been made in our understanding of the role of motor proteins in chromosome-microtubule interactions in the spindle. The discovery of kinesin-like proteins (KLPs) associated with chromosome arms has shed some light on the mechanism of chromosome congression and the establishment of spindle bipolarity. Recent results also indicate that kinetochore KLPs may tether the ends of growing and shrinking microtubules to kinetochores during chromosome movements. Finally, new data indicate that phosphorylation of KLPs may be one of the mechanisms by which they are targeted to specific spindle domains.
Collapse
Affiliation(s)
- I Vernos
- Cell Biology Programme, Heidelberg, Germany.
| | | |
Collapse
|
142
|
Cao LG, Wang YL. Signals from the spindle midzone are required for the stimulation of cytokinesis in cultured epithelial cells. Mol Biol Cell 1996; 7:225-32. [PMID: 8688554 PMCID: PMC275875 DOI: 10.1091/mbc.7.2.225] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The interaction between the mitotic spindle and the cellular cortex is thought to play a critical role in stimulating cell cleavage. However, little is understood about the nature of such interactions, particularly in tissue culture cells. We have investigated the role of the spindle midzone in signaling cytokinesis by creating a barrier in cultured epithelial cells with a blunted needle, to block signals that may emanate from this region. When the barrier was created during metaphase or early anaphase, cleavage took place only on the sides of the cortex facing the mitotic spindle. Microtubules on the cleaving side showed organization typical of that in normal dividing cells. On the noncleaving side, most microtubules passed from one side of the equator into the other without any apparent organization, and actin filaments failed to organize in the equatorial region. When the barrier was created after the first minute of anaphase, cells showed successful cytokinesis, with normal organization of microtubules and actin filaments on both sides of the barrier. Our study suggests that transient signals from the midzone of early anaphase spindles are required for equatorial contraction in cultured cells and that such signaling may involve the organization of microtubules near the equator.
Collapse
Affiliation(s)
- L G Cao
- Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA
| | | |
Collapse
|
143
|
Longtine MS, DeMarini DJ, Valencik ML, Al-Awar OS, Fares H, De Virgilio C, Pringle JR. The septins: roles in cytokinesis and other processes. Curr Opin Cell Biol 1996; 8:106-19. [PMID: 8791410 DOI: 10.1016/s0955-0674(96)80054-8] [Citation(s) in RCA: 389] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The septins are a novel family of proteins that were first recognized in yeast as proteins associated with the neck filaments. Recent work has shown that septins are also present in other fungi, insects, and vertebrates. Despite the apparent differences in modes of cytokinesis amongst species, septins appear to be essential for this process in both fungal and animal cells. The septins also appear to be involved in various other aspects of the organization of the cell surface.
Collapse
Affiliation(s)
- M S Longtine
- Department of Biology, University of North Carolina, Chapel Hill 27599-3280, USA
| | | | | | | | | | | | | |
Collapse
|
144
|
Lukowitz W, Mayer U, Jürgens G. Cytokinesis in the Arabidopsis embryo involves the syntaxin-related KNOLLE gene product. Cell 1996; 84:61-71. [PMID: 8548827 DOI: 10.1016/s0092-8674(00)80993-9] [Citation(s) in RCA: 411] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The embryo of the flowering plant Arabidopsis develops by a regular pattern of cell divisions and cell shape changes. Mutations in the KNOLLE (KN) gene affect the rate and plane of cell divisions as well as cell morphology, resulting in mutant seedlings with a disturbed radial organization of tissue layers. At the cellular level, mutant embryos are characterized by incomplete cross walls and enlarged cells with polyploid nuclei. The KN gene was isolated by positional cloning. The predicted KN protein has similarity to syntaxins, a protein family involved in vesicular trafficking. During embryogenesis, KN transcripts are detected in patches of single cells or small cell groups. Our results suggest a function for KN in cytokinesis.
Collapse
Affiliation(s)
- W Lukowitz
- Institut für Genetik und Mikrobiologie, Lehrstuhl für Genetik, Universität München, Federal Republic of Germany
| | | | | |
Collapse
|
145
|
Chang F, Woollard A, Nurse P. Isolation and characterization of fission yeast mutants defective in the assembly and placement of the contractile actin ring. J Cell Sci 1996; 109 ( Pt 1):131-42. [PMID: 8834798 DOI: 10.1242/jcs.109.1.131] [Citation(s) in RCA: 253] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fission yeast cells divide by medial cleavage using an actin-based contractile ring. We have conducted a genetic screen for temperature-sensitive mutants defective in the assembly and placement of this actin ring. Six genes necessary for actin ring formation and one gene necessary for placement of the actin ring have now been identified. The genes can be further organized into different phenotypic groups, suggesting that the gene products may have different functions in actin ring formation. Mutants of cdc3 and cdc8, which encode profilin and tropomyosin respectively, display disorganized actin patches in all cells. cdc12 and cdc15 mutants display disorganized actin patches during mitosis, but normal interphase actin patterns. cdc4 and rng2 mutants display disorganized actin cables during mitosis, but normal interphase actin patterns. In mid1 mutants, the actin ring and septum are positioned at random locations and angles on the cell surface, although the nucleus is positioned normally, indicating that the mid1 gene product is required to couple the division site to the position of the nucleus. mid1 mutant cells may reveal a new cell cycle checkpoint in telophase that coordinates cell division and the proper distribution of nuclei. The actin ring forms medially in a beta-tubulin mutant, showing that actin ring formation and placement are not dependent on the mitotic spindle.
Collapse
Affiliation(s)
- F Chang
- Imperial Cancer Research Fund, London, UK
| | | | | |
Collapse
|
146
|
Rosania GR, Swanson JA. Microtubules can modulate pseudopod activity from a distance inside macrophages. CELL MOTILITY AND THE CYTOSKELETON 1996; 34:230-45. [PMID: 8816289 DOI: 10.1002/(sici)1097-0169(1996)34:3<230::aid-cm6>3.0.co;2-d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microtubules are thought to influence cell shape as structural components of an integrated cytoskeletal matrix. Here we show that microtubules can affect the dynamics of macrophage pseudopodia without being integrated into their structure. Macrophages landing on glass surfaces spread within 15 min into flattened circular cells with radial symmetry, and the radial distribution of microtubules reflected this symmetry. Depolymerization of microtubules using nocodazole, colchicine, or vinblastine did not inhibit macrophage spreading or the early establishment of radial symmetry. Shortly after spreading, however, macrophages without microtubules gradually became asymmetric, assuming irregular, lobed profiles. The asymmetry resulted from exaggerated protrusion and retraction of pseudopodia, with net retraction overall. This loss of radial symmetry could be inhibited by treatment of initially spread cells with cytochalasin D, indicating that the change in cell shape was mediated by the actin cytoskeleton. Intact microtubules suppressed the exaggerated pseudopod movements, even when they were separated by a distance from the cell margin. In cells treated with taxol, microtubules remained clustered near the cell center after spreading, yet the dynamics of pseudopodia at the cell margin were reduced and cells maintained a circular profile. Similarly, in cells treated with low concentrations of nocodazole, a much reduced microtubule cytoskeleton nonetheless suppressed pseudopod dynamics. We propose that microtubules act to stabilize cell shape at a distance from the cell edge via a biochemical intermediate that affects the structure or function of the microfilament system.
Collapse
Affiliation(s)
- G R Rosania
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
147
|
Kaczanowska J, Iftode F, Jeanmaire-Wolf R, Clérot JC, Kiersnowska M, Adoutte A. Tensegrity model of pattern formation during cytokinesis of a ciliate,Paramecium: Effects of an inhibitor of phosphorylation, 6-dimethylaminopurine, and of adenine. ACTA ACUST UNITED AC 1995. [DOI: 10.1002/jez.1402730606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
148
|
Gunsalus KC, Bonaccorsi S, Williams E, Verni F, Gatti M, Goldberg ML. Mutations in twinstar, a Drosophila gene encoding a cofilin/ADF homologue, result in defects in centrosome migration and cytokinesis. J Cell Biol 1995; 131:1243-59. [PMID: 8522587 PMCID: PMC2120640 DOI: 10.1083/jcb.131.5.1243] [Citation(s) in RCA: 245] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We describe the phenotypic and molecular characterization of twinstar (tsr), an essential gene in Drosophila melanogaster. Two P-element induced alleles of tsr (tsr1 and tsr2) result in late larval or pupal lethality. Cytological examination of actively dividing tissues in these mutants reveals defects in cytokinesis in both mitotic (larval neuroblast) and meiotic (larval testis) cells. In addition, mutant spermatocytes show defects in aster migration and separation during prophase/prometaphase of both meiotic divisions. We have cloned the gene affected by these mutations and shown that it codes for a 17-kD protein in the cofilin/ADF family of small actin severing proteins. A cDNA for this gene has previously been described by Edwards et al. (1994). Northern analysis shows that the tsr gene is expressed throughout development, and that the tsr1 and tsr2 alleles are hypomorphs that accumulate decreased levels of tsr mRNA. These findings prompted us to examine actin behavior during male meiosis to visualize the effects of decreased twinstar protein activity on actin dynamics in vivo. Strikingly, both mutants exhibit abnormal accumulations of F-actin. Large actin aggregates are seen in association with centrosomes in mature primary spermatocytes. Later, during ana/telophase of both meiotic divisions, aberrantly large and misshaped structures appear at the site of contractile ring formation and fail to disassemble at the end of telophase, in contrast with wild-type. We discuss these results in terms of possible roles of the actin-based cytoskeleton in centrosome movement and in cytokinesis.
Collapse
Affiliation(s)
- K C Gunsalus
- Section of Genetics and Development, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
149
|
Affiliation(s)
- K G Miller
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | |
Collapse
|
150
|
Fankhauser C, Reymond A, Cerutti L, Utzig S, Hofmann K, Simanis V. The S. pombe cdc15 gene is a key element in the reorganization of F-actin at mitosis. Cell 1995; 82:435-44. [PMID: 7634333 DOI: 10.1016/0092-8674(95)90432-8] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The S. pombe cdc15 gene is essential for cell division. cdc15ts mutants do not form a septum, but growth and nuclear division continue, leading to formation of multinucleate cells. The earliest step in septum formation and cytokinesis, rearrangement of actin to the center of the cell, is associated with appearance of hypophosphorylated cdc15p and formation of a cdc15p ring, which colocalizes with actin. Loss of cdc15p function impairs formation of the actin ring. The abundance of cdc15 mRNA varies through the cell division cycle, peaking in early mitosis before septation. Expression of cdc15 in G2-arrested cells induces actin rearrangement to the center of the cell. These data implicate cdc15p as a key element in mediating the cytoskeletal rearrangements required for cytokinesis.
Collapse
Affiliation(s)
- C Fankhauser
- Swiss Institute for Experimental Cancer Research
| | | | | | | | | | | |
Collapse
|