101
|
Luus C, Hanani R, Reynolds A, Kassiou M. The development of PET radioligands for imaging the translocator protein (18 kDa): What have we learned? J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
102
|
Stevenson L, Tavares AAS, Brunet A, McGonagle FI, Dewar D, Pimlott SL, Sutherland A. New iodinated quinoline-2-carboxamides for SPECT imaging of the translocator protein. Bioorg Med Chem Lett 2009; 20:954-7. [PMID: 20045646 DOI: 10.1016/j.bmcl.2009.12.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/17/2022]
Abstract
With the aim of developing new SPECT imaging agents for the translocator protein (TSPO), a small library of iodinated quinoline-2-carboxamides have been prepared and tested for binding affinity with TSPO. N,N-Diethyl-3-iodomethyl-4-phenylquinoline-2-carboxamide was found to have excellent affinity (K(i) 12.0 nM), comparable to that of the widely used TSPO imaging agent PK11195.
Collapse
Affiliation(s)
- Louise Stevenson
- WestCHEM, Department of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
103
|
Yanamoto K, Yamasaki T, Kumata K, Yui J, Odawara C, Kawamura K, Hatori A, Inoue O, Yamaguchi M, Suzuki K, Zhang MR. Evaluation of N-benzyl-N-[11C]methyl-2- (7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([11C]DAC) as a novel translocator protein (18 kDa) radioligand in kainic acid-lesioned rat. Synapse 2009; 63:961-71. [PMID: 19593823 DOI: 10.1002/syn.20678] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate N-benzyl-N-[11C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([11C]DAC) as a new translocator protein (18 kDa) [TSPO, formerly known as the peripheral-type benzodiazepine receptor (PBR)] positron emission tomography (PET) ligand in normal mice and unilateral kainic acid (KA)-lesioned rats. DAC is a derivative of AC-5216, which is a potent and selective PET ligand for the clinical investigation of TSPO. The binding affinity and selectivity of DAC for TSPO were similar to those of AC-5216, and DAC was less lipophilic than AC-5216. The distribution pattern of [11C]DAC was in agreement with TSPO distribution in rodents. No radioactive metabolite of [11C]DAC was found in the mouse brain, although it was metabolized rapidly in mouse plasma. Using small-animal PET, we examined the in vivo binding of [11C]DAC for TSPO in KA-lesioned rats. [11C]DAC and [11C]AC-5216 exhibited similar brain uptake in the lesioned and nonlesioned striatum, respectively. The binding of [11C]DAC to TSPO was increased significantly in the lesioned striatum, and [(11)C]DAC showed good contrast between the lesioned and nonlesioned striatum (the maximum ratio was about threefold). In displacement experiments, the uptake of [11C]DAC in the lesioned striatum was eventually blocked using an excess of either unlabeled DAC or PK11195 injected. [11C]DAC had high in vivo specific binding to TSPO in the injured rat brain. Therefore, [11C]DAC is a useful PET ligand for TSPO imaging, and its specific binding to TSPO is suitable as a new biomarker for brain injury.
Collapse
Affiliation(s)
- Kazuhiko Yanamoto
- Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Matthews PM, Comley R. Advances in the molecular imaging of multiple sclerosis. Expert Rev Clin Immunol 2009; 5:765-77. [PMID: 20477695 DOI: 10.1586/eci.09.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
Molecular imaging has had little application to multiple sclerosis thus far. However, advances in preclinical studies and proofs-of-principle provided for other inflammatory disorders highlight the potential for using positron emission tomography, single-photon emission computerized tomography or MRI-based molecular imaging methods to define the distribution and trafficking of specific immune effector cells, or to follow changes in specific molecular neuropathology in multiple sclerosis. If this promise can be realized, novel insights into the dynamics of in vivo multiple sclerosis neuropathology can be expected. Furthermore, powerful new approaches to testing the pharmacology of novel therapeutics will become possible. Molecular imaging could also contribute to 'personalizing' treatments for better outcomes.
Collapse
Affiliation(s)
- Paul M Matthews
- GlaxoSmithKline Clinical Imaging Centre, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK.
| | | |
Collapse
|
105
|
Cui Y, Takashima T, Takashima-Hirano M, Wada Y, Shukuri M, Tamura Y, Doi H, Onoe H, Kataoka Y, Watanabe Y. 11C-PK11195 PET for the in vivo evaluation of neuroinflammation in the rat brain after cortical spreading depression. J Nucl Med 2009; 50:1904-11. [PMID: 19837755 DOI: 10.2967/jnumed.109.066498] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Neurogenic inflammation triggered by extravasation of plasma protein has been hypothesized as a key factor in the generation of the pain sensation associated with migraine. The principal immune cell that responds to this inflammation is the parenchymal microglia of the central nervous system. METHODS Using a PET technique with (11)C-(R)-[1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide] ((11)C-PK11195), a PET ligand for peripheral type-benzodiazepine receptor, we evaluated the microglial activation in the rat brain after generation of unilateral cortical spreading depression, a stimulation used to bring up an experimental animal model of migraine. RESULTS We found a significant increase in the brain uptake of (11)C-PK11195, which was completely displaceable by the excess amounts of unlabeled ligands, in the ipsilateral hemisphere of the spreading depression-generated rats. Moreover, the binding potential of (11)C-PK11195 in the spreading depression-generated rats was significantly higher than that in the sham-operated control rats. CONCLUSION These results suggest that as an inflammatory reaction, microglial cells are activated in response to the nociceptive stimuli induced by cortical spreading depression in the rat brain. Therefore, the (11)C-PK11195 PET technique could have a potential for diagnostic and therapeutic monitoring of neurologic disorders related to neuroinflammation such as migraine.
Collapse
Affiliation(s)
- Yilong Cui
- Cellular Function Imaging Laboratory, RIKEN Center for Molecular Imaging Science, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Kannan S, Balakrishnan B, Muzik O, Romero R, Chugani D. Positron emission tomography imaging of neuroinflammation. J Child Neurol 2009; 24:1190-9. [PMID: 19745091 PMCID: PMC3840908 DOI: 10.1177/0883073809338063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Injury to the central nervous system is characterized by localization of activated microglia at the site of injury. The peripheral benzodiazepine receptor expressed on the outer mitochondrial membrane of the activated microglia is a sensitive biomarker for the detection of this neuroinflammatory response to an insult. PK11195, an isoquinoline ligand that specifically binds peripheral benzodiazepine receptor, can be tagged with a positron emitter and used as a tracer for molecular imaging of this receptor in vivo by positron emission tomography (PET). [(11)C](R)PK11195 has been used in the imaging of various neuroinflammatory disorders, such as Alzheimer disease and multiple sclerosis. On the basis of our small-animal PET imaging studies using a neonatal rabbit model of maternal inflammation-induced cerebral palsy, we propose that PET imaging using [(11)C](R)PK11195 may be a valuable tool for detecting neuroinflammation in the brain of newborns born to mothers with chorioamnionitis.
Collapse
Affiliation(s)
- Sujatha Kannan
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | - Bindu Balakrishnan
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan
| | - Otto Muzik
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Department of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan,Perinatology Research Branch, NICHD, NIH, DHHS
| | - Diane Chugani
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, Michigan,Department of Radiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
107
|
Endres CJ, Pomper MG, James M, Uzuner O, Hammoud DA, Watkins CC, Reynolds A, Hilton J, Dannals RF, Kassiou M. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans. J Nucl Med 2009; 50:1276-82. [PMID: 19617321 PMCID: PMC2883612 DOI: 10.2967/jnumed.109.062265] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Translocator protein (TSPO) is upregulated in activated microglia and thus can serve as a marker of neuroinflammation. Recently, a novel radioligand, (11)C-N,N-diethyl-2-[2-(4-methoxyphenyl)-5,7-dimethyl-pyrazolo[1,5-a]pyrimidin-3-yl]-acetamide ((11)C-DPA-713), has been described that binds to TSPO with high affinity. Here, we report the first examination of (11)C-DPA-713 in human subjects using PET. METHODS Five healthy controls were studied with PET for 90 min after a bolus injection of high-specific-activity (11)C-DPA-713. For comparison, 2 additional healthy controls were studied with (11)C-R-PK11195. Arterial blood sampling and metabolite analysis were performed to allow the accurate quantification of tracer kinetics. Tracer uptake was evaluated for several brain regions. Tissue time-activity curves were fitted using 1- and 2-tissue-compartment models, with goodness-of-fit tests showing a preference for the 2-tissue model. RESULTS In the healthy brain, the average plasma-to-tissue clearance and the total volume of distribution were an order of magnitude larger than measured for (11)C-R-PK11195. Accordingly, dose-normalized time-activity curves showed that (11)C-DPA-713 gives a larger brain signal. CONCLUSION Studies in patient populations will help determine whether (11)C-DPA-713 provides better sensitivity for evaluating increased TSPO expression. This initial study in humans shows that (11)C-DPA-713 is a promising ligand for evaluating TSPO binding with PET.
Collapse
Affiliation(s)
- Christopher J Endres
- Division of Neuroradiology, Johns Hopkins University, Baltimore, Maryland 21231, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
Venneti S, Wiley CA, Kofler J. Imaging microglial activation during neuroinflammation and Alzheimer's disease. J Neuroimmune Pharmacol 2009; 4:227-43. [PMID: 19052878 PMCID: PMC2682630 DOI: 10.1007/s11481-008-9142-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 11/17/2008] [Indexed: 01/07/2023]
Abstract
Microglial activation is an important pathogenic component of neurodegenerative disease processes. This state of increased inflammation is associated not only with neurotoxic consequences but also neuroprotective effects, e.g., phagocytosis and clearance of amyloid in Alzheimer's disease. In addition, activation of microglia appears to be one of the major mechanisms of amyloid clearance following active or passive immunotherapy. Imaging techniques may provide a minimally invasive tool to elucidate the complexities and dynamics of microglial function and dysfunction in aging and neurodegenerative diseases. Imaging microglia in vivo in live subjects by confocal or two/multiphoton microscopy offers the advantage of studying these cells over time in their native environment. Imaging microglia in human subjects by positron emission tomography scanning with translocator protein-18 kDa ligands can offer a measure of the inflammatory process and a means of detecting progression of disease and efficacy of therapeutics over time.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, 3400 Spruce St, 6.093 Founders Building, Philadelphia, PA 19104, USA e-mail:
| | - Clayton A. Wiley
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-506, Pittsburgh, PA 15213, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-506, Pittsburgh, PA 15213, USA
| |
Collapse
|
109
|
Briard E, Zoghbi SS, Siméon FG, Imaizumi M, Gourley JP, Shetty HU, Lu S, Fujita M, Innis RB, Pike VW. Single-step high-yield radiosynthesis and evaluation of a sensitive 18F-labeled ligand for imaging brain peripheral benzodiazepine receptors with PET. J Med Chem 2009; 52:688-99. [PMID: 19119848 PMCID: PMC2646257 DOI: 10.1021/jm8011855] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Elevated levels of peripheral benzodiazepine receptors (PBR) are associated with activated microglia in their response to inflammation. Hence, PBR imaging in vivo is valuable for investigating brain inflammatory conditions. Sensitive, easily prepared, and readily available radioligands for imaging with positron emission tomography (PET) are desirable for this purpose. We describe a new 18F-labeled PBR radioligand, namely [18F]N-fluoroacetyl-N-(2,5-dimethoxybenzyl)-2-phenoxyaniline ([18F]9). [18F]9 was produced easily through a single and highly efficient step, the reaction of [18F]fluoride ion with the corresponding bromo precursor, 8. Ligand 9 exhibited high affinity for PBR in vitro. PET showed that [18F]9 was avidly taken into monkey brain and gave a high ratio of PBR-specific to nonspecific binding. [18F]9 was devoid of defluorination in rat and monkey and gave predominantly polar radiometabolite(s). In rat, a low level radiometabolite of intermediate lipophilicity was identified as [18F]2-fluoro-N-(2-phenoxyphenyl)acetamide ([18F]11). [18F]9 is a promising radioligand for future imaging of PBR in living human brain.
Collapse
Affiliation(s)
- Emmanuelle Briard
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Fabrice G. Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Masao Imaizumi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Jonathan P. Gourley
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - H. Umesha Shetty
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Shuiyu Lu
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Rm. B3 C346A, 10 Center Drive, Bethesda, MD 20892, USA
| |
Collapse
|
110
|
[18F]FEAC and [18F]FEDAC: Two novel positron emission tomography ligands for peripheral-type benzodiazepine receptor in the brain. Bioorg Med Chem Lett 2009; 19:1707-10. [PMID: 19217778 DOI: 10.1016/j.bmcl.2009.01.093] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 01/26/2009] [Accepted: 01/28/2009] [Indexed: 11/21/2022]
Abstract
[(18)F]FEAC ([(18)F]4a) and [(18)F]FEDAC ([(18)F]4b) were developed as two novel positron emission tomography (PET) ligands for peripheral-type benzodiazepine receptor (PBR). [(18)F]4a and [(18)F]4b were synthesized by fluoroethylation of precursors 8a and 8b with [(18)F]FCH(2)CH(2)Br ([(18)F]9), respectively. Small-animal PET scan for a neuroinflammatory rat model showed that the two radioligands had high uptakes of radioactivity in the kainic acid-infused striatum, a brain region where PBR density was increased.
Collapse
|
111
|
Okello A, Edison P, Archer HA, Turkheimer FE, Kennedy J, Bullock R, Walker Z, Kennedy A, Fox N, Rossor M, Brooks DJ. Microglial activation and amyloid deposition in mild cognitive impairment: a PET study. Neurology 2009; 72:56-62. [PMID: 19122031 PMCID: PMC2817573 DOI: 10.1212/01.wnl.0000338622.27876.0d] [Citation(s) in RCA: 267] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Activated microglia may play a role in the pathogenesis of Alzheimer disease (AD) as they cluster around beta-amyloid (Abeta) plaques. They are, therefore, a potential therapeutic target in both AD and its prodrome amnestic mild cognitive impairment (MCI). OBJECTIVE To characterize in vivo with (11)C-(R)-PK11195 and (11)C-PIB PET the distribution of microglial activation and amyloid deposition in patients with amnestic MCI. METHODS Fourteen subjects with MCI had (11)C-(R)-PK11195 and (11)C-PIB PET with psychometric tests. RESULTS Seven out of 14 (50%) patients with MCI had increased cortical (11)C-PIB retention (p < 0.001) while 5 out of 13 (38%) subjects with MCI showed increased (11)C-(R)-PK11195 uptake. The MCI subgroup with increased (11)C-PIB retention also showed increased cortical (11)C-(R)-PK11195 binding (p < 0.036) though this increase only remained significant in frontal cortex after a correction for multiple comparisons. There was no correlation between regional levels of (11)C-(R)-PK11195 and (11)C-PIB binding in individual patients with MCI: only three of the five MCI cases with increased (11)C-(R)-PK11195 binding had increased levels of (11)C-PIB retention. CONCLUSIONS Our findings indicate that, while amyloid deposition and microglial activation can be detected in vivo in around 50% of patients with mild cognitive impairment (MCI), these pathologies can occur independently. The detection of microglial activation in patients with MCI suggests that anti-inflammatory therapies may be relevant to the prevention of AD.
Collapse
Affiliation(s)
- A Okello
- Division of Neuroscience and Mental Health, Faculty of Medicine, Imperial College London, London, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Kim JS, Oh SJ, Moon DH. Molecular Imaging in Neurodegenerative Diseases. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2009. [DOI: 10.5124/jkma.2009.52.2.151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jae Seung Kim
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Korea. , ,
| | - Seung Jun Oh
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Korea. , ,
| | - Dae Hyuk Moon
- Department of Nuclear Medicine, University of Ulsan College of Medicine, Korea. , ,
| |
Collapse
|
113
|
Edison P, Archer HA, Gerhard A, Hinz R, Pavese N, Turkheimer FE, Hammers A, Tai YF, Fox N, Kennedy A, Rossor M, Brooks DJ. Microglia, amyloid, and cognition in Alzheimer's disease: An [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis 2008; 32:412-9. [PMID: 18786637 DOI: 10.1016/j.nbd.2008.08.001] [Citation(s) in RCA: 383] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/30/2008] [Accepted: 08/05/2008] [Indexed: 01/25/2023] Open
Abstract
[11C](R)PK11195-PET is a marker of activated microglia while [11C]PIB-PET detects raised amyloid load. Here we studied in vivo the distributions of amyloid load and microglial activation in Alzheimer's disease (AD) and their relationship with cognitive status. Thirteen AD subjects had [11C](R)PK11195-PET and [11C]PIB-PET scans. Ten healthy controls had [11C](R)PK11195-PET and 14 controls had [11C]PIB-PET scans. Region-of-interest analysis of [11C](R)PK11195-PET detected significant 20-35% increases in microglial activation in frontal, temporal, parietal, occipital and cingulate cortices (p<0.05) of the AD subjects. [11C]PIB-PET revealed significant two-fold increases in amyloid load in these same cortical areas (p<0.0001) and SPM (statistical parametric mapping) analysis confirmed the localisation of these increases to association areas. MMSE scores in AD subjects correlated with levels of cortical microglial activation but not with amyloid load. The inverse correlation between MMSE and microglial activation is compatible with a role of microglia in neuronal damage.
Collapse
Affiliation(s)
- Paul Edison
- MRC Clinical Sciences Centre, Cyclotron Building Hammersmith Hospital, Imperial College London, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 2008; 35:2304-19. [DOI: 10.1007/s00259-008-0908-9] [Citation(s) in RCA: 332] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 07/17/2008] [Indexed: 12/22/2022]
|
115
|
Arlicot N, Katsifis A, Garreau L, Mattner F, Vergote J, Duval S, Kousignian I, Bodard S, Guilloteau D, Chalon S. Evaluation of CLINDE as potent translocator protein (18 kDa) SPECT radiotracer reflecting the degree of neuroinflammation in a rat model of microglial activation. Eur J Nucl Med Mol Imaging 2008; 35:2203-11. [PMID: 18536913 DOI: 10.1007/s00259-008-0834-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 05/02/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND The translocator protein (TSPO; 18 kDa), the new name of the peripheral-type benzodiazepine receptor, is localised in mitochondria of glial cells and expressed in very low concentrations in normal brain. Their expression rises after microglial activation following brain injury. Accordingly, TSPO are potential targets to evaluate neuroinflammatory changes in a variety of CNS disorders. PURPOSE To date, only a few effective tools are available to explore TSPO by SPECT. We characterised here 6-chloro-2-(4'iodophenyl)-3-(N,N-diethyl)-imidazo[1,2-a]pyridine-3-acetamide or CLINDE in a rat model with different stages of excitotoxic lesion. METHODS Excitotoxicity was induced in male Wistar rats by unilateral intrastriatal injection of different amounts of quinolinic acid (75, 150 or 300 nmol). Six days later, two groups of rats (n = 5-6/group) were i.v. injected with [(125)I]-CLINDE (0.4 MBq); one group being pre-injected with PK11195 (5 mg/kg). Brains were removed 30 min after tracer injection and the radioactivity of cerebral areas measured. Complementary ex vivo autoradiography, in vitro autoradiography ([(3)H]-PK11195) and immunohistochemical studies (OX-42) were performed on brain sections. RESULTS In the control group, [(125)I]-CLINDE binding was significantly higher (p < 0.001) in lesioned than that in intact side. This binding disappeared in rats pre-treated with PK11195 (p < 0.001), showing specific binding of CLINDE to TSPO. Ex vivo and in vitro autoradiographic studies and immunohistochemistry were consistent with this, revealing a spatial correspondence between radioactivity signal and activated microglia. Regression analysis yielded a positive relation between the ligand binding and the degree of neuroinflammation. CONCLUSION These results demonstrate that CLINDE is suitable for TSPO in vivo SPECT imaging to explore their involvement in neurodegenerative disorders associated with microglial activation.
Collapse
|
116
|
Toyama H, Hatano K, Suzuki H, Ichise M, Momosaki S, Kudo G, Ito F, Kato T, Yamaguchi H, Katada K, Sawada M, Ito K. In vivo imaging of microglial activation using a peripheral benzodiazepine receptor ligand: [11C]PK-11195 and animal PET following ethanol injury in rat striatum. Ann Nucl Med 2008; 22:417-424. [PMID: 18600420 DOI: 10.1007/s12149-008-0136-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 02/19/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To investigate whether [(11)C]PK-11195, a specific peripheral benzodiazepine receptors (PBRs) ligand for positron emission tomography (PET), can show activated microglia in a rat brain injury model. METHODS On day 1, ethanol was injected into the rat's right striatum (ST) using a stereotaxic operative procedure. On day 3, head magnetic resonance imaging (MRI) scans for surgically treated rats were performed to evaluate ethanol injury morphologically. On day 4, dynamic PET scans (17 injured rats and 7 non-injured controls) were performed for 60 min with an animal PET scanner under chloral hydrate anesthesia following a bolus injection of [(11)C]PK-11195 through tail vein. Because PBRs are present throughout the brain, there is no suitable receptor-free reference region. The reference tissue model may not be applicable because of low target to background ratio for low affinity of [(11)C]PK-11195 to PBRs. We evaluated the PBRs binding with regions of interest (ROIs)-based approach to estimate total distribution volume (V). We used an integral from 0 min to 60 min (V (60)) as an estimate of V. On the coronal PET image, ROIs were placed on bilateral ST. Differences in right/left ST V (60) ratios between lesioned and unlesioned control rats were compared using unpaired t tests. Immunohistochemical staining was performed for confirming the presence of activated microglia following decapitation on the PET experiment day. RESULTS The right/left ST V (60) ratios in lesioned rats (1.07 +/- 0.08) were significantly higher than those in unlesioned control rats (1.00 +/- 0.06, P < 0.05). On immunohistochemical staining, activated microglia were exclusively observed in the injured right ST but not in the noninjured left ST of the injury rats and the bilateral ST of the non-injured control rats. CONCLUSIONS These results suggest that [(11)C]PK-11195 PET imaging would be a useful tool for evaluating microglial activation in a rat brain injury model.
Collapse
Affiliation(s)
- Hiroshi Toyama
- Department of Radiology, Fujita Health University, 1-98 Dengakugakubo, Kutsukake, Toyoake, Aichi 470-1192, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Venneti S, Bonneh-Barkay D, Lopresti BJ, Bissel SJ, Wang G, Mathis CA, Piatak M, Lifson JD, Nyaundi JO, Murphey-Corb M, Wiley CA. Longitudinal in vivo positron emission tomography imaging of infected and activated brain macrophages in a macaque model of human immunodeficiency virus encephalitis correlates with central and peripheral markers of encephalitis and areas of synaptic degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1603-16. [PMID: 18467697 PMCID: PMC2408420 DOI: 10.2353/ajpath.2008.070967] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 02/21/2008] [Indexed: 12/25/2022]
Abstract
Human immunodeficiency virus encephalitis is characterized by infiltration of the brain with infected and activated macrophages; however, it is not known why disease occurs after variable lengths of infection in 25% of immunosuppressed acquired immune deficiency syndrome patients. We determined in vivo correlates (in peripheral blood and the central nervous system) for the development and progression of lentiviral encephalitis by longitudinally following infected and activated macrophages in the brain using positron emission tomography (PET). Using human postmortem brain tissues from both lentivirus-infected encephalitic patients and cell culture systems, we showed that the PET ligand [(3)H](R)-PK11195 bound specifically to virus-infected and activated macrophages. We longitudinally imaged infected and activated brain macrophages in a cohort of macaques infected with simian immunodeficiency virus using [(11)C](R)-PK11195. [(11)C](R)-PK11195 retention in vivo in the brain correlated with viral burden in the brain and cerebrospinal fluid, and with regions of both presynaptic and postsynaptic damage. Finally, longitudinal changes in [(11)C](R)-PK11195 retention in the brain in vivo correlated with changes in circulating monocytes as well as in both natural killer and memory CD4(+) T cells in the periphery. Our results suggest that development and progression of simian immunodeficiency virus encephalitis in vivo correlates with changes in specific cell subtypes in the periphery. A combination of PET imaging and the assessment of these peripheral immune parameters may facilitate longitudinal assessment of lentiviral encephalitis in living patients as well as evaluation of therapeutic efficacies.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Sekimata K, Hatano K, Ogawa M, Abe J, Magata Y, Biggio G, Serra M, Laquintana V, Denora N, Latrofa A, Trapani G, Liso G, Ito K. Radiosynthesis and in vivo evaluation of N-[11C]methylated imidazopyridineacetamides as PET tracers for peripheral benzodiazepine receptors. Nucl Med Biol 2008; 35:327-334. [PMID: 18355688 DOI: 10.1016/j.nucmedbio.2007.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Revised: 11/22/2007] [Accepted: 12/14/2007] [Indexed: 11/29/2022]
Abstract
Imidazopyridineacetoamide 5-8, a series of novel and potentially selective peripheral benzodiazepine receptor (PBR) ligands with affinities comparable to those of known PBR ligands, was investigated. Radiosyntheses of [11C]5, 6, 7 or 8 was accomplished by N-methylation of the corresponding desmethyl precursors with [11C]methyl iodide in the presence of NaH in dimethylformamide (DMF), resulting in 25% to 77% radiochemical yield and specific activitiy of 20 to 150 MBq/nmol. Each of the labeled compounds was injected in ddY mice, and the radioactivity and weight of dissected peripheral organs and brain regions were measured. Organ distribution of [11C]7 was consistent with the known PBR distribution. Moreover, [11C]7 showed the best combination of brain uptake and PBR binding, leading to its high retention in the olfactory bulb and cerebellum, areas where PBR density is high in mouse brain. Coinjection of PK11195 or unlabeled 7 significantly reduced the brain uptake of [11C]7. These results suggest that [11C]7 could be a useful radioligand for positron emission tomography imaging of PBRs.
Collapse
Affiliation(s)
- Katsuhiko Sekimata
- Department of Brain Sciences and Molecular Imaging, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8522, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Bartels AL, Leenders KL. Neuroinflammation in the pathophysiology of Parkinson's disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 2008; 22:1852-6. [PMID: 17592621 DOI: 10.1002/mds.21552] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that neuroinflammation is an active process in Parkinson's disease (PD) that contributes to ongoing neurodegeneration. PD brains and experimental PD models show elevated cytokine levels and up-regulation of inflammatory-associated factors as cyclo-oxygenase-2 and inducible nitric oxide oxidase. Antiinflammatory treatment reduced neuronal degeneration in experimental models. In this review, we summarize the place of neuroinflammation in the pathophysiology of PD. In vivo PET studies are discussed. These methods provide a means to monitor in vivo potential clinical relevance of antiinflammatory treatment strategies in PD.
Collapse
Affiliation(s)
- Anna L Bartels
- Department of Neurology, University Medical Centre Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | |
Collapse
|
120
|
Briard E, Zoghbi SS, Imaizumi M, Gourley JP, Shetty HU, Hong J, Cropley V, Fujita M, Innis RB, Pike VW. Synthesis and Evaluation in Monkey of Two Sensitive 11C-Labeled Aryloxyanilide Ligands for Imaging Brain Peripheral Benzodiazepine Receptors In Vivo. J Med Chem 2007; 51:17-30. [DOI: 10.1021/jm0707370] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emmanuelle Briard
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| | - Sami S. Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| | - Masao Imaizumi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| | - Jonathan P. Gourley
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| | - H. Umesha Shetty
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| | - Jinsoo Hong
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| | - Vanessa Cropley
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| | - Masahiro Fujita
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| | - Robert B. Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| | - Victor W. Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, Maryland 20892
| |
Collapse
|
121
|
Kropholler MA, Boellaard R, van Berckel BNM, Schuitemaker A, Kloet RW, Lubberink MJ, Jonker C, Scheltens P, Lammertsma AA. Evaluation of reference regions for (R)-[(11)C]PK11195 studies in Alzheimer's disease and mild cognitive impairment. J Cereb Blood Flow Metab 2007; 27:1965-74. [PMID: 17406654 DOI: 10.1038/sj.jcbfm.9600488] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammation in Alzheimer's disease (AD) may be assessed using (R)-[(11)C]PK11195 and positron emission tomography. Data can be analyzed using the simplified reference tissue model, provided a suitable reference region is available. This study evaluates various reference regions for analyzing (R)-[(11)C]PK11195 scans in patients with mild cognitive impairment (MCI) and probable AD. Healthy subjects (n=10, 30+/-10 years and n=10, 70+/-6 years) and patients with MCI (n=10, 74+/-6 years) and probable AD (n=9, 71+/-6 years) were included. Subjects underwent a dynamic three-dimensional (R)-[(11)C]PK11195 scan including arterial sampling. Gray matter, white matter, total cerebellum and cerebrum, and cluster analysis were evaluated as reference regions. Both plasma input binding potentials of these reference regions (BP(PLASMA)) and corresponding reference region input binding potentials of a target region (BP(SRTM)) were evaluated. Simulations were performed to assess cluster analysis performance at 5% to 15% coefficient of variation noise levels. Reasonable correlations for BP(PLASMA) (R(2)=0.52 to 0.94) and BP(SRTM) (R(2)=0.59 to 0.76) were observed between results using anatomic regions and cluster analysis. For cerebellum white matter, cerebrum white matter, and total cerebrum a considerable number of unrealistic BP(SRTM) values were observed. Cluster analysis did not extract a valid reference region in 10% of the scans. Simulations showed that potentially cluster analysis suffers from negative bias in BP(PLASMA). Most anatomic regions outperformed cluster analysis in terms of absence of both scan rejection and bias. Total cerebellum is the optimal reference region in this patient category.
Collapse
Affiliation(s)
- Marc A Kropholler
- Department of Nuclear Medicine & PET Research, VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Stevenson L, Pimlott SL, Sutherland A. A novel approach for the synthesis of the peripheral benzodiazepine receptor ligand, PK11195. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.07.203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
123
|
Venneti S, Wagner AK, Wang G, Slagel SL, Chen X, Lopresti BJ, Mathis CA, Wiley CA. The high affinity peripheral benzodiazepine receptor ligand DAA1106 binds specifically to microglia in a rat model of traumatic brain injury: implications for PET imaging. Exp Neurol 2007; 207:118-27. [PMID: 17658516 PMCID: PMC2042945 DOI: 10.1016/j.expneurol.2007.06.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 05/04/2007] [Accepted: 06/03/2007] [Indexed: 11/28/2022]
Abstract
Traumatic brain injury (TBI) is a significant cause of mortality, morbidity, and disability. Microglial activation is commonly observed in response to neuronal injury which, when prolonged, is thought to be detrimental to neuronal survival. Activated microglia can be labeled using PK11195, a ligand that binds the peripheral benzodiazepine receptor (PBR), receptors which are increased in activated microglia and sparse in the resting brain. We compared the binding properties of two PBR ligands PK11195 and DAA1106 in rats using the controlled cortical impact (CCI) model of experimental TBI. While both ligands showed relative increases with specific binding in the cortex ipsilateral to injury compared to the contralateral side, [(3)H]DAA1106 showed higher binding affinity compared with [(3)H](R)-PK11195. Combined immunohistochemistry and autoradiography in brain tissues near the injury site showed that [(3)H]DAA1106 binding co-registered with activated microglia more than astrocytes. Further, increased [(3)H]DAA1106-specific binding positively correlated with the degree of microglial activation, and to a lesser degree with reactive astrocytosis. Finally, in vivo administration of each ligand in rats with TBI showed greater retention of [(11)C]DAA1106 compared to [(11)C](R)-PK11195 at the site of the contusion as assessed by ex vivo autoradiography. These results in a rat model of TBI indicate that [(11)C]DAA1106 binds with higher affinity to microglia when compared with PK11195, suggesting that [(11)C]DAA1106 may represent a better ligand than [(11)C](R)-PK11195 for in vivo PET imaging of activated microglia in TBI.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
124
|
Branley HM, du Bois RM, Wells AU, Jones HA. Peripheral-type benzodiazepine receptors in bronchoalveolar lavage cells of patients with interstitial lung disease. Nucl Med Biol 2007; 34:553-8. [PMID: 17591555 DOI: 10.1016/j.nucmedbio.2007.03.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2006] [Revised: 02/13/2007] [Accepted: 03/20/2007] [Indexed: 11/19/2022]
Abstract
INTRODUCTION PK11195 is a ligand with high affinity for peripheral benzodiazepine receptors (PBRs), which are present in large numbers in macrophages. PBRs play a role in antioxidant pathways and apoptosis, key factors in control of lung health. Intrapulmonary PBRs, assessed in vivo by positron emission tomography (PET), are decreased in interstitial lung disease (ILD) despite increased macrophage numbers. We wished to ascertain whether the observed decrease in in vivo expression of PBRs in the PET scans could be accounted for by a reduction in PBRs per cell by saturation-binding assays of R-PK11195 in cells obtained by bronchoalveolar lavage (BAL). METHODS We performed receptor saturation-binding assays with [(3)H]-R-PK11195 on a mixed population of cells recovered by BAL to quantify the number of R-PK11195 binding sites per macrophage in 10 subjects with ILD and 10 normal subjects. RESULTS Receptor affinity [dissociation constant (Kd)] was similar in ILD patients and controls. However, R-PK11195 binding sites per cell [(maximal binding sites available (B(max))] were decreased in macrophages obtained by BAL from subjects with ILD compared to normal (P<.0005). Microautoradiography confirmed localization of R-PK11195 to macrophages in a mixed inflammatory cell population obtained by BAL. CONCLUSION These results demonstrate that in vitro PBR expression per cell on macrophages obtained by BAL is reduced in patients with ILD indicating a potentially functionally different macrophage phenotype. As PBRs are involved in the orchestration of lung inflammatory responses, this finding offers further insight into the role of macrophages in the pathogenesis of ILDs and offers a potential avenue for pharmacological strategy.
Collapse
|
125
|
Venneti S, Lopresti BJ, Wang G, Slagel SL, Mason NS, Mathis CA, Fischer ML, Larsen NJ, Mortimer AD, Hastings TG, Smith AD, Zigmond MJ, Suhara T, Higuchi M, Wiley CA. A comparison of the high-affinity peripheral benzodiazepine receptor ligands DAA1106 and (R)-PK11195 in rat models of neuroinflammation: implications for PET imaging of microglial activation. J Neurochem 2007; 102:2118-2131. [PMID: 17555551 DOI: 10.1111/j.1471-4159.2007.04690.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Activated microglia are an important feature of many neurological diseases and can be imaged in vivo using 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK11195), a ligand that binds the peripheral benzodiazepine receptor (PBR). N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl) acetamide (DAA1106) is a new PBR-specific ligand that has been reported to bind to PBR with higher affinity compared with PK11195. We hypothesized that this high-affinity binding of DAA1106 to PBR will enable better delineation of microglia in vivo using positron emission tomography. [(3)H]DAA1106 showed higher binding affinity compared with [(3)H](R)-PK11195 in brain tissue derived from normal rats and the rats injected intrastriatally with 6-hydroxydopamine or lipopolysaccharide at the site of the lesion. Immunohistochemistry combined with autoradiography in brain tissues as well as correlation analyses showed that increased [(3)H]DAA1106 binding corresponded mainly to activated microglia. Finally, ex vivo autoradiography and positron emission tomography imaging in vivo showed greater retention of [(11)C]DAA1106 compared with [(11)C](R)-PK11195 in animals injected with either lipopolysaccaride or 6-hydroxydopamine at the site of lesion. These results indicate that DAA1106 binds with higher affinity to microglia in rat models of neuroinflammation when compared with PK11195, suggesting that [(11)C]DAA1106 may represent a significant improvement over [(11)C](R)-PK11195 for in vivo imaging of activated microglia in human neuroinflammatory disorders.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Brian J Lopresti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Guoji Wang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Susan L Slagel
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - N Scott Mason
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Chester A Mathis
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Michelle L Fischer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Niccole J Larsen
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Amanda D Mortimer
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Teresa G Hastings
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Amanda D Smith
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Michael J Zigmond
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Tetsuya Suhara
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Makoto Higuchi
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Clayton A Wiley
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USADepartment of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USAMolecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
126
|
Anderson AN, Pavese N, Edison P, Tai YF, Hammers A, Gerhard A, Brooks DJ, Turkheimer FE. A systematic comparison of kinetic modelling methods generating parametric maps for [(11)C]-(R)-PK11195. Neuroimage 2007; 36:28-37. [PMID: 17398120 DOI: 10.1016/j.neuroimage.2007.02.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/31/2007] [Accepted: 02/12/2007] [Indexed: 12/11/2022] Open
Abstract
[(11)C]-(R)-PK11195 is presently the most widely used radiotracer for the monitoring of microglia activity in the central nervous system (CNS). Microglia, the resident immune cells of the brain, play a critical role in acute and chronic diseases of the central nervous system and in host defence against neoplasia. The purpose of this investigation was to evaluate the reliability and sensitivity of five kinetic modelling methods for the formation of parametric maps from dynamic [(11)C]-(R)-PK11195 studies. The methods we tested were the simplified reference tissue model (SRTM), basis pursuit, a simple target-to-reference ratio, the Logan plot and a wavelet based Logan plot. For the reliability assessment, the test-retest data consisted of four Alzheimer's patients that were scanned twice at approximately a six-week interval. For the sensitivity assessment, comparison of [(11)C]-(R)-PK11195 binding in Huntington's disease (HD) patients and normal subjects was performed using a group contrast to localize significant increases in mean pixel volume of distribution (VD) in HD. In all instances, a reference region kinetic extracted by a supervised clustering technique was used as input function. Reliability was assessed by use of the intra-class correlation coefficient (ICC) across a wide set of anatomical regions and it was found that the wavelet-based Logan plot, basis pursuit and SRTM gave the highest ICC values on average. The same methods produced the highest z-scores resulting from increases in mean striatal VD in HD patients compared with controls. The reference-to-target ratio and the Logan graphical approach were significantly less reliable and less sensitive.
Collapse
Affiliation(s)
- Alexander N Anderson
- Department of Clinical Neuroscience, Division of Neuroscience and Mental Health, Imperial College London, UK
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Schuitemaker A, van Berckel BNM, Kropholler MA, Veltman DJ, Scheltens P, Jonker C, Lammertsma AA, Boellaard R. SPM analysis of parametric (R)-[11C]PK11195 binding images: Plasma input versus reference tissue parametric methods. Neuroimage 2007; 35:1473-9. [PMID: 17363280 DOI: 10.1016/j.neuroimage.2007.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 11/26/2022] Open
Abstract
(R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).
Collapse
Affiliation(s)
- Alie Schuitemaker
- Department of Nuclear Medicine and PET Research, VU University Medical Centre, P.O. Box 7057, 1081 MB Amsterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Probst KC, Izquierdo D, Bird JLE, Brichard L, Franck D, Davies JR, Fryer TD, Richards HK, Clark JC, Davenport AP, Weissberg PL, Warburton EA. Strategy for improved [11C]DAA1106 radiosynthesis and in vivo peripheral benzodiazepine receptor imaging using microPET, evaluation of [11C]DAA1106. Nucl Med Biol 2007; 34:439-46. [PMID: 17499734 DOI: 10.1016/j.nucmedbio.2007.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/16/2007] [Accepted: 02/23/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION The peripheral benzodiazepine receptor (PBR) has shown considerable potential as a clinical marker of neuroinflammation and tumour progression. [(11)C]DAA1106 ([(11)C]N-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)-acetamide) is a promising positron emission tomography (PET) radioligand for imaging PBRs. METHODS A four-step synthetic route was devised to prepare DAA1123, the precursor for [(11)C]DAA1106. Two robust, high yielding methods for radiosynthesis based on [(11)C]-O-methylation of DAA1123 were developed and implemented on a nuclear interface methylation module, producing [(11)C]DAA1106 with up to 25% radiochemical yields at end-of-synthesis based on [(11)C]CH(3)I trapped. Evaluation of [(11)C]DAA1106 for in vivo imaging was performed in a rabbit model with microPET, and the presence of PBR receptor in the target organ was further corroborated by immunohistochemistry. RESULTS The standard solution method produced 2.6-5.2 GBq (n=19) of [(11)C]DAA1106, whilst the captive solvent method produced 1.6-6.3 GBq (n=10) of [(11)C]DAA1106. Radiochemical purities obtained were 99% and specific radioactivity at end-of-synthesis was up to 200 GBq/micromol for both methods. Based on radiochemical product, shorter preparation times and simplicity of synthesis, the captive solvent method was chosen for routine productions of [(11)C]DAA1106. In vivo microPET [(11)C]DAA1106 scans of rabbit kidney demonstrated high levels of binding in the cortex. The subsequent introduction of nonradioactive DAA1106 (0.2 micromol) produced considerable displacement of the radioactive signal in this region. The presence of PBR in kidney cortex was further corroborated by immunohistochemistry. CONCLUSIONS A robust, high yielding captive solvent method of [(11)C]DAA1106 production was developed which enabled efficacious in vivo imaging of PBR expressing tissues in an animal model.
Collapse
Affiliation(s)
- Katrin C Probst
- Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Addenbrooke's Hospital, CB2 2QQ Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Probst KC, Izquierdo D, Davies JR, Bird JLE, Fryer TD, Richards HK, Clark JC, Warburton EA, Weissberg PL, Aigbirhio FI. Synthesis and evaluation of fluorine-18 and copper-64 labelled PBR radioligands. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
130
|
Thominiaux C, Mattner F, Greguric I, Boutin H, Chauveau F, Kuhnast B, Grégoire MC, Loc′h C, Valette H, Bottlaender M, Hantraye P, Tavitian B, Katsifis A, Dollé F. Radiosynthesis of 2-[6-chloro-2-(4-iodophenyl)imidazo[1,2-a]pyridin-3-yl]-N-ethyl-N-[11C]methyl-acetamide, [11C]CLINME, a novel radioligand for imaging the peripheral benzodiazepine receptors with PET. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1258] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
131
|
Rahman O, Långström B. Synthesis ofN-(2,5-dimethoxybenzyl)-N-(5-fluoro-2-phenoxyphenyl)[carbonyl-11C]acetamide ([carbonyl-11C]DAA1106) and analogues using [11C]carbon monoxide and palladium(0) complex. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1437] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
132
|
Frank RA, Långström B, Antoni G, Montalto MC, Agdeppa ED, Mendizabal M, Wilson IA, Vanderheyden JL. The imaging continuum: bench to biomarkers to diagnostics. J Labelled Comp Radiopharm 2007. [DOI: 10.1002/jlcr.1444] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
133
|
Boutin H, Chauveau F, Thominiaux C, Kuhnast B, Grégoire MC, Jan S, Trebossen R, Dollé F, Tavitian B, Mattner F, Katsifis A. In vivo imaging of brain lesions with [11C]CLINME, a new PET radioligand of peripheral benzodiazepine receptors. Glia 2007; 55:1459-68. [PMID: 17680643 DOI: 10.1002/glia.20562] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The peripheral benzodiazepine receptor (PBR) is expressed by microglial cells in many neuropathologies involving neuroinflammation. PK11195, the reference compound for PBR, is used for positron emission tomography (PET) imaging but has a limited capacity to quantify PBR expression. Here we describe the new PBR ligand CLINME as an alternative to PK11195. In vitro and in vivo imaging properties of [(11)C]CLINME were studied in a rat model of local acute neuroinflammation, and compared with the reference compound [(11)C]PK11195, using autoradiography and PET imaging. Immunohistochemistry study was performed to validate the imaging data. [(11)C]CLINME exhibited a higher contrast between the PBR-expressing lesion site and the intact side of the same rat brain than [(11)C]PK11195 (2.14 +/- 0.09 vs. 1.62 +/- 0.05 fold increase, respectively). The difference was due to a lower uptake for [(11)C]CLINME than for [(11)C]PK11195 in the non-inflammatory part of the brain in which PBR was not expressed, while uptake levels in the lesion were similar for both tracers. Tracer localization correlated well with that of activated microglial cells, demonstrated by immunohistochemistry and PBR expression detected by autoradiography. Modeling using the simplified tissue reference model showed that R(1) was similar for both ligands (R(1) approximately 1), with [(11)C]CLINME exhibiting a higher binding potential than [(11)C]PK11195 (1.07 +/- 0.30 vs. 0.66 +/- 0.15). The results show that [(11)C]CLINME performs better than [(11)C]PK11195 in this model. Further studies of this new compound should be carried out to better define its capacity to overcome the limitations of [(11)C]PK11195 for PBR PET imaging.
Collapse
Affiliation(s)
- Hervé Boutin
- CEA, DSV, I2BM, SHFJ, Laboratoire d'Imagerie Moléculaire Expérimentale, Orsay, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Wiley CA, Lopresti BJ, Becker JT, Boada F, Lopez OL, Mellors J, Meltzer CC, Wisniewski SR, Mathis CA. Positron emission tomography imaging of peripheral benzodiazepine receptor binding in human immunodeficiency virus-infected subjects with and without cognitive impairment. J Neurovirol 2006; 12:262-71. [PMID: 16966217 DOI: 10.1080/13550280600873868] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The pathology associated with late-stage dementia in human immunodeficiency virus (HIV) infection has been studied extensively. Neuropathological examination has demonstrated abundant activation and infection of macrophages/microglia termed HIV encephalitis. For obvious reasons, less is known regarding the neuropathology of minor cognitive impairment seen in earlier stages of HIV infection. The authors examined the utility of the peripheral benzodiazepine receptor ligand PK11195 in positron emission tomography (PET) imaging to assess microglial/macrophage activation in the brains of HIV-infected subjects with minor neurocognitive impairment in a cross-sectional study of 12 HIV infected individuals and 5 age-matched noninfected controls. Subjects were given a battery of neuropsychological tests in addition to assessing CD4 T-cell count and peripheral viremia followed by contrast enhanced magnetic resonance imaging (MRI) and PET with [15O]H2O followed by [11C](R)-PK11195. Two of the six neurocognitively impaired HIV-infected subjects demonstrated plasma viral breakthrough, whereas only one of six nonimpaired individuals demonstrated plasma viral load near the limits of detection. MRI demonstrated no abnormal enhancement and although atrophy was more prominent in impaired subjects, it was also present though to a lesser extent in nonimpaired subjects. None of the 12 HIV-infected subjects demonstrated increased retention of [11C](R)-PK11195 in the brain parenchyma compared to the 5 controls. These results suggest that either [11C](R)-PK11195 PET assessment is insensitive to the degree of macrophage activation in HIV-associated minor neurocognitive impairment or macrophage activation is not the pathological substrate of this neurological condition.
Collapse
Affiliation(s)
- Clayton A Wiley
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Venneti S, Lopresti BJ, Wiley CA. The peripheral benzodiazepine receptor (Translocator protein 18kDa) in microglia: from pathology to imaging. Prog Neurobiol 2006; 80:308-22. [PMID: 17156911 PMCID: PMC1849976 DOI: 10.1016/j.pneurobio.2006.10.002] [Citation(s) in RCA: 303] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 10/05/2006] [Accepted: 10/26/2006] [Indexed: 11/19/2022]
Abstract
Microglia constitute the primary resident immune surveillance cell in the brain and are thought to play a significant role in the pathogenesis of several neurodegenerative disorders, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and HIV-associated dementia. Measuring microglial activation in vivo in patients suffering from these diseases may help chart progression of neuroinflammation as well as assess efficacy of therapies designed to modulate neuroinflammation. Recent studies suggest that activated microglia in the CNS may be detected in vivo using positron emission tomography (PET) utilizing pharmacological ligands of the mitochondrial peripheral benzodiazepine receptor (PBR (recently renamed as Translocator protein (18kDa)). Beginning with the molecular characterization of PBR and regulation in activated microglia, we examine the rationale behind using PBR ligands to image microglia with PET. Current evidence suggests these findings might be applied to the development of clinical assessments of microglial activation in neurological disorders.
Collapse
Affiliation(s)
- Sriram Venneti
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Brian J. Lopresti
- From the Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Clayton A. Wiley
- From the Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
136
|
Cumming P, Pedersen MD, Minuzzi L, Mezzomo K, Danielsen EH, Iversen P, Aagaard D, Keiding S, Munk OL, Finsen B. Distribution of PK11195 binding sites in porcine brain studied by autoradiography in vitro and by positron emission tomography. Synapse 2006; 59:418-26. [PMID: 16485266 DOI: 10.1002/syn.20257] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The cerebral distribution of peripheral-type benzodiazepine binding sites (PBBS) in human brain has been investigated by positron emission tomography (PET) with the specific radioligand [11C]PK11195 in diverse neuropathological conditions. However, little is known about the pattern of PK11195 binding sites in healthy brain. Therefore, we used quantitative autoradiography to measure the saturation binding parameters for [3H]PK11195 in cryostat sections from young Landrace pigs. Specific binding was lowest in the cerebellar white matter (85 fmol mg(-1)) and highest in the caudate nucleus (370 fmol mg(-1)), superior colliculus (400 fmol mg(-1)), and anterior thalamic nucleus (588 fmol mg(-1)). The apparent affinity was in the range of 2-6 nM in vitro, predicting high specific binding in PET studies of living brain. However, the distribution volume (V(d), ml g(-1)) of high specific activity [11C]PK11195 was nearly homogeneous (3 ml g(-1)) throughout brain of healthy Landrace pigs, and was nearly identical in studies with lower specific activity, suggesting that factors in vivo disfavor the detection of PBBS in Landrace pigs with this radioligand. In young, adult Göttingen minipig brain, the magnitude of V(d) for [11C]PK11195 was in the range 5-10 ml g(-1), and had a heterogeneous distribution resembling the in vitro findings in Landrace pigs. There was a trend toward globally increased V(d) in a group of minipigs with acute MPTP-induced parkinsonism, but no increase in V(d) was evident in the same pigs rescanned at 2 weeks after grafting of fetal mesencephalon to the partially denervated striatum. Thus, [11C]PK11195 binding was not highly sensitive to constituitively expressed PBBS in brain of young Landrace pigs, and did not clearly demonstrate the expected microglial activation in the MPTP/xenograft model of minipigs.
Collapse
Affiliation(s)
- Paul Cumming
- PET Centre and Centre for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Cagnin A, Taylor-Robinson SD, Forton DM, Banati RB. In vivo imaging of cerebral "peripheral benzodiazepine binding sites" in patients with hepatic encephalopathy. Gut 2006; 55:547-53. [PMID: 16210399 PMCID: PMC1856189 DOI: 10.1136/gut.2005.075051] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND AIMS One proposed mechanism whereby hepatic encephalopathy (HE) leads to loss of brain function is dysregulated synthesis of neurosteroids. Mitochondrial synthesis of neurosteroids is regulated by "peripheral benzodiazepine binding sites" (PBBS). Expressed in the brain by activated glial cells, PBBS can be measured in vivo by the specific ligand [11C](R)-PK11195 and positron emission tomography (PET). Recently, it has been suggested that PBBS expressing glial cells may play a role in the general inflammatory responses seen in HE. Therefore, we measured PBBS in vivo in the brains of patients with minimal HE using [11C](R)-PK11195 PET. METHODS Five patients with minimal HE and biopsy proven cirrhosis of differing aetiology were assessed with a neuropsychometric battery. Regional expression of PBBS in the brain was detected by [11C](R)-PK11195 PET. RESULTS All patients showed brain regions with increased [11C](R)-PK11195 binding. Significant increases in glial [11C](R)-PK11195 binding were found bilaterally in the pallidum, right putamen, and right dorsolateral prefrontal region. The patient with the most severe cognitive impairment had the highest increases in regional [11C](R)-PK11195 binding. CONCLUSION HE is associated with increased cerebral binding of [11C](R)-PK11195 in vivo, reflecting increased expression of PBBS by glial cells. This supports earlier experimental evidence in rodent models of liver failure, suggesting that an altered glial cell state, as evidenced by the increase in cerebral PBBS, might be causally related to impaired brain functioning in HE.
Collapse
Affiliation(s)
- A Cagnin
- Department of Neurosciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
138
|
Yiangou Y, Facer P, Durrenberger P, Chessell IP, Naylor A, Bountra C, Banati RR, Anand P. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 2006; 6:12. [PMID: 16512913 PMCID: PMC1413551 DOI: 10.1186/1471-2377-6-12] [Citation(s) in RCA: 387] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Accepted: 03/02/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) are primarily inflammatory and degenerative disorders respectively, there is increasing evidence for shared cellular mechanisms that may affect disease progression, particularly glial responses. Cyclooxygenase 2 (COX-2) inhibition prolongs survival and cannabinoids ameliorate progression of clinical disease in animal models of ALS and MS respectively, but the mechanism is uncertain. Therefore, three key molecules known to be expressed in activated microglial cells/macrophages, COX-2, CB2 and P2X7, which plays a role in inflammatory cascades, were studied in MS and ALS post-mortem human spinal cord. METHODS Frozen human post mortem spinal cord specimens, controls (n = 12), ALS (n = 9) and MS (n = 19), were available for study by immunocytochemistry and Western blotting, using specific antibodies to COX-2, CB2 and P2X7, and markers of microglial cells/macrophages (CD 68, ferritin). In addition, autoradiography for peripheral benzodiazepine binding sites was performed on some spinal cord sections using [3H] (R)-PK11195, a marker of activated microglial cells/macrophages. Results of immunostaining and Western blotting were quantified by computerized image and optical density analysis respectively. RESULTS In control spinal cord, few small microglial cells/macrophages-like COX-2-immunoreactive cells, mostly bipolar with short processes, were scattered throughout the tissue, whilst MS and ALS specimens had significantly greater density of such cells with longer processes in affected regions, by image analysis. Inflammatory cell marker CD68-immunoreactivity, [3H] (R)-PK11195 autoradiography, and double-staining against ferritin confirmed increased production of COX-2 by activated microglial cells/macrophages. An expected 70-kDa band was seen by Western blotting which was significantly increased in MS spinal cord. There was good correlation between the COX-2 immunostaining and optical density of the COX-2 70-kDa band in the MS group (r = 0.89, P = 0.0011, n = 10). MS and ALS specimens also had significantly greater density of P2X7 and CB2-immunoreactive microglial cells/macrophages in affected regions. CONCLUSION It is hypothesized that the known increase of lesion-associated extracellular ATP contributes via P2X7 activation to release IL-1 beta which in turn induces COX-2 and downstream pathogenic mediators. Selective CNS-penetrant COX-2 and P2X7 inhibitors and CB2 specific agonists deserve evaluation in the progression of MS and ALS.
Collapse
Affiliation(s)
- Yiangos Yiangou
- Peripheral Neuropathy Unit, Imperial College, Hammersmith Hospital, London, UK
| | - Paul Facer
- Peripheral Neuropathy Unit, Imperial College, Hammersmith Hospital, London, UK
| | - Pascal Durrenberger
- Peripheral Neuropathy Unit, Imperial College, Hammersmith Hospital, London, UK
| | - Iain P Chessell
- GastrointestinaI Diseases Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Alan Naylor
- GastrointestinaI Diseases Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Chas Bountra
- GastrointestinaI Diseases Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Richard R Banati
- School of Medical Radiation Sciences and Ramaciotti Centre for Brain Imaging, Brain-Mind Research Institute, University of Sydney, New South Wales, Australia
| | - Praveen Anand
- Peripheral Neuropathy Unit, Imperial College, Hammersmith Hospital, London, UK
| |
Collapse
|
139
|
Selleri S, Gratteri P, Costagli C, Bonaccini C, Costanzo A, Melani F, Guerrini G, Ciciani G, Costa B, Spinetti F, Martini C, Bruni F. Insight into 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamides as peripheral benzodiazepine receptor ligands: Synthesis, biological evaluation and 3D-QSAR investigation. Bioorg Med Chem 2005; 13:4821-34. [PMID: 15975799 DOI: 10.1016/j.bmc.2005.05.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 05/04/2005] [Accepted: 05/10/2005] [Indexed: 11/18/2022]
Abstract
The present paper reports the synthesis and binding studies of new 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamides as selective Peripheral Benzodiazepine Receptor (PBR) ligands. The variability of substituents at the 3-position was investigated and a 3D-QSAR model was proposed to evaluate the effect of different substitutions on the acetamide moiety. In addition, a subset of the novel compounds showing high affinity for PBR was tested for their ability to modulate the steroid biosynthesis in C6 glioma cells.
Collapse
Affiliation(s)
- Silvia Selleri
- Dipartimento di Scienze Farmaceutiche, Università di Firenze, Via U. Schiff, 6, 50019 Sesto F.no Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Kropholler MA, Boellaard R, Schuitemaker A, van Berckel BNM, Luurtsema G, Windhorst AD, Lammertsma AA. Development of a tracer kinetic plasma input model for (R)-[11C]PK11195 brain studies. J Cereb Blood Flow Metab 2005; 25:842-51. [PMID: 15744248 DOI: 10.1038/sj.jcbfm.9600092] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
(R)-[(11)C]PK11195 ([1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl]-3-isoquinoline carboxamide) is a ligand for the peripheral benzodiazepine receptor, which, in the brain, is mainly expressed on activated microglia. Using both clinical studies and Monte Carlo simulations, the aim of this study was to determine which tracer kinetic plasma input model best describes (R)-[(11)C]PK11195 kinetics. Dynamic positron emission tomography (PET) scans were performed on 13 subjects while radioactivity in arterial blood was monitored online. Discrete blood samples were taken to generate a metabolite corrected plasma input function. One-tissue, two-tissue irreversible, and two-tissue reversible compartment models, with and without fixing K(1)/k(2) ratio, k(4) or blood volume to whole cortex values, were fitted to the data. The effects of fixing parameters to incorrect values were investigated by varying them over a physiologic range and determining accuracy and reproducibility of binding potential and volume of distribution using Monte Carlo simulations. Clinical data showed that a two-tissue reversible compartment model was optimal for analyzing (R)-[(11)C]PK11195 PET brain studies. Simulations showed that fixing the K(1)/k(2) ratio of this model provided the optimal trade-off between accuracy and reproducibility. It was concluded that a two-tissue reversible compartment model with K(1)/k(2) fixed to whole cortex value is optimal for analyzing (R)-[(11)C]PK11195 PET brain studies.
Collapse
Affiliation(s)
- Marc A Kropholler
- Department of Nuclear Medicine & PET Research, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
141
|
Greuter HNJM, van Ophemert PLB, Luurtsema G, van Berckel BNM, Franssen EJF, Windhorst BD, Lammertsma AA. Optimizing an online SPE–HPLC method for analysis of (R)-[11C]1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide [(R)-[11C]PK11195] and its metabolites in humans. Nucl Med Biol 2005; 32:307-12. [PMID: 15820767 DOI: 10.1016/j.nucmedbio.2004.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 12/09/2004] [Accepted: 12/12/2004] [Indexed: 11/15/2022]
Abstract
(R)-[11C]PK11195 is used as a positron emission tomography tracer for activated microglia in several neurological disorders. Quantification of specific binding requires a metabolite-corrected plasma input function. In this study, a high-performance liquid chromatography (HPLC) procedure with online solid phase extraction was modified for analyzing (R)-[11C]PK11195 plasma samples, yielding total sample recoveries of more than 98%. When applied to human studies, the use of two HPLC systems enabled analysis of up to seven plasma samples under regular conditions. Online radioactivity detection was compared with offline sample measurements of HPLC profiles. Offline measurements provided the most reliable results especially for late plasma samples. In 10 patients, an average decrease of parent compound from 94.6% at 2.5 min to 45.2% at 1 h after administration was observed.
Collapse
Affiliation(s)
- Henri N J M Greuter
- Department of Nuclear Medicine and PET Research, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
142
|
Scott Mason N, Mathis CA. Positron Emission Tomography Agents for Central Nervous System Drug Development Applications. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2005. [DOI: 10.1016/s0065-7743(05)40004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
143
|
Venneti S, Lopresti BJ, Wang G, Bissel SJ, Mathis CA, Meltzer CC, Boada F, Capuano S, Kress GJ, Davis DK, Ruszkiewicz J, Reynolds IJ, Murphey-Corb M, Trichel AM, Wisniewski SR, Wiley CA. PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. J Clin Invest 2004; 113:981-9. [PMID: 15057304 PMCID: PMC379322 DOI: 10.1172/jci20227] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2003] [Accepted: 01/20/2004] [Indexed: 11/17/2022] Open
Abstract
HIV infection in humans and simian immunodeficiency virus (SIV) infection in macaques result in encephalitis in approximately one-quarter of infected individuals and is characterized by infiltration of the brain with infected and activated macrophages. 1-(2-chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carboxamide (PK11195) is a ligand specific for the peripheral benzodiazepine receptor abundant on macrophages and is expressed in low levels in the noninfected brain. We hypothesized that positron-emission tomography (PET) with the carbon-11-labeled, R-enantiomer form of PK11195 ([(11)C](R)-PK11195) could image brain macrophages and hence the development of encephalitis in vivo. [(11)C](R)-PK11195 binding was assessed in the brain using PET in 11 SIV infected macaques, six of which showed increased binding in vivo. Postmortem examination of the brain in these six macaques demonstrated encephalitis, while macaques that did not show an increase in [(11)C](R)-PK11195 binding did not develop SIV encephalitis. Brain tissue from SIV encephalitic macaques also showed increased [(3)H](R)-PK11195 binding compared with binding in nonencephalitic macaques. Increased PK11195 binding in vivo and in postmortem brain tissue correlated with abundance of macrophages but not astrocytes. Our results suggest that PET [(11)C](R)-PK11195 imaging can detect the presence of macrophages in SIV encephalitis in vivo and may be useful to predict the development of HIV encephalitis and in studies of the pathogenesis and treatment of HIV dementia.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Venneti S, Lopresti BJ, Wang G, Bissel SJ, Mathis CA, Meltzer CC, Boada F, Capuano S, Kress GJ, Davis DK, Ruszkiewicz J, Reynolds IJ, Murphey-Corb M, Trichel AM, Wisniewski SR, Wiley CA. PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. J Clin Invest 2004. [DOI: 10.1172/jci200420227] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
145
|
Cagnin A, Gerhard A, Banati RB. The concept of in vivo imaging of neuroinflammation with [11C](R)-PK11195 PET. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:179-91. [PMID: 12066412 DOI: 10.1007/978-3-662-05073-6_10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- A Cagnin
- MRC Cyclotron Unit, Imperial College School of Medicine, Hammersmith Hospital, Du Cane Road, London W12 ONN, UK.
| | | | | |
Collapse
|
146
|
Abstract
In health, microglia reside as quiescent guardian cells ubiquitously, but isolated without any cell-cell contacts amongst themselves, throughout the normal CNS. In disease, however, they act as swift "sensors" for pathological events, including subtle ones without any obvious structural damage. Once activated, microglia show a territorially highly restricted involvement in the disease process. This property, peculiar to microglia, confers to them diagnostic value for the accurate spatial localisation of any active disease process, acute or chronic. In the brain, the isoquinoline PK11195, a ligand for the peripheral benzodiazepine binding site (PBBS), binds with relative cellular selectivity to activated, but not resting, microglia. Labelled with carbon-11, (R)-PK11195 and positron emission tomography (PET) have been used for the study of inflammatory and neurodegenerative brain disease in vivo. These studies demonstrate meaningfully distributed patterns of regional [(11)C](R)-PK11195 signal increases that correlate with clinically observed loss of function. Increased [(11)C](R)-PK11195 binding closely mirrors the histologically well-described activation of microglia in the penumbra of focal lesions, as well as in the distant, anterograde, and retrograde projection areas of the lesioned neural pathway. There is also some indication that in long-standing alterations of a neural network with persistent abnormal input, additional signals of glial activation may also emerge in transsynaptic areas. These data suggest that the injured brain is less static than commonly thought and shows subtle glial responses even in macroanatomically stable appearing regions. This implies that glial activation is not solely a sign of tissue destruction, but possibly of disease-induced adaptation or plasticity as well. Whilst further technological and methodological advances are necessary to achieve routine clinical value and feasibility, a systematic attempt to image glial cells in vivo is likely to furnish valuable information on the cellular pathology of CNS diseases and their progression within the distributed neural architecture of the brain.
Collapse
Affiliation(s)
- Richard B Banati
- Department of Neuropathology, Departments of Psychiatry, Molecular Neuropsychiatry, Charing Cross Hospital, Imperial College School of Medicine, and MRC Clinical Sciences Centre (PET Neurology), Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
147
|
Jones HA, Valind SO, Clark IC, Bolden GE, Krausz T, Schofield JB, Boobis AR, Haslett C. Kinetics of lung macrophages monitored in vivo following particulate challenge in rabbits. Toxicol Appl Pharmacol 2002; 183:46-54. [PMID: 12217641 DOI: 10.1006/taap.2002.9462] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ligand PK11195 binds specifically in macrophages. We have assessed the use of positron emission tomography (PET) of [(11)C]R-PK11195 to monitor macrophage disposition following particulate challenge to the lung. Repeated PET scanning was performed over 4 weeks following iv [(11)C]R-PK11195 in rabbits treated with 5-microm particles of either amorphous (aSiO(2)) or microcrystalline (xSiO(2)) silica instilled into right upper pulmonary lobes. aSiO(2) resulted in increased macrophages, few neutrophils, and no fibrosis, while xSiO(2) increased macrophages and neutrophils and caused fibrosis. After both stimuli, (11)C localized to the challenged area and correlated with macrophage numbers. Radioactive counts in challenged/control lung regions peaked at 4 days for aSiO(2) (2.88, n = 2) and 6 days for xSiO(2) (4.62, n = 2). The signal remained elevated throughout the study (aSiO(2), 2.33 +/- 0.77 SD, n = 14; xSiO(2), 3.99 +/- 1.29 SD, n = 9), as did macrophage accumulation. (11)C also localized to regions consistent with macrophage traffic through lymph ducts 6 days after aSiO(2) challenge, but not until 4 weeks after xSiO(2). Specific binding of R-PK11195 in macrophages was demonstrated by microautoradiography in lavage fluid from an inflamed rabbit knee-joint model. These data suggest that PET scanning after [(11)C]PK11195 provides a new noninvasive approach for the study of macrophage kinetics in the lung.
Collapse
Affiliation(s)
- Hazel A Jones
- Division of Medicine, Imperial College, Hammersmith Campus, London W12 ONN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Rahman O, Kihlberg T, Långström B. Synthesis of N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl)isoquinoline-3-[11C]carboxamide ([11C-carbonyl]PK11195) and some analogues using [11C]carbon monoxide and 1-(2-chlorophenyl)isoquinolin-3-yl triflate. ACTA ACUST UNITED AC 2002. [DOI: 10.1039/b205838c] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
149
|
Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, Jones T, Banati RB. In-vivo measurement of activated microglia in dementia. Lancet 2001; 358:461-7. [PMID: 11513911 DOI: 10.1016/s0140-6736(01)05625-2] [Citation(s) in RCA: 759] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Activated microglia have a key role in the brain's immune response to neuronal degeneration. The transition of microglia from the normal resting state to the activated state is associated with an increased expression of receptors known as peripheral benzodiazepine binding sites, which are abundant on cells of mononuclear phagocyte lineage. We used brain imaging to study expression of these sites in healthy individuals and patients with Alzheimer's disease. METHODS We studied 15 normal individuals (age 32-80 years), eight patients with Alzheimer's disease, and one patient with minimal cognitive impairment. Quantitative in-vivo measurements of glial activation were obtained with positron emission tomography (PET) and carbon-11-labelled (R)-PK11195, a specific ligand for the peripheral benzodiazepine binding site. FINDINGS In normal individuals, regional [11C](R)-PK11195 binding did not significantly change with age, except in the thalamus, where an age-dependent increase was found. By contrast, patients with Alzheimer's disease showed significantly increased regional [11C](R)-PK11195 binding in the entorhinal, temporoparietal, and cingulate cortex. INTERPRETATION In-vivo detection of increased [11C](R)-PK11195 binding in Alzheimer-type dementia, including mild and early forms, suggests that microglial activation is an early event in the pathogenesis of the disease.
Collapse
Affiliation(s)
- A Cagnin
- MRC Cyclotron Unit, Imperial College, Faculty of Medicine, Division of Neuroscience and Psychological Medicince, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Matarrese M, Moresco RM, Cappelli A, Anzini M, Vomero S, Simonelli P, Verza E, Magni F, Sudati F, Soloviev D, Todde S, Carpinelli A, Kienle MG, Fazio F. Labeling and evaluation of N-[11C]methylated quinoline-2-carboxamides as potential radioligands for visualization of peripheral benzodiazepine receptors. J Med Chem 2001; 44:579-85. [PMID: 11170647 DOI: 10.1021/jm001004h] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The novel quinoline-2-carboxamide derivatives N-[methyl-11C]-3-methyl-4-phenyl-N-(phenylmethyl)quinoline-2-carboxamide ([11C]4), (+/-)-N-[methyl-11C]-3-methyl-N-(1-methylpropyl)-4-phenylquinoline-2-carboxamide ([11C]5), and (+/-)-N-[methyl-11C]-3-methyl-4-(2-fluorophenyl)-N-(1-methylpropyl)quinoline-2-carboxamide ([11C]6) were labeled with carbon-11 (t1/2 = 20.4 min, beta+ = 99.8%) as potential radioligands for the noninvasive assessment of peripheral benzodiazepine type receptors (PBR) in vivo with positron emission tomography (PET). The radiosynthesis consisted of N-methylation of the desmethyl precursors 3-methyl-4-phenyl-N-(phenylmethyl)quinoline-2-carboxamide (4a), (+/-)-3-methyl-N-(1-methylpropyl)-4-phenylquinoline-2-carboxamide (5a), and (+/-)-4-(2-fluorophenyl)-3-methyl-N-(1-methylpropyl)quinoline-2-carboxamide (6a) with either [11C]methyl iodide or [11C]methyl triflate in the presence of tetrabutylammonium hydroxide or potassium hydroxide in dimethylformamide. The radioligands [11C]4, [11C]5, and [11C]6 were synthesized with over 99% radiochemical purity in 30 min, 30 +/- 5% radiochemical yield, calculated at the end of synthesis (EOS) non-decay-corrected, and 2.5 +/- 1.2 Ci/micromol of specific radioactivity. Inhibition studies in rats following intravenous pre-administration of 1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide (PK 11195, 1) showed high specific binding to PBR of [11C]4, [11C]5, and [11C]6 in heart, lung, kidney, adrenal gland, spleen, and brain. The biological data suggest that [11C]5, [11C]6, and particularly [11C]4 are promising radioligands for PBR imaging in vivo with PET.
Collapse
Affiliation(s)
- M Matarrese
- INB-CNR, University of Milano/Bicocca, Institute H.S. Raffaele, Via Olgettina 60, 20132 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|