101
|
|
102
|
Intrinsic reaction-cycle time scale of Na+,K+-ATPase manifests itself in the lipid-protein interactions of nonequilibrium membranes. Proc Natl Acad Sci U S A 2012; 109:18442-6. [PMID: 23093677 DOI: 10.1073/pnas.1209909109] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interaction between integral membrane proteins and the lipid-bilayer component of biological membranes is expected to mutually influence the proteins and the membrane. We present quantitative evidence of a manifestation of the lipid-protein interactions in liposomal membranes, reconstituted with actively pumping Na(+),K(+)-ATPase, in terms of nonequilibrium shape fluctuations that contain a relaxation time, τ, which is robust and independent of the specific fluctuation modes of the membrane. In the case of pumping Na(+)-ions, analysis of the flicker-noise temporal correlation spectrum of the liposomes leads to τ ~/= 0.5 s, comparing favorably with an intrinsic reaction-cycle time of about 0.4 s from enzymology.
Collapse
|
103
|
Murgiano L, Sacchetto R, Testoni S, Dorotea T, Mascarello F, Liguori R, Gentile A, Drögemüller C. Pseudomyotonia in Romagnola cattle caused by novel ATP2A1 mutations. BMC Vet Res 2012; 8:186. [PMID: 23046865 PMCID: PMC3545862 DOI: 10.1186/1746-6148-8-186] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/25/2012] [Indexed: 11/10/2022] Open
Abstract
Background Bovine congenital pseudomyotonia (PMT) is an impairment of muscle relaxation induced by exercise preventing animals from performing rapid movements. Forms of recessively inherited PMT have been described in different cattle breeds caused by two independent mutations in ATP2A1 encoding a skeletal-muscle Ca2+-ATPase (SERCA1). We observed symptoms of congenital PMT in four related Romagnola beef cattle from Italy and evaluated SERCA1 activity and scanned ATP2A1 for possible causative mutations. Results We obtained four PMT affected Romagnola cattle and noted striking clinical similarities to the previously described PMT cases in other cattle breeds. The affected animals had a reduced SERCA1 activity in the sarcoplasmic reticulum. A single affected animal was homozygous for a novel complex variant in ATP2A1 exon 8 (c.[632 G>T; 857 G>T]). Three out of four cases were compound heterozygous for the newly identified exon 8 variant and the exon 6 variant c.491 G>A(p. Arg146Gly), which has previously been shown to cause PMT in Chianina cattle. Pedigree analysis showed that the exon 8 double mutation event dates back to at least 1978. Both nucleotide substitutions are predicted to alter the SERCA1 amino acid sequence (p.[(Gly211Val; Gly284Val)]), affect highly conserved residues, in particular the actuator domain of SERCA1. Conclusion Clinical, biochemical and DNA analyses confirmed the initial hypothesis. We provide functional and genetic evidence that one novel and one previously described ATP2A1 mutation lead to a reduced SERCA1 activity in skeletal muscles and pseudomyotonia in affected Romagnola cattle. Selection against these mutations can now be used to eliminate the mutant alleles from the Romagnola breed.
Collapse
Affiliation(s)
- Leonardo Murgiano
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001, Bern, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
104
|
Giacomello M, De Mario A, Scarlatti C, Primerano S, Carafoli E. Plasma membrane calcium ATPases and related disorders. Int J Biochem Cell Biol 2012; 45:753-62. [PMID: 23041476 DOI: 10.1016/j.biocel.2012.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/20/2012] [Accepted: 09/24/2012] [Indexed: 01/10/2023]
Abstract
The plasma membrane Ca(2+) ATPases (PMCA pumps) cooperate with other transport systems in the plasma membrane and in the organelles in the regulation of cell Ca(2+). They have high Ca(2+) affinity and are thus the fine tuners of cytosolic Ca(2+). They belong to the superfamily of P-type ATPases: their four basic isoforms share the essential properties of the reaction cycle and the general membrane topography motif of 10 transmembrane domains and three large cytosolic units. However they also differ in other important properties, e.g., tissue distribution and regulatory mechanisms. Their chief regulator is calmodulin, that removes their C-terminal cytosolic tail from autoinhibitory binding sites next to the active site of the pump, restoring activity. The number of pump isoforms is increased to over 30 by alternative splicing of the transcripts at a N-terminal site (site A) and at site C within the C-terminal calmodulin binding domain: the splice variants are tissue specific and developmentally regulated. The importance of PMCAs in the maintenance of cellular Ca(2+) homeostasis is underlined by the disease phenotypes, genetic or acquired, caused by their malfunction. Non-genetic PMCA deficiencies have long been considered possible causative factors in disease conditions as important as cancer, hypertension, or neurodegeneration. Those of genetic origin are better characterized: some have now been discovered in humans as well. They concern all four PMCA isoforms, and range from cardiac dysfunctions, to deafness, to hypertension, to cerebellar ataxia.
Collapse
Affiliation(s)
- Marta Giacomello
- Venetian Institute of Molecular Medicine, University of Padova, Padua, Italy
| | | | | | | | | |
Collapse
|
105
|
Autry JM, Rubin JE, Svensson B, Li J, Thomas DD. Nucleotide activation of the Ca-ATPase. J Biol Chem 2012; 287:39070-82. [PMID: 22977248 DOI: 10.1074/jbc.m112.404434] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have used fluorescence spectroscopy, molecular modeling, and limited proteolysis to examine structural dynamics of the sarcoplasmic reticulum Ca-ATPase (SERCA). The Ca-ATPase in sarcoplasmic reticulum vesicles from fast twitch muscle (SERCA1a isoform) was selectively labeled with fluorescein isothiocyanate (FITC), a probe that specifically reacts with Lys-515 in the nucleotide-binding site. Conformation-specific proteolysis demonstrated that FITC labeling does not induce closure of the cytoplasmic headpiece, thereby assigning FITC-SERCA as a nucleotide-free enzyme. We used enzyme reverse mode to synthesize FITC monophosphate (FMP) on SERCA, producing a phosphorylated pseudosubstrate tethered to the nucleotide-binding site of a Ca(2+)-free enzyme (E2 state to prevent FMP hydrolysis). Conformation-specific proteolysis demonstrated that FMP formation induces SERCA headpiece closure similar to ATP binding, presumably due to the high energy phosphoryl group on the fluorescent probe (ATP·E2 analog). Subnanosecond-resolved detection of fluorescence lifetime, anisotropy, and quenching was used to characterize FMP-SERCA (ATP·E2 state) versus FITC-SERCA in Ca(2+)-free, Ca(2+)-bound, and actively cycling phosphoenzyme states (E2, E1, and EP). Time-resolved spectroscopy revealed that FMP-SERCA exhibits increased probe dynamics but decreased probe accessibility compared with FITC-SERCA, indicating that ATP exhibits enhanced dynamics within a closed cytoplasmic headpiece. Molecular modeling was used to calculate the solvent-accessible surface area of FITC and FMP bound to SERCA crystal structures, revealing a positive correlation of solvent-accessible surface area with quenching but not anisotropy. Thus, headpiece closure is coupled to substrate binding but not active site dynamics. We propose that dynamics in the nucleotide-binding site of SERCA is important for Ca(2+) binding (distal allostery) and phosphoenzyme formation (direct activation).
Collapse
Affiliation(s)
- Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | |
Collapse
|
106
|
Nagarajan A, Andersen JP, Woolf TB. Coarse-grained simulations of transitions in the E2-to-E1 conformations for Ca ATPase (SERCA) show entropy-enthalpy compensation. J Mol Biol 2012; 422:575-93. [PMID: 22684148 DOI: 10.1016/j.jmb.2012.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/23/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
SERCA is a membrane transport protein that has been extensively studied. There are a large number of highly resolved X-ray structures and several hundred mutations that have been characterized functionally. Despite this, the molecular details of the catalytic cycle, a cycle that includes large conformational changes, is not fully understood. In this computational study, we provide molecular dynamics descriptions of conformational changes during the E2→E1 transitions. The motivating point for these calculations was a series of insertion mutants in the A-M3 linker region that led to significant shifts in measured rates between the E2 and E1 states, as shown by experimental characterization. Using coarse-grained dynamic importance sampling within the context of a population shift framework, we sample on the intermediates along the transition pathway to address the mechanism for the conformational changes and the effects of the insertion mutations on the kinetics of the transition. The calculations define an approximation for the relative changes in entropy and enthalpy along the transition. These are found to be important for understanding the experimentally observed differences in rates. In particular, the interactions between cytoplasmic domains, water interactions, and the shifts in protein degrees of freedom with the insertion mutations show mutual compensation for the E2→E1 transitions in wild-type and mutant systems.
Collapse
Affiliation(s)
- Anu Nagarajan
- Department of Physiology, Johns Hopkins University, School of Medicine, Biophysics 206, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
107
|
Chen Q, Mahendrasingam S, Tickle JA, Hackney CM, Furness DN, Fettiplace R. The development, distribution and density of the plasma membrane calcium ATPase 2 calcium pump in rat cochlear hair cells. Eur J Neurosci 2012; 36:2302-10. [PMID: 22672315 DOI: 10.1111/j.1460-9568.2012.08159.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Calcium is tightly regulated in cochlear outer hair cells (OHCs). It enters mainly via mechanotransducer (MT) channels and is extruded by the plasma membrane calcium ATPase (PMCA)2 isoform of the PMCA, mutations in which cause hearing loss. To assess how pump expression matches the demands of Ca(2+) homeostasis, the distribution of PMCA2 at different cochlear locations during development was quantified using immunofluorescence and post-embedding immunogold labeling. The PMCA2 isoform was confined to stereociliary bundles, first appearing at the base of the cochlea around post-natal day (P)0 followed by the middle and then the apex by P3, and was unchanged after P8. The developmental appearance matched the maturation of the MT channels in rat OHCs. High-resolution immunogold labeling in adult rats showed that PMCA2 was distributed along the membranes of all three rows of OHC stereocilia at similar densities and at about a quarter of the density in inner hair cell stereocilia. The difference between OHCs and inner hair cells was similar to the ratio of their MT channel resting open probabilities. Gold particle counts revealed no difference in PMCA2 density between low- and high-frequency OHC bundles despite larger MT currents in high-frequency OHCs. The PMCA2 density in OHC stereocilia was determined in low- and high-frequency regions from calibration of immunogold particle counts as 2200/μm(2) from which an extrusion rate of ∼200 ions/s per pump was inferred. The limited ability of PMCA2 to extrude the Ca(2+) load through MT channels may constitute a major cause of OHC vulnerability and high-frequency hearing loss.
Collapse
Affiliation(s)
- Qingguo Chen
- Department of Otolaryngology - Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | |
Collapse
|
108
|
Seeger MA, Mittal A, Velamakanni S, Hohl M, Schauer S, Salaa I, Grütter MG, van Veen HW. Tuning the drug efflux activity of an ABC transporter in vivo by in vitro selected DARPin binders. PLoS One 2012; 7:e37845. [PMID: 22675494 PMCID: PMC3366976 DOI: 10.1371/journal.pone.0037845] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/30/2012] [Indexed: 11/18/2022] Open
Abstract
ABC transporters use the energy from binding and hydrolysis of ATP to import or extrude substrates across the membrane. Using ribosome display, we raised designed ankyrin repeat proteins (DARPins) against detergent solubilized LmrCD, a heterodimeric multidrug ABC exporter from Lactococcus lactis. Several target-specific DARPin binders were identified that bind to at least three distinct, partially overlapping epitopes on LmrD in detergent solution as well as in native membranes. Remarkably, functional screening of the LmrCD-specific DARPin pools in L. lactis revealed three homologous DARPins which, when generated in LmrCD-expressing cells, strongly activated LmrCD-mediated drug transport. As LmrCD expression in the cell membrane was unaltered upon the co-expression of activator DARPins, the activation is suggested to occur at the level of LmrCD activity. Consistent with this, purified activator DARPins were found to stimulate the ATPase activity of LmrCD in vitro when reconstituted in proteoliposomes. This study suggests that membrane transporters are tunable in vivo by in vitro selected binding proteins. Our approach could be of biopharmaceutical importance and might facilitate studies on molecular mechanisms of ABC transporters.
Collapse
Affiliation(s)
- Markus A. Seeger
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Anshumali Mittal
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Saroj Velamakanni
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Hohl
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Stefan Schauer
- Functional Genomics Center Zurich, University of Zurich, Zurich, Switzerland
| | - Ihsene Salaa
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Markus G. Grütter
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Hendrik W. van Veen
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
109
|
Nagarajan A, Andersen JP, Woolf TB. The role of domain: domain interactions versus domain: water interactions in the coarse-grained simulations of the E1P to E2P transitions in Ca-ATPase (SERCA). Proteins 2012; 80:1929-47. [PMID: 22422644 DOI: 10.1002/prot.24070] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 02/24/2012] [Accepted: 03/03/2012] [Indexed: 12/15/2022]
Abstract
SERCA is an important model system for understanding the molecular details of conformational change in membrane transport systems. This reflects the large number of solved X-ray structures and the equally large database of mutations that have been assayed. In this computational study, we provide a molecular dynamics description of the conformational changes during the E1P → E2P transitions. This set of states further changes with insertion mutants in the A-M3 linker region. These mutants were experimentally shown to lead to significant shifts in rates between the E1P → E2P states. Using the population shift framework and dynamic importance sampling method along with coarse-grained representations of the protein, lipid, and water, we suggest why these changes are found. The calculations sample on intermediates and suggest that changes in interactions, individual helix interactions, and water behavior are key elements in the molecular compositions that underlie shifts in kinetics. In particular, as the insertion length grows, it attracts more water and disrupts domain interactions, creating changes as well at the sites of key helix interactions between the A-Domain and the P-Domain. This provides a conceptual picture that aids understanding of the experimental results.
Collapse
Affiliation(s)
- Anu Nagarajan
- Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | | | |
Collapse
|
110
|
First crystal structures of Na+,K+-ATPase: new light on the oldest ion pump. Structure 2012; 19:1732-8. [PMID: 22153495 DOI: 10.1016/j.str.2011.10.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/21/2022]
Abstract
Na(+),K(+)-adenosine triphosphatase (NKA) is the first P-type ion translocating adenosine triphosphatase (ATPase) ever identified, and the significance of this class of proteins was highlighted by the 1997 Nobel Prize in Chemistry awarded to Jens C. Skou for the discovery in 1957. More than half a century passed between the initial identification and the publication of a high-resolution crystal structure of NKA. Although the new crystal structures provided many surprises and insights, structural biology on this system remains challenging, as NKA is a very difficult protein to crystallize. Here we explain the reasons behind the challenges, introduce a mechanism that governs the function, and summarize current knowledge of NKA structure in comparison with another member of the P-type ATPase family, Ca(2+)-ATPase.
Collapse
|
111
|
Hake J, Edwards AG, Yu Z, Kekenes-Huskey PM, Michailova AP, McCammon JA, Holst MJ, Hoshijima M, McCulloch AD. Modelling cardiac calcium sparks in a three-dimensional reconstruction of a calcium release unit. J Physiol 2012; 590:4403-22. [PMID: 22495592 DOI: 10.1113/jphysiol.2012.227926] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Triggered release of Ca2+ from an individual sarcoplasmic reticulum (SR) Ca(2+) release unit (CRU) is the fundamental event of cardiac excitation–contraction coupling, and spontaneous release events (sparks) are the major contributor to diastolic Ca(2+) leak in cardiomyocytes. Previous model studies have predicted that the duration and magnitude of the spark is determined by the local CRU geometry, as well as the localization and density of Ca(2+) handling proteins. We have created a detailed computational model of a CRU, and developed novel tools to generate the computational geometry from electron tomographic images. Ca(2+) diffusion was modelled within the SR and the cytosol to examine the effects of localization and density of the Na(+)/Ca(2+) exchanger, sarco/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA), and calsequestrin on spark dynamics. We reconcile previous model predictions of approximately 90% local Ca(2+) depletion in junctional SR, with experimental reports of about 40%. This analysis supports the hypothesis that dye kinetics and optical averaging effects can have a significant impact on measures of spark dynamics. Our model also predicts that distributing calsequestrin within non-junctional Z-disc SR compartments, in addition to the junctional compartment, prolongs spark release time as reported by Fluo5. By pumping Ca(2+) back into the SR during a release, SERCA is able to prolong a Ca(2+) spark, and this may contribute to SERCA-dependent changes in Ca(2+) wave speed. Finally, we show that including the Na(+)/Ca(2+) exchanger inside the dyadic cleft does not alter local [Ca(2+)] during a spark.
Collapse
Affiliation(s)
- Johan Hake
- Department of Bioengineering, University of California San Diego, CA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases. Proc Natl Acad Sci U S A 2012; 109:E290-8. [PMID: 22308393 DOI: 10.1073/pnas.1115725109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Type IV P-type ATPases (P4-ATPases) catalyze translocation of phospholipid across a membrane to establish an asymmetric bilayer structure with phosphatidylserine (PS) and phosphatidylethanolamine (PE) restricted to the cytosolic leaflet. The mechanism for how P4-ATPases recognize and flip phospholipid is unknown, and is described as the "giant substrate problem" because the canonical substrate binding pockets of homologous cation pumps are too small to accommodate a bulky phospholipid. Here, we identify residues that confer differences in substrate specificity between Drs2 and Dnf1, Saccharomyces cerevisiae P4-ATPases that preferentially flip PS and phosphatidylcholine (PC), respectively. Transplanting transmembrane segments 3 and 4 (TM3-4) of Drs2 into Dnf1 alters the substrate preference of Dnf1 from PC to PS. Acquisition of the PS substrate maps to a Tyr618Phe substitution in TM4 of Dnf1, representing the loss of a single hydroxyl group. The reciprocal Phe511Tyr substitution in Drs2 specifically abrogates PS recognition by this flippase causing PS exposure on the outer leaflet of the plasma membrane without disrupting PE asymmetry. TM3 and the adjoining lumenal loop contribute residues important for Dnf1 PC preference, including Phe587. Modeling of residues involved in substrate selection suggests a novel P-type ATPase transport pathway at the protein/lipid interface and a potential solution to the giant substrate problem.
Collapse
|
113
|
Rosenzweig AC, Argüello JM. Toward a molecular understanding of metal transport by P(1B)-type ATPases. CURRENT TOPICS IN MEMBRANES 2012; 69:113-36. [PMID: 23046649 DOI: 10.1016/b978-0-12-394390-3.00005-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The P(1B) family of P-type ATPases couples the transport of cytoplasmic transition metals across biological membranes to the hydrolysis of ATP. These ubiquitous transporters function in maintaining cytoplasmic metal quotas and in the assembly of metalloproteins, and have been classified into subfamilies (P(1B-1)-P(1B-5)) on the basis of their transported substrates (Cu(+), Zn(2+), Cu(2+), and Co(2+)) and signature sequences in their transmembrane segments. In addition, each subgroup presents a characteristic membrane topology and specific regulatory cytoplasmic metal-binding domains. In recent years, significant major aspects of their transport mechanism have been described, including the stoichiometry of transport and the delivery of substrates to transport sites by metallochaperones. Toward understanding their structure, the metal coordination by transport sites has been characterized for Cu(+) and Zn(2+)-ATPases. In addition, atomic resolution structures have been determined, providing key insight into the elements that enable transition metal transport. Because the Cu(+)-transporting ATPases are found in humans and are linked to disease, this subfamily has been the focus of intense study. As a result, significant progress has been made toward understanding Cu(+)-ATPase function on the molecular level, using both the human proteins and the bacterial homologs, most notably the CopA proteins from Archaeoglobus fulgidus, Bacillus subtilis, and Thermotoga maritima. This chapter thus focuses on the mechanistic and structural information obtained by studying these latter Cu(+)-ATPases, with some consideration of how these aspects might differ for the other subfamilies of P(1B)-ATPases.
Collapse
Affiliation(s)
- Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| | | |
Collapse
|
114
|
Yu H, Ratheal I, Artigas P, Roux B. Molecular Mechanisms of K+ Selectivity in Na/K Pump. Aust J Chem 2012. [DOI: 10.1071/ch12026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The sodium–potassium (Na/K) pump plays an essential role in maintaining cell volume and secondary active transport of other solutes by establishing the Na+ and K+ concentration gradients across the plasma membrane of animal cells. The recently determined crystal structures of the Na/K pump to atomic resolution provide a new impetus to investigate molecular determinants governing the binding of Na+ and K+ ions and conformational transitions during the functional cycle. The pump cycle is generally described by the alternating access mechanism, in which the pump toggles between different conformational states, where ions can bind from either the intracellular or the extracellular side. However, important issues concerning the selectivity of the Na/K pump remain to be addressed. In particular, two out of the three binding sites are shared between Na+ and K+ and it is not clear how the protein is able to select K+ over Na+ when it is in the outwardly facing phosphorylated conformation (E2P), and Na+ over K+ when it is in the inwardly facing conformation (E1). In this review article, we will first briefly review the recent advancement in understanding the microscopic mechanism of K+ selectivity in the Na/K pump at the E2·Pi state and then outline the remaining challenges to be addressed about ion selectivity.
Collapse
|
115
|
Patergnani S, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Giorgi C, Marchi S, Missiroli S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P. Calcium signaling around Mitochondria Associated Membranes (MAMs). Cell Commun Signal 2011; 9:19. [PMID: 21939514 PMCID: PMC3198985 DOI: 10.1186/1478-811x-9-19] [Citation(s) in RCA: 300] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 09/22/2011] [Indexed: 11/10/2022] Open
Abstract
Calcium (Ca2+) homeostasis is fundamental for cell metabolism, proliferation, differentiation, and cell death. Elevation in intracellular Ca2+ concentration is dependent either on Ca2+ influx from the extracellular space through the plasma membrane, or on Ca2+ release from intracellular Ca2+ stores, such as the endoplasmic/sarcoplasmic reticulum (ER/SR). Mitochondria are also major components of calcium signalling, capable of modulating both the amplitude and the spatio-temporal patterns of Ca2+ signals. Recent studies revealed zones of close contact between the ER and mitochondria called MAMs (Mitochondria Associated Membranes) crucial for a correct communication between the two organelles, including the selective transmission of physiological and pathological Ca2+ signals from the ER to mitochondria. In this review, we summarize the most up-to-date findings on the modulation of intracellular Ca2+ release and Ca2+ uptake mechanisms. We also explore the tight interplay between ER- and mitochondria-mediated Ca2+ signalling, covering the structural and molecular properties of the zones of close contact between these two networks.
Collapse
Affiliation(s)
- Simone Patergnani
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Yu H, Ratheal IM, Artigas P, Roux B. Protonation of key acidic residues is critical for the K⁺-selectivity of the Na/K pump. Nat Struct Mol Biol 2011; 18:1159-63. [PMID: 21909093 PMCID: PMC3190665 DOI: 10.1038/nsmb.2113] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 07/04/2011] [Indexed: 12/25/2022]
Abstract
The sodium-potassium (Na/K) pump is a P-type ATPase that generates Na+ and K+ concentration gradients across the cell membrane. For each ATP molecule, the pump extrudes three Na+ and imports two K+ by alternating between outward- and inward-facing conformations that preferentially bind K+ or Na+, respectively. Remarkably, the selective K+ and Na+ binding sites share several residues, and how the pump is able to achieve the selectivity required for the functional cycle is unclear. Here, free energy perturbation molecular dynamics (FEP/MD) simulations based on the crystal structures of the Na/K pump in a K+-loaded state (E2·Pi) reveal that protonation of the high-field acidic side-chains involved in the binding sites is critical to achieve the proper K+ selectivity. This prediction is tested with electrophysiological experiments showing that the selectivity of the E2P state for K+ over Na+ is affected by extracellular pH.
Collapse
Affiliation(s)
- Haibo Yu
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
117
|
Cornelius F, Mahmmoud YA, Toyoshima C. Metal fluoride complexes of Na,K-ATPase: characterization of fluoride-stabilized phosphoenzyme analogues and their interaction with cardiotonic steroids. J Biol Chem 2011; 286:29882-92. [PMID: 21708939 DOI: 10.1074/jbc.m111.259663] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Na,K-ATPase belongs to the P-type ATPase family of primary active cation pumps. Metal fluorides like magnesium-, beryllium-, and aluminum fluoride act as phosphate analogues and inhibit P-type ATPases by interacting with the phosphorylation site, stabilizing conformations that are analogous to specific phosphoenzyme intermediates. Cardiotonic steroids like ouabain used in the treatment of congestive heart failure and arrhythmias specifically inhibit the Na,K-ATPase, and the detailed structure of the highly conserved binding site has recently been described by the crystal structure of the shark Na,K-ATPase in a state analogous to E2·2K(+)·P(i) with ouabain bound with apparently low affinity (1). In the present work inhibition, and subsequent reactivation by high Na(+), after treatment of shark Na,K-ATPase with various metal fluorides are characterized. Half-maximal inhibition of Na,K-ATPase activity by metal fluorides is in the micromolar range. The binding of cardiotonic steroids to the metal fluoride-stabilized enzyme forms was investigated using the fluorescent ouabain derivative 9-anthroyl ouabain and compared with binding to phosphorylated enzyme. The fastest binding was to the Be-fluoride stabilized enzyme suggesting a preformed ouabain binding cavity, in accord with results for Ca-ATPase where Be-fluoride stabilizes the E2-P ground state with an open luminal ion access pathway, which in Na,K-ATPase could be a passage for ouabain. The Be-fluoride stabilized enzyme conformation closely resembles the E2-P ground state according to proteinase K cleavage. Ouabain, but not its aglycone ouabagenin, prevented reactivation of this metal fluoride form by high Na(+) demonstrating the pivotal role of the sugar moiety in closing the extracellular cation pathway.
Collapse
|
118
|
Affiliation(s)
- Michael G. Palmgren
- Center for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, University of Copenhagen, DK-1871 Frederiksberg C, Denmark;
| | - Poul Nissen
- Center for Membrane Pumps in Cells and Disease – PUMPKIN, Danish National Research Foundation, Aarhus University, DK-8000 Århus C, Denmark;
| |
Collapse
|
119
|
Abstract
The sarcoplasmic (SERCA 1a) Ca2+-ATPase is a membrane protein abundantly present in skeletal muscles where it functions as an indispensable component of the excitation-contraction coupling, being at the expense of ATP hydrolysis involved in Ca2+/H+ exchange with a high thermodynamic efficiency across the sarcoplasmic reticulum membrane. The transporter serves as a prototype of a whole family of cation transporters, the P-type ATPases, which in addition to Ca2+ transporting proteins count Na+, K+-ATPase and H+, K+-, proton- and heavy metal transporting ATPases as prominent members. The ability in recent years to produce and analyze at atomic (2·3-3 Å) resolution 3D-crystals of Ca2+-transport intermediates of SERCA 1a has meant a breakthrough in our understanding of the structural aspects of the transport mechanism. We describe here the detailed construction of the ATPase in terms of one membraneous and three cytosolic domains held together by a central core that mediates coupling between Ca2+-transport and ATP hydrolysis. During turnover, the pump is present in two different conformational states, E1 and E2, with a preference for the binding of Ca2+ and H+, respectively. We discuss how phosphorylated and non-phosphorylated forms of these conformational states with cytosolic, occluded or luminally exposed cation-binding sites are able to convert the chemical energy derived from ATP hydrolysis into an electrochemical gradient of Ca2+ across the sarcoplasmic reticulum membrane. In conjunction with these basic reactions which serve as a structural framework for the transport function of other P-type ATPases as well, we also review the role of the lipid phase and the regulatory and thermodynamic aspects of the transport mechanism.
Collapse
|
120
|
Vandecaetsbeek I, Vangheluwe P, Raeymaekers L, Wuytack F, Vanoevelen J. The Ca2+ pumps of the endoplasmic reticulum and Golgi apparatus. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a004184. [PMID: 21441596 DOI: 10.1101/cshperspect.a004184] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The various splice variants of the three SERCA- and the two SPCA-pump genes in higher vertebrates encode P-type ATPases of the P(2A) group found respectively in the membranes of the endoplasmic reticulum and the secretory pathway. Of these, SERCA2b and SPCA1a represent the housekeeping isoforms. The SERCA2b form is characterized by a luminal carboxy terminus imposing a higher affinity for cytosolic Ca(2+) compared to the other SERCAs. This is mediated by intramembrane and luminal interactions of this extension with the pump. Other known affinity modulators like phospholamban and sarcolipin decrease the affinity for Ca(2+). The number of proteins reported to interact with SERCA is rapidly growing. Here, we limit the discussion to those for which the interaction site with the ATPase is specified: HAX-1, calumenin, histidine-rich Ca(2+)-binding protein, and indirectly calreticulin, calnexin, and ERp57. The role of the phylogenetically older and structurally simpler SPCAs as transporters of Ca(2+), but also of Mn(2+), is also addressed.
Collapse
Affiliation(s)
- Ilse Vandecaetsbeek
- Laboratory of Ca-transport ATPases, Department of Molecular Cell Biology, K.U. Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
121
|
Satoh K, Matsu-Ura T, Enomoto M, Nakamura H, Michikawa T, Mikoshiba K. Highly cooperative dependence of sarco/endoplasmic reticulum calcium ATPase SERCA2a pump activity on cytosolic calcium in living cells. J Biol Chem 2011; 286:20591-9. [PMID: 21515674 DOI: 10.1074/jbc.m110.204685] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sarco/endoplasmic reticulum (SR/ER) Ca(2+)-ATPase (SERCA) is an intracellular Ca(2+) pump localized on the SR/ER membrane. The role of SERCA in refilling intracellular Ca(2+) stores is pivotal for maintaining intracellular Ca(2+) homeostasis, and disturbed SERCA activity causes many disease phenotypes, including heart failure, diabetes, cancer, and Alzheimer disease. Although SERCA activity has been described using a simple enzyme activity equation, the dynamics of SERCA activity in living cells is still unknown. To monitor SERCA activity in living cells, we constructed an enhanced CFP (ECFP)- and FlAsH-tagged SERCA2a, designated F-L577, which retains the ATP-dependent Ca(2+) pump activity. The FRET efficiency between ECFP and FlAsH of F-L577 is dependent on the conformational state of the molecule. ER luminal Ca(2+) imaging confirmed that the FRET signal changes directly reflect the Ca(2+) pump activity. Dual imaging of cytosolic Ca(2+) and the FRET signals of F-L577 in intact COS7 cells revealed that SERCA2a activity is coincident with the oscillatory cytosolic Ca(2+) concentration changes evoked by ATP stimulation. The Ca(2+) pump activity of SERCA2a in intact cells can be expressed by the Hill equation with an apparent affinity for Ca(2+) of 0.41 ± 0.0095 μm and a Hill coefficient of 5.7 ± 0.73. These results indicate that in the cellular environment the Ca(2+) dependence of ATPase activation is highly cooperative and that SERCA2a acts as a rapid switch to refill Ca(2+) stores in living cells for shaping the intracellular Ca(2+) dynamics. F-L577 will be useful for future studies on Ca(2+) signaling involving SERCA2a activity.
Collapse
Affiliation(s)
- Kanayo Satoh
- Laboratory for Developmental Neurobiology, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
122
|
Hortigón-Vinagre MP, Chardonnet S, Montigny C, Gutiérrez-Martín Y, Champeil P, Henao F. Inhibition by 4-hydroxynonenal (HNE) of Ca2+ transport by SERCA1a: low concentrations of HNE open protein-mediated leaks in the membrane. Free Radic Biol Med 2011; 50:323-36. [PMID: 21109002 DOI: 10.1016/j.freeradbiomed.2010.11.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 11/04/2010] [Accepted: 11/11/2010] [Indexed: 11/27/2022]
Abstract
Exposure of sarcoplasmic reticulum membranes to 4-hydroxy-2-nonenal (HNE) resulted in inhibition of the maximal ATPase activity and Ca(2+) transport ability of SERCA1a, the Ca(2+) pump in these membranes. The concomitant presence of ATP significantly protected SERCA1a ATPase activity from inhibition. ATP binding and phosphoenzyme formation from ATP were reduced after treatment with HNE, whereas Ca(2+) binding to the high-affinity sites was altered to a lower extent. HNE reacted with SH groups, some of which were identified by MALDI-TOF mass spectrometry, and competition studies with FITC indicated that HNE also reacted with Lys(515) within the nucleotide binding pocket of SERCA1a. A remarkable fact was that both the steady-state ability of SR vesicles to sequester Ca(2+) and the ATPase activity of SR membranes in the absence of added ionophore or detergent were sensitive to concentrations of HNE much smaller than those that affected the maximal ATPase activity of SERCA1a. This was due to an increase in the passive permeability of HNE-treated SR vesicles to Ca(2+), an increase in permeability that did not arise from alteration of the lipid component of these vesicles. Judging from immunodetection with an anti-HNE antibody, this HNE-dependent increase in permeability probably arose from modification of proteins of about 150-160kDa, present in very low abundance in longitudinal SR membranes (and in slightly larger abundance in SR terminal cisternae). HNE-induced promotion, via these proteins, of Ca(2+) leakage pathways might be involved in the general toxic effects of HNE.
Collapse
Affiliation(s)
- María P Hortigón-Vinagre
- Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | | | | | |
Collapse
|
123
|
Trinitrophenyl derivatives bind differently from parent adenine nucleotides to Ca2+-ATPase in the absence of Ca2+. Proc Natl Acad Sci U S A 2011; 108:1833-8. [PMID: 21239683 DOI: 10.1073/pnas.1017659108] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Trinitrophenyl derivatives of adenine nucleotides are widely used for probing ATP-binding sites. Here we describe crystal structures of Ca(2+)-ATPase, a representative P-type ATPase, in the absence of Ca(2+) with bound ATP, trinitrophenyl-ATP, -ADP, and -AMP at better than 2.4-Å resolution, stabilized with thapsigargin, a potent inhibitor. These crystal structures show that the binding mode of the trinitrophenyl derivatives is distinctly different from the parent adenine nucleotides. The adenine binding pocket in the nucleotide binding domain of Ca(2+)-ATPase is now occupied by the trinitrophenyl group, and the side chains of two arginines sandwich the adenine ring, accounting for the much higher affinities of the trinitrophenyl derivatives. Trinitrophenyl nucleotides exhibit a pronounced fluorescence in the E2P ground state but not in the other E2 states. Crystal structures of the E2P and E2 ∼ P analogues of Ca(2+)-ATPase with bound trinitrophenyl-AMP show that different arrangements of the three cytoplasmic domains alter the orientation and water accessibility of the trinitrophenyl group, explaining the origin of "superfluorescence." Thus, the crystal structures demonstrate that ATP and its derivatives are highly adaptable to a wide range of site topologies stabilized by a variety of interactions.
Collapse
|
124
|
Raimunda D, González-Guerrero M, Leeber BW, Argüello JM. The transport mechanism of bacterial Cu+-ATPases: distinct efflux rates adapted to different function. Biometals 2011; 24:467-75. [PMID: 21210186 DOI: 10.1007/s10534-010-9404-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 12/22/2010] [Indexed: 12/11/2022]
Abstract
Cu(+)-ATPases play a key role in bacterial Cu(+) homeostasis by participating in Cu(+) detoxification and cuproprotein assembly. Characterization of Archaeoglobus fulgidus CopA, a model protein within the subfamily of P(1B-1) type ATPases, has provided structural and mechanistic details on this group of transporters. Atomic resolution structures of cytoplasmic regulatory metal binding domains (MBDs) and catalytic actuator, phosphorylation, and nucleotide binding domains are available. These, in combination with whole protein structures resulting from cryo-electron microscopy analyses, have enabled the initial modeling of these transporters. Invariant residues in helixes 6, 7 and 8 form two transmembrane metal binding sites (TM-MBSs). These bind Cu(+) with high affinity in a trigonal planar geometry. The cytoplasmic Cu(+) chaperone CopZ transfers the metal directly to the TM-MBSs; however, loading both of the TM-MBSs requires binding of nucleotides to the enzyme. In agreement with the classical transport mechanism of P-type ATPases, occupancy of both transmembrane sites by cytoplasmic Cu(+) is a requirement for enzyme phosphorylation and subsequent transport into the periplasmic or extracellular milieus. Recent transport studies have shown that all Cu(+)-ATPases drive cytoplasmic Cu(+) efflux, albeit with quite different transport rates in tune with their various physiological roles. Archetypical Cu(+)-efflux pumps responsible for Cu(+) tolerance, like the Escherichia coli CopA, have turnover rates ten times higher than those involved in cuproprotein assembly (or alternative functions). This explains the incapability of the latter group to significantly contribute to the metal efflux required for survival in high copper environments.
Collapse
Affiliation(s)
- Daniel Raimunda
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | | | | | | |
Collapse
|
125
|
Yamasaki K, Daiho T, Danko S, Suzuki H. Ca2+ release to lumen from ADP-sensitive phosphoenzyme E1PCa2 without bound K+ of sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 2010; 285:38674-83. [PMID: 20937807 PMCID: PMC2992300 DOI: 10.1074/jbc.m110.183343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 10/04/2010] [Indexed: 11/06/2022] Open
Abstract
During Ca(2+) transport by sarcoplasmic reticulum Ca(2+)-ATPase, the conformation change of ADP-sensitive phosphoenzyme (E1PCa(2)) to ADP-insensitive phosphoenzyme (E2PCa(2)) is followed by rapid Ca(2+) release into the lumen. Here, we find that in the absence of K(+), Ca(2+) release occurs considerably faster than E1PCa(2) to E2PCa(2) conformation change. Therefore, the lumenal Ca(2+) release pathway is open to some extent in the K(+)-free E1PCa(2) structure. The Ca(2+) affinity of this E1P is as high as that of the unphosphorylated ATPase (E1), indicating the Ca(2+) binding sites are not disrupted. Thus, bound K(+) stabilizes the E1PCa(2) structure with occluded Ca(2+), keeping the Ca(2+) pathway to the lumen closed. We found previously (Yamasaki, K., Wang, G., Daiho, T., Danko, S., and Suzuki, H. (2008) J. Biol. Chem. 283, 29144-29155) that the K(+) bound in E2P reduces the Ca(2+) affinity essential for achieving the high physiological Ca(2+) gradient and to fully open the lumenal Ca(2+) gate for rapid Ca(2+) release (E2PCa(2) → E2P + 2Ca(2+)). These findings show that bound K(+) is critical for stabilizing both E1PCa(2) and E2P structures, thereby contributing to the structural changes that efficiently couple phosphoenzyme processing and Ca(2+) handling.
Collapse
Affiliation(s)
- Kazuo Yamasaki
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| | | | | | | |
Collapse
|
126
|
Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations. Proc Natl Acad Sci U S A 2010; 107:21465-9. [PMID: 21098671 DOI: 10.1073/pnas.1015819107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The sarcoplasmic reticulum Ca(2+)-ATPase transports two Ca(2+) per ATP hydrolyzed from the cytoplasm to the lumen against a large concentration gradient. During transport, the pump alters the affinity and accessibility for Ca(2+) by rearrangements of transmembrane helices. In this study, all-atom molecular dynamics simulations were performed for wild-type Ca(2+)-ATPase in the Ca(2+)-bound form and the Gln mutants of Glu771 and Glu908. Both of them contribute only one carboxyl oxygen to site I Ca(2+), but only Glu771Gln completely looses the Ca(2+)-binding ability. The simulations show that: (i) For Glu771Gln, but not Glu908Gln, coordination of Ca(2+) was critically disrupted. (ii) Coordination broke at site II first, although Glu771 and Glu908 only contribute to site I. (iii) A water molecule bound to site I Ca(2+) and hydrogen bonded to Glu771 in wild-type, drastically changed the coordination of Ca(2+) in the mutant. (iv) Water molecules flooded the binding sites from the lumenal side. (v) The side chain conformation of Ile775, located at the head of a hydrophobic cluster near the lumenal surface, appears critical for keeping out bulk water. Thus the simulations highlight the importance of the water molecule bound to site I Ca(2+) and point to a strong relationship between Ca(2+)-coordination and shielding of bulk water, providing insights into the mechanism of gating of ion pathways in cation pumps.
Collapse
|
127
|
Micaroni M, Mironov AA. Roles of Ca and secretory pathway Ca-ATPase pump type 1 (SPCA1) in intra-Golgi transport. Commun Integr Biol 2010; 3:504-7. [PMID: 21331225 DOI: 10.4161/cib.3.6.13211] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 07/30/2010] [Indexed: 11/19/2022] Open
Abstract
Mechanisms for intra-Golgi transport remain a hotly debated topic. Recently, we published data illuminating a new aspect involved in intra-Golgi transport, namely a release of free cytosolic Ca(2+) ([Ca(2+)](cyt)) from the lumen of Golgi cisternae that is fundamental for the secretion and the progression of newly synthesized proteins through the Golgi apparatus (GA). This increase in [Ca(2+)](cyt) during the late stage of synchronous intra-Golgi transport stimulates the fusion of membranes containing cargo proteins and Golgi cisternae, allowing the progression of proteins through the GA. Subsequent restoration of the basal [Ca(2+)](cyt) is also important for the delivery of cargo to the proper final destination. Additionally, the secretory pathway Ca(2+)-ATPase Ca(2+) pump (SPCA1) plays an essential role at this stage. The fine regulation of membrane fusion is also important for the formation and the maintenance of the Golgi ribbon and SPCA1, which regulates [Ca(2+)](cyt) levels, can be considered a controller of trafficking. This evidence contradicts a model of intra-Golgi transport in which permanent membrane continuity allows cargo diffusion and progression.
Collapse
Affiliation(s)
- Massimo Micaroni
- Department of Molecular Cell Biology; institute for Molecular Bioscience; The University of Queensland; Brisbane, QLD Australia
| | | |
Collapse
|
128
|
Sodium or potassium efflux ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1841-53. [DOI: 10.1016/j.bbamem.2010.07.009] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 12/20/2022]
|
129
|
Smejtek P, Satterfield LE, Word RC, Abramson JJ. Electrophoretic mobility of sarcoplasmic reticulum vesicles is determined by amino acids of A + P + N domains of Ca2+–ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1689-97. [DOI: 10.1016/j.bbamem.2010.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/19/2010] [Accepted: 05/04/2010] [Indexed: 11/25/2022]
|
130
|
Brini M, Di Leva F, Ortega CK, Domi T, Ottolini D, Leonardi E, Tosatto SCE, Carafoli E. Deletions and mutations in the acidic lipid-binding region of the plasma membrane Ca2+ pump: a study on different splicing variants of isoform 2. J Biol Chem 2010; 285:30779-91. [PMID: 20643655 DOI: 10.1074/jbc.m110.140475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Acidic phospholipids increase the affinity of the plasma membrane Ca(2+)-ATPase pump for Ca(2+). They interact with the C-terminal region of the pump and with a domain in the loop connecting transmembrane domains 2 and 3 (A(L) region) next to site A of alternative splicing. The contribution of the two phospholipid-binding sites and the possible interference of splicing inserts at site A with the regulation of the ATPase activity of isoform 2 of the pump by phospholipids have been analyzed. The activity of the full-length z/b variant (no insert at site A), the w/b (with insert at site A), and the w/a variant, containing both the 45-amino acid A-site insert and a C-site insert that truncates the pump in the calmodulin binding domain, has been analyzed in microsomal membranes of overexpressing CHO cells. The A-site insertion did not modify the phospholipid sensitivity of the pump, but the doubly inserted w/a variant became insensitive to acidic phospholipids, even if containing the intact A(L) phospholipid binding domain. Pump mutants in which 12 amino acids had been deleted, or single lysine mutations introduced, in the A(L) region were studied by monitoring agonist-induced Ca(2+) transients in overexpressing CHO cells. The 12-residue deletion completely abolished the ATPase activity of the w/a variant but only reduced that of the z/b variant, which was also affected by the single lysine substitutions in the same domain. A structural interpretation of the interplay of the pump with phospholipids, and of the mechanism of their activation, is proposed on the basis of molecular modeling studies.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Biological Chemistry, University of Padova, 35131 Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Akin BL, Chen Z, Jones LR. Superinhibitory phospholamban mutants compete with Ca2+ for binding to SERCA2a by stabilizing a unique nucleotide-dependent conformational state. J Biol Chem 2010; 285:28540-52. [PMID: 20622261 DOI: 10.1074/jbc.m110.151779] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Three cross-linkable phospholamban (PLB) mutants of increasing inhibitory strength (N30C-PLB < N27A,N30C,L37A-PLB (PLB3) < N27A,N30C,L37A,V49G-PLB (PLB4)) were used to determine whether PLB decreases the Ca(2+) affinity of SERCA2a by competing for Ca(2+) binding. The functional effects of N30C-PLB, PLB3, and PLB4 on Ca(2+)-ATPase activity and E1 approximately P formation were correlated with their binding interactions with SERCA2a measured by chemical cross-linking. Successively higher Ca(2+) concentrations were required to both activate the enzyme co-expressed with N30C-PLB, PLB3, and PLB4 and to dissociate N30C-PLB, PLB3, and PLB4 from SERCA2a, suggesting competition between PLB and Ca(2+) for binding to SERCA2a. This was confirmed with the Ca(2+) pump mutant, D351A, which is catalytically inactive but retains strong Ca(2+) binding. Increasingly higher Ca(2+) concentrations were also required to dissociate N30C-PLB, PLB3, and PLB4 from D351A, demonstrating directly that PLB antagonizes Ca(2+) binding. Finally, the specific conformation of E2 (Ca(2+)-free state of SERCA2a) that binds PLB was investigated using the Ca(2+)-pump inhibitors thapsigargin and vanadate. Cross-linking assays conducted in the absence of Ca(2+) showed that PLB bound preferentially to E2 with bound nucleotide, forming a remarkably stable complex that is highly resistant to both thapsigargin and vanadate. In the presence of ATP, N30C-PLB had an affinity for SERCA2a approaching that of vanadate (micromolar), whereas PLB3 and PLB4 had much higher affinities, severalfold greater than even thapsigargin (nanomolar or higher). We conclude that PLB decreases Ca(2+) binding to SERCA2a by stabilizing a unique E2.ATP state that is unable to bind thapsigargin or vanadate.
Collapse
Affiliation(s)
- Brandy L Akin
- Krannert Institute of Cardiology and the Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
132
|
Daiho T, Danko S, Yamasaki K, Suzuki H. Stable structural analog of Ca2+-ATPase ADP-insensitive phosphoenzyme with occluded Ca2+ formed by elongation of A-domain/M1'-linker and beryllium fluoride binding. J Biol Chem 2010; 285:24538-47. [PMID: 20529842 DOI: 10.1074/jbc.m110.144535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed a stable analog for the ADP-insensitive phosphoenzyme intermediate with two occluded Ca(2+) at the transport sites (E2PCa(2)) of sarcoplasmic reticulum Ca(2+)-ATPase. This is normally a transient intermediate state during phosphoenzyme isomerization from the ADP-sensitive to ADP-insensitive form and Ca(2+) deocclusion/release to the lumen; E1PCa(2) --> E2PCa(2) --> E2P + 2Ca(2+). Stabilization was achieved by elongation of the Glu(40)-Ser(48) loop linking the Actuator domain and M1 (1st transmembrane helix) with four glycine insertions at Gly(46)/Lys(47) and by binding of beryllium fluoride (BeF(x)) to the phosphorylation site of the Ca(2+)-bound ATPase (E1Ca(2)). The complex E2Ca(2)xBeF(3)(-) was also produced by lumenal Ca(2+) binding to E2xBeF(3)(-) (E2P ground state analog) of the elongated linker mutant. The complex was stable for at least 1 week at 25 degrees C. Only BeF(x), but not AlF(x) or MgF(x), produced the E2PCa(2) structural analog. Complex formation required binding of Mg(2+), Mn(2+), or Ca(2+) at the catalytic Mg(2+) site. Results reveal that the phosphorylation product E1PCa(2) and the E2P ground state (but not the transition states) become competent to produce the E2PCa(2) transient state during forward and reverse phosphoenzyme isomerization. Thus, isomerization and lumenal Ca(2+) release processes are strictly coupled with the formation of the acylphosphate covalent bond at the catalytic site. Results also demonstrate the critical structural roles of the Glu(40)-Ser(48) linker and of Mg(2+) at the catalytic site in these processes.
Collapse
Affiliation(s)
- Takashi Daiho
- Department of Biochemistry, Asahikawa Medical University, Asahikawa 078-8510, Japan.
| | | | | | | |
Collapse
|
133
|
Nagata Y, Mukamel S. Vibrational sum-frequency generation spectroscopy at the water/lipid interface: molecular dynamics simulation study. J Am Chem Soc 2010; 132:6434-42. [PMID: 20394423 PMCID: PMC3151577 DOI: 10.1021/ja100508n] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sum-frequency generation (SFG) spectrum from the water/[1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine] (DMPC) interface in the OH stretching mode region of water is simulated and shows three spectral peaks which are assigned to different environments. The weak 3590 cm(-1) peak is attributed to a few water molecules coupled to the glycerol backbone of DMCP. The 3470 cm(-1) feature comes from the top water layer adjacent to the hydrophilic headgroup of DMPC. The 3290 cm(-1) peak arises from the near-bulk water nonadjacent to DMPC. The stretching mode corresponding to the 3290 cm(-1) peak is strongly coupled to the neighboring water molecules. In contrast, the 3470 cm(-1) mode is decoupled from the surrounding water molecules, and the orientation of water is governed by DMPC. This decoupling explains the slow relaxation dynamics of water measured in the time-resolved SFG experiment. Despite the similarity of the SFG spectra, the peak origins of water/lipid and water/vapor interfaces are different.
Collapse
Affiliation(s)
- Yuki Nagata
- University of California Irvine, Irvine, California, 92617, USA
| | - Shaul Mukamel
- University of California Irvine, Irvine, California, 92617, USA
| |
Collapse
|
134
|
Micaroni M, Perinetti G, Di Giandomenico D, Bianchi K, Spaar A, Mironov AA. Synchronous intra-Golgi transport induces the release of Ca2+ from the Golgi apparatus. Exp Cell Res 2010; 316:2071-86. [PMID: 20420828 DOI: 10.1016/j.yexcr.2010.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/10/2010] [Accepted: 04/20/2010] [Indexed: 01/30/2023]
Abstract
The mechanisms of secretory transport through the Golgi apparatus remain an issue of debate. The precise functional importance of calcium ions (Ca(2+)) for intra-Golgi transport has also been poorly studied. Here, using different approaches to measure free Ca(2+) concentrations in the cell cytosol ([Ca(2+)](cyt)) and inside the lumen of the Golgi apparatus ([Ca(2+)](GA)), we have revealed transient increases in [Ca(2+)](cyt) during the late phase of intra-Golgi transport that are concomitant with a decline in the maximal [Ca(2+)](GA) restoration ability. Thus, this redistribution of Ca(2+) from the Golgi apparatus into the cytosol during the movement of cargo through the Golgi apparatus appears to have a role in intra-Golgi transport, and mainly in the late Ca(2+)-dependent phase of SNARE-regulated fusion of Golgi compartments.
Collapse
Affiliation(s)
- Massimo Micaroni
- Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, 66030 Santa Maria Imbaro (CH), Italy.
| | | | | | | | | | | |
Collapse
|
135
|
Chen LTL, Yao Q, Soares TA, Squier TC, Bigelow DJ. Phospholamban modulates the functional coupling between nucleotide domains in Ca-ATPase oligomeric complexes in cardiac sarcoplasmic reticulum. Biochemistry 2010; 48:2411-21. [PMID: 19191503 DOI: 10.1021/bi8021526] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oligomeric interactions between Ca-ATPase polypeptide chains and their modulation by phospholamban (PLB) were measured in native cardiac sarcoplasmic reticulum (SR) microsomes. Progressive modification of Lys(514) with fluorescein 5-isothiocyanate (FITC), which physically blocks access to the nucleotide binding site by ATP, demonstrates that Ca-ATPase active sites function independently of one another prior to the phosphorylation of PLB. However, upon cAMP-dependent protein kinase (PKA) phosphorylation of PLB, a second-order dependence between residual enzyme activity and the fraction of active sites is observed, consistent with a dimeric functional complex. Complementary distance measurements were made using FITC or 5-iodoacetamidofluorescein (IAF) bound to Cys(674) within the N- or P-domains, respectively, to detect structural coupling within oligomeric complexes. Accompanying the phosphorylation of PLB, neighboring Ca-ATPase polypeptide chains exhibit a 4 +/- 2 A decrease in the proximity between FITC sites within the N-domain and a 9 +/- 3 A increase in the proximity between IAF sites within P-domains. Thus, the phosphorylation of PLB induces spatial rearrangements between the N- and P-domain elements of proximal Ca-ATPase polypeptide chains which restore functional interactions between neighboring polypeptide chains and, in turn, result in increased rates of catalytic turnover. These results are interpreted in terms of a structural model, calculated through optimization of shape complementarity, desolvation, and electrostatic energies, which suggests a dimeric arrangement of Ca-ATPase polypeptide chains through the proximal association of N-domains that accommodates interaction with PLB. We suggest that the phosphorylation of PLB acts to release constraints involving interdomain subunit interactions that enhance catalytically important N-domain motions.
Collapse
Affiliation(s)
- Linda T L Chen
- Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA
| | | | | | | | | |
Collapse
|
136
|
Jambou R, Martinelli A, Pinto J, Gribaldo S, Legrand E, Niang M, Kim N, Pharath L, Volnay B, Ekala MT, Bouchier C, Fandeur T, Berzosa P, Benito A, Ferreira ID, Ferreira C, Vieira PP, Alecrim MDG, Mercereau-Puijalon O, Cravo P. Geographic structuring of the Plasmodium falciparum sarco(endo)plasmic reticulum Ca2+ ATPase (PfSERCA) gene diversity. PLoS One 2010; 5:e9424. [PMID: 20195531 PMCID: PMC2828472 DOI: 10.1371/journal.pone.0009424] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/22/2010] [Indexed: 01/09/2023] Open
Abstract
Artemisinin, a thapsigargin-like sesquiterpene has been shown to inhibit the Plasmodium falciparum sarco/endoplasmic reticulum calcium-ATPase PfSERCA. To collect baseline pfserca sequence information before field deployment of Artemisinin-based Combination therapies that may select mutant parasites, we conducted a sequence analysis of 100 isolates from multiple sites in Africa, Asia and South America. Coding sequence diversity was large, with 29 mutated codons, including 32 SNPs (average of one SNP/115 bp), of which 19 were novel mutations. Most SNP detected in this study were clustered within a region in the cytosolic head of the protein. The PfSERCA functional domains were very well conserved, with non synonymous mutations located outside the functional domains, except for the S769N mutation associated in French Guiana with elevated IC50 for artemether. The S769N mutation is located close to the hinge of the headpiece, which in other species modulates calcium affinity and in consequence efficacy of inhibitors, possibly linking calcium homeostasis to drug resistance. Genetic diversity was highest in Senegal, Brazil and French Guiana, and few mutations were identified in Asia. Population genetic analysis was conducted for a partial fragment of the gene encompassing nucleotide coordinates 87-2862 (unambiguous sequence available for 96 isolates). This supported a geographic clustering, with a separation between Old and New World samples and one dominant ancestral haplotype. Genetic drift alone cannot explain the observed polymorphism, suggesting that other evolutionary mechanisms are operating. One possible contributor could be the frequency of haemoglobinopathies that are associated with calcium dysregulation in the erythrocyte.
Collapse
Affiliation(s)
- Ronan Jambou
- Institut Pasteur de Dakar, BP 220, Dakar, Senegal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Suzuki H, Yamasaki K, Daiho T, Danko S. [Mechanism of ca(2+) pump as revealed by mutations, development of stable analogs of phosphorylated intermediates, and their structural analyses]. YAKUGAKU ZASSHI 2010; 130:179-89. [PMID: 20118641 DOI: 10.1248/yakushi.130.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sarco(endo)plasmic reticulum Ca(2+)-ATPase is a representative member of P-type cation transporting ATPases and catalyzes Ca(2+) transport coupled with ATP hydrolysis. The ATPase possesses three cytoplasmic domains (N, P, and A) and ten transmembrane helices (M1-M10). Ca(2+) binding at the transport sites in the transmembrane domain activates the ATPase and then the catalytic aspartate is auto-phosphorylated to form the phosphorylated intermediate (EP). Structural and functional studies have shown that, during the isomerization of EP in the Ca(2+) transport cycle, large motions of the three cytoplasmic domains take place, which then rearranges the transmembrane helices thereby destroying the Ca(2+) binding sites, opening the lumenal gate, and thus releasing the Ca(2+) into lumen. Stable structural analogues for the Ca(2+)-occluded and -released states of phosphorylated intermediates and for the transition and product states of the phosphorylation and dephosphorylation reactions were developed for biochemical and atomic-level structural studies to reveal the coupled changes in the catalytic and transport sites. Mutation studies identified the residues and structural regions essential for the structural changes and Ca(2+) transport function. Genetic dysfunction of Ca(2+)-ATPase causes various isoform-specific diseases. In this manuscript, recent understanding of the Ca-ATPase will be reviewed.
Collapse
Affiliation(s)
- Hiroshi Suzuki
- Department of Biochemistry, Asahikawa Medical College, Hokkaido, Japan.
| | | | | | | |
Collapse
|
138
|
Abstract
In reviewing the structures of membrane proteins determined up to the end of 2009, we present in words and pictures the most informative examples from each family. We group the structures together according to their function and architecture to provide an overview of the major principles and variations on the most common themes. The first structures, determined 20 years ago, were those of naturally abundant proteins with limited conformational variability, and each membrane protein structure determined was a major landmark. With the advent of complete genome sequences and efficient expression systems, there has been an explosion in the rate of membrane protein structure determination, with many classes represented. New structures are published every month and more than 150 unique membrane protein structures have been determined. This review analyses the reasons for this success, discusses the challenges that still lie ahead, and presents a concise summary of the key achievements with illustrated examples selected from each class.
Collapse
|
139
|
Abstract
The versatility of Ca(2+) as an intracellular messenger derives largely from the spatial organization of cytosolic Ca(2+) signals, most of which are generated by regulated openings of Ca(2+)-permeable channels. Most Ca(2+) channels are expressed in the plasma membrane (PM). Others, including the almost ubiquitous inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, the ryanodine receptors (RyR), are predominantly expressed in membranes of the sarcoplasmic or endoplasmic reticulum (ER). Targeting of these channels to appropriate destinations underpins their ability to generate spatially organized Ca(2+) signals. All Ca(2+) channels begin life in the cytosol, and the vast majority are then functionally assembled in the ER, where they may either remain or be dispatched to other membranes. Here, by means of selective examples, we review two issues related to this trafficking of Ca(2+) channels via the ER. How do cells avoid wayward activity of Ca(2+) channels in transit as they pass from the ER via other membranes to their final destination? How and why do some cells express small numbers of the archetypal intracellular Ca(2+) channels, IP(3)R and RyR, in the PM?
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | | | | |
Collapse
|
140
|
Norris SM, Bombardier E, Smith IC, Vigna C, Tupling AR. ATP consumption by sarcoplasmic reticulum Ca2+ pumps accounts for 50% of resting metabolic rate in mouse fast and slow twitch skeletal muscle. Am J Physiol Cell Physiol 2009; 298:C521-9. [PMID: 20018953 DOI: 10.1152/ajpcell.00479.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we aimed to directly quantify the relative contribution of Ca(2+) cycling to resting metabolic rate in mouse fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) skeletal muscle. Resting oxygen consumption of isolated muscles (Vo(2), microl.g wet wt(-1).s(-1)) measured polarographically at 30 degrees C was approximately 25% higher in soleus (0.61 +/- .03) than in EDL (0.46 +/- .03). To quantify the specific contribution of Ca(2+) cycling to resting metabolic rate, cyclopiazonic acid (CPA), a highly specific inhibitor of sarco(endo)plasmic reticulum Ca(2+) ATPases (SERCAs), was added to the bath at different concentrations (1, 5, 10, and 15 microM). There was a concentration-dependent effect of CPA on Vo(2), with increasing CPA concentrations up to 10 microM resulting in progressively greater reductions in muscle Vo(2). There were no differences between 10 and 15 microM CPA, indicating that 10 microM CPA induces maximal inhibition of SERCAs in isolated muscle preparations. Relative reduction in muscle Vo(2) in response to CPA was nearly identical in EDL (1 microM, 10.6 +/- 3.0%; 5 microM, 33.2 +/- 3.4%; 10 microM, 49.2 +/- 2.9%; 15 microM, 50.9 +/- 2.1%) and soleus (1 microM, 11.2 +/- 1.5%; 5 microM, 37.7 +/- 2.4%; 10 microM, 50.0 +/- 1.3%; 15 microM, 49.9 +/- 1.6%). The results indicate that ATP consumption by SERCAs is responsible for approximately 50% of resting metabolic rate in both mouse fast- and slow-twitch muscles at 30 degrees C. Thus SERCA pumps in skeletal muscle could represent an important control point for energy balance regulation and a potential target for metabolic alterations to oppose obesity.
Collapse
|
141
|
Montigny C, Arnou B, Champeil P. Glycyl betaine is effective in slowing down the irreversible denaturation of a detergent-solubilized membrane protein, sarcoplasmic reticulum Ca2+-ATPase (SERCA1a). Biochem Biophys Res Commun 2009; 391:1067-9. [PMID: 20004176 DOI: 10.1016/j.bbrc.2009.12.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/04/2009] [Indexed: 11/19/2022]
Abstract
Many membrane proteins become labile when they are solubilized by detergent. Here we show that the presence of high concentrations of glycyl betaine stabilizes one of these proteins, the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a), solubilized with nonionic detergents like n-dodecyl beta-d-maltopyranoside (DDM) or octaethylene glycol monododecyl ether (C(12)E(8)) which are commonly used for its purification or crystallization. Betaine at high concentrations might become useful as a stabilizing agent for detergent-solubilized membrane proteins, for instance during purification procedures or during the long periods of time required for crystallogenesis.
Collapse
Affiliation(s)
- Cédric Montigny
- CNRS, URA 2096, Systèmes Membranaires, Photobiologie, Stress et Détoxication, F-91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
142
|
Chen Z, Akin BL, Jones LR. Ca2+ binding to site I of the cardiac Ca2+ pump is sufficient to dissociate phospholamban. J Biol Chem 2009; 285:3253-60. [PMID: 19948724 DOI: 10.1074/jbc.m109.080820] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholamban (PLB) inhibits the activity of SERCA2a, the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum, by decreasing the apparent affinity of the enzyme for Ca(2+). Recent cross-linking studies have suggested that PLB binding and Ca(2+) binding to SERCA2a are mutually exclusive. PLB binds to the E2 conformation of the Ca(2+)-ATPase, preventing formation of E1, the conformation that binds two Ca(2+) (at sites I and II) with high affinity and is required for ATP hydrolysis. Here we determined whether Ca(2+) binding to site I, site II, or both sites is sufficient to dissociate PLB from the Ca(2+) pump. Seven SERCA2a mutants with amino acid substitutions at Ca(2+)-binding site I (E770Q, T798A, and E907Q), site II (E309Q and N795A), or both sites (D799N and E309Q/E770Q) were made, and the effects of Ca(2+) on N30C-PLB cross-linking to Lys(328) of SERCA2a were measured. In agreement with earlier reports with the skeletal muscle Ca(2+)-ATPase, none of the SERCA2a mutants (except E907Q) hydrolyzed ATP in the presence of Ca(2+); however, all were phosphorylatable by P(i) to form E2P. Ca(2+) inhibition of E2P formation was observed only in SERCA2a mutants retaining site I. In cross-linking assays, strong cross-linking between N30C-PLB and each Ca(2+)-ATPase mutant was observed in the absence of Ca(2+). Importantly, however, micromolar Ca(2+) inhibited PLB cross-linking only to mutants retaining a functional Ca(2+)-binding site I. The dynamic equilibrium between Ca(2+) pumps and N30C-PLB was retained by all mutants, demonstrating normal regulation of cross-linking by ATP, thapsigargin, and anti-PLB antibody. From these results we conclude that site I is the key Ca(2+)-binding site regulating the physical association between PLB and SERCA2a.
Collapse
Affiliation(s)
- Zhenhui Chen
- Department of Medicine, Indiana University School of Medicine, Krannert Institute of Cardiology, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
143
|
Structural basis for the high Ca2+ affinity of the ubiquitous SERCA2b Ca2+ pump. Proc Natl Acad Sci U S A 2009; 106:18533-8. [PMID: 19846779 DOI: 10.1073/pnas.0906797106] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sarco(endo)plasmic reticulum Ca(2+) ATPase (SERCA) Ca(2+) transporters pump cytosolic Ca(2+) into the endoplasmic reticulum, maintaining a Ca(2+) gradient that controls vital cell functions ranging from proliferation to death. To meet the physiological demand of the cell, SERCA activity is regulated by adjusting the affinity for Ca(2+) ions. Of all SERCA isoforms, the housekeeping SERCA2b isoform displays the highest Ca(2+) affinity because of a unique C-terminal extension (2b-tail). Here, an extensive structure-function analysis of SERCA2b mutants and SERCA1a2b chimera revealed how the 2b-tail controls Ca(2+) affinity. Its transmembrane (TM) segment (TM11) and luminal extension functionally cooperate and interact with TM7/TM10 and luminal loops of SERCA2b, respectively. This stabilizes the Ca(2+)-bound E1 conformation and alters Ca(2+)-transport kinetics, which provides the rationale for the higher apparent Ca(2+) affinity. Based on our NMR structure of TM11 and guided by mutagenesis results, a structural model was developed for SERCA2b that supports the proposed 2b-tail mechanism and is reminiscent of the interaction between the alpha- and beta-subunits of Na(+),K(+)-ATPase. The 2b-tail interaction site may represent a novel target to increase the Ca(2+) affinity of malfunctioning SERCA2a in the failing heart to improve contractility.
Collapse
|
144
|
Fluman N, Cohen-Karni D, Weiss T, Bibi E. A promiscuous conformational switch in the secondary multidrug transporter MdfA. J Biol Chem 2009; 284:32296-304. [PMID: 19808670 DOI: 10.1074/jbc.m109.050658] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multidrug (Mdr) transporters are membrane proteins that actively export structurally dissimilar drugs from the cell, thereby rendering the cell resistant to toxic compounds. Similar to substrate-specific transporters, Mdr transporters also undergo substrate-induced conformational changes. However, the mechanism by which a variety of dissimilar substrates are able to induce similar transport-compatible conformational responses in a single transporter remains unclear. To address this major aspect of Mdr transport, we studied the conformational behavior of the Escherichia coli Mdr transporter MdfA. Our results show that indeed, different substrates induce similar conformational changes in the transporter. Intriguingly, in addition, we observed that compounds other than substrates are able to confer similar conformational changes when covalently attached at the putative Mdr recognition pocket of MdfA. Taken together, the results suggest that the Mdr-binding pocket of MdfA is conformationally sensitive. We speculate that the same conformational switch that usually drives active transport is triggered promiscuously by merely occupying the Mdr-binding site.
Collapse
Affiliation(s)
- Nir Fluman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
145
|
Abstract
Ca2+-ATPases (pumps) are key actors in the regulation of Ca2+ in eukaryotic cells and are thus essential to the correct functioning of the cell machinery. They have high affinity for Ca2+ and can efficiently regulate it down to very low concentration levels. Two of the pumps have been known for decades (the SERCA and PMCA pumps); one (the SPCA pump) has only become known recently. Each pump is the product of a multigene family, the number of isoforms being further increased by alternative splicing of the primary transcripts. The three pumps share the basic features of the catalytic mechanism but differ in a number of properties related to tissue distribution, regulation, and role in the cellular homeostasis of Ca2+. The molecular understanding of the function of the pumps has received great impetus from the solution of the three-dimensional structure of one of them, the SERCA pump. These spectacular advances in the structure and molecular mechanism of the pumps have been accompanied by the emergence and rapid expansion of the topic of pump malfunction, which has paralleled the rapid expansion of knowledge in the topic of Ca2+-signaling dysfunction. Most of the pump defects described so far are genetic: when they are very severe, they produce gross and global disturbances of Ca2+ homeostasis that are incompatible with cell life. However, pump defects may also be of a type that produce subtler, often tissue-specific disturbances that affect individual components of the Ca2+-controlling and/or processing machinery. They do not bring cells to immediate death but seriously compromise their normal functioning.
Collapse
|
146
|
Bartolommei G, Moncelli MR, Rispoli G, Kelety B, Tadini-Buoninsegni F. Electrogenic ion pumps investigated on a solid supported membrane: comparison of current and voltage measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10925-10931. [PMID: 19518101 DOI: 10.1021/la901469n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Current and voltage measurements were performed on Na,K-ATPase and sarcoplasmic reticulum (SR) Ca-ATPase. Measurements of current transients under short-circuit conditions and of voltage transients under open-circuit conditions were carried out by employing a solid supported membrane (SSM). Purified membrane fragments containing Na,K-ATPase or native SR vesicles were adsorbed on a SSM and were activated by performing substrate concentration jumps. Current and voltage transients were recorded in the external circuit. They are related to pump activity and can be attributed to electrogenic events in the reaction cycles of the two enzymes. While current transients of very small amplitude are difficult to detect, the corresponding voltage transients can be measured with higher accuracy because of a much more favorable signal-to-noise ratio. Therefore, voltage measurements are preferable for the investigation of slow processes generating low current signals, e.g., for the analysis of low turnover transporters.
Collapse
Affiliation(s)
- G Bartolommei
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | | | | | | | | |
Collapse
|
147
|
Liu Y, Pilankatta R, Lewis D, Inesi G, Tadini-Buoninsegni F, Bartolommei G, Moncelli MR. High-yield heterologous expression of wild type and mutant Ca(2+) ATPase: Characterization of Ca(2+) binding sites by charge transfer. J Mol Biol 2009; 391:858-71. [PMID: 19559032 PMCID: PMC2928698 DOI: 10.1016/j.jmb.2009.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 06/04/2009] [Accepted: 06/17/2009] [Indexed: 11/16/2022]
Abstract
High-yield heterologous SERCA1 (Ca(2+) ATPase) expression was obtained in COS-1 cells infected with recombinant adenovirus vector (rAdSERCA). Higher transcription and expression were obtained in the presence of a His(6) tag at the amino terminus, as compared with a His(6) tag at the carboxyl SERCA terminus, or no tag. The expressed protein was targeted extensively to intracellular membranes. Optimal yield of functional Ca(2+) ATPase corresponded to 10% of total protein, with phosphoenzyme levels, catalytic turnover and Ca(2+) transport identical with those of native SERCA1. This recombinant membrane-bound (detergent-free) enzyme was used for characterization of Ca(2+) binding at the two specific transmembrane sites (ATP-free) by measurements of net charge transfer upon Ca(2+) binding to the protein, yielding cooperative isotherms (K(1)=5.9+/-0.5x10(5) M(-1) and K(2)=5.7+/-0.3x10(6) M(-1)). Non-cooperative binding of only one Ca(2+), and loss of ATPase activation, were observed following E309 mutation at site II. On the other hand, as a consequence of the site II mutation, the affinity of site I for Ca(2+) was increased (K=4.4+/-0.2x10(6) M(-1)). This change was due to a pK(a) shift of site I acidic residues, and to contributions of oxygen functions from empty site II to Ca(2+) binding at site I. No charge movement was observed following E771Q mutation at site I, indicating no Ca(2+) binding to either site. Therefore, calcium occupancy of site I is required to trigger cooperative binding to site II and catalytic activation. In the presence of millimolar Mg(2+), the charge movement upon addition of Ca(2+) to WT ATPase was reduced by 50%, while it was reduced by 90% when Ca(2+) was added to the E309Q/A mutants, demonstrating that competitive Mg(2+) binding can occur at site I but not at site II.
Collapse
Affiliation(s)
- Yueyong Liu
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Rajendra Pilankatta
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - David Lewis
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | - Giuseppe Inesi
- California Pacific Medical Center Research Institute, San Francisco, CA 94107, USA
| | | | | | - Maria Rosa Moncelli
- Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
148
|
Belogus T, Haviv H, Karlish SJD. Neutralization of the charge on Asp 369 of Na+,K+-ATPase triggers E1 <--> E2 conformational changes. J Biol Chem 2009; 284:31038-51. [PMID: 19726667 DOI: 10.1074/jbc.m109.050054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This work investigates the role of charge of the phosphorylated aspartate, Asp(369), of Na(+),K(+)-ATPase on E(1) <--> E(2) conformational changes. Wild type (porcine alpha(1)/His(10)-beta(1)), D369N/D369A/D369E, and T212A mutants were expressed in Pichia pastoris, labeled with fluorescein 5'-isothiocyanate (FITC), and purified. Conformational changes of wild type and mutant proteins were analyzed using fluorescein fluorescence (Karlish, S. J. (1980) J. Bioenerg. Biomembr. 12, 111-136). One central finding is that the D369N/D369A mutants are strongly stabilized in E(2) compared with wild type and D369E or T212A mutants. Stabilization of E(2)(Rb) is detected by a reduced K(0.5)Rb for the Rb(+)-induced E(1) <--> E(2)(2Rb) transition. The mechanism involves a greatly reduced rate of E(2)(2Rb) --> E(1)Na with no effect on E(1) --> E(2)(2Rb). Lowering the pH from 7.5 to 5.5 strongly stabilizes wild type in E(2) but affects the D369N mutant only weakly. Thus, this "Bohr" effect of pH on E(1) <--> E(2) is due largely to protonation of Asp(369). Two novel effects of phosphate and vanadate were observed with the D369N/D369A mutants as follows. (a) E(1) --> E(2).P is induced by phosphate without Mg(2+) ions by contrast with wild type, which requires Mg(2+). (b) Both phosphate and vanadate induce rapid E(1) --> E(2) transitions compared with slow rates for the wild type. With reference to crystal structures of Ca(2+)-ATPase and Na(+),K(+)-ATPase, negatively charged Asp(369) favors disengagement of the A domain from N and P domains (E(1)), whereas the neutral D369N/D369A mutants favor association of the A domain (TGES sequence) with P and N domains (E(2)). Changes in charge interactions of Asp(369) may play an important role in triggering E(1)P(3Na) <--> E(2)P and E(2)(2K) --> E(1)Na transitions in native Na(+),K(+)-ATPase.
Collapse
Affiliation(s)
- Talya Belogus
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
149
|
Vangheluwe P, Sepúlveda MR, Missiaen L, Raeymaekers L, Wuytack F, Vanoevelen J. Intracellular Ca2+- and Mn2+-Transport ATPases. Chem Rev 2009; 109:4733-59. [DOI: 10.1021/cr900013m] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Peter Vangheluwe
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - M. Rosario Sepúlveda
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Ludwig Missiaen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Luc Raeymaekers
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Frank Wuytack
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Jo Vanoevelen
- Laboratory of Ca2+-transport ATPases and Laboratory of Molecular and Cellular Signaling, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| |
Collapse
|
150
|
Liu X, Daiho T, Yamasaki K, Wang G, Danko S, Suzuki H. Roles of interaction between actuator and nucleotide binding domains of sarco(endo)plasmic reticulum Ca(2+)-ATPase as revealed by single and swap mutational analyses of serine 186 and glutamate 439. J Biol Chem 2009; 284:25190-8. [PMID: 19628462 DOI: 10.1074/jbc.m109.034140] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Roles of hydrogen bonding interaction between Ser(186) of the actuator (A) domain and Glu(439) of nucleotide binding (N) domain seen in the structures of ADP-insensitive phosphorylated intermediate (E2P) of sarco(endo)plasmic reticulum Ca(2+)-ATPase were explored by their double alanine substitution S186A/E439A, swap substitution S186E/E439S, and each of these single substitutions. All the mutants except the swap mutant S186E/E439S showed markedly reduced Ca(2+)-ATPase activity, and S186E/E439S restored completely the wild-type activity. In all the mutants except S186E/E439S, the isomerization of ADP-sensitive phosphorylated intermediate (E1P) to E2P was markedly retarded, and the E2P hydrolysis was largely accelerated, whereas S186E/E439S restored almost the wild-type rates. Results showed that the Ser(186)-Glu(439) hydrogen bond stabilizes the E2P ground state structure. The modulatory ATP binding at sub-mm approximately mm range largely accelerated the EP isomerization in all the alanine mutants and E439S. In S186E, this acceleration as well as the acceleration of the ATPase activity was almost completely abolished, whereas the swap mutation S186E/E439S restored the modulatory ATP acceleration with a much higher ATP affinity than the wild type. Results indicated that Ser(186) and Glu(439) are closely located to the modulatory ATP binding site for the EP isomerization, and that their hydrogen bond fixes their side chain configurations thereby adjusts properly the modulatory ATP affinity to respond to the cellular ATP level.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Biochemistry, Asahikawa Medical College, Asahikawa 078-8510, Japan
| | | | | | | | | | | |
Collapse
|