101
|
Huang XB, Wu SH, Hu HC, Sun JJ. AuNanostar@4-MBA@Au Core-Shell Nanostructure Coupled with Exonuclease III-Assisted Cycling Amplification for Ultrasensitive SERS Detection of Ochratoxin A. ACS Sens 2020; 5:2636-2643. [PMID: 32786384 DOI: 10.1021/acssensors.0c01162] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The "turn-on" mode surface-enhanced Raman scattering (SERS) aptasensor for ultrasensitive ochratoxin A (OTA) detection was developed based on the SERS "hot spots" of AuNanostar@4-MBA@Au core-shell nanostructures (AuNS@4-MBA@Au) and exonuclease III (Exo III)-assisted target cycle amplification strategy. Compared with conventional gold nanoparticles, AuNS@4-MBA@Au provides a much higher SERS enhancement factor because AuNS exhibits a larger surface roughness and the lightning rod effect, as well as an excellent electromagnetic field between the AuNS core and the Au shell, which contribute to the superstrong SERS signal. Meanwhile, Exo III-assisted target cycle amplification can be used as an effective method for the further amplified detection of OTA. Additionally, the utilization of streptavidin magnesphere paramagnetic particles offers a green, economical, and facile technology for the accumulation and separation of the signal probe AuNS@4-MBA@Au from solution. All these factors lead to a significant enhancement of detectable signals and superhigh sensitivity. As a result, the limit of detection as low as 0.25 fg mL-1 could be achieved, which was lower than that in the other reported literatures on SERS methods for OTA detection as we know. The developed SERS aptasensor also provides a promising tool for foodstuff detection.
Collapse
Affiliation(s)
- Xiao-Bin Huang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shao-Hua Wu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hao-Cheng Hu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jian-Jun Sun
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
102
|
Miklós G, Angeli C, Ambrus Á, Nagy A, Kardos V, Zentai A, Kerekes K, Farkas Z, Jóźwiak Á, Bartók T. Detection of Aflatoxins in Different Matrices and Food-Chain Positions. Front Microbiol 2020; 11:1916. [PMID: 32983001 PMCID: PMC7480073 DOI: 10.3389/fmicb.2020.01916] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Aflatoxins, produced mainly by filamentous fungi Aspergillus flavus and Aspergillus parasiticus, are one of the most carcinogenic compounds that have adverse health effects on both humans and animals consuming contaminated food and feed, respectively. Aflatoxin B1 (AFB1) and aflatoxin B2 (AFB2) as well as aflatoxin G1(AFG1) and aflatoxin G2 (AFG2) occur in the contaminated foods and feed. In the case of dairy ruminants, after the consumption of feed contaminated with aflatoxins, aflatoxin metabolites [aflatoxin M1 (AFM1) and aflatoxin M2 (AFM2)] may appear in milk. Because of the health risk and the official maximum limits of aflatoxins, there is a need for application of fast and accurate testing methods. At present, there are several analytical methods applied in practice for determination of aflatoxins. The aim of this review is to provide a guide that summarizes worldwide aflatoxin regulations and analytical methods for determination of aflatoxins in different food and feed matrices, that helps in the decision to choose the most appropriate method that meets the practical requirements of fast and sensitive control of their contamination. Analytical options are outlined from the simplest and fastest methods with the smallest instrument requirements, through separation methods, to the latest hyphenated techniques.
Collapse
Affiliation(s)
- Gabriella Miklós
- Székesfehérvár Regional Food Chain Laboratory, National Food Chain Safety Office, Székesfehérvár, Hungary
| | | | - Árpád Ambrus
- University of Debrecen Doctoral School of Nutrition and Food Sciences, Debrecen, Hungary
| | - Attila Nagy
- Food Chain Safety Laboratory Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Valéria Kardos
- Food Chain Safety Laboratory Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Andrea Zentai
- System Management and Supervision Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Kata Kerekes
- System Management and Supervision Directorate, National Food Chain Safety Office, Budapest, Hungary
| | - Zsuzsa Farkas
- Digital Food Institute, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Ákos Jóźwiak
- Digital Food Institute, University of Veterinary Medicine Budapest, Budapest, Hungary
| | | |
Collapse
|
103
|
Pimpitak U, Rengpipat S, Phutong S, Buakeaw A, Komolpis K. Development and validation of a lateral flow immunoassay for the detection of aflatoxin M1 in raw and commercialised milks. INT J DAIRY TECHNOL 2020. [DOI: 10.1111/1471-0307.12728] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Umaporn Pimpitak
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Sirirat Rengpipat
- Department of Microbiology Faculty of Science Chulalongkorn University Bangkok10330Thailand
| | - Songchan Phutong
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Anumart Buakeaw
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
| | - Kittinan Komolpis
- Institute of Biotechnology and Genetic Engineering Chulalongkorn University Bangkok10330Thailand
- Food Risk Hub Research Unit of Chulalongkorn University Bangkok10330Thailand
| |
Collapse
|
104
|
Rausch AK, Brockmeyer R, Schwerdtle T. Development and validation of a liquid chromatography tandem mass spectrometry multi-method for the determination of 41 free and modified mycotoxins in beer. Food Chem 2020; 338:127801. [PMID: 32798820 DOI: 10.1016/j.foodchem.2020.127801] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
A fast high performance liquid chromatography tandem mass spectrometry multi-method based on an ACN-precipitation extraction was developed for the analysis of 41 (modified) mycotoxins in beer. Validation according to the performance criteria defined by the European Commission (EC) in Commission Decision no. 657/2002 revealed good linearity (R2 > 0.99), repeatability (RSDr < 15%), reproducibility (RSDR < 15%), and recovery (79-100%). Limits of quantification ranging from 0.04 to 75 µg/L were obtained. Matrix effects varied from -67 to +319% and were compensated for using standard addition. In total, 87 beer samples, produced worldwide, were analyzed for the presence of mycotoxins with a focus on modified mycotoxins, whereof 76% of the samples were contaminated with at least one mycotoxin. The most prevalent mycotoxins were deoxynivalenol-3-glucoside (63%), HT-2 toxin (15%), and tenuazonic acid (13%). Exposure estimates of deoxynivalenol and its metabolites for German beer revealed no significant contribution to intake of deoxynivalenol.
Collapse
Affiliation(s)
- Ann-Kristin Rausch
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; Eurofins SOFIA GmbH, Rudower Chaussee 29, 12489 Berlin, Germany.
| | | | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
105
|
Amde M, Temsgen A, Dechassa N. Ionic liquid functionalized zinc oxide nanorods for solid-phase microextraction of aflatoxins in food products. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Franco LT, Ismail A, Amjad A, Oliveira CAFD. Occurrence of toxigenic fungi and mycotoxins in workplaces and human biomonitoring of mycotoxins in exposed workers: a systematic review. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1795685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Larissa Tuanny Franco
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Amir Ismail
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Adnan Amjad
- Institute of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
107
|
Development of an Improved Method of Sample Extraction and Quantitation of Multi-Mycotoxin in Feed by LC-MS/MS. Toxins (Basel) 2020; 12:toxins12070462. [PMID: 32707728 PMCID: PMC7405004 DOI: 10.3390/toxins12070462] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/08/2020] [Accepted: 07/17/2020] [Indexed: 11/29/2022] Open
Abstract
A multi-mycotoxin chromatographic method was developed and validated for the simultaneous quantitation of aflatoxins (AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), zearalenone (ZON), deoxynivalenol (DON), nivalenol (NIV), diacetoxyscirpenol (DAS), fumonisins (FB1, FB2 and FB3), T-2 toxin (T-2) and HT-2 toxin (HT-2) in feed. The three most popular sample preparation techniques for determination of mycotoxins have been evaluated, and the method with highest recoveries was selected and optimized. This modified QuEChERS (quick, easy, cheap, effective, rugged and safe) approach was based on the extraction with acetonitrile, salting-out and cleanup with lipid removal. A reconstitution process in methanol/water was used to improve the MS responses and then the extracts were analyzed by LC-MS/MS. In this method, the recovery range is 70–100% for DON, DAS, FB1, FB2, FB3, HT-2, T-2, OTA, ZON, AFG1, AFG2, AFB1 and AFB2 and 55% for NIV in the spike range of 2–80 µg/kg. Method robustness was determined with acceptable z-scores in proficiency tests and validation experiments.
Collapse
|
108
|
Nomura M, Shidara K, Yasuda I, Aoyama K, Takahashi A, Ishibashi T. Development of a simultaneous quantification method for ten trichothecenes including deoxynivalenol-3-glucoside in feed. Mycotoxin Res 2020; 36:353-360. [PMID: 32653989 DOI: 10.1007/s12550-020-00401-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 06/17/2020] [Accepted: 07/07/2020] [Indexed: 11/24/2022]
Abstract
An analytical method for the simultaneous quantitation of ten trichothecenes of type A (HT-2 toxin, T-2 toxin, diacetoxyscirpenol, and neosolaniol) and type B (3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol, deoxynivalenol, deoxynivalenol-3-glucoside, nivalenol, and fusarenon-X) in feed has been developed using liquid chromatography with tandem mass spectrometry. Mycotoxins extracted twice from samples using aqueous acetonitrile were purified using a multifunctional clean-up column, followed by a phospholipid removal column. Trichothecenes were analysed using liquid chromatography atmospheric pressure chemical ionization tandem mass spectrometry. The extraction efficiency of the mycotoxins and the repeatability of some were improved by repeated extractions. Ionization enhancement (signal enhancement) of some mycotoxins was improved by using the phospholipid removal column at the clean-up step. Spike and recovery tests of trichothecenes were conducted on maize, barley, soybean meal, rapeseed meal, and formula feeds (for starting broiler chicks, suckling pigs, and beef cattle). The mean recovery values were 70.6-119% with relative standard deviations < 17%. The limit of quantification and the limit of detection of our method were 20 and 6 μg/kg, respectively, for 3-acetyldeoxynivalenol and 15-acetyldeoxynivalenol; 10 and 3 μg/kg, respectively, for T-2 toxin, deoxynivalenol, and fusarenon-X; and 5 and 2 μg/kg, respectively, for nivalenol and the remaining mycotoxins.
Collapse
Affiliation(s)
- Masayo Nomura
- Food and Agricultural Materials Inspection Center, Saitama Shintoshin National Government Building, Kensato Building, Shintoshin 2-1, Chuo-Ku, Saitama-Shi, Saitama, 330-9731, Japan.
| | - Kenji Shidara
- Food and Agricultural Materials Inspection Center, Saitama Shintoshin National Government Building, Kensato Building, Shintoshin 2-1, Chuo-Ku, Saitama-Shi, Saitama, 330-9731, Japan
| | - Iyo Yasuda
- Sendai Regional Center, Food and Agricultural Materials Inspection Center, Sendai National Government Building III, 1-3-15, Gorin, Miyagino-Ku, Sendai-Shi, Miyagi, 983-0842, Japan
| | - Koji Aoyama
- Food and Agricultural Materials Inspection Center, Saitama Shintoshin National Government Building, Kensato Building, Shintoshin 2-1, Chuo-Ku, Saitama-Shi, Saitama, 330-9731, Japan
| | - Akiko Takahashi
- Food and Agricultural Materials Inspection Center, Saitama Shintoshin National Government Building, Kensato Building, Shintoshin 2-1, Chuo-Ku, Saitama-Shi, Saitama, 330-9731, Japan
| | - Takayuki Ishibashi
- Food and Agricultural Materials Inspection Center, Saitama Shintoshin National Government Building, Kensato Building, Shintoshin 2-1, Chuo-Ku, Saitama-Shi, Saitama, 330-9731, Japan
| |
Collapse
|
109
|
Atapattu SN, Poole CF. Recent advances in analytical methods for the determination of citrinin in food matrices. J Chromatogr A 2020; 1627:461399. [PMID: 32823104 DOI: 10.1016/j.chroma.2020.461399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Citrinin is a toxic small organic molecule produced as a secondary metabolite by fungi types Penicillium, Monascus and Aspergillus and is known to contaminate various food commodities during postharvest stages of food production. During the last 10 years, most reported methods for citrinin analysis employed enzyme-linked immunosorbent assays or high-performance liquid chromatography. Over this same time period, liquid extraction, solid-phase extraction, dispersive liquid-liquid microextraction and QuEChERS were the most cited sample preparation and clean-up methods. In this review the advantages and disadvantages of the various sample preparation, separation and detection methods for citrinin analysis over the last decade are evaluated. Furthermore, current trends, emerging technologies and the future prospects of these methods are discussed.
Collapse
Affiliation(s)
| | - Colin F Poole
- Department of chemistry, Wayne State University, Detroit, MI 48202, United States.
| |
Collapse
|
110
|
Dietary exposure and health risk characterization of aflatoxin B1, ochratoxin A, fumonisin B1, and zearalenone in food from different provinces in Northern Vietnam. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107108] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
111
|
Li H, Wang D, Tang X, Zhang W, Zhang Q, Li P. Time-Resolved Fluorescence Immunochromatography Assay (TRFICA) for Aflatoxin: Aiming at Increasing Strip Method Sensitivity. Front Microbiol 2020; 11:676. [PMID: 32435234 PMCID: PMC7219281 DOI: 10.3389/fmicb.2020.00676] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/24/2020] [Indexed: 12/19/2022] Open
Abstract
Aflatoxin is the most harmful mycotoxin that is ubiquitous in foods and agro-products. Because of its high toxicity, maximum admissible levels of aflatoxins (AF) is regulated worldwide, and monitoring of their occurrence in several commodities is mandatory for assuring food safety and consumers' health. Considering that the strip method is very simple and convenient for users, in order to enhance strip assay's sensitivity, a lot of time-resolved fluorescence immunochromatography assays (TRFICAs) were developed recently with increasing several times of assay sensitivity compared with traditional gold nanoparticle-based strip assay (GNP-SA). This review briefly describes the newly developed TRFICA for aflatoxin determination, including TRFICA for aflatoxin B1 (AFB1) detection, TRFICA for aflatoxin M1 (AFM1) detection, TRFICA for total aflatoxins (AFB1 + B2 + G1 + G2) detection and the latest identification-nanobody-based TRFICA for aflatoxin detection. The application of TRFICA for aflatoxin detection in different agro-products is also concluded in this review. Reasonably, TRFICA has been becoming one of the most important tool for monitoring aflatoxin in foods and agro-products.
Collapse
Affiliation(s)
- Hui Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Du Wang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Xiaoqian Tang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Wen Zhang
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Qi Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
- Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of Agriculture, Wuhan, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan, China
- Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
112
|
Singh J, Mehta A. Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: A review. Food Sci Nutr 2020; 8:2183-2204. [PMID: 32405376 PMCID: PMC7215233 DOI: 10.1002/fsn3.1474] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/20/2020] [Accepted: 01/22/2020] [Indexed: 01/24/2023] Open
Abstract
Quantification of mycotoxins in foodstuffs is extremely difficult as a limited amount of toxins are known to be presented in the food samples. Mycotoxins are secondary toxic metabolites, made primarily by fungal species, contaminating feeds and foods. Due to the presence in globally used grains, it is an unpreventable problem that causes various acute and chronic impacts on human and animal health. Over the previous few years, however, progress has been made in mycotoxin analysis studies. Easier techniques of sample cleanup and advanced chromatographic approaches have been developed, primarily high-performance liquid chromatography. Few extremely sophisticated and adaptable tools such as high-resolution mass spectrometry and gas chromatography-tandem MS/MS have become more important. In addition, Immunoassay, Advanced quantitative techniques are now globally accepted for mycotoxin analysis. Thus, this review summarizes these traditional and highly advance methods and their characteristics for evaluating mycotoxins.
Collapse
Affiliation(s)
- Jyoti Singh
- Department of Integrative BiologySchool of Biosciences and TechnologyVellore Institute of TechnologyVelloreIndia
| | - Alka Mehta
- Department of Integrative BiologySchool of Biosciences and TechnologyVellore Institute of TechnologyVelloreIndia
| |
Collapse
|
113
|
Leite M, Freitas A, Silva AS, Barbosa J, Ramos F. Maize (Zea mays L.) and mycotoxins: A review on optimization and validation of analytical methods by liquid chromatography coupled to mass spectrometry. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
114
|
Bogdanova E, Pugajeva I, Reinholds I, Bartkevics V. Two-dimensional liquid chromatography - high resolution mass spectrometry method for simultaneous monitoring of 70 regulated and emerging mycotoxins in Pu-erh tea. J Chromatogr A 2020; 1622:461145. [PMID: 32381303 DOI: 10.1016/j.chroma.2020.461145] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Affiliation(s)
| | - Iveta Pugajeva
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia
| | - Ingars Reinholds
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment, Riga, Latvia; University of Latvia, Riga, Latvia
| |
Collapse
|
115
|
Rausch AK, Brockmeyer R, Schwerdtle T. Development and Validation of a QuEChERS-Based Liquid Chromatography Tandem Mass Spectrometry Multi-Method for the Determination of 38 Native and Modified Mycotoxins in Cereals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4657-4669. [PMID: 32216338 DOI: 10.1021/acs.jafc.9b07491] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Here, a reliable and sensitive method for the determination of 38 (modified) mycotoxins was developed. Using a QuEChERS-based extraction method [acetonitrile/water/formic acid (75:20:5, v/v/v)], followed by two runs of high performance liquid chromatography tandem mass spectrometry with different conditions, relevant mycotoxins in cereals were analyzed. The method was validated according to the performance criteria defined by the European Commission (EC) in Commission Decision no. 657/2002. Limits of quantification ranged from 0.05 to 150 μg/kg. Good linearity (R2 > 0.99), recovery (61-120%), repeatability (RSDr < 15%), and reproducibility (RSDR < 20%) were obtained for most mycotoxins. However, validation results for Alternaria toxins and fumonisins were unsatisfying. Matrix effects (-69 to +59%) were compensated for using standard addition. Application on reference materials gave correct results while analysis of samples from local retailers revealed contamination, especially with deoxynivalenol, deoxynivalenol-3-glucoside, fumonisins, and zearalenone, in concentrations up to 369, 58, 1002, and 21 μg/kg, respectively.
Collapse
Affiliation(s)
- Ann-Kristin Rausch
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
- Eurofins SOFIA GmbH, Rudower Chaussee 29, 12489 Berlin, Germany
| | | | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| |
Collapse
|
116
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Analysis and Detection of Major Mycotoxins in Foods. Foods 2020; 9:E518. [PMID: 32326063 PMCID: PMC7230321 DOI: 10.3390/foods9040518] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022] Open
Abstract
Mycotoxins are the most widely studied biological toxins, which contaminate foods at very low concentrations. This review describes the emerging extraction techniques and the current and alternatives analytical techniques and methods that have been used to successfully detect and identify important mycotoxins. Some of them have proven to be particularly effective in not only the detection of mycotoxins, but also in detecting mycotoxin-producing fungi. Chromatographic techniques such as high-performance liquid chromatography coupled with various detectors like fluorescence, diode array, UV, liquid chromatography coupled with mass spectrometry, and liquid chromatography-tandem mass spectrometry, have been powerful tools for analyzing and detecting major mycotoxins. Recent progress of the development of rapid immunoaffinity-based detection techniques such as immunoassays and biosensors, as well as emerging technologies like proteomic and genomic methods, molecular techniques, electronic nose, aggregation-induced emission dye, quantitative NMR and hyperspectral imaging for the detection of mycotoxins in foods, have also been presented.
Collapse
Affiliation(s)
| | | | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
117
|
Jayasinghe GDTM, Domínguez‐González R, Bermejo‐Barrera P, Moreda‐Piñeiro A. C
ombining ultrasound‐assisted extraction and vortex‐assisted liquid–liquid microextraction for the sensitive assessment of aflatoxins in aquaculture fish species. J Sep Sci 2020; 43:1331-1338. [DOI: 10.1002/jssc.201901129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- G. D. Thilini Madurangika Jayasinghe
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT)Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of ChemistryUniversidade de Santiago de Compostela Santiago de Compostela Spain
| | - Raquel Domínguez‐González
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT)Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of ChemistryUniversidade de Santiago de Compostela Santiago de Compostela Spain
| | - Pilar Bermejo‐Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT)Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of ChemistryUniversidade de Santiago de Compostela Santiago de Compostela Spain
| | - Antonio Moreda‐Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Strategic Grouping in Materials (AEMAT)Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of ChemistryUniversidade de Santiago de Compostela Santiago de Compostela Spain
| |
Collapse
|
118
|
Development and evaluation of a rapid immunomagnetic extraction for effective detection of zearalenone in agricultural products. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
119
|
AlFaris NA, Wabaidur SM, Alothman ZA, Altamimi JZ, Aldayel TS. Fast and efficient immunoaffinity column cleanup and liquid chromatography–tandem mass spectrometry method for the quantitative analysis of aflatoxins in baby food and feeds. J Sep Sci 2020; 43:2079-2087. [DOI: 10.1002/jssc.201901307] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/18/2020] [Accepted: 02/29/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Nora Abdullah AlFaris
- Nutrition and Food ScienceDepartment of Physical Sport SciencePrincess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | | | | | - Jozaa Zaidan Altamimi
- Nutrition and Food ScienceDepartment of Physical Sport SciencePrincess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Tahany Saleh Aldayel
- Nutrition and Food ScienceDepartment of Physical Sport SciencePrincess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| |
Collapse
|
120
|
Zha YH, Zhou Y. Functional nanomaterials based immunological detection of aflatoxin B1: a review. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Aflatoxin B1 (AFB1) is highly carcinogenic, mutagenic and teratogenic. Accordingly, sensitive, rapid and cost-effective techniques for detection of AFB1 is in urgent demand for food safety and the health of consumers. In this review, we report the current state of immunoassay formats and development, mainly based on nanomaterials for determination of AFB1. Following an introduction of the field, the microplate-, membrane- and microelectrode-based immunoassays are described. The relevant mechanisms, sensitivities, superiorities and deficiencies of each format are discussed. Finally, perspectives on the future development of nanomaterials-based immunoassays for AFB1 are provided.
Collapse
Affiliation(s)
- Y.-H. Zha
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China P.R
| | - Y. Zhou
- Key Laboratory of Zoonoses Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, China P.R
- College of Animal Sciences, Yangtze University, Jingzhou 434023, China P.R
| |
Collapse
|
121
|
Jia B, Wang W, Ni X, Chu X, Yoon S, Lawrence K. Detection of mycotoxins and toxigenic fungi in cereal grains using vibrational spectroscopic techniques: a review. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2510] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Nutrition-rich cereal grains and oil seeds are the major sources of food and feed for human and livestock, respectively. Infected by fungi and contaminated with mycotoxins are serious problems worldwide for cereals and oil seeds before and after harvest. The growth and development activities of fungi consume seed nutrients and destroy seed structures, leading to dramatic declines of crop yield and quality. In addition, the toxic secondary metabolites produced by these fungi pose a well-known threat to both human and animals. The existence of fungi and mycotoxins has been a redoubtable problem worldwide for decades but tends to be a severe food safety issue in developing countries and regions, such as China and Africa. Detection of fungal infection at an early stage and of mycotoxin contaminants, even at a small amount, is of great significance to prevent harmful toxins from entering the food supply chains worldwide. This review focuses on the recent advancements in utilising infrared spectroscopy, Raman spectroscopy, and hyperspectral imaging to detect fungal infections and mycotoxin contaminants in cereals and oil seeds worldwide, with an emphasis on recent progress in China. Brief introduction of principles, and corresponding shortcomings, as well as latest advances of each technique, are also being presented herein.
Collapse
Affiliation(s)
- B. Jia
- Beijing Key Laboratory of Optimized Design for modern Agricultural Equipment, College of Engineering, China Agriculture University, No. 17 Tsinghua East Road, Beijing, 100083, China P.R
| | - W. Wang
- Beijing Key Laboratory of Optimized Design for modern Agricultural Equipment, College of Engineering, China Agriculture University, No. 17 Tsinghua East Road, Beijing, 100083, China P.R
| | - X.Z. Ni
- Crop Genetics and Breeding Research Unit, USDA-ARS, 2747 Davis Road, Tifton, GA 31793, USA
| | - X. Chu
- College of Mechanical and Electrical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China P.R
| | - S.C. Yoon
- Quality and Safety Assessment Research Unit, USDA-ARS, Athens, GA 30605, USA
| | - K.C. Lawrence
- Quality and Safety Assessment Research Unit, USDA-ARS, Athens, GA 30605, USA
| |
Collapse
|
122
|
Fadlalla MH, Ling S, Wang R, Li X, Yuan J, Xiao S, Wang K, Tang S, Elsir H, Wang S. Development of ELISA and Lateral Flow Immunoassays for Ochratoxins (OTA and OTB) Detection Based on Monoclonal Antibody. Front Cell Infect Microbiol 2020; 10:80. [PMID: 32211342 PMCID: PMC7067699 DOI: 10.3389/fcimb.2020.00080] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Ochratoxins were important secondary metabolites secreted by fungi, and OTA and OTB are mainly significant mycotoxin, having toxic effects on humans and animals. Therefore, it is important to establish a rapid, sensitive, and precise method for ochratoxins detection and quantification in real samples. In this study, a stable monoclonal antibody (mAb) that recognizing both OTA and OTB toxins was employed for the establishment of indirect competitive ELISA (ic-ELISA), colloidal gold nanoparticles (CGNs), and nanoflowers gold strips (AuNFs) for detection of ochratoxins in real samples. A 6E5 hybridoma cell line stable secreting mAb against both OTA and OTB toxins was obtained by fusion of splenocytes with myeloma SP2/0 cells. The 6E5 mAb had a high affinity (3.7 × 108 L/mol) to OTA, and also showed similar binding activity to OTB. The optimized ic-ELISA resulted in a linear range of 0.06–0.6 ng/mL for ochratoxins (OTA and OTB) detection. The IC50 was 0.2 ng/mL and the limit of detection (LOD) was 0.03 ng/mL. The mean recovery rate from the spiked samples was 89.315 ± 2.257%, with a coefficient variation of 2.182%. The result from lateral flow immunoassays indicated that the LOD of CGNs and AuNFs were 5 and 1 μg/mL, respectively. All these results indicated that the developed ic-ELISA, CGNs, and AuNFs in this study could be used for the analysis of the residual of ochratoxins (OTA and OTB) in food and agricultural products.
Collapse
Affiliation(s)
- Mohamed Hassan Fadlalla
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sumei Ling
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongzhi Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiulan Li
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiwei Xiao
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqin Tang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hoyda Elsir
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
123
|
Tumukunde E, Ma G, Li D, Yuan J, Qin L, Wang S. Current research and prevention of aflatoxins in China. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2503] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since their discovery in the 1960s, aflatoxins were found to have a considerable impact on the health of humans and animals as well as the country’s economy and international trade. Aflatoxins are often found in nuts, cereals and animal feeds, which has a significant danger to the food industry. Over the years, several steps have been undertaken worldwide to minimise their contamination in crops and their exposure to humans and animals. China is one of the largest exporters and importers of food and animal feed. As a result, many studies have been carried out in China related to aflatoxins, including their distribution, pollution, detection methods, monitoring, testing and managing. Chinese scientists studied aflatoxins in microbiological, toxicological, ecological effects as well as policies relating to their controlling. China has thus put into practice a number of strategies aiming at the prevention and control of aflatoxins in order to protect consumers and ensure a safe trade of food and feed, and the status and enlargement of these strategies are very important and useful for many consumers and stakeholders in China. Therefore, this article aims at the detriment assessments, regulations, distribution, detection methods, prevention and control of aflatoxins in China. It equally provides useful information about the recent safety management systems in place to fight the contamination of aflatoxins in food and feed in China.
Collapse
Affiliation(s)
- E. Tumukunde
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - G. Ma
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - D. Li
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - J. Yuan
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - L. Qin
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| | - S. Wang
- Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China P.R
| |
Collapse
|
124
|
Chavez RA, Cheng X, Stasiewicz MJ. A Review of the Methodology of Analyzing Aflatoxin and Fumonisin in Single Corn Kernels and the Potential Impacts of These Methods on Food Security. Foods 2020; 9:E297. [PMID: 32150943 PMCID: PMC7143881 DOI: 10.3390/foods9030297] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/29/2020] [Indexed: 11/25/2022] Open
Abstract
Current detection methods for contamination of aflatoxin and fumonisin used in the corn industry are based on bulk level. However, literature demonstrates that contamination of these mycotoxins is highly skewed and bulk samples do not always represent accurately the overall contamination in a batch of corn. Single kernel analysis can provide an insightful level of analysis of the contamination of aflatoxin and fumonisin, as well as suggest a possible remediation to the skewness present in bulk detection. Current literature describes analytical methods capable of detecting aflatoxin and fumonisin at a single kernel level, such as liquid chromatography, fluorescence imaging, and reflectance imaging. These methods could provide tools to classify mycotoxin contaminated kernels and study potential co-occurrence of aflatoxin and fumonisin. Analysis at a single kernel level could provide a solution to the skewness present in mycotoxin contamination detection and offer improved remediation methods through sorting that could impact food security and management of food waste.
Collapse
Affiliation(s)
| | | | - Matthew J. Stasiewicz
- Department of Food Science and Human Nutrition. University of Illinois at Urbana-Champaign. 905 S Goodwin Ave., Urbana, IL 61801, USA; (R.A.C.); (X.C.)
| |
Collapse
|
125
|
Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA walker and hybridization chain reaction amplification. Mikrochim Acta 2020; 187:193. [PMID: 32124067 DOI: 10.1007/s00604-020-4167-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022]
Abstract
An ultrasensitive fluorescence sensing strategy for kanamycin (KANA) determination using endonuclease IV (Endo IV)-powered DNA walker, and hybridization chain reaction (HCR) amplification was reported. The sensing system consists of Endo IV-powered 3D DNA walker using for the specific recognition of KANA and the formation of the initiators, two metastable hairpin probes as the substrates of HCR and a tetrahydrofuran abasic site (AP site)-embeded fluorescence-quenched probe for fluorescence signal output. On account of this skilled design of sensing system, the specific binding between KANA and its aptamer activates DNA walker, in which the swing arm can move autonomously along the 3D track via Endo IV-mediated hydrolysis of the anchorages, inducing the formation of initiators that initiates HCR and the following Endo IV-assisted cyclic cleavage of fluorescence reporter probes. The use of Endo IV offers the advantages of simplified and accessible design without the need of specific sequence in DNA substrates. Under the optimal experimental conditions, the fluorescence biosensor shows excellent sensitivity toward KANA detection with a detection limit as low as 1.01 pM (the excitation wavelength is 486 nm). The practical applicability of this strategy is demonstrated by detecting KANA in spiked milk samples with recovery in the range of 98 to 102%. Therefore, this reported strategy might create an accurate and robust fluorescence sensing platform for trace amounts of antibiotic residues determination and related safety analysis. Graphical abstract Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA Walker and hybridization chain, reaction amplification, Xiaonan Qu, Jingfeng Wang, Rufeng Zhang, Yihan Zhao, Shasha Li, Yu Wang, Su Liu*, Jiadong Huang, and Jinghua Yu, an ultrasensitive fluorescence sensing strategy for kanamycin determination using endonuclease IV-powered DNA walker, and hybridization chain reaction amplification is reported.
Collapse
|
126
|
Madurangika Jayasinghe GT, Domínguez-González R, Bermejo-Barrera P, Moreda-Piñeiro A. Room temperature phosphorescent determination of aflatoxins in fish feed based on molecularly imprinted polymer - Mn-doped ZnS quantum dots. Anal Chim Acta 2020; 1103:183-191. [DOI: 10.1016/j.aca.2019.12.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/14/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
|
127
|
Zha Y, Liu X, Hu P, Lu S, Ren H, Liu Z, Liang X, Yang Y, Li Y, Zhou Y. Alkaline Phosphatase–Triggered Immunoassay Based on Fluorogenic Reaction for Sensitive Detection of Acetochlor, Metolachlor, and Propisochlor. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01706-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
128
|
Wang Q, Yang Q, Wu W. Graphene-Based Steganographic Aptasensor for Information Computing and Monitoring Toxins of Biofilm in Food. Front Microbiol 2020; 10:3139. [PMID: 32117086 PMCID: PMC7010922 DOI: 10.3389/fmicb.2019.03139] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/27/2019] [Indexed: 12/18/2022] Open
Abstract
Fungi-forming biofilm would produce various toxins in food. The toxin contamination will cause great harm to food and human health. Herein, a novel graphene-based steganographic aptasensor was assembled for multifunctional applications, which depended on the specific recognition and information encoding ability of DNA aptamers [mycotoxins, including zearalenone (ZEN) and ochratoxin A (OTA) aptamers, as models] and the selective absorption and fluorescence quenching capacities of graphene oxide (GO). The graphene-based steganographic aptasensor can be regarded as an information encryption and steganographic system using GO as a cover, aptamers for specific target recognition as information carriers and dual targets (ZEN and OTA) as special keys. In our work, the fluorescence of capture probes (Cy3 aptamer and Alexa Fluor 488 aptamer) was quenched by GO to realize information encryption. In the presence of dual targets in the GO-APT solution, Cy3 aptamer (APT1), and Alexa Fluor 488 aptamer (APT2) were released from the surface of GO, decrypting the hidden information. In addition, our work offers a sensor for rapid and sensitive simultaneous fluorescence determination of ZEN and OTA. The detection limit of the aptasensor was 1.797 ng/ml for ZEN and 1.484 ng/ml for OTA. In addition, the graphene-based steganographic aptasensor can be used to construct a molecular logic gate system in which GO, aptamers, and mycotoxins are employed as the input and compounds and fluorescence signals were used as the output. This would be helpful to control the biofilm toxin in the future.
Collapse
Affiliation(s)
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Wei Wu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
129
|
Ogrodowicz P, Kuczyńska A, Mikołajczak K, Adamski T, Surma M, Krajewski P, Ćwiek-Kupczyńska H, Kempa M, Rokicki M, Jasińska D. Mapping of quantitative trait loci for traits linked to fusarium head blight in barley. PLoS One 2020; 15:e0222375. [PMID: 32017768 PMCID: PMC6999892 DOI: 10.1371/journal.pone.0222375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 01/18/2020] [Indexed: 11/19/2022] Open
Abstract
Fusarium head blight (FHB) is a devastating disease occurring in small grain cereals worldwide. The disease results in the reduction of grain yield, and mycotoxins accumulated in grain are also harmful to both humans and animals. It has been reported that response to pathogen infection may be associated with the morphological and developmental traits of the host plant, e.g. earliness and plant height. Despite many studies, effective markers for selection of barley genotypes with increased resistance to FHB have not been developed. In the present study, we investigated 100 recombinant inbred lines (RIL) of spring barley. Plants were examined in field conditions (three locations) in a completely randomized design with three replications. Barley genotypes were artificially infected with spores of Fusarium culmorum before heading. Apart from the main phenotypic traits (plant height, spike characteristic, grain yield), infected kernels were visually scored and the content of deoxynivalenol (DON) mycotoxin was investigated. A set of 70 Quantitative Trait Loci (QTLs) were detected through phenotyping of the mapping population in field conditions and genotyping using a barley Ilumina 9K iSelect platform. Six loci were detected for the FHB index on chromosomes 2H, 3H, 5H, and 7H. A region on the short arm of chromosome 2H was detected in which many QTLs associated with FHB- and yield-related traits were found. This study confirms that agromorphological traits are tightly related to FHB and should be taken into consideration when breeding barley plants for FHB resistance.
Collapse
Affiliation(s)
- Piotr Ogrodowicz
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Anetta Kuczyńska
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | | | - Tadeusz Adamski
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Maria Surma
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Paweł Krajewski
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | | | - Michał Kempa
- Institute of Plant Genetics, Academy of Sciences, Poznan, Poland
| | - Michał Rokicki
- Poznan Plant Breeding Station, Kasztanowa, Tulce, Poland
| | | |
Collapse
|
130
|
Omara T, Nassazi W, Omute T, Awath A, Laker F, Kalukusu R, Musau B, Nakabuye BV, Kagoya S, Otim G, Adupa E. Aflatoxins in Uganda: An Encyclopedic Review of the Etiology, Epidemiology, Detection, Quantification, Exposure Assessment, Reduction, and Control. Int J Microbiol 2020; 2020:4723612. [PMID: 31998379 PMCID: PMC6970494 DOI: 10.1155/2020/4723612] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/01/2019] [Accepted: 12/02/2019] [Indexed: 12/20/2022] Open
Abstract
Uganda is an agrarian country where farming employs more than 60% of the population. Aflatoxins remain a scourge in the country, unprecedentedly reducing the nutritional and economic value of agricultural foods. This review was sought to synthetize the country's major findings in relation to the mycotoxins' etiology, epidemiology, detection, quantification, exposure assessment, control, and reduction in different matrices. Electronic results indicate that aflatoxins in Uganda are produced by Aspergillus flavus and A. parasiticus and have been reported in maize, sorghum, sesame, beans, sunflower, millet, peanuts, and cassava. The causes and proliferation of aflatoxigenic contamination of Ugandan foods have been largely due to poor pre-, peri-, and postharvest activities, poor government legislation, lack of awareness, and low levels of education among farmers, entrepreneurs, and consumers on this plague. Little diet diversity has exacerbated the risk of exposure to aflatoxins in Uganda because most of the staple foods are aflatoxin-prone. On the detection and control, these are still marginal, though some devoted scholars have devised and validated a sensitive portable device for on-site aflatoxin detection in maize and shown that starter cultures used for making some cereal-based beverages have the potential to bind aflatoxins. More efforts should be geared towards awareness creation and vaccination against hepatitis B and hepatitis A to reduce the risk of development of liver cancer among the populace.
Collapse
Affiliation(s)
- Timothy Omara
- Department of Chemistry and Biochemistry, School of Biological and Physical Sciences, Moi University, Uasin Gishu County, Kesses, P.O. Box 3900-30100, Academic Highway, Eldoret, Kenya
- Department of Quality Control and Quality Assurance, Product Development Directory, AgroWays Uganda Limited, Plot 34-60 Kyabazinga Way, P.O. Box 1924, Jinja, Uganda
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Winfred Nassazi
- Department of Chemistry and Biochemistry, School of Biological and Physical Sciences, Moi University, Uasin Gishu County, Kesses, P.O. Box 3900-30100, Academic Highway, Eldoret, Kenya
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Tom Omute
- Department of Biochemistry, Faculty of Health Sciences, Lira University, P.O. Box 1035, Lira, Uganda
| | - Aburu Awath
- Standards Department, Uganda National Bureau of Standards, Plot 2-12 Bypass Link, Bweyogerere Industrial and Business Park, P.O. Box 6329, Kampala, Uganda
- Department of Food Technology and Nutrition, School of Food Technology, Nutrition and Bioengineering, College of Agricultural and Environmental Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Fortunate Laker
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
| | - Raymond Kalukusu
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
| | - Bashir Musau
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
| | - Brenda Victoria Nakabuye
- Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Plot 3382/83, Buloba, P.O. Box 12369, Kampala, Uganda
- Department of Food Processing Technology, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Sarah Kagoya
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Product Development Directory, Sweets and Confectionaries Section, Kakira Sugar Limited, Jinja-Iganga Highway, P.O. Box 121, Jinja, Uganda
| | - George Otim
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
| | - Eddie Adupa
- Department of Chemistry, Faculty of Science, Kyambogo University, P.O. Box 1, Kampala, Uganda
- Department of Quality Control and Quality Assurance, Abacus Parenteral Drugs Limited, Block 191, Plot 114, Kinga, Mukono, P.O. Box 31376, Kampala, Uganda
| |
Collapse
|
131
|
Reid R, Chatterjee B, Das SJ, Ghosh S, Sharma TK. Application of aptamers as molecular recognition elements in lateral flow assays. Anal Biochem 2020; 593:113574. [PMID: 31911046 DOI: 10.1016/j.ab.2020.113574] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/02/2020] [Accepted: 01/02/2020] [Indexed: 02/07/2023]
Abstract
Owing to their ease in operation and fast turnaround time, lateral flow assays (LFAs) are increasingly being used as point-of-care diagnostic tests for variety of analytes. In a majority of these LFAs, antibodies are used as a molecular recognition element. Antibodies have a number of limitations such as high batch-to-batch variation, poor stability, long development time, difficulty in functionalization and need for ethical approval and cold chain. All these factors pose a great challenge to scale up the antibody-based tests. In recent years, the advent of aptamer technology has made a paradigm shift in the point-of-care diagnostics owing to the various advantages of aptamers over antibodies that favour their adaptability on a variety of sensing platforms including the lateral flow. In this review, we have highlighted the advantages of aptamers over antibodies, suitability of aptamers for lateral flow platforms, different types of aptamer-based LFAs and various labels for aptamer-based LFAs. We have also provided a summary of the applications of aptamer technology in LFAs for analytical applications.
Collapse
Affiliation(s)
- Ruth Reid
- Centre for Biological Engineering, Loughborough University, UK
| | - Bandhan Chatterjee
- Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Soon Jyoti Das
- Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India
| | - Sourav Ghosh
- Centre for Biological Engineering, Loughborough University, UK.
| | - Tarun Kumar Sharma
- Multidisciplinary Clinical and Translational Research Group, Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana, India.
| |
Collapse
|
132
|
Li Y, Zhang N, Wang H, Zhao Q. An immunoassay for ochratoxin A using tetramethylrhodamine-labeled ochratoxin A as a probe based on a binding-induced change in fluorescence intensity. Analyst 2020; 145:651-655. [DOI: 10.1039/c9an01879d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an immunoassay, ochratoxin A (OTA) competitively displaces the bound tetramethylrhodamine (TMR)-OTA fluorescent probe from the antibody, causing a decrease in fluorescence.
Collapse
Affiliation(s)
- Yapiao Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Ning Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology
- Research Center for Eco-Environmental Sciences
- Chinese Academy of Sciences
- Beijing 100085
- China
| |
Collapse
|
133
|
Jiménez Medina ML, Lafarga T, Garrido Frenich A, Romero-González R. Natural Occurrence, Legislation, and Determination of Aflatoxins Using Chromatographic Methods in Food: A Review (from 2010 to 2019). FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1701009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- María Luisa Jiménez Medina
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Almería, Spain
| | - Tomas Lafarga
- Processed Fruits & Vegetables, Institute of Agrifood Research and Technology (IRTA), XaRTA-Postharvest, Lleida, Spain
| | - Antonia Garrido Frenich
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Almería, Spain
| | - Roberto Romero-González
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Almería, Spain
| |
Collapse
|
134
|
Separation and quantification of aflatoxins in grains using modified dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2019. [DOI: 10.1007/s11694-019-00342-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
135
|
Zyoud SH. Global scientific trends on aflatoxin research during 1998-2017: a bibliometric and visualized study. J Occup Med Toxicol 2019; 14:27. [PMID: 31832075 PMCID: PMC6873441 DOI: 10.1186/s12995-019-0248-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aflatoxins are fungal metabolites associated with contaminated food products. Intake of aflatoxin-contaminated food results in serious health hazards and even death. Therefore, the aim of this study is to evaluate the global scientific output of research of aflatoxin by using bibliometric techniques. METHODS This bibliometric study was conducted using Scopus database and classified the retrieved publications were classified from different aspects, including the countries/region of focus, journals, authors, institutes, citations, and content analysis to discover any hot and emerging topics. In addition, the bibliometric analysis of the international collaborative network and hot research topics were generated by VOSviewer© software version 1.6.10. The publication period was restricted in the search for two decades (1998-2017). RESULTS The search engine of the Scopus database found 9845 documents published in the field of aflatoxin. The USA is the top publishing source in the world (22.85%), followed by China (11.85%), India (9.32%), and Italy (5.25%). In earlier years, researchers focused on terms related to the topics of "sources and biosynthesis of aflatoxin", "health effects by aflatoxin", and "detoxification and treatment of aflatoxin". However, in recent years, researchers pay more attention to the topic of detection and quantification of aflatoxin. CONCLUSIONS The quantity of research in global aflatoxin has substantially increased over the past two decades. The evaluation of the historical status and development trend in aflatoxin scientific research can guide future research, and ultimately provide the basis for improving management procedures for governmental decisions, healthcare, industries, and educational institutions.
Collapse
Affiliation(s)
- Sa’ed H. Zyoud
- Poison Control and Drug Information Center (PCDIC), College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- Department of Clinical and Community Pharmacy, College of Medicine and Health Sciences, An-Najah National University, Nablus, 44839 Palestine
- Clinical Research Centre, An-Najah National University Hospital, Nablus, 44839 Palestine
| |
Collapse
|
136
|
Moez E, Noel D, Brice S, Benjamin G, Pascaline A, Didier M. Aptamer assisted ultrafiltration cleanup with high performance liquid chromatography-fluorescence detector for the determination of OTA in green coffee. Food Chem 2019; 310:125851. [PMID: 31767477 DOI: 10.1016/j.foodchem.2019.125851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/29/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
One of the most common mycotoxin contaminating feed and foodstuffs is Ochratoxin A (OTA). OTA has a chronic toxic effect and proved to be mutagenic, nephrotoxic, teratogenic, immunosuppressive, and carcinogenic. Aptamer with their specific affinity for OTA was used in this paper to create an analytical technique. Several methods have been reported for the determination of OTA in foods. However, most of these methods could not be applied to a complex food as green coffee because the interfering native fluorescent products made the quantification very difficult. In this work, we mixed two separations based techniques to identify and quantify OTA in green coffee. Aptamer assisted ultrafiltration as separation technique based on the size of molecules was applied to separate the free OTA, the quantification of OTA was established by a high-performance liquid chromatography (HPLC-FD) with a limit of detection (LOD) of 0.05 ng/mL for OTA. Artificially contaminated green coffee displayed a good range of OTA recoveries up to 97.7%. This method can be applied to the quantitative determination of OTA in green coffee at levels below the maximum levels proposed by the European Commission for green coffee. It also confirm that aptamers can be used as biorecognition element in diagnostic assays with commercial application for mycotoxin analysis.
Collapse
Affiliation(s)
- Elsaadani Moez
- Cirad, UMR Qualisud, TA B-95/16, 73, rue JF Breton, 34398 Montpellier Cedex 5, France; UMR 95 QualiSud, Université de Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de la Réunion, Montpellier, France; Faculty of Biotechnology, Misr University for Science and Technology, 6th 13 October City, Egypt; IES, UMR CNRS 5214, Montpellier University, France.
| | - Durand Noel
- Cirad, UMR Qualisud, TA B-95/16, 73, rue JF Breton, 34398 Montpellier Cedex 5, France; UMR 95 QualiSud, Université de Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de la Réunion, Montpellier, France
| | - Sorli Brice
- IES, UMR CNRS 5214, Montpellier University, France
| | - Guibert Benjamin
- Cirad, UMR Qualisud, TA B-95/16, 73, rue JF Breton, 34398 Montpellier Cedex 5, France
| | - Atelier Pascaline
- Cirad, UMR Qualisud, TA B-95/16, 73, rue JF Breton, 34398 Montpellier Cedex 5, France
| | - Montet Didier
- Cirad, UMR Qualisud, TA B-95/16, 73, rue JF Breton, 34398 Montpellier Cedex 5, France; UMR 95 QualiSud, Université de Montpellier, CIRAD, Montpellier SupAgro, Université d'Avignon, Université de la Réunion, Montpellier, France
| |
Collapse
|
137
|
Fluorometric determination of aflatoxin B1 using a labeled aptamer and gold nanoparticles modified with a complementary sequence acting as a quencher. Mikrochim Acta 2019; 186:728. [PMID: 31656974 DOI: 10.1007/s00604-019-3838-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/16/2019] [Indexed: 01/12/2023]
Abstract
A fluorometric aptamer based assay is described for rapid and sensitive detection of aflatoxin B1 (AFB1). It is making use of a fluorescein (FAM) labeled anti-AFB1 aptamer and complementary DNA-modified gold nanoparticles (GNPs). In the absence of AFB1, the FAM-labeled aptamers hybridize with complementary DNA strands that were covalently immobilized on GNPs. This results in quenching of the green fluorescence (with excitation/emission peaks at 485/525 nm). In the presence of AFB1, the aptamer probe binds AFB1 and is released from the GNPs. Hence, fluorescence is restored. Under optimized conditions, AFB1 in the concentration range from 61 pM to 4.0 μM can be detected, and the detection limit is 61 pM. This assay is highly selective for AFB1. It was applied to the determination of AFB1 spiked into 50-fold diluted wine and 20-fold diluted beer. Graphical abstract Schematic presentation of fluorometric detection of AFB1 using a fluorescein (FAM) labeled anti-AFB1 aptamer and complementary DNA-modified gold nanoparticles (GNPs).
Collapse
|
138
|
Al-Jaal B, Salama S, Al-Qasmi N, Jaganjac M. Mycotoxin contamination of food and feed in the Gulf Cooperation Council countries and its detection. Toxicon 2019; 171:43-50. [PMID: 31586556 DOI: 10.1016/j.toxicon.2019.10.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 02/04/2023]
Abstract
Mycotoxins are secondary metabolites produced by different fungal spices and are found in diverse agricultural crops worldwide; they pose a severe threat to public health. Mycotoxins can cause either acute or chronic symptoms, depending on the type and dose of mycotoxin one has been exposed to. Thus, a continuous monitoring of mycotoxins is needed. Since the discovery of mycotoxins, numerous countries, including the Gulf Cooperation Council (GCC) countries, have established mycotoxin-specific regulations for feed and food. Although a number of studies in GCC countries have investigated the presence of mycotoxins, till date, there are no reviews focusing on the mycotoxin contamination of the food and feed from this region. This review is the first study to present an up-to-date overview of the occurrence of mycotoxins in feed and food in the GCC countries and to discuss the techniques used for mycotoxin analysis.
Collapse
Affiliation(s)
| | - Sofia Salama
- Anti-Doping Lab Qatar, Sport city street, Doha, Qatar
| | - Noof Al-Qasmi
- Anti-Doping Lab Qatar, Sport city street, Doha, Qatar
| | | |
Collapse
|
139
|
|
140
|
Wang P, Wang L, Ding M, Pei M, Guo W. Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on a graphene oxide sponge. Analyst 2019; 144:5866-5874. [PMID: 31482879 DOI: 10.1039/c9an01288e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To enhance the sensitivity of an aptasensor, a novel strategy was designed to develop an electrochemical aptasensor based on poly(3,4-ethylenedioxy thiophene)-gold nanoflower (PEDOT-AuNF) composites supported on a three-dimensional graphene oxide sponge (GOS). GOS with a three-dimensional sponge-like porous structure, exhibiting excellent electrical conductivity and a large surface area, provided the first amplification of the electrochemical signal for ochratoxin A (OTA) detection. PEDOT-AuNFs, synthesized by an ionic liquid-assisted one-pot method, presented a peculiar hierarchical flower-like structure, a high electroactive surface area, and more binding sites for immobilizing the aptamer molecules by the Au-S bonds. When PEDOT-AuNFs were supported on the surface of GOS by the interaction of the π-π packing between PEDOT and graphene oxide, a synergistic effect was produced to provide the second amplification for the aptasensor. PEDOT-AuNFs/GOS provided an ultrasensitive detection technique by multiple signal amplification for the electrochemical sensing of OTA. Consequently, this strategy not only endowed the aptasensor with high sensitivity but also needed no complicated signal amplification. The electrochemical sensor was fabricated successfully on a glassy carbon electrode to detect OTA with a linear response in the range of 0.01-20 ng L-1 and a limit of detection of 4.9 pg L-1. Moreover, it displayed good specificity, reproducibility and stability. The utilization of the proposed aptasensor for the quantitative determination of OTA in wine indicates that it can find promising applications in detecting OTA and even other mycotoxins in foodstuffs.
Collapse
Affiliation(s)
- Pengxiang Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Luyan Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Mei Ding
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Wenjuan Guo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
141
|
Öncü Kaya EM, Korkmaz OT, Yeniceli Uğur D, Şener E, Tunçel AN, Tunçel M. Determination of Ochratoxin-A in the brain microdialysates and plasma of awake, freely moving rats using ultra high performance liquid chromatography fluorescence detection method. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1125:121700. [DOI: 10.1016/j.jchromb.2019.06.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 06/21/2019] [Accepted: 06/22/2019] [Indexed: 12/18/2022]
|
142
|
MEDINA BG, SARTORI AV, MORAES MHPD, CARDOSO MHWM, JACOB SDC. Validation and application of an analytical method for the determination of mycotoxins in crackers by UPLC-MS/MS. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.33717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
143
|
Xue Z, Zhang Y, Yu W, Zhang J, Wang J, Wan F, Kim Y, Liu Y, Kou X. Recent advances in aflatoxin B1 detection based on nanotechnology and nanomaterials-A review. Anal Chim Acta 2019; 1069:1-27. [DOI: 10.1016/j.aca.2019.04.032] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/15/2019] [Indexed: 02/02/2023]
|
144
|
Mycotoxins in cereal-based products during 24 years (1983–2017): A global systematic review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
145
|
Freitas A, Barros S, Brites C, Barbosa J, Silva AS. Validation of a Biochip Chemiluminescent Immunoassay for Multi-Mycotoxins Screening in Maize (Zea mays L.). FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01625-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
146
|
Silva AS, Brites C, Pouca AV, Barbosa J, Freitas A. UHPLC-ToF-MS method for determination of multi-mycotoxins in maize: Development and validation. Curr Res Food Sci 2019; 1:1-7. [PMID: 32914099 PMCID: PMC7473352 DOI: 10.1016/j.crfs.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
An Ultra-High Performance Liquid Chromatography combined with Time-of-Flight Mass Spectrometry (UHPLC–ToF-MS) method has been developed for determination of nine mycotoxins, namely aflatoxins (AFB1, AFB2, AFG1 and AFG2), ochratoxin A (OTA), zearalenone (ZEA), toxin T2 (T2) and fumonisins (FB1 and FB2) in maize. The method included a two-step extraction with acetonitrile 80% (v/v). After optimization, the analytical method was validated. The different concentrations tested take in account the Maximum Levels (ML) for maize (Commission Regulation EC no. 1881/2006) and good results for repeatability (%RSDr ≤ 15.4%), reproducibility (%RSDR ≤ 15.9%) and recovery (77.8–110.4%, except for AFG2 at 2 μg/kg which presented a recovery of 73.4%) were achieved. These met the performance criteria imposed by Commission Regulation (EC) no. 401/2006. The method was applied to twenty-two samples from Portuguese producers of maize. Fumonisins were the most frequently detected mycotoxins, but the levels do not exceed those imposed by European legislation. A UHPLC–ToF-MS method was developed for determination of nine mycotoxins in maize. Validation of the method was performed taking in account the EU maximum legal limits for maize. Good results for repeatability, reproducibility and recovery were achieved. The method was applied to 22 samples from Portuguese producers of maize. Fumonisins were the most frequently detected mycotoxins.
Collapse
Affiliation(s)
- Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- Center for Study in Animal Science (CECA), ICETA, University of Oporto, Oporto, Portugal
- Corresponding author. National Institute for Agricultural and Veterinary Research, Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal.
| | - Carla Brites
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- GREEN-IT, ITQB NOVA, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Vila Pouca
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
| | - Jorge Barbosa
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- REQUIMTE/ LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Andreia Freitas
- National Institute for Agricultural and Veterinary Research (INIAV), Rua dos Lágidos, Lugar da Madalena, 4485-655 Vila do Conde, Portugal
- REQUIMTE/ LAQV, Pharmacy Faculty, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
147
|
Wang C, Zhao Q. A competitive thrombin-linked aptamer assay for small molecule: aflatoxin B 1. Anal Bioanal Chem 2019; 411:6637-6644. [PMID: 31352501 DOI: 10.1007/s00216-019-02037-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 01/03/2023]
Abstract
We described a competitive thrombin-linked aptamer assay for small molecule, using aflatoxin B1 (AFB1) as a model, taking advantage of aptamer affinity binding and enzymatic activity of thrombin. We designed a dual functional DNA probe that contained the aptamer sequence for thrombin and the aptamer sequence for AFB1. Thrombin was labeled on the DNA probe by affinity binding between thrombin and anti-thrombin aptamer. This thrombin-labeled DNA probe was attached on AFB1-bovine serum albumin conjugate (BSA-AFB1) coated on a microplate through the affinity interaction between AFB1 and anti-AFB1 aptamer. The thrombin attached on the microplate catalyzed the cleavage of peptide substrate into detectable product, generating signal for detection. In the presence of AFB1, free AFB1 competed with BSA-AFB1 in the binding to the limited amount of DNA probe, leading to signal decrease. Detection of AFB1 was achieved by measuring the signal change. Under optimized conditions, AFB1 was successfully detected in the range from 0.5 nM to 1 μM when fluorogenic peptide substrate of thrombin and fluorescence analysis were applied. The use of chromogenic peptide substrate in the assay allowed the detection of AFB1 ranging from 0.5 to 125 nM by simple absorbance analysis. The thrombin-linked aptamer assay showed good selectivity towards AFB1, and enabled the detection of AFB1 spiked in diluted beer and corn flour. This TLAA strategy extends the analytical application of thrombin and aptamers in detection of small molecules. Graphical abstract.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China.,University of Chinese Academy of Science, Beijing, 100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China. .,University of Chinese Academy of Science, Beijing, 100049, China.
| |
Collapse
|
148
|
Stastny K, Stepanova H, Hlavova K, Faldyna M. Identification and determination of deoxynivalenol (DON) and deepoxy-deoxynivalenol (DOM-1) in pig colostrum and serum using liquid chromatography in combination with high resolution mass spectrometry (LC-MS/MS (HR)). J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1126-1127:121735. [PMID: 31394401 DOI: 10.1016/j.jchromb.2019.121735] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/20/2019] [Accepted: 07/24/2019] [Indexed: 10/26/2022]
Abstract
Deoxynivalenol (DON) is one of the most common mycotoxins produced by field fungi (especially Fusarium). Contamination of livestock feed is a significant risk factor, especially for pigs that are highly susceptible to the toxic effects of deoxynivalenol. In this study, validated ultra-high performance liquid chromatography (U-HPLC) combined with a HR-Orbitrap-MS analysis method is described for the identification and quantitative determination of the mycotoxin compounds (DON and deepoxy-deoxynivalenol (DOM-1)) in pig colostrum (milk) and serum. Pre-treatment of the samples involved a deproteinisation step with methanol followed by a purification step by solid phase extraction (HLB cartridges). The chromatographic separation was performed on a C18 column with 1.7 μm-particle size using a water-methanol mobile phase. Detection of analytes was achieved on the tandem hybrid mass spectrometer Q Exactive, with a heated electrospray ionisation probe measured in positive mode (H-ESI+). For the confirmation of identification, a mass spectrometer was utilized in the full scan mode with resolving power (PR) = 140,000 (FWHM) and for quantification analysis, it was utilized in the parallel reaction monitoring mode (PRM). The method has been fully validated according to the requirements of Commission Decision 2002/657/EC for confirmatory analyses, plus the addition of a mass accuracy (MA) parameter. For the confirmation of the presence of these analytes in pig colostrum and serum, matching of the retention time with mass accuracy for the precursor ion from MS and product ions from MS/MS was used. A deuterium isotopically labelled internal standard and a matrix-matched calibration curve were employed for quantification. The linear range of quantification was 0.5-20 μg L-1 and the correlation coefficient (R2) was >0.999 for all calibrations. The limit of detection for DON and DOM-1 in colostrum was 0.48 μg L-1 and 0.54 μg L-1, respectively, and in serum 0.24 μg L-1 and 0.36 μg L-1, respectively. The limit of quantification for DON and DOM-1 in colostrum was 0.80 μg L-1 and 0.89 μg L-1, respectively, and in serum 0.39 μg L-1 and 0.60 μg L-1, respectively. The method was successfully evaluated using the obtained samples of pig colostrum and serum.
Collapse
Affiliation(s)
- Kamil Stastny
- Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic.
| | - Hana Stepanova
- Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Karolina Hlavova
- Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| | - Martin Faldyna
- Veterinary Research Institute, Hudcova 70, Brno 62100, Czech Republic
| |
Collapse
|
149
|
Tuanny Franco L, Mousavi Khaneghah A, In Lee SH, Fernandes Oliveira CA. Biomonitoring of mycotoxin exposure using urinary biomarker approaches: a review. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1619086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Larissa Tuanny Franco
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Sarah Hwa In Lee
- Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
150
|
Franco MS, Padovan RN, Fumes BH, Palmer CP, McGettrick JR, Lanças FM. Silica modified with polymeric amphiphilic nanoparticles as first dimension for multidimensional separation techniques. J Chromatogr A 2019; 1597:149-158. [DOI: 10.1016/j.chroma.2019.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
|