101
|
Abstract
Chemical contaminants should not be present in beverages for human consumption, but could eventually be ingested by consumers as they may appear naturally from the environment or be produced by anthropogenic sources. These contaminants could belong to many different chemical sources, including heavy metals, amines, bisphenols, phthalates, pesticides, perfluorinated compounds, inks, ethyl carbamate, and others. It is well known that these hazardous chemicals in beverages can represent a severe threat by the potential risk of generating diseases to humans if no strict quality control is applied during beverages processing. This review compiles the most updated knowledge of the presence of potential contaminants in various types of beverages (both alcoholic and non-alcoholic), as well as in their containers, to prevent undesired migration. Special attention is given to the extraction and pre-concentration techniques applied to these samples, as well as to the analytical techniques necessary for the determination of chemicals with a potential contaminant effect. Finally, an overview of the current legislation is carried out, as well as future trends of research in this field.
Collapse
|
102
|
Ubeda S, Aznar M, Rosenmai AK, Vinggaard AM, Nerín C. Migration studies and toxicity evaluation of cyclic polyesters oligomers from food packaging adhesives. Food Chem 2020; 311:125918. [DOI: 10.1016/j.foodchem.2019.125918] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Accepted: 11/15/2019] [Indexed: 12/21/2022]
|
103
|
Murat P, Harohalli Puttaswamy S, Ferret PJ, Coslédan S, Simon V. Identification of Potential Extractablesand Leachables in Cosmetic Plastic Packagingby Microchambers-Thermal Extraction and Pyrolysis-Gas Chromatography-Mass Spectrometry. Molecules 2020; 25:molecules25092115. [PMID: 32366050 PMCID: PMC7248719 DOI: 10.3390/molecules25092115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/12/2023] Open
Abstract
Most container-content interaction studies are carried out through migration tests on end products or simulants involving generally toxic solvents. This study was conducted with the aim of identifying potential leachables from materials used in cosmetic plastic packaging by using two approaches based on solvent-free extraction, i.e., solid-phase microextraction sampling and pyrolyzer/thermal desorption coupled with gas chromatography mass spectrometry. Volatile and semi-volatile intentionally and non-intentionally added substances were detected in seven packaging samples made of polypropylene, polyethylene, and styrene-acrylonitrile copolymer. Thirty-five compounds related to the polymers industry or packaging industry were identified, among them phthalates, alkanes, styrene, and cyanide derivates including degradation products, impurities, additives, plasticizers, and monomers. All except eight belong to the Cramer class I. These thermodesorption techniques are complementary to those used for migration tests.
Collapse
Affiliation(s)
- Pauline Murat
- Chimie analytique et Compatibilité, Pierre Fabre Dermo-Cosmétique, 17 allée Camille Soula, 31320 Vigoulet-Auzil, France; (P.M.); (S.C.)
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France;
| | | | - Pierre-Jacques Ferret
- Safety Assessment Department, Pierre Fabre Dermo-Cosmétique, 3 avenue Hubert Curien, 31035 Toulouse Cedex, France;
| | - Sylvie Coslédan
- Chimie analytique et Compatibilité, Pierre Fabre Dermo-Cosmétique, 17 allée Camille Soula, 31320 Vigoulet-Auzil, France; (P.M.); (S.C.)
| | - Valérie Simon
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRA, INPT, 31030 Toulouse, France;
- Correspondence:
| |
Collapse
|
104
|
Blázquez-Blázquez E, Cerrada ML, Benavente R, Pérez E. Identification of Additives in Polypropylene and Their Degradation under Solar Exposure Studied by Gas Chromatography-Mass Spectrometry. ACS OMEGA 2020; 5:9055-9063. [PMID: 32363257 PMCID: PMC7191600 DOI: 10.1021/acsomega.9b03058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/23/2020] [Indexed: 05/12/2023]
Abstract
Additives are absolutely essential in the development of commercial polymeric materials. Accordingly, an exhaustive control of composition and evolution in these additives over time is necessary to validate their performance and safety during their shelf life and, consequently, their ultimate applications. Gas chromatography coupled with mass spectrometry, GC-MS, is described in the present work to identify and analyze the content of a wide variety of additives, commonly used in industrial polymeric materials. First, the identification under the present experimental protocol of additives with a relatively high molecular weight (Irganox 1330 and Irganox 1010) has been successfully attained. Second, the evolution under solar exposure over time has been analyzed by GC-MS for 11 additives and derived substances, which have been identified in a commercial polypropylene sample, estimating the corresponding depletion times. In addition, the resultant increase of carbonyl groups in the polymeric macrochains along the photo-oxidation has been also determined by infrared spectroscopy. Therefore, GC-MS is found to be a reliable tool for the analysis of the evolution of commonly used polymer additives under specific degradation conditions, which can be very useful in the formulation of improved future additivations.
Collapse
|
105
|
Canellas E, Vera P, Nerín C, Dreolin N, Goshawk J. Ion mobility quadrupole time-of-flight high resolution mass spectrometry coupled to ultra-high pressure liquid chromatography for identification of non-intentionally added substances migrating from food cans. J Chromatogr A 2020; 1616:460778. [DOI: 10.1016/j.chroma.2019.460778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022]
|
106
|
Su QZ, Vera P, Nerín C. Direct Immersion–Solid-Phase Microextraction Coupled to Gas Chromatography–Mass Spectrometry and Response Surface Methodology for Nontarget Screening of (Semi-) Volatile Migrants from Food Contact Materials. Anal Chem 2020; 92:5577-5584. [DOI: 10.1021/acs.analchem.0c00532] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qi-Zhi Su
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018, Zaragoza, Spain
| | - Paula Vera
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018, Zaragoza, Spain
| | - Cristina Nerín
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018, Zaragoza, Spain
| |
Collapse
|
107
|
Muncke J, Andersson AM, Backhaus T, Boucher JM, Carney Almroth B, Castillo Castillo A, Chevrier J, Demeneix BA, Emmanuel JA, Fini JB, Gee D, Geueke B, Groh K, Heindel JJ, Houlihan J, Kassotis CD, Kwiatkowski CF, Lefferts LY, Maffini MV, Martin OV, Myers JP, Nadal A, Nerin C, Pelch KE, Fernández SR, Sargis RM, Soto AM, Trasande L, Vandenberg LN, Wagner M, Wu C, Zoeller RT, Scheringer M. Impacts of food contact chemicals on human health: a consensus statement. Environ Health 2020; 19:25. [PMID: 32122363 PMCID: PMC7053054 DOI: 10.1186/s12940-020-0572-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 02/04/2020] [Indexed: 05/19/2023]
Abstract
Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Justin M Boucher
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Bethanie Carney Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Jonathan Chevrier
- Department of Epidemiology, Biostatistics and Occupational Health, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Barbara A Demeneix
- Department Adaptation du Vivant, Unité mixte de recherche 7221, CNRS (French National Research Center) and Muséum National d'Histoire Naturelle, Paris, France
| | - Jorge A Emmanuel
- Institute of Environmental & Marine Sciences, Silliman University, Dumaguete, Philippines
| | - Jean-Baptiste Fini
- Department Adaptation du Vivant, Unité mixte de recherche 7221, CNRS (French National Research Center) and Muséum National d'Histoire Naturelle, Paris, France
| | - David Gee
- Institute of Environment, Health and Societies, Brunel University, Uxbridge, UK
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Ksenia Groh
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA, USA
| | - Jane Houlihan
- Healthy Babies Bright Futures, Charlottesville, V.A., USA
| | | | | | - Lisa Y Lefferts
- Center for Science in the Public Interest, Washington, DC, USA
| | | | - Olwenn V Martin
- Institute for the Environment, Health and Societies, Brunel University London, Uxbridge, UK
| | - John Peterson Myers
- Environmental Health Sciences, Charlottesville, Virginia, USA
- Department of Chemistry, Carnegie, Mellon University, Pittsburgh, PA, USA
| | - Angel Nadal
- IDiBE and CIBERDEM, Universitas Miguel Hernandez, Elche, Spain
| | | | | | | | - Robert M Sargis
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Ana M Soto
- Department of Immunology, Tufts University School of Medicine, Boston, MA, USA
| | - Leonardo Trasande
- Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Wagner
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Changqing Wu
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, USA
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Martin Scheringer
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
- RECETOX, Masaryk University, Brno, Czech Republic
| |
Collapse
|
108
|
Wang Z, Walker GW, Muir DCG, Nagatani-Yoshida K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2575-2584. [PMID: 31968937 DOI: 10.1021/acs.est.9b06379] [Citation(s) in RCA: 365] [Impact Index Per Article: 91.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Chemicals, while bringing benefits to society, may be released during their lifecycles and possibly cause harm to humans and ecosystems. Chemical pollution has been mentioned as one of the planetary boundaries within which humanity can safely operate, but is not comprehensively understood. Here, 22 chemical inventories from 19 countries and regions are analyzed to achieve a first comprehensive overview of chemicals on the market as an essential first step toward a global understanding of chemical pollution. Over 350 000 chemicals and mixtures of chemicals have been registered for production and use, up to three times as many as previously estimated and with substantial differences across countries/regions. A noteworthy finding is that the identities of many chemicals remain publicly unknown because they are claimed as confidential (over 50 000) or ambiguously described (up to 70 000). Coordinated efforts by all stakeholders including scientists from different disciplines are urgently needed, with (new) areas of interest and opportunities highlighted here.
Collapse
Affiliation(s)
- Zhanyun Wang
- Chair of Ecological Systems Design, Institute of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland, ORCID: 0000-0001-9914-7659
| | - Glen W Walker
- Department of the Environment and Energy, Australian Government, General Post Office Box 787, Canberra, Australian Capital Territory 2601, Australia
| | - Derek C G Muir
- Environment & Climate Change Canada, Canada Centre for Inland Waters, Burlington, Ontario Canada, ORCID: 0000-0001-6631-9776
| | | |
Collapse
|
109
|
Quantification of PET cyclic and linear oligomers in teabags by a validated LC-MS method - In silico toxicity assessment and consumer's exposure. Food Chem 2020; 317:126427. [PMID: 32092611 DOI: 10.1016/j.foodchem.2020.126427] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/24/2020] [Accepted: 02/16/2020] [Indexed: 11/20/2022]
Abstract
Determination of polyethylene terephthalate (PET) dimer up to heptamer 1st series cyclic oligomers, applying an LC-qTOF-MS method, has been developed and validated. Recoveries ranged between 80 and 112% with RSDs lower than 15%. An innovative semi-quantitative approach has been applied for 2nd and 3rd series cyclic oligomers, using the closest structural-similar 1st series cyclic oligomer standard as analytical reference. Oligomers from the three series were quantified in PET teabags after migration experiments with water and food simulants C (20% v/v ethanol in water) and D1 (50% v/v ethanol in water). No legal migration limits exist currently for these substances. In silico genotoxicity assessment of all identified oligomers has been performed and showed no genotoxicity alert for linear or cyclic molecules. Exposure assessment was performed using EFSA's approach on the total sum of migrating oligomers and on toxicological threshold-of-concern. Amounts found in water were in some cases significantly higher than the respective limits, especially in the worst-case scenario of multiple consumption.
Collapse
|
110
|
Wrona M, Nerín C. Analytical Approaches for Analysis of Safety of Modern Food Packaging: A Review. Molecules 2020; 25:E752. [PMID: 32050512 PMCID: PMC7037176 DOI: 10.3390/molecules25030752] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/31/2020] [Accepted: 02/06/2020] [Indexed: 12/23/2022] Open
Abstract
Nowadays, food packaging is a crucial tool for preserving food quality and has become an inseparable part of our daily life. Strong consumer demand and market trends enforce more advanced and creative forms of food packaging. New packaging development requires safety evaluations that always implicate the application of complex analytical methods. The present work reviews the development and application of new analytical methods for detection of possible food contaminants from the packaging origin on the quality and safety of fresh food. Among food contaminants migrants, set-off migrants from printing inks, polymer degradation products, and aromatic volatile compounds can be found that may compromise the safety and organoleptic properties of food. The list of possible chemical migrants is very wide and includes antioxidants, antimicrobials, intentionally added substances (IAS), non-intentionally added substances (NIAS), monomers, oligomers, and nanoparticles. All this information collected prior to the analysis will influence the type of analyzing samples and molecules (analytes) and therefore the selection of a convenient analytical method. Different analytical strategies will be discussed, including techniques for direct polymer analysis.
Collapse
Affiliation(s)
| | - Cristina Nerín
- Department of Analytical Chemistry, Aragon Institute of Engineering Research I3A, University of Zaragoza, María de Luna, 3, 50018 Zaragoza, Spain;
| |
Collapse
|
111
|
Blanco-Zubiaguirre L, Zabaleta I, Usobiaga A, Prieto A, Olivares M, Zuloaga O, Elizalde M. Target and suspect screening of substances liable to migrate from food contact paper and cardboard materials using liquid chromatography-high resolution tandem mass spectrometry. Talanta 2020; 208:120394. [DOI: 10.1016/j.talanta.2019.120394] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022]
|
112
|
He JF, Lv XG, Lin QB, Li Z, Liao J, Xu CY, Zhong WJ. Migration of metal elements from polylactic acid dinner plate into acidic food simulant and its safety evaluation. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
113
|
Migration of styrene monomer from polystyrene packaging materials into foods: Characterization and safety evaluation. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
114
|
García Ibarra V, Rodríguez Bernaldo de Quirós A, Paseiro Losada P, Sendón R. Non-target analysis of intentionally and non intentionally added substances from plastic packaging materials and their migration into food simulants. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100325] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
115
|
Kejlová K, Dvořáková M, Vavrouš A, Ševčík V, Kanďárová H, Letašiová S, Sosnovcová J, Jírová D. Toxicity of food contact paper evaluated by combined biological and chemical methods. Toxicol In Vitro 2019; 59:26-34. [PMID: 30951805 DOI: 10.1016/j.tiv.2019.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 12/16/2022]
|
116
|
Hwang JB, Lee S, Yeum J, Kim M, Choi JC, Park SJ, Kim J. HS-GC/MS method development and exposure assessment of volatile organic compounds from food packaging into food simulants. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:1574-1583. [PMID: 31361183 DOI: 10.1080/19440049.2019.1642520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
A simultaneous headspace-gas chromatography/mass spectrometry (HS-GC/MS) method was developed and validated to determine the migration of 12 volatile organic compounds (methanol, acetone, methylethylketone, ethylacetate, isopropylalcohol, benzene, toluene, ethylbenzene, xylene, cumene, propylbenzene, and styrene) from food contact materials into food simulants (water, 4% acetic acid, 50% ethanol, and n-heptane). The limits of detection and quantification were 0.007-0.201 mg L-1 and 0.023-0.668 mg L-1, respectively. The method was applied to 205 samples of paper/paperboard, polyethylene, polypropylene, polystyrene, and polyethylene terephthalate. The estimated daily intake (EDI) was calculated using the migration results. Exposure assessments were carried out to compare the EDI to the tolerable daily intake (TDI); the results indicated that the EDI of styrene represented only a small percentage (8.0%) of the TDI. This analytical method will be a useful tool to examine levels of various volatile compounds migrating from food packaging to food simulants using HS-GC/MS method.
Collapse
Affiliation(s)
- Joung Boon Hwang
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation , Cheongju , Republic of Korea.,Department of Chemistry, Chungnam National University , Daejeon , Republic of Korea
| | - Subi Lee
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation , Cheongju , Republic of Korea
| | - Jinhwa Yeum
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation , Cheongju , Republic of Korea
| | - MeeKyung Kim
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation , Cheongju , Republic of Korea
| | - Jae Chun Choi
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation , Cheongju , Republic of Korea
| | - Se-Jong Park
- Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation , Cheongju , Republic of Korea.,Department of Chemistry, Chungnam National University , Daejeon , Republic of Korea
| | - Jeongkwon Kim
- Department of Chemistry, Chungnam National University , Daejeon , Republic of Korea
| |
Collapse
|
117
|
Mertl E, Riegel E, Glück N, Ettenberger-Bornberg G, Lin G, Auer S, Haller M, Wlodarczyk A, Steurer C, Kirchnawy C, Czerny T. A dual luciferase assay for evaluation of skin sensitizing potential of medical devices. Mol Biol Rep 2019; 46:5089-5102. [DOI: 10.1007/s11033-019-04964-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
|
118
|
Song XC, Wrona M, Nerin C, Lin QB, Zhong HN. Volatile non-intentionally added substances (NIAS) identified in recycled expanded polystyrene containers and their migration into food simulants. Food Packag Shelf Life 2019. [DOI: 10.1016/j.fpsl.2019.100318] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
119
|
Murat P, Ferret PJ, Coslédan S, Simon V. Assessment of targeted non-intentionally added substances in cosmetics in contact with plastic packagings. Analytical and toxicological aspects. Food Chem Toxicol 2019; 128:106-118. [DOI: 10.1016/j.fct.2019.03.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/21/2019] [Accepted: 03/16/2019] [Indexed: 10/27/2022]
|
120
|
Bauer A, Jesús F, Gómez Ramos MJ, Lozano A, Fernández-Alba AR. Identification of unexpected chemical contaminants in baby food coming from plastic packaging migration by high resolution accurate mass spectrometry. Food Chem 2019; 295:274-288. [PMID: 31174760 DOI: 10.1016/j.foodchem.2019.05.105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/23/2019] [Accepted: 05/14/2019] [Indexed: 01/21/2023]
Abstract
Plastic multilayers are widely used for baby food packaging. However, it is important to consider that migration of food contact materials (FCM) into the baby food can occur. The comprehensive identification of potential migrants, including intentionally added substances (IAS) and non-intentionally added substances (NIAS), is required to assess the safety of these packaging materials. In this study, high resolution accurate mass spectrometry (HRAMS) with a data-independent acquisition method of sequential mass windows enables the detection of substances with corresponding deconvoluted fragment mass spectra. The identification of unexpected migrants present in the food simulants and in real baby food was facilitated by filtering strategies and by an in-house library. This approach has allowed the identification of 42 migrants, including eight NIAS detected for the first time. Two oligomers were quantified by means of reference standard materials at concentration levels above 0.010 mg/kg, exceeding the maximum residue levels for baby food.
Collapse
Affiliation(s)
- Anna Bauer
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain.
| | - Florencia Jesús
- Grupo de Análisis de Compuestos Traza, Polo de Desarrollo Universitario "Abordaje holístico", CENUR Litoral Norte Sede Paysandú, Universidad de la República, Ruta 3 km 363, 60000 Paysandú, Uruguay.
| | - María José Gómez Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain.
| | - Ana Lozano
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain.
| | - Amadeo Rodríguez Fernández-Alba
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain.
| |
Collapse
|
121
|
Determination the set-off migration of ink in cardboard-cups used in coffee vending machines. Food Chem Toxicol 2019; 130:61-67. [PMID: 31102676 DOI: 10.1016/j.fct.2019.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 11/20/2022]
Abstract
The set-off migration from printing inks can cause alterations in the safety and acceptability of food. Therefore, its control in the food industry is of special importance. The aim of this study was the determination of the migration of compounds coming from different types of cardboard-cups used in coffee vending machines. The volatile compounds present in cardboard-cups were studied and specific migration studies were carried out by solid phase microextraction with headspace coupled to gas chromatography (HS-SPME-GC-MS). The migration of compounds from the cardboard-cups manufacturing material, plastic coating (LDPE) and printing inks were identified and quantified. Those migrants listed in the Regulation No. 10/2011 presented values lower than the specific migration limit (SML), although a series of non-listed and non-authorized compounds were identified. From the results obtained the risk assessment of the vending cups from two different companies has been done.
Collapse
|
122
|
da Silva Oliveira W, Ubeda S, Nerín C, Padula M, Teixeira Godoy H. Identification of non-volatile migrants from baby bottles by UPLC-Q-TOF-MS. Food Res Int 2019; 123:529-537. [PMID: 31285002 DOI: 10.1016/j.foodres.2019.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 05/01/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Baby bottles made of polypropylene, Tritan® and silicone were evaluated regarding the migration of non-volatile compounds using UPLC-QTOF-MS. Twenty-seven compounds were identified. In all polypropylene samples the migration of 2.2'-(tridecylimino)bis-ethanol and derivatives thereof were detected in concentrations below the specific migration limit (1.2 mg.kg-1). Furthermore, clarifying agents and glycerol derivatives were detected. Tritan baby bottle showed the migration of one slip additive. On the other hand, twenty compounds were detected in silicone baby bottles. Most of them were unknown compounds derived from acrylates. Once the migrants were identified, the risk assessment was carried out using the Threshold of Toxicological Concern (TTC) approach. The risk assessment of migrants coming from silicone samples showed levels above the threshold recommended as safe for babies.
Collapse
Affiliation(s)
| | - Sara Ubeda
- Department of Analytical Chemistry, GUIA Group, Aragon Institute of Engineering Research I3A, University of Zaragoza, Zaragoza, Spain
| | - Cristina Nerín
- Department of Analytical Chemistry, GUIA Group, Aragon Institute of Engineering Research I3A, University of Zaragoza, Zaragoza, Spain.
| | - Marisa Padula
- Packaging Technology Center, Institute of Food Technology (ITAL), Campinas, SP, Brazil
| | - Helena Teixeira Godoy
- Department of Food Science, School of Food Engineering, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
123
|
Determination of volatile compounds and their sensory impact in a biopolymer based on polylactic acid (PLA) and polyester. Food Chem 2019; 294:171-178. [PMID: 31126449 DOI: 10.1016/j.foodchem.2019.05.069] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 11/20/2022]
Abstract
Polylactic acid (PLA) is one of the most commonly used biopolymers for manufacturing food packaging; its control is very important to ensure consumers' health. In this work, a blend of PLA and polyester was studied and its volatile composition in the polymer and in the migration to food simulants was determined by gas chromatography-mass spectrometry (GC-MS) and atmospheric pressure gas chromatography-quadrupole-time of flight mass spectrometry (APGC-QTOF). The results showed that both techniques provided complementary information, to give complete information on the biopolymer's composition. Some compounds such as lactide or cyclopentanone were detected only by GC-MS while others, such as the cyclic dimer [AA-BD]2 (AA:adipic acid, BD:butanediol), were detected only by APGC-MS. In migration, lactide, AA-BD and [AA-BD]2 were identified in ethanol 95%. A GC-olfactometry study was also carried out. Some compounds showed sensory impact on the polymer odor but not in migration.
Collapse
|
124
|
Ubeda S, Aznar M, Alfaro P, Nerín C. Migration of oligomers from a food contact biopolymer based on polylactic acid (PLA) and polyester. Anal Bioanal Chem 2019; 411:3521-3532. [PMID: 31053956 DOI: 10.1007/s00216-019-01831-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 11/28/2022]
Abstract
Polylactic acid (PLA) is a biopolymer commonly used in food packaging due to its good characteristics, similar to PET. To evaluate the safety of this material, the analysis of the non-intentionally added substances (NIAS) is required. Oligomers are NIAS and their behavior needs a deep study, especially if they migrate to the food. In this work, the analysis of the polymer and the migration to food simulants was carried out. A total dissolution/precipitation procedure was applied to PLA pellets and films, using dichloromethane and ethanol as solvent and antisolvent system respectively. The migration tests were carried out in three liquid simulants to mimic any kind of food. Since oligomers are not present in the positive list of the Directive 10/2011/EC, their concentration must be below the 0.01 mg/kg of food. UPLC-QTOF-MS, with and without ion mobility (IM), was used for the analysis. Thirty-nine different PLA oligomers made of repeated monomer units of [LA] (C3H4O2) and with different structures were identified. They corresponded to cyclic oligomers with [LA]n structure and two groups of linear oligomers, one with an hydroxyl group, OH-[LA]n-H, and the other one with an ethoxy group, CH3-CH2-O-[LA]n-H. Cyclic oligomers only appeared in the material and were not present in migration solutions. Linear oligomers HO-[LA]n-H were already present in the pellets/film and they migrated in a higher extension to aqueous food simulants (EtOH 10% and AcH 3%). However, linear oligomers CH3-CH2-O-[LA]n-H were not present initially in the pellets/film, but were detected in migration to simulants with ethanol content, EtOH 95% and EtOH 10%. Furthermore, 5 cyclic polyester oligomers were identified in migration. Ethanol 95% and ethanol 10% migration solutions were also analyzed by scanning electron microscopy (SEM), and the presence of microstructures that could be attributed to the oligomers migration was found. They could be seen as microplastics.
Collapse
Affiliation(s)
- Sara Ubeda
- Department of Analytical Chemistry, EINA, University of Zaragoza, Campus Rio Ebro, María de Luna 3, 50018, Zaragoza, Spain
| | - Margarita Aznar
- Department of Analytical Chemistry, EINA, University of Zaragoza, Campus Rio Ebro, María de Luna 3, 50018, Zaragoza, Spain.
| | - Pilar Alfaro
- Department of Analytical Chemistry, EINA, University of Zaragoza, Campus Rio Ebro, María de Luna 3, 50018, Zaragoza, Spain
| | - Cristina Nerín
- Department of Analytical Chemistry, EINA, University of Zaragoza, Campus Rio Ebro, María de Luna 3, 50018, Zaragoza, Spain
| |
Collapse
|
125
|
Su QZ, Vera P, Van de Wiele C, Nerín C, Lin QB, Zhong HN. Non-target screening of (semi-)volatiles in food-grade polymers by comparison of atmospheric pressure gas chromatography quadrupole time-of-flight and electron ionization mass spectrometry. Talanta 2019; 202:285-296. [PMID: 31171184 DOI: 10.1016/j.talanta.2019.05.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 01/16/2023]
Abstract
Atmospheric pressure gas chromatography (APGC) coupled to quadrupole time-of-flight (QTOF) and electron ionization mass spectrometry together with commercial library search are two complementary techniques for non-target screening of volatile and semi-volatile compounds. Optimization was first conducted to achieve easier search of correspondent peaks between the two systems. Analytical strategy for the determination of volatile and semi-volatile compound with different identification confidence levels was then proposed and applied to food contact grade polypropylene (PP) samples. Identification was found to be much easier and less time-consuming especially when correspondent peak was found in the two systems with the help of library search, exact mass of precursor and fragment ions as well as Kovats Index (KI). The behavior of APGC-QTOF-MS was also further investigated. Apart from the M+. ion and the well-known adduct [M+H]+ others such as [M-3H + O]+, [M-3H+2O]+ and [M-H+3O]+ were also observed for n-alkanes. Besides, new reaction products were found, formed by diol compounds (1-Monostearoylglycerol, 2-Monostearoylglycerol and NX 8000K) and silanediol dimethyl, which would be a transformation product of the silicone base septum or the methyl 5% phenyl polysiloxane based column. These new compounds were only detected in APGC-MS-QTOF as EI-GC-MS was not enough sensitive for this purpose.
Collapse
Affiliation(s)
- Qi-Zhi Su
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018, Zaragoza, Spain
| | - Paula Vera
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018, Zaragoza, Spain
| | - Cathy Van de Wiele
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018, Zaragoza, Spain; Antwerp University, Campus Drie Eiken, Building S, Office 7.25, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Cristina Nerín
- Department of Analytical Chemistry, GUIA Group, I3A, EINA, University of Zaragoza, María de Luna 3, 50018, Zaragoza, Spain.
| | - Qin-Bao Lin
- Key Laboratory of Product Packaging and Logistics, Packaging Engineering Institute, Jinan University, Zhuhai, 519070, China
| | - Huai-Ning Zhong
- Inspection and Quarantine Technology Center, Guangdong Entry-Exit Inspection and Quarantine Bureau, Guangzhou, Guangdong 510623, China
| |
Collapse
|
126
|
Determination of volatile non intentionally added substances coming from a starch-based biopolymer intended for food contact by different gas chromatography-mass spectrometry approaches. J Chromatogr A 2019; 1599:215-222. [PMID: 30975529 DOI: 10.1016/j.chroma.2019.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/29/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
Abstract
The rapid growth of polymer technology in the field of food contact materials (FCMs) needs to be supported by continuous improvement in material testing, in order to ensure the safety of foodstuff. In this work, a range of different starch-based biopolymer samples, in the shape of pellets and retail samples (cups and dishes) were studied. The optimized extraction process was performed on three different pellet shapes: pellets with no modification (spherical), pellets shattered under high pressure (lentils), and pellets cryogenically ground (powder). The analysis of unknown volatile and semi-volatile compounds was carried out by gas chromatography-mass spectrometry, using both electron ionization with a single quadrupole mass analyzer (GC-EI-MS), and atmospheric pressure gas chromatography with a quadrupole/time of flight mass analyzer (APGC-Q/ToF). The identification process was implemented using the latest advances in the understanding of APGC ionization pathways. Chemical migration was also assessed on prototype samples using the food simulants: ethanol 10% v/v, acetic acid 3% w/V, ethanol 95% v/v, isooctane, and vegetable oil. Each migration test was performed three consecutive times, as recommended for materials intended for repeated use.
Collapse
|
127
|
An untargeted evaluation of the volatile and semi-volatile compounds migrating into food simulants from polypropylene food containers by comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. Talanta 2019; 195:800-806. [DOI: 10.1016/j.talanta.2018.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/03/2018] [Accepted: 12/05/2018] [Indexed: 11/16/2022]
|
128
|
Peters RJ, Groeneveld I, Sanchez PL, Gebbink W, Gersen A, de Nijs M, van Leeuwen SP. Review of analytical approaches for the identification of non-intentionally added substances in paper and board food contact materials. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
129
|
Groh KJ, Backhaus T, Carney-Almroth B, Geueke B, Inostroza PA, Lennquist A, Leslie HA, Maffini M, Slunge D, Trasande L, Warhurst AM, Muncke J. Overview of known plastic packaging-associated chemicals and their hazards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3253-3268. [PMID: 30463173 DOI: 10.1016/j.scitotenv.2018.10.015] [Citation(s) in RCA: 328] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/11/2018] [Accepted: 10/01/2018] [Indexed: 04/14/2023]
Abstract
Global plastics production has reached 380 million metric tons in 2015, with around 40% used for packaging. Plastic packaging is diverse and made of multiple polymers and numerous additives, along with other components, such as adhesives or coatings. Further, packaging can contain residues from substances used during manufacturing, such as solvents, along with non-intentionally added substances (NIAS), such as impurities, oligomers, or degradation products. To characterize risks from chemicals potentially released during manufacturing, use, disposal, and/or recycling of packaging, comprehensive information on all chemicals involved is needed. Here, we present a database of Chemicals associated with Plastic Packaging (CPPdb), which includes chemicals used during manufacturing and/or present in final packaging articles. The CPPdb lists 906 chemicals likely associated with plastic packaging and 3377 substances that are possibly associated. Of the 906 chemicals likely associated with plastic packaging, 63 rank highest for human health hazards and 68 for environmental hazards according to the harmonized hazard classifications assigned by the European Chemicals Agency within the Classification, Labeling and Packaging (CLP) regulation implementing the United Nations' Globally Harmonized System (GHS). Further, 7 of the 906 substances are classified in the European Union as persistent, bioaccumulative, and toxic (PBT), or very persistent, very bioaccumulative (vPvB), and 15 as endocrine disrupting chemicals (EDC). Thirty-four of the 906 chemicals are also recognized as EDC or potential EDC in the recent EDC report by the United Nations Environment Programme. The identified hazardous chemicals are used in plastics as monomers, intermediates, solvents, surfactants, plasticizers, stabilizers, biocides, flame retardants, accelerators, and colorants, among other functions. Our work was challenged by a lack of transparency and incompleteness of publicly available information on both the use and toxicity of numerous substances. The most hazardous chemicals identified here should be assessed in detail as potential candidates for substitution.
Collapse
Affiliation(s)
- Ksenia J Groh
- Food Packaging Forum Foundation, Zurich, Switzerland.
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Bethanie Carney-Almroth
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Birgit Geueke
- Food Packaging Forum Foundation, Zurich, Switzerland
| | - Pedro A Inostroza
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Anna Lennquist
- International Chemical Secretariat (ChemSec), Gothenburg, Sweden
| | - Heather A Leslie
- Department of Environment & Health, Vrije Universiteit Amsterdam, the Netherlands
| | | | - Daniel Slunge
- Centre for Sustainable Development (GMV), University of Gothenburg, Gothenburg, Sweden
| | | | | | - Jane Muncke
- Food Packaging Forum Foundation, Zurich, Switzerland
| |
Collapse
|
130
|
Tian L, Lin L, Bayen S. Optimization of the post-acquisition data processing for the non-targeted screening of trace leachable residues from reusable plastic bottles by high performance liquid chromatography coupled to hybrid quadrupole time of flight mass spectrometry. Talanta 2019; 193:70-76. [DOI: 10.1016/j.talanta.2018.09.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/13/2022]
|
131
|
Gómez Ramos MJ, Lozano A, Fernández-Alba AR. High-resolution mass spectrometry with data independent acquisition for the comprehensive non-targeted analysis of migrating chemicals coming from multilayer plastic packaging materials used for fruit purée and juice. Talanta 2019; 191:180-192. [DOI: 10.1016/j.talanta.2018.08.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 08/03/2018] [Accepted: 08/05/2018] [Indexed: 12/23/2022]
|
132
|
Martínez-Bueno M, Gómez Ramos M, Bauer A, Fernández-Alba A. An overview of non-targeted screening strategies based on high resolution accurate mass spectrometry for the identification of migrants coming from plastic food packaging materials. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
133
|
Determination of non-volatile components of a biodegradable food packaging material based on polyester and polylactic acid (PLA) and its migration to food simulants. J Chromatogr A 2018; 1583:1-8. [PMID: 30477716 DOI: 10.1016/j.chroma.2018.10.055] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/04/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022]
Abstract
Bioplastic materials are increasingly used due to its benefits for the environment preservation. Among them, food packaging materials based on polylactic acid (PLA) are among the most employed. In this work, a sample treatment methodology based on dissolution/precipitation has been optimized, selecting finally dichloromethane/ethanol as solvent/antisolvent system. The extracts obtained were analysed by UPLC-MS(QTOF), that allowed the identification of the main PLA non-volatile components. The recovery results were between 100.9 to 114.0%. The methodology was applied to the analysis of pellets and films of a PLA-polyester blend sample. A total of 37 different compounds were detected, where the four compounds with the highest intensity in pellet samples were cyclic oligomers coming from the polyester part of the blend and composed by adipic acid (AA), phthalic acid (PA) and butanediol (BD). Migration experiments to 3 food simulants were also performed: ethanol 95% (v/v), ethanol 10% (v/v) and acetic acid 3% (w/v). The results showed that in addition to those compounds previously detected in the film, new compounds coming from the reaction of PLA components with food simulants were present in migration solutions.
Collapse
|
134
|
Han J, Wang B, Bender M, Seehafer K, Bunz UHF. Poly(p-phenyleneethynylene)-based tongues discriminate fruit juices. Analyst 2018; 142:537-543. [PMID: 28112310 DOI: 10.1039/c6an02387h] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We describe a simple optoelectronic tongue, consisting of a positively charged, fluorescent poly(para-phenyleneethynylene), P2, that reacts to fruit juices, when employed at three different pH-values (pH 3, 7, 13). This minimal tongue identifies and discriminates 14 different commercially available apple juices, 6 different grape juices and 5 different black currant juices from each other. A similar, negatively charged fluorescent polymer, P1, also achieved discrimination, but the analyte concentration had to be increased by a factor of 50. A mixture of black currant juice and red grape juice is identified as red grape juice, for specific combinations of grape and black currant juices. A mixture of red and green grape juice passes as red grape juice in our sensing system when it contains more than 70% of red grape juice. The data were obtained by fluorescence quenching of the conjugated polymers and processed by linear discriminant analysis of the collected data.
Collapse
Affiliation(s)
- Jinsong Han
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Benhua Wang
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Markus Bender
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Kai Seehafer
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany and CAM, Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany.
| |
Collapse
|
135
|
Song XC, Lin QB, Zhang YC, Li Z, Zeng Y, Chen ZF. Rapid classification of virgin and recycled EPS containers by Fourier transform infrared spectroscopy and chemometrics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:2220-2229. [PMID: 30303757 DOI: 10.1080/19440049.2018.1515502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A rapid and sensitive method for classification of virgin and recycled expanded polystyrene (EPS) food containers was developed using Fourier transform infrared spectroscopy (FTIR) and chemometrics. This method includes preparing a transparent film by dissolution, examining by FTIR and developing classification models. The degradation of EPS containers occurring during the recycling process was reflected by the carbonyl region of the infrared spectrum which was used as variables for multivariate data analysis. PCA was used to reduce the data dimension and view the sample similarities. Soft independent modelling of class analogy (SIMCA), partial least squares-discrimination analysis (PLS-DA) and linear discrimination analysis (LDA) were applied to construct three classification models. The best discrimination results were obtained by an LDA model, with all samples correctly classified. PLS-DA and SIMCA could not classify the recycled EPS samples with low levels of adulteration. When applying this method to commercially available EPS containers, about 45% of samples were shown to contain recycled polystyrene resins. It is concluded that the carbonyl region of the infrared spectra coupled with chemometrics could be a powerful tool for the classification of virgin and recycled EPS food containers.
Collapse
Affiliation(s)
- Xue-Chao Song
- a Key Laboratory of Product Packaging and Logistics , Packaging Engineering Institute, Jinan University , Zhuhai , China
| | - Qin-Bao Lin
- a Key Laboratory of Product Packaging and Logistics , Packaging Engineering Institute, Jinan University , Zhuhai , China
| | - Yi-Cai Zhang
- a Key Laboratory of Product Packaging and Logistics , Packaging Engineering Institute, Jinan University , Zhuhai , China
| | - Zhong Li
- b Chemical Analysis Laboratory , Zhuhai Border Inspection and Quarantine Bureau , Zhuhai , China
| | - Yu Zeng
- b Chemical Analysis Laboratory , Zhuhai Border Inspection and Quarantine Bureau , Zhuhai , China
| | - Zhi-Feng Chen
- a Key Laboratory of Product Packaging and Logistics , Packaging Engineering Institute, Jinan University , Zhuhai , China
| |
Collapse
|
136
|
Pietropaolo E, Albenga R, Gosetti F, Toson V, Koster S, Marin-Kuan M, Veyrand J, Patin A, Schilter B, Pistone A, Tei L. Synthesis, identification and quantification of oligomers from polyester coatings for metal packaging. J Chromatogr A 2018; 1578:15-27. [PMID: 30314684 DOI: 10.1016/j.chroma.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 06/13/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022]
Abstract
Polyester can coatings protect both food and packaging from mutual contamination. Even though, can coatings may release Non-Intentionally Added Substances (NIAS) in addition to Intentionally Added Substances (IAS). As NIAS are mainly constituted by cyclic or linear side products that are formed during the polymerization process, we focused our attention on these oligomeric species of molecular weight <1000 Da. These oligomers were obtained from two different polyester resins, each synthesized from four monomers (two phthalic acids and two diols), and from the corresponding final enamel can coatings using ethanol at 95% and 50% at 60 °C for 4 h and 10 days, respectively, as food simulants. HPLC-ESI-MS analysis on the extracts allowed identifying various cyclic and linear oligomers. For the conclusive identification of the different oligomers and their isomeric structures, ad hoc standards were synthesized by acylation reaction between alkyl diols and phthaloyl chlorides. By comparison of 1H NMR spectra, linear and cyclic oligomers were characterized by finding the major presence of 2 + 2 cyclic compounds. The 16 synthesized standards, 4 linear and 12 cyclic compounds were used to establish a method for quantification of linear and cyclic oligomers in enamel migration samples by micro HPLC-high-resolution MS (HRMS). The results showed no significant differences between the amounts of cyclic oligomers extracted with both ethanol concentrations (50 and 95%) and time contact. The extracts showed only a small amount of linear compounds and a prevalence of 2 + 2 cyclic oligomers. The work shows the great importance of the synthesis of specific standards to allow exact quantification in food contact material migrates.
Collapse
Affiliation(s)
- Emanuela Pietropaolo
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| | - Roberta Albenga
- CERITEC s.r.l., a Company of METLAC Group, SS 35 Bis dei Giovi, 53, Bosco Marengo, AL, Italy
| | - Fabio Gosetti
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| | - Valentina Toson
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy
| | - Sander Koster
- Institute of Food Safety & Analytical Science, Nestlé Research Center, Lausanne, Switzerland
| | - Maricel Marin-Kuan
- Institute of Food Safety & Analytical Science, Nestlé Research Center, Lausanne, Switzerland
| | - Julien Veyrand
- Institute of Food Safety & Analytical Science, Nestlé Research Center, Lausanne, Switzerland
| | - Amaury Patin
- Institute of Food Safety & Analytical Science, Nestlé Research Center, Lausanne, Switzerland
| | - Benoît Schilter
- Institute of Food Safety & Analytical Science, Nestlé Research Center, Lausanne, Switzerland
| | - Alessandro Pistone
- CERITEC s.r.l., a Company of METLAC Group, SS 35 Bis dei Giovi, 53, Bosco Marengo, AL, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale "Amedeo Avogadro", Viale T. Michel 11, 15121, Alessandria, Italy.
| |
Collapse
|
137
|
Preparation of chitosan/poly vinyl alcohol films and their inhibition of biofilm formation against Pseudomonas aeruginosa PAO1. Int J Biol Macromol 2018; 118:2131-2137. [DOI: 10.1016/j.ijbiomac.2018.07.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 02/02/2023]
|
138
|
Vera P, Canellas E, Nerín C. Identification of non volatile migrant compounds and NIAS in polypropylene films used as food packaging characterized by UPLC-MS/QTOF. Talanta 2018; 188:750-762. [DOI: 10.1016/j.talanta.2018.06.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
|
139
|
Szczepańska N, Kudłak B, Namieśnik J. Recent advances in assessing xenobiotics migrating from packaging material – A review. Anal Chim Acta 2018; 1023:1-21. [DOI: 10.1016/j.aca.2018.03.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/17/2018] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
|
140
|
Galmán Graíño S, Sendón R, López Hernández J, Rodríguez-Bernaldo de Quirós A. GC-MS Screening Analysis for the Identification of Potential Migrants in Plastic and Paper-Based Candy Wrappers. Polymers (Basel) 2018; 10:E802. [PMID: 30960727 PMCID: PMC6403844 DOI: 10.3390/polym10070802] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
Food packaging materials may be a potential source of contamination through the migration of components from the material into foodstuffs. Potential migrants can be known substances such as additives (e.g., plasticizers, stabilizers, antioxidants, etc.), monomers, and so on. However, they can also be unknown substances, which could be non-intentionally added substances (NIAS). In the present study, non-targeted analysis using mass spectrometry coupled to gas chromatography (GC-MS) for the identification of migrants in plastic and paper-based candy wrappers was performed. Samples were analyzed after extraction with acetonitrile. Numerous compounds including N-alkanes, phthalates, acetyl tributyl citrate, tributyl aconitate, bis(2-ethylhexyl) adipate, butylated hydroxytoluene, etc. were identified. Many of the compounds detected in plastic samples are not included in the positive list of the authorized substances. One non-intentionally added substance, 7,9-Di-tert-butyl-1-oxaspiro(4,5)deca-6-9-diene-2,8-dione, which has been reported as a degradation product of the antioxidant Irganox 1010, was found in several samples of both plastic and paper packaging. The proposed method was shown to be a useful approach for the identification of potential migrants in packaging samples. The toxicity of the compounds identified was estimated according to Cramer rules. Then, a second targeted analysis was also conducted in order to identify photoinitiators; among the analyzed compounds, only 2-hydroxybenzophenone was found in five samples.
Collapse
Affiliation(s)
- Soraya Galmán Graíño
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | - Raquel Sendón
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | - Julia López Hernández
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | - Ana Rodríguez-Bernaldo de Quirós
- Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| |
Collapse
|
141
|
García Ibarra V, Rodríguez Bernaldo de Quirós A, Paseiro Losada P, Sendón R. Identification of intentionally and non-intentionally added substances in plastic packaging materials and their migration into food products. Anal Bioanal Chem 2018; 410:3789-3803. [PMID: 29732500 DOI: 10.1007/s00216-018-1058-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/26/2018] [Accepted: 03/29/2018] [Indexed: 11/29/2022]
Abstract
Plastic materials are widely used in food packaging applications; however, there is increased concern because of the possible release of undesirable components into foodstuffs. Migration of plastic constituents not only has the potential to affect product quality but also constitutes a risk to consumer health. In order to check the safety of food contact materials, analytical methodologies to identify potential migrants are required. In the first part of this work, a GC/MS screening method was developed for the identification of components from plastic packaging materials including intentionally and "non-intentionally added substances" (NIAS) as potential migrants. In the second part of this study, the presence of seven compounds (bis (2-ethylhexyl) phthalate (DEHP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP), butylated hydroxytoluene (BHT), acetyl tributyl citrate (ATBC), benzophenone (BP)) previously identified in packaging materials were investigated in food products (corn and potatoes snacks, cookies, and cakes). For this purpose, a suitable extraction method was developed and quantification was performed using GC-MS. The developed method was validated in terms of linearity, recovery, repeatability, and limits of detection and quantification. The spiked recoveries varied between 82.7 and 116.1%, and relative standard deviation (RSD) was in the range of 2.22-15.9%. The plasticizer ATBC was the most detected compound (94% samples), followed by DEP (65%), DEHP (47%), BP (44%), DBP (35%), DIBP (21%), and BHT (12%). Regarding phthalates, DEP and DEHP were the most frequently detected compounds in concentrations up to 1.44 μg g-1. In some samples, only DBP exceeded the European SML of 0.3 mg kg-1 established in Regulation 10/2011. Graphical abstract Chemical migration from plastic packaging into food.
Collapse
Affiliation(s)
- Verónica García Ibarra
- Faculty of Pharmacy, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Ana Rodríguez Bernaldo de Quirós
- Faculty of Pharmacy, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| | - Perfecto Paseiro Losada
- Faculty of Pharmacy, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Raquel Sendón
- Faculty of Pharmacy, Department of Analytical Chemistry, Nutrition and Food Science, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| |
Collapse
|
142
|
Omer E, Cariou R, Remaud G, Guitton Y, Germon H, Hill P, Dervilly-Pinel G, Le Bizec B. Elucidation of non-intentionally added substances migrating from polyester-polyurethane lacquers using automated LC-HRMS data processing. Anal Bioanal Chem 2018. [DOI: 10.1007/s00216-018-0968-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
143
|
Seltenrich N. What's in the Mix? Improving Risk Assessment of Food Contact Materials. ENVIRONMENTAL HEALTH PERSPECTIVES 2018; 126:024002. [PMID: 29467109 PMCID: PMC6066333 DOI: 10.1289/ehp2602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 06/08/2023]
|
144
|
Rather IA, Koh WY, Paek WK, Lim J. The Sources of Chemical Contaminants in Food and Their Health Implications. Front Pharmacol 2017; 8:830. [PMID: 29204118 PMCID: PMC5699236 DOI: 10.3389/fphar.2017.00830] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/31/2017] [Indexed: 12/05/2022] Open
Abstract
Food contamination is a matter of serious concern, as the high concentration of chemicals present in the edibles poses serious health risks. Protecting the public from the degrees of the harmfulness of contaminated foods has become a daunting task. This article highlights the causes, types, and health implications of chemical contamination in food. The food contamination could be due to naturally occurring contaminants in the environment or artificially introduced by the human. The phases of food processing, packaging, transportation, and storage are also significant contributors to food contamination. The implications of these chemical contaminants on human health are grave, ranging from mild gastroenteritis to fatal cases of hepatic, renal, and neurological syndromes. Although, the government regulates such chemicals in the eatables by prescribing minimum limits that are safe for human consumption yet measures still need to be taken to curb food contamination entirely. Therefore, a variety of food needs to be inspected and measured for the presence of chemical contaminants. The preventative measures pertaining about the food contaminants problems are pointed out and discussed.
Collapse
Affiliation(s)
- Irfan A. Rather
- Department of Applied Microbiology and Biotechnology, School of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Wee Yin Koh
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Minden, Malaysia
| | - Woon K. Paek
- National Science Museum, Ministry of Science, ICT and Future Planning, Daejeon, South Korea
| | - Jeongheui Lim
- National Science Museum, Ministry of Science, ICT and Future Planning, Daejeon, South Korea
| |
Collapse
|
145
|
Souton E, Severin I, Le Hegarat L, Hogeveen K, Aljawish A, Fessard V, Marie-Christine C. Genotoxic effects of food contact recycled paperboard extracts on two human hepatic cell lines. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2017; 35:159-170. [PMID: 29076405 DOI: 10.1080/19440049.2017.1397774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Food contact paperboards may be a potential source of food contamination as they can release chemicals (intentionally added or not), especially recycled paperboards. This study assessed the in vitro genotoxicity of food contact paperboard samples from a manufacturer, collected at the beginning and at the end of a recycling production chain. Samples were extracted in water to mimic a wet food contact. Different genotoxic endpoints were evaluated in two human hepatic cell lines (HepG2 and HepaRG) using bioassays: γH2AX and p53 activation, primary DNA damage with the comet assay and micronucleus formation. It was found that the samples from the beginning and the end of the production chain induced, with the same potency, γH2AX and p53-ser15 activation and DNA damage with the comet assay. The micronucleus assay was negative with the paperboard extract from the beginning of the chain, whereas positive data were observed for the end paperboard extract. These results indicate that samples from recycled food contact paperboard can induce in vitro genotoxic effects in this study's experimental conditions.
Collapse
Affiliation(s)
- Emilie Souton
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| | - Isabelle Severin
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| | - Ludovic Le Hegarat
- b Toxicology of Contaminants Unit, ANSES-Fougères Laboratory , French Agency for Food, Environmental and Occupational Health & Safety , Fougères , France
| | - Kevin Hogeveen
- b Toxicology of Contaminants Unit, ANSES-Fougères Laboratory , French Agency for Food, Environmental and Occupational Health & Safety , Fougères , France
| | - Abdulhadi Aljawish
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| | - Valérie Fessard
- b Toxicology of Contaminants Unit, ANSES-Fougères Laboratory , French Agency for Food, Environmental and Occupational Health & Safety , Fougères , France
| | - Chagnon Marie-Christine
- a Agrosupdijon, Nutrition Physiology and Toxicology Laboratory (NUTOX), INSERM U1231 , University of Bourgogne-Franche-Comté , Dijon , France
| |
Collapse
|
146
|
Bou-Maroun E, Dahbi L, Gomez-Berrada MP, Pierre P, Rakotomalala S, Ferret PJ, Chagnon MC. Chemical analysis and potential endocrine activities of aluminium coatings intended to be in contact with cosmetic water. J Pharm Biomed Anal 2017; 145:641-650. [DOI: 10.1016/j.jpba.2017.07.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/23/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
147
|
Muncke J, Backhaus T, Geueke B, Maffini MV, Martin OV, Myers JP, Soto AM, Trasande L, Trier X, Scheringer M. Scientific Challenges in the Risk Assessment of Food Contact Materials. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:095001. [PMID: 28893723 PMCID: PMC5915200 DOI: 10.1289/ehp644] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 06/08/2017] [Accepted: 06/09/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Food contact articles (FCAs) are manufactured from food contact materials (FCMs) that include plastics, paper, metal, glass, and printing inks. Chemicals can migrate from FCAs into food during storage, processing, and transportation. Food contact materials' safety is evaluated using chemical risk assessment (RA). Several challenges to the RA of FCAs exist. OBJECTIVES We review regulatory requirements for RA of FCMs in the United States and Europe, identify gaps in RA, and highlight opportunities for improving the protection of public health. We intend to initiate a discussion in the wider scientific community to enhance the safety of food contact articles. DISCUSSION Based on our evaluation of the evidence, we conclude that current regulations are insufficient for addressing chemical exposures from FCAs. RA currently focuses on monomers and additives used in the manufacture of products, but it does not cover all substances formed in the production processes. Several factors hamper effective RA for many FCMs, including a lack of information on chemical identity, inadequate assessment of hazardous properties, and missing exposure data. Companies make decisions about the safety of some food contact chemicals (FCCs) without review by public authorities. Some chemical migration limits cannot be enforced because analytical standards are unavailable. CONCLUSION We think that exposures to hazardous substances migrating from FCAs require more attention. We recommend a) limiting the number and types of chemicals authorized for manufacture and b) developing novel approaches for assessing the safety of chemicals in FCAs, including unidentified chemicals that form during or after production. https://doi.org/10.1289/EHP644.
Collapse
Affiliation(s)
- Jane Muncke
- Food Packaging Forum Foundation , Zurich, Switzerland
| | - Thomas Backhaus
- Department of Biological & Environmental Sciences, University of Gothenburg , Sweden
| | - Birgit Geueke
- Food Packaging Forum Foundation , Zurich, Switzerland
| | | | | | - John Peterson Myers
- Environmental Health Sciences , Charlottesville, Virginia, USA
- Department of Chemistry, Carnegie Mellon University , Pittsburg, Pennsylvania, USA
| | - Ana M Soto
- Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine , Boston, Massachusetts, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine , New York, New York, USA
| | - Xenia Trier
- DTU Food, Technical University of Denmark , Copenhagen, Denmark (currently at European Environmental Agency, Copenhagen, Denmark )
| | - Martin Scheringer
- Research Centre for Toxic Compounds in the Environment, Masaryk University , Brno, Czech Republic
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology (ETH) , Zurich, Switzerland
| |
Collapse
|
148
|
Identification of non-intentionally added substances in food packaging nano films by gas and liquid chromatography coupled to orbitrap mass spectrometry. Talanta 2017; 172:68-77. [DOI: 10.1016/j.talanta.2017.05.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/21/2022]
|
149
|
Food contact materials and gut health: Implications for toxicity assessment and relevance of high molecular weight migrants. Food Chem Toxicol 2017; 109:1-18. [PMID: 28830834 DOI: 10.1016/j.fct.2017.08.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 02/08/2023]
Abstract
Gut health is determined by an intact epithelial barrier and balanced gut microbiota, both involved in the regulation of immune responses in the gut. Disruption of this system contributes to the etiology of various non-communicable diseases, including intestinal, metabolic, and autoimmune disorders. Studies suggest that some direct food additives, but also some food contaminants, such as pesticide residues and substances migrating from food contact materials (FCMs), may adversely affect the gut barrier or gut microbiota. Here, we focus on gut-related effects of FCM-relevant substances (e.g. surfactants, N-ring containing substances, nanoparticles, and antimicrobials) and show that gut health is an underappreciated target in the toxicity assessment of FCMs. Understanding FCMs' impact on gut health requires more attention to ensure safety and prevent gut-related chronic diseases. Our review further points to the existence of large population subgroups with an increased intestinal permeability; this may lead to higher uptake of compounds of not only low (<1000 Da) but also high (>1000 Da) molecular weight. We discuss the potential toxicological relevance of high molecular weight compounds in the gut and suggest that the scientific justification for the application of a molecular weight-based cut-off in risk assessment of FCMs should be reevaluated.
Collapse
|
150
|
Groh KJ, Muncke J. In Vitro Toxicity Testing of Food Contact Materials: State-of-the-Art and Future Challenges. Compr Rev Food Sci Food Saf 2017; 16:1123-1150. [PMID: 33371616 DOI: 10.1111/1541-4337.12280] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/15/2017] [Accepted: 05/25/2017] [Indexed: 12/22/2022]
Abstract
Currently, toxicological testing of food contact materials (FCMs) is focused on single substances and their genotoxicity. However, people are exposed to mixtures of chemicals migrating from food contact articles (FCAs) into food, and toxic effects other than genotoxic damage may also be relevant. Since FCMs can be made of more than 8 thousand substances, assessing them one-by-one is very resource-consuming. Moreover, finished FCAs usually contain non-intentionally added substances (NIAS). NIAS toxicity can only be tested if a substance's chemical identity is known and if it is available as a pure chemical. Often, this is not the case. Nonetheless, regulations require safety assessments for all substances migrating from FCAs, including NIAS, hence new approaches to meet this legal obligation are needed. Testing the overall migrate or extract from an FCM/FCA is an option. Ideally, such an assessment would be performed by means of in vitro bioassays, as they are rapid and cost-effective. Here, we review the studies using in vitro bioassays to test toxicity of FCMs/FCAs. Three main categories of in vitro assays that have been applied include assays for cytotoxicity, genotoxicity, and endocrine disruption potential. In addition, we reviewed studies with small multicellular animal-based bioassays. Our overview shows that in vitro testing of FCMs is in principle feasible. We discuss future research needs and FCM-specific challenges. Sample preparation procedures need to be optimized and standardized. Further, the array of in vitro tests should be expanded to include those of highest relevance for the most prevalent human diseases of concern.
Collapse
Affiliation(s)
- Ksenia J Groh
- Food Packaging Forum Foundation, Staffelstrasse 8, CH-8045, Zürich, Switzerland
| | - Jane Muncke
- Food Packaging Forum Foundation, Staffelstrasse 8, CH-8045, Zürich, Switzerland
| |
Collapse
|