101
|
Amaechi BT, AbdulAzees PA, Alshareif DO, Shehata MA, Lima PPDCS, Abdollahi A, Kalkhorani PS, Evans V. Comparative efficacy of a hydroxyapatite and a fluoride toothpaste for prevention and remineralization of dental caries in children. BDJ Open 2019; 5:18. [PMID: 31839988 PMCID: PMC6901576 DOI: 10.1038/s41405-019-0026-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 12/18/2022] Open
Abstract
Objective This in situ study compared the effectiveness of two toothpastes containing hydroxyapatite or 500 ppm fluoride in promoting remineralization and inhibiting caries development. Materials and methods Two enamel blocks (human primary teeth), one sound and one with artificially-produced caries lesion, were exposed to toothpaste containing either 10% hydroxyapatite or 500 ppm F− (amine fluoride) via intra-oral appliance worn by 30 adults in two-arm double blind randomized crossover study lasting 14 days per arm (ClinicalTrials.gov: NCT03681340). Baseline and post-test mineral loss and lesion depth (LD) were quantified using microradiography. One-sided t-test of one group mean was used for intragroup comparison (baseline vs. post-test), while two-sided t-test of two independent means was used to compare the two toothpaste groups. Results Pairwise comparison (baseline vs. test) indicated significant (p < 0.0001) remineralization and LD reduction by either toothpaste; however, when compared against each other, there was no statistically significant difference in remineralization or LD reduction between the two toothpastes. No demineralization could be observed in sound enamel blocks exposed to either toothpaste. While F− induced lesion surface lamination, HAP produced a more homogenous lesion remineralization. Conclusions 10% hydroxyapatite achieved comparable efficacy with 500 ppm F− in remineralizing initial caries and preventing demineralization. Thus the HAP toothpaste is confirmed to be equal to the fluoride toothpaste in this study.
Collapse
Affiliation(s)
- Bennett T Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Parveez Ahamed AbdulAzees
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Dina Ossama Alshareif
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Marina Adel Shehata
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | | | - Azadeh Abdollahi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Parisa Samadi Kalkhorani
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| | - Veronica Evans
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900 USA
| |
Collapse
|
102
|
Abstract
Scientific articles have been traditionally written from single points of view. In contrast, new knowledge is derived strictly from a dialectical process, through interbreeding of partially disparate perspectives. Dialogues, therefore, present a more veritable form for representing the process behind knowledge creation. They are also less prone to dogmatically disseminate ideas than monologues, alongside raising awareness of the necessity for discussion and challenging of differing points of view, through which knowledge evolves. Here we celebrate 250 years since the discovery of the chemical identity of the inorganic component of bone in 1769 by Johan Gottlieb Gahn through one such imaginary dialogue between two seasoned researchers and aficionados of this material. We provide the statistics on ups and downs in the popularity of this material throughout the history and also discuss important achievements and challenges associated with it. The shadow of Samuel Beckett's Waiting for Godot is cast over the dialogue, acting as its frequent reference point and the guide. With this dialogue presented in the format of a play, we provide hope that conversational or dramaturgical compositions of scientific articles - albeit virtually prohibited from the scientific literature of the day - may become more pervasive in the future.
Collapse
Affiliation(s)
| | - Vuk Uskoković
- 7 Park Vista, Irvine, CA 92604, USA
- Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA
- Corresponding author: ;
| |
Collapse
|
103
|
Hettich G, Schierjott RA, Epple M, Gbureck U, Heinemann S, Mozaffari-Jovein H, Grupp TM. Calcium Phosphate Bone Graft Substitutes with High Mechanical Load Capacity and High Degree of Interconnecting Porosity. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3471. [PMID: 31652704 PMCID: PMC6862383 DOI: 10.3390/ma12213471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 01/07/2023]
Abstract
Bone graft substitutes in orthopedic applications have to fulfill various demanding requirements. Most calcium phosphate (CaP) bone graft substitutes are highly porous to achieve bone regeneration, but typically lack mechanical stability. This study presents a novel approach, in which a scaffold structure with appropriate properties for bone regeneration emerges from the space between specifically shaped granules. The granule types were tetrapods (TEPO) and pyramids (PYRA), which were compared to porous CaP granules (CALC) and morselized bone chips (BC). Bulk materials of the granules were mechanically loaded with a peak pressure of 4 MP; i.e., comparable to the load occurring behind an acetabular cup. Mechanical loading reduced the volume of CALC and BC considerably (89% and 85%, respectively), indicating a collapse of the macroporous structure. Volumes of TEPO and PYRA remained almost constant (94% and 98%, respectively). After loading, the porosity was highest for BC (46%), lowest for CALC (25%) and comparable for TEPO and PYRA (37%). The pore spaces of TEPO and PYRA were highly interconnected in a way that a virtual object with a diameter of 150 µm could access 34% of the TEPO volume and 36% of the PYRA volume. This study shows that a bulk of dense CaP granules in form of tetrapods and pyramids can create a scaffold structure with load capacities suitable for the regeneration of an acetabular bone defect.
Collapse
Affiliation(s)
- Georg Hettich
- Aesculap AG, Research & Development, Am Aesculap-Platz, 78532 Tuttlingen, Germany.
| | - Ronja A Schierjott
- Aesculap AG, Research & Development, Am Aesculap-Platz, 78532 Tuttlingen, Germany.
- Department of Orthopaedics, Physical Medicine and Rehabilitation, Department of the Ludwig-Maximilians-Universität München Marchioninistrasse 15, 81377 Munich, Germany.
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany.
| | - Uwe Gbureck
- Department for Functional Materials in Medicine and Dentistry, University of Wuerzburg, Pleicherwall 2, 97070 Wuerzburg, Germany.
| | - Sascha Heinemann
- INNOTERE biomaterial, Meissner Str. 191, 01445 Radebeul, Germany.
| | - Hadi Mozaffari-Jovein
- Institute of Materials Science and Engineering Tuttlingen (IWAT), Furtwangen University, Kronenstraße 16, 78532 Tuttlingen, Germany.
| | - Thomas M Grupp
- Aesculap AG, Research & Development, Am Aesculap-Platz, 78532 Tuttlingen, Germany.
- Department of Orthopaedics, Physical Medicine and Rehabilitation, Department of the Ludwig-Maximilians-Universität München Marchioninistrasse 15, 81377 Munich, Germany.
| |
Collapse
|
104
|
Calderón-Garcidueñas L, Reynoso-Robles R, González-Maciel A. Combustion and friction-derived nanoparticles and industrial-sourced nanoparticles: The culprit of Alzheimer and Parkinson's diseases. ENVIRONMENTAL RESEARCH 2019; 176:108574. [PMID: 31299618 DOI: 10.1016/j.envres.2019.108574] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/11/2019] [Accepted: 07/02/2019] [Indexed: 05/20/2023]
Abstract
Redox-active, strongly magnetic, combustion and friction-derived nanoparticles (CFDNPs) are abundant in particulate matter air pollution. Urban children and young adults with Alzheimer disease Continuum have higher numbers of brain CFDNPs versus clean air controls. CFDNPs surface charge, dynamic magnetic susceptibility, iron content and redox activity contribute to ROS generation, neurovascular unit (NVU), mitochondria, and endoplasmic reticulum (ER) damage, and are catalysts for protein misfolding, aggregation and fibrillation. CFDNPs respond to external magnetic fields and are involved in cell damage by agglomeration/clustering, magnetic rotation and/or hyperthermia. This review focus in the interaction of CFDNPs, nanomedicine and industrial NPs with biological systems and the impact of portals of entry, particle sizes, surface charge, biomolecular corona, biodistribution, mitochondrial dysfunction, cellular toxicity, anterograde and retrograde axonal transport, brain dysfunction and pathology. NPs toxicity information come from researchers synthetizing particles and improving their performance for drug delivery, drug targeting, magnetic resonance imaging and heat mediators for cancer therapy. Critical information includes how these NPs overcome all barriers, the NPs protein corona changes as they cross the NVU and the complexity of NPs interaction with soluble proteins and key organelles. Oxidative, ER and mitochondrial stress, and a faulty complex protein quality control are at the core of Alzheimer and Parkinson's diseases and NPs mechanisms of action and toxicity are strong candidates for early development and progression of both fatal diseases. Nanoparticle exposure regardless of sources carries a high risk for the developing brain homeostasis and ought to be included in the AD and PD research framework.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- The University of Montana, Missoula, MT, 59812, USA; Universidad Del Valle de México, 04850, Mexico City, Mexico.
| | | | | |
Collapse
|
105
|
Enax J, Fabritius HO, Fabritius-Vilpoux K, Amaechi BT, Meyer F. Modes of Action and Clinical Efficacy of Particulate Hydroxyapatite in Preventive Oral Health Care − State of the Art. Open Dent J 2019. [DOI: 10.2174/1874210601913010274] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background:Particulate Hydroxyapatite (HAP; Ca5(PO4)3(OH)) is being increasingly used as multifunctional active ingredient in oral care. Due to its high similarity to human enamel crystallites, it is considered as a biomimetic agent.Objective:The aim of this narrative review is to identify the modes of action of HAP in preventive oral health care based on published studies. The outcomes are expected to improve the understanding of the effects of HAP in the oral cavity and to provide a knowledge base for future research in the field of biomimetic oral care.Methods:The data analyzed and discussed are primarily based on selected published scientific studies and reviews fromin vivo,in situ, andin vitrostudies on HAP in the field of preventive oral health care. The databases Cochrane Library, EBSCO, PubMed and SciFinder were used for literature search.Results:We identified different modes of action of HAP in the oral cavity. They are mainly based on (I) Physical principles (e.g. attachment of HAP-particles to the tooth surface and cleaning properties), (II) Bio-chemical principles (e.g. source of calcium and phosphate ions under acidic conditions and formation of an interface between HAP-particles and the enamel), and (III) Biological principles (e.g. HAP-particles interacting with microorganisms).Conclusion:Although more mechanistic studies are needed, published data show that HAP has multiple modes of action in the oral cavity. Since the effects address a wide range of oral health problems, HAP is a biomimetic agent with a broad range of applications in preventive oral health care.
Collapse
|
106
|
Nano-hydroxyapatite in oral care cosmetics: characterization and cytotoxicity assessment. Sci Rep 2019; 9:11050. [PMID: 31363145 PMCID: PMC6667430 DOI: 10.1038/s41598-019-47491-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/17/2019] [Indexed: 01/07/2023] Open
Abstract
Nano-hydroxyapatite has been used as an oral care ingredient, being incorporated in several products for the treatment of dental hypersensitivity and enamel remineralisation. Despite its promising results, regulatory and safety concerns have been discussed and questioned by the European Scientific Committee on Consumer Safety (SCCS) regarding the usage of hydroxyapatite nanoparticles in oral care products. In this work, a commercially available nano-hydroxyapatite was characterized and its cytocompatibility towards human gingival fibroblasts was evaluated, as well as its irritation potential using the in vitro HET-CAM assay. All the conditions chosen in this study tried to simulate the tooth brushing procedure and the hydroxyapatite nanoparticles levels normally incorporated in oral care products. The commercial hydroxyapatite nanoparticles used in this study exhibited a rod-like morphology and the expected chemical and phase composition. The set of in vitro cytotoxicity parameters accessed showed that these nanoparticles are highly cytocompatible towards human gingival fibroblasts. Additionally, these nanoparticles did not possess any irritation potential on HET-CAM assay. This study clarifies the issues raised by SCCS and it concludes that this specific nano-hydroxyapatite is cytocompatible, as these nanoparticles did not alter the normal behaviour of the cells. Therefore, they are safe to be used in oral care products.
Collapse
|
107
|
Surmenev RA, Surmeneva MA. A critical review of decades of research on calcium phosphate–based coatings: How far are we from their widespread clinical application? CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
108
|
Qi C, Musetti S, Fu LH, Zhu YJ, Huang L. Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications. Chem Soc Rev 2019; 48:2698-2737. [PMID: 31080987 DOI: 10.1039/c8cs00489g] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium phosphates (CaPs) are ubiquitous in nature and vertebrate bones and teeth, and have high biocompatibility and promising applications in various biomedical fields. Nanostructured calcium phosphates (NCaPs) are recognized as promising nanocarriers for drug/gene/protein delivery owing to their high specific surface area, pH-responsive degradability, high drug/gene/protein loading capacity and sustained release performance. In order to control the structure and surface properties of NCaPs, various biomolecules with high biocompatibility such as nucleic acids, proteins, peptides, liposomes and phosphorus-containing biomolecules are used in the synthesis of NCaPs. Moreover, biomolecules play important roles in the synthesis processes, resulting in the formation of various NCaPs with different sizes and morphologies. At room temperature, biomolecules can play the following roles: (1) acting as a biocompatible organic phase to form biomolecule/CaP hybrid nanostructured materials; (2) serving as a biotemplate for the biomimetic mineralization of NCaPs; (3) acting as a biocompatible modifier to coat the surface of NCaPs, preventing their aggregation and increasing their colloidal stability. Under heating conditions, biomolecules can (1) control the crystallization process of NCaPs by forming biomolecule/CaP nanocomposites before heating; (2) prevent the rapid and disordered growth of NCaPs by chelating with Ca2+ ions to form precursors; (3) provide the phosphorus source for the controlled synthesis of NCaPs by using phosphorus-containing biomolecules. This review focuses on the important roles of biomolecules in the synthesis of NCaPs, which are expected to guide the design and controlled synthesis of NCaPs. Moreover, we will also summarize the biomedical applications of NCaPs in nanomedicine and tissue engineering, and discuss their current research trends and future prospects.
Collapse
Affiliation(s)
- Chao Qi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.
| | | | | | | | | |
Collapse
|
109
|
Dos Anjos S, Mavropoulos E, Alves GG, Costa AM, de Alencar Hausen M, Spiegel CN, Longuinho MM, Mir M, Granjeiro JM, Rossi AM. Impact of crystallinity and crystal size of nanostructured carbonated hydroxyapatite on pre-osteoblast in vitro biocompatibility. J Biomed Mater Res A 2019; 107:1965-1976. [PMID: 31035306 DOI: 10.1002/jbm.a.36709] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 04/24/2019] [Indexed: 01/26/2023]
Abstract
Nanostructured carbonated hydroxyapatite (nCHA) is a promising biomaterial for bone tissue engineering due to its chemical properties, similar to those of the bone mineral phase and its enhanced in vivo bioresorption. However, the biological effects of nCHA nanoparticles on cells and tissues are not sufficiently known. This study assessed the impact of exposing pre-osteoblasts to suspensions with high doses of nCHA nanoparticles with high or low crystallinity. MC3T3-E1 pre-osteoblasts were cultured for 1 or 7 days in a culture medium previously exposed to CHA nanoparticles for 1 day. Control groups were produced by centrifugation for removal of bigger nCHA aggregates before exposure. Interaction of nanoparticles with the culture medium drastically changed medium composition, promoting Ca, P, and protein adsorption. Transmission Electron microscopy revealed that exposed cells were able to internalize both materials, which seemed concentrated inside endosomes. No cytotoxicity was observed for both materials, regardless of centrifugation, and the exposure did not induce alterations in the release of pro-and anti-inflammatory cytokines. Morphological analysis revealed strong interactions of nCHA aggregates with cell surfaces, however without marked alterations in morphological features and cytoskeleton ultrastructure. The overall in vitro biocompatibility of nCHA materials, regardless of physicochemical characteristics such as crystallinity, encourages further studies on their clinical applications.
Collapse
Affiliation(s)
- Suzana Dos Anjos
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Physics Research, Urca, Rio de Janeiro, Brazil
| | - Elena Mavropoulos
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Physics Research, Urca, Rio de Janeiro, Brazil
| | - Gutemberg G Alves
- Department of Cellular and Molecular Biology, Institute of Biology, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Andrea M Costa
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Physics Research, Urca, Rio de Janeiro, Brazil
| | - Moema de Alencar Hausen
- Biomaterial's Laboratory, Faculty of Medical Sciences, Pontifical Catholic University of São Paulo, Sorocaba, São Paulo, Brazil
| | - Carolina N Spiegel
- Department of Cellular and Molecular Biology, Institute of Biology, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Mariana M Longuinho
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, Brazil
| | - Mirta Mir
- Federal University of Alfenas, Exact Sciences Institute (ICEx) MG-Brasil, Alfenas, Brazil
| | - José M Granjeiro
- National Institute of Metrology, Duque de Caxias, Rio de Janeiro, Brazil
| | - Alexandre M Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Physics Research, Urca, Rio de Janeiro, Brazil
| |
Collapse
|
110
|
Abstract
Particulate hydroxyapatite, Ca5 (PO4)3 (OH), shows a good biocompatibility and is used as a biomimetic ingredient in dental care formulations due to its similarity to human enamel. Numerous studies show its efficiency, for example, in reducing dentin hypersensitivity, and in the remineralization of enamel and dentin. In addition, oral care products with hydroxyapatite improve periodontal health under in vivo conditions. This review article summarizes data on the effects of hydroxyapatite particles in oral biofilm management. Two databases (PubMed and SciFinder) were searched for studies using specific search terms. In contrast to frequently used antibacterial agents for biofilm control, such as chlorhexidine, stannous salts, and quaternary ammonium salts, hydroxyapatite particles in oral care products lead to a reduction in bacterial attachment to enamel surfaces in situ without having pronounced antibacterial effects or showing unwanted side effects such as tooth discoloration. Furthermore, antibacterial agents might lead to dysbiosis of the oral ecology, which was recently discussed regarding pros and cons. Remarkably, the antiadherent properties of hydroxyapatite particles are comparable to those of the gold standard in the field of oral care biofilm management, chlorhexidine in situ. Although biomimetic strategies have been less well analyzed compared with commonly used antibacterial agents in oral biofilm control, hydroxyapatite particles are a promising biomimetic alternative or supplement for oral biofilm management.
Collapse
Affiliation(s)
- Frederic Meyer
- Research Department, Dr. Kurt Wolff GmbH and Co. KG, Bielefeld, Germany
| | - Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH and Co. KG, Bielefeld, Germany
| |
Collapse
|
111
|
Schlickewei C, Klatte TO, Wildermuth Y, Laaff G, Rueger JM, Ruesing J, Chernousova S, Lehmann W, Epple M. A bioactive nano-calcium phosphate paste for in-situ transfection of BMP-7 and VEGF-A in a rabbit critical-size bone defect: results of an in vivo study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:15. [PMID: 30671652 DOI: 10.1007/s10856-019-6217-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 01/03/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to prepare an injectable DNA-loaded nano-calcium phosphate paste that is suitable as bioactive bone substitution material. For this we used the well-known potential of calcium phosphate in bone contact and supplemented it with DNA for the in-situ transfection of BMP-7 and VEGF-A in a critical-size bone defect. 24 New Zealand white rabbits were randomly divided into two groups: One group with BMP-7- and VEGF-A-encoding DNA on calcium phosphate nanoparticles and a control group with calcium phosphate nanoparticles only. The bone defect was created at the proximal medial tibia and filled with the DNA-loaded calcium phosphate paste. As control, a bone defect was filled with the calcium phosphate paste without DNA. The proximal tibia was investigated 2, 4 and 12 weeks after the operation. A histomorphological analysis of the dynamic bone parameters was carried out with the Osteomeasure system. The animals treated with the DNA-loaded calcium phosphate showed a statistically significantly increased bone volume per total volume after 4 weeks in comparison to the control group. Additionally, a statistically significant increase of the trabecular number and the number of osteoblasts per tissue area were observed. These results were confirmed by radiological analysis. The DNA-loaded bone paste led to a significantly faster healing of the critical-size bone defect in the rabbit model after 4 weeks. After 12 weeks, all defects had equally healed in both groups. No difference in the quality of the new bone was found. The injectable DNA-loaded calcium phosphate paste led to a faster and more sustained bone healing and induced an accelerated bone formation after 4 weeks. The material was well integrated into the bone defect and new bone was formed on its surface. The calcium phosphate paste without DNA led to a regular healing of the critical-size bone defect, but the healing was slower than the DNA-loaded paste. Thus, the in-situ transfection with BMP-7 and VEGF-A significantly improved the potential of calcium phosphate as pasty bone substitution material.
Collapse
Affiliation(s)
- Carsten Schlickewei
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Till O Klatte
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Yasmin Wildermuth
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Georg Laaff
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes M Rueger
- Department of Trauma, Hand and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Johannes Ruesing
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Svitlana Chernousova
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany
| | - Wolfgang Lehmann
- Department of Trauma, Orthopaedics and Plastic Surgery, University Hospital Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), University of Duisburg-Essen, Universitaetsstr. 5-7, 45117, Essen, Germany.
| |
Collapse
|
112
|
Sokolova V, Rojas-Sánchez L, Białas N, Schulze N, Epple M. Calcium phosphate nanoparticle-mediated transfection in 2D and 3D mono- and co-culture cell models. Acta Biomater 2019; 84:391-401. [PMID: 30503560 DOI: 10.1016/j.actbio.2018.11.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 12/28/2022]
Abstract
The transfer of nucleic acids into living cells, i.e. transfection, is a major technique in current molecular biology and medicine. As nucleic acids alone are not able to penetrate the cell membrane, an efficient carrier is needed. Calcium phosphate nanoparticles can serve as carrier due to their biocompatibility, biodegradability and high affinity to nucleic acids like DNA or RNA. Their application was extended here from two-dimensional (2D) to three-dimensional (3D) cell culture models, including co-cultures. Compared to 2D monolayer cell cultures, a 3D culture system represents a more realistic spatial, biochemical and cellular environment. The uptake of fluorescent calcium phosphate nanoparticles (diameter 40-70 nm; cationic) was studied in 2D and 3D cell culture models by confocal laser scanning microscopy. The transfection of eGFP by calcium phosphate nanoparticles was compared in 2D and 3D cell culture, including co-cultures of green fluorescing HeLa-eGFP cells and MG-63 cells in 2D and in 3D models with the red fluorescent protein mCherry. This permitted a cell-specific assessment of the local transfection efficiency. In general, the penetration of nanoparticles into the spheroids was significantly higher than that of a model oligonucleotide carried by Lipofectamine. The transfection efficiency was comparable in 3D cell cultures with 2D cell cultures, but it occurred preferentially at the surface of the spheroids, following the uptake pathway of the nanoparticles. STATEMENT OF SIGNIFICANCE: Three-dimensional cell culture models can serve as a bridge between the in-vitro cell cultures and the in-vivo situation, especially when mass transfer effects have to be considered. This is the case for nanoparticles where the incubation effect in a two-dimensional cell culture strongly differs from a three-dimensional cell culture or a living tissue. We have compared the uptake of nanoparticles and a subsequent transfection of fluorescent proteins in two-dimensional and three-dimensional cell culture models. An elegant model to investigate the transfection in co-cultures was developed using HeLa-eGFP cells (green fluorescent) together with MG-63 cells (non-fluorescent) that were transfected with the red-fluorescing protein mCherry. Thereby, the transfection of both cell types in the co-culture was easily distinguished.
Collapse
|
113
|
Induction of herpes simplex virus type 1 cell-to-cell spread inhibiting antibodies by a calcium phosphate nanoparticle-based vaccine. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 16:138-148. [PMID: 30594660 DOI: 10.1016/j.nano.2018.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/23/2018] [Accepted: 12/10/2018] [Indexed: 11/20/2022]
Abstract
Herpes simplex viruses 1 and 2 are among the most ubiquitous human infections and persist lifelong in their host. Upon primary infection or reactivation from ganglia, the viruses spread by direct cell-cell contacts (cell-to-cell spread) and thus escape from the host immune response. We have developed a monoclonal antibody (mAb 2c), which inhibits the HSV cell-to-cell spread, thereby protecting from lethal genital infection and blindness in animal models. In the present study we have designed a nanoparticle-based vaccine to induce protective antibody responses exceeding the cell-to-cell spread inhibiting properties of mAb 2c. We used biodegradable calcium phosphate (CaP) nanoparticles coated with a synthetic peptide that represents the conformational epitope on HSV-1 gB recognized by mAb 2c. The CaP nanoparticles additionally contained a TLR-ligand CpGm and were formulated with adjuvants to facilitate the humoral immune response. This vaccine effectively protected mice from lethal HSV-1 infection by inducing cell-to-cell spread inhibiting antibodies.
Collapse
|
114
|
Sokolova V, Loza K, Knuschke T, Heinen-Weiler J, Jastrow H, Hasenberg M, Buer J, Westendorf A, Gunzer M, Epple M. A systematic electron microscopic study on the uptake of barium sulphate nano-, submicro-, microparticles by bone marrow-derived phagocytosing cells. Acta Biomater 2018; 80:352-363. [PMID: 30240952 DOI: 10.1016/j.actbio.2018.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023]
Abstract
Nanoparticles can act as transporters for synthetic molecules and biomolecules into cells, also in immunology. Antigen-presenting cells like dendritic cells are important targets for immunotherapy in nanomedicine. Therefore, we have used primary murine bone marrow-derived phagocytosing cells (bmPCs), i.e. dendritic cells and macrophages, to study their interaction with spherical barium sulphate particles of different size (40 nm, 420 nm, and 1 µm) and to follow their uptake pathway. Barium sulphate is chemically and biologically inert (no dissolution, no catalytic effects), i.e. we can separate the particle uptake effect from potential biological reactions. The colloidal stabilization of the nanoparticles was achieved by a layer of carboxymethylcellulose (CMC) which is biologically inert and gives the particles a negative zeta potential (i.e. charge). The particles were made fluorescent by conjugating 6-aminofluoresceine to CMC. Their uptake was visualized by flow cytometry, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and correlative light and electron microscopy (CLEM). Barium sulphate particles of all sizes were readily taken up by dendritic cells and even more by macrophages, with the uptake increasing with time and particle concentration. They were mainly localized inside phagosomes, heterophagosomes, and in the case of nanoparticles also in the nearby cytosol. No particles were found in the nucleus. In nanomedicine, inorganic nanoparticles from the nanometer to the micrometer size are therefore well suited as transporters of biomolecules, including antigens, into dendritic cells and macrophages. The presented model system may also serve to describe the aseptic loosening of endoprostheses caused by abrasive wear of inert particles and the subsequent cell reaction, a question which relates to the field of nanotoxicology. STATEMENT OF SIGNIFICANCE: The interaction of particles and cells is at the heart of nanomedicine and nanotoxicology, including abrasive wear from endoprostheses. It also comprises the immunological reaction to different kinds of nanomaterials, triggered by an immune response, e.g. by antigen-presenting cells. However, it is often difficult to separate the particle effect from a chemical or biochemical reaction to particles or their cargo. We show how chemically inert barium sulphate particles with three different sizes (nano, sub-micro, and micro) interact with relevant immune cells (primary dendritic cells and macrophages). Particles of all three sizes are readily taken up into both cell types by phagocytosis, but the uptake by macrophages is significantly more prominent than that by dendritic cells. The cells take up particles until they are virtually stuffed, but without direct adverse effect. The uptake increases with time and particle concentration. Thus, we have an ideal model system to follow particles into and inside cells without the side effect of a chemical particle effect, e.g. by degradation or ion release.
Collapse
|
115
|
Safety Assessment of Nano-Hydroxyapatite as an Oral Care Ingredient according to the EU Cosmetics Regulation. COSMETICS 2018. [DOI: 10.3390/cosmetics5030053] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hydroxyapatite nanoparticles (HAP-NP) are incorporated in oral care products such as toothpastes and mouthwashes to treat dental sensitivity or to promote enamel remineralisation. Despite the good performance of HAP-NP in this application, it is important to ensure its safety for consumers. For that reason, the Scientific Committee on Consumer Safety (SCCS) evaluated the safety of HAP-NP as an oral care ingredient, but the issued opinion was not completely conclusive and the SCCS recommended that additional tests should be performed. Here, we used a commercially available human gingival epithelium (HGE) as a non-animal alternative and MTT cell viability, LDH activity, and IL-1alpha production were evaluated after 3.1% HAP-NP treatment for 10 min, 1 h, and 3 h. Moreover, the absorption of HAP-NP in the gingival tissue was assessed by transmission electron microscopy (TEM) analysis. Finally, the dissolution behaviour of HAP-NP in simulated gastric fluid was also investigated. No deleterious effect was observed for HGE tissues incubated with HAP-NP for all time-points and parameters evaluated. Moreover, a complete dissolution of 3.1% HAP-NP in simulated gastric fluid was observed after 7.5 min at 37 °C. In conclusion, our results evidence the safety of HAP-NP for oral care products with the use of an in vitro replacement alternative for human gingival epithelium and a simulated gastric fluid assay.
Collapse
|