101
|
Spolaore B, Damiano N, Raboni S, Fontana A. Site-specific derivatization of avidin using microbial transglutaminase. Bioconjug Chem 2014; 25:470-80. [PMID: 24517223 DOI: 10.1021/bc400378h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Avidin conjugates have several important applications in biotechnology and medicine. In this work, we investigated the possibility to produce site-specific derivatives of avidin using microbial transglutaminase (TGase). TGase allows the modification of proteins at the level of Gln or Lys residues using as substrate an alkyl-amine or a Gln-mimicking moiety, respectively. The reaction is site-specific, since Gln and Lys derivatization occurs preferentially at residues embedded in flexible regions of protein substrates. An analysis of the X-ray structure of avidin allowed us to predict Gln126 and Lys127 as potential sites of TGase's attack, because these residues are located in the flexible/unfolded C-terminal region of the protein. Surprisingly, incubation of avidin with TGase in the presence of alkylamine containing substrates (dansylcadaverine, 5-hydroxytryptamine) revealed a very low level of derivatization of the Gln126 residue. Analysis of the TGase reaction on synthetic peptide analogues of the C-terminal portion of avidin indicated that the lack of reactivity of Gln126 was likely due to the fact that this residue is proximal to negatively charged carboxylate groups, thus hampering the interaction of the substrate at the negatively charged active site of TGase. On the other hand, incubation of avidin with TGase in the presence of carbobenzoxy-l-glutaminyl-glycine in order to derivatize Lys residue(s) resulted in a clean and high yield production of an avidin derivative, retaining the biotin binding properties and the quaternary structure of the native protein. Proteolytic digestion of the modified protein, followed by mass spectrometry, allowed us to identify Lys127 as the major site of reaction, together with a minor modification of Lys58. By using TGase, avidin was also conjugated via a Lys-Gln isopeptide bond to a protein containing a single reactive Gln residue, namely, Gln126 of granulocyte-macrophage colony-stimulating factor. TGase can thus be exploited for the site-specific derivatization of avidin with small molecules or proteins.
Collapse
Affiliation(s)
- Barbara Spolaore
- CRIBI Biotechnology Centre, University of Padua , Viale G. Colombo 3, 35121 Padua, Italy
| | | | | | | |
Collapse
|
102
|
Simon M, Stefan N, Borsig L, Plückthun A, Zangemeister-Wittke U. Increasing the antitumor effect of an EpCAM-targeting fusion toxin by facile click PEGylation. Mol Cancer Ther 2014; 13:375-85. [PMID: 24184633 DOI: 10.1158/1535-7163.mct-13-0523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fusion toxins used for cancer-related therapy have demonstrated short circulation half-lives, which impairs tumor localization and, hence, efficacy. Here, we demonstrate that the pharmacokinetics of a fusion toxin composed of a designed ankyrin repeat protein (DARPin) and domain I-truncated Pseudomonas Exotoxin A (PE40/ETA″) can be significantly improved by facile bioorthogonal conjugation with a polyethylene glycol (PEG) polymer at a unique position. Fusion of the anti-EpCAM DARPin Ec1 to ETA″ and expression in methionine-auxotrophic E. coli enabled introduction of the nonnatural amino acid azidohomoalanine (Aha) at position 1 for strain-promoted click PEGylation. PEGylated Ec1-ETA″ was characterized by detailed biochemical analysis, and its potential for tumor targeting was assessed using carcinoma cell lines of various histotypes in vitro, and subcutaneous and orthotopic tumor xenografts in vivo. The mild click reaction resulted in a well-defined mono-PEGylated product, which could be readily purified to homogeneity. Despite an increased hydrodynamic radius resulting from the polymer, the fusion toxin demonstrated high EpCAM-binding activity and retained cytotoxicity in the femtomolar range. Pharmacologic analysis in mice unveiled an almost 6-fold increase in the elimination half-life (14 vs. 82 minutes) and a more than 7-fold increase in the area under the curve (AUC) compared with non-PEGylated Ec1-ETA″, which directly translated in increased and longer-lasting effects on established tumor xenografts. Our data underline the great potential of combining the inherent advantages of the DARPin format with bioorthogonal click chemistry to overcome the limitations of engineering fusion toxins with enhanced efficacy for cancer-related therapy.
Collapse
Affiliation(s)
- Manuel Simon
- Corresponding Authors: Andreas Plückthun, Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
103
|
Fang J, Yang Z, Tan S, Tayag C, Nimni ME, Urata M, Han B. Injectable gel graft for bone defect repair. Regen Med 2014; 9:41-51. [DOI: 10.2217/rme.13.76] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: To examine the performance of an injectable gel graft made of transglutaminase (Tg)-crosslinked gelatin gel with BMP-2 (BMP-2–Tg–Gel) for bone defect repair in animal models. Materials & methods: BMP-2 mixed with gelatin gel was crosslinked using Tg. The release of tethered BMP-2 through autocrine and paracrine pathways was demonstrated by using C2C12 and NIH 3T3 cells, respectively. BMP-2–Tg–Gel was injected into the induced cranial defect site. After 14 days, the sample was removed for x-ray imaging and histological evaluation. Results: Our in vivo results demonstrated that the injectable Tg–Gel with its osteoconductivity and controllable BMP-2 activity induced bone formation in our rat models when tethered with BMP-2. Conclusion: Tg–Gel as an injectable functional bone graft may enable the use of minimally invasive surgical procedures to treat irregular-shaped bone defects. Furthermore, this novel approach is capable of incorporating and controlling the release of therapeutic agents that may advance the science of tissue regeneration.
Collapse
Affiliation(s)
- Josephine Fang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Keck Medical School, University of Southern California, 1333 San Pablo St, BMT 302A, Los Angeles, CA 90089-9112, USA
| | - Zhi Yang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Keck Medical School, University of Southern California, 1333 San Pablo St, BMT 302A, Los Angeles, CA 90089-9112, USA
| | - ShihJye Tan
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Charisse Tayag
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Keck Medical School, University of Southern California, 1333 San Pablo St, BMT 302A, Los Angeles, CA 90089-9112, USA
| | - Marcel E Nimni
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Keck Medical School, University of Southern California, 1333 San Pablo St, BMT 302A, Los Angeles, CA 90089-9112, USA
| | - Mark Urata
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Keck Medical School, University of Southern California, 1333 San Pablo St, BMT 302A, Los Angeles, CA 90089-9112, USA
| | - Bo Han
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Keck Medical School, University of Southern California, 1333 San Pablo St, BMT 302A, Los Angeles, CA 90089-9112, USA
| |
Collapse
|
104
|
Hess C, Venetz D, Neri D. Emerging classes of armed antibody therapeutics against cancer. MEDCHEMCOMM 2014. [DOI: 10.1039/c3md00360d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
105
|
Sun C, Trevaskis JL, Jodka CM, Neravetla S, Griffin P, Xu K, Wang Y, Parkes DG, Forood B, Ghosh SS. Bifunctional PEGylated Exenatide-Amylinomimetic Hybrids to Treat Metabolic Disorders: An Example of Long-Acting Dual Hormonal Therapeutics. J Med Chem 2013; 56:9328-41. [DOI: 10.1021/jm401418s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chengzao Sun
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| | - James L. Trevaskis
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| | - Carolyn M. Jodka
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| | - Swetha Neravetla
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| | - Pete Griffin
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| | - Kui Xu
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| | - Yan Wang
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| | - David G. Parkes
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| | - Bruce Forood
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| | - Soumitra S. Ghosh
- Amylin Pharmaceuticals, LLC, 9625 Towne Centre
Drive, San Diego, California 92121, United States
| |
Collapse
|
106
|
Transglutaminase-mediated macromolecular assembly: production of conjugates for food and pharmaceutical applications. Amino Acids 2013; 46:767-76. [DOI: 10.1007/s00726-013-1561-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 07/04/2013] [Indexed: 12/16/2022]
|
107
|
Grünberg J, Jeger S, Sarko D, Dennler P, Zimmermann K, Mier W, Schibli R. DOTA-functionalized polylysine: a high number of DOTA chelates positively influences the biodistribution of enzymatic conjugated anti-tumor antibody chCE7agl. PLoS One 2013; 8:e60350. [PMID: 23565233 PMCID: PMC3614955 DOI: 10.1371/journal.pone.0060350] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
Site-specific enzymatic reactions with microbial transglutaminase (mTGase) lead to a homogenous species of immunoconjugates with a defined ligand/antibody ratio. In the present study, we have investigated the influence of different numbers of 1,4,7,10-tetraazacyclododecane-N-N′-N′′-N′′′-tetraacetic acid (DOTA) chelats coupled to a decalysine backbone on the in vivo behavior of the chimeric monoclonal anti-L1CAM antibody chCE7agl. The enzymatic conjugation of (DOTA)1-decalysine, (DOTA)3-decalysine or (DOTA)5-decalysine to the antibody heavy chain (via Gln295/297) gave rise to immunoconjugates containing two, six or ten DOTA moieties respectively. Radiolabeling of the immunoconjugates with 177Lu yielded specific activities of approximately 70 MBq/mg, 400 MBq/mg and 700 MBq/mg with increasing numbers of DOTA chelates. Biodistribution experiments in SKOV3ip human ovarian cancer cell xenografts demonstrated a high and specific accumulation of radioactivity at the tumor site for all antibody derivatives with a maximal tumor accumulation of 43.6±4.3% ID/g at 24 h for chCE7agl-[(DOTA)-decalysine]2, 30.6±12.0% ID/g at 24 h for chCE7agl-[(DOTA)3-decalysine]2 and 49.9±3.1% ID/g at 48 h for chCE7agl-[(DOTA)5-decalysine)]2. The rapid elimination from the blood of chCE7agl-[(DOTA)-decalysine]2 (1.0±0.1% ID/g at 24 h) is associated with a high liver accumulation (23.2±4.6% ID/g at 24 h). This behavior changed depending on the numbers of DOTA moieties coupled to the decalysine peptide with a slower blood clearance (5.1±1.0 (DOTA)3 versus 11.7±1.4% ID/g (DOTA)5, p<0.005 at 24 h) and lower radioactivity levels in the liver (21.4±3.4 (DOTA)3 versus 5.8±0.7 (DOTA)5, p<0.005 at 24 h). We conclude that the site-specific and stoichiometric uniform conjugation of the highly DOTA-substituted decalysine ((DOTA)5-decalysine) to an anti-tumor antibody leads to the formation of immunoconjugates with high specific activity and excellent in vivo behavior and is a valuable option for radioimmunotherapy and potentially antibody-drug conjugates (ADCs).
Collapse
Affiliation(s)
- Jürgen Grünberg
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Simone Jeger
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Dikran Sarko
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Patrick Dennler
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Kurt Zimmermann
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Roger Schibli
- Center for Radiopharmaceutical Sciences ETH-PSI-USZ, Paul Scherrer Institute, Villigen, Switzerland
- * E-mail:
| |
Collapse
|
108
|
Hamidi M, Rafiei P, Azadi A. Designing PEGylated therapeutic molecules: advantages in ADMET properties. Expert Opin Drug Discov 2013; 3:1293-307. [PMID: 23496167 DOI: 10.1517/17460441.3.11.1293] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND PEGylation, association of poly(ethylene glycol) (PEG) to drug molecules or drug-bearing particles, is one of the most promising techniques on the way to improve the pharmacokinetic features of a drug which, in turn, leads to pharmacodynamic improvements. OBJECTIVE The aim of this review is to describe PEGylation as a procedure for alteration of drug molecular structure with the main emphasis on its pharmacokinetic consequences. METHODS After a brief but concise overview of the history and chemistry of PEGylation, the boundary of this literature survey is confined to the findings and reports on the impact of PEGylation on biodistribution and bioelimination of therapeutic molecules. CONCLUSION It is concluded, based on the whole body of the data in literature, that the main results of PEGylation on pharmacokinetic properties of the drug include prolongation of lifespan in circulation, alterations in drug elimination pathway(s) and changes in drug biodistribution profile, among others, which all are derived from the structural changes that occur in the drug molecule, mainly reversible attachment of a large polymeric moiety to parent drug.
Collapse
Affiliation(s)
- Mehrdad Hamidi
- Department of Pharmaceutics, Faculty of Pharmacy, Shiraz University of Medical Sciences, PO Box 71345-1583, Shiraz, Iran
| | | | | |
Collapse
|
109
|
da Silva Freitas D, Mero A, Pasut G. Chemical and Enzymatic Site Specific PEGylation of hGH. Bioconjug Chem 2013; 24:456-63. [DOI: 10.1021/bc300594y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Débora da Silva Freitas
- Research Fellow
of the National Council for Scientific and Technological Development, SHIS QI 1 Conjunto B - Bloco B, Edifício
Santos Dumont,
Lago Sul, CEP 71605-170 Brasília - DF- Brazil
| | - Anna Mero
- Department of Pharmaceutical
and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| | - Gianfranco Pasut
- Department of Pharmaceutical
and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padua, Italy
| |
Collapse
|
110
|
Abe H, Wakabayashi R, Yonemura H, Yamada S, Goto M, Kamiya N. Split Spy0128 as a Potent Scaffold for Protein Cross-Linking and Immobilization. Bioconjug Chem 2013; 24:242-50. [DOI: 10.1021/bc300606b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroki Abe
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Rie Wakabayashi
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Hiroaki Yonemura
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Sunao Yamada
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Masahiro Goto
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| | - Noriho Kamiya
- Department
of Applied Chemistry, Graduate School of Engineering,
and ‡Center for Future
Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395,
Japan
| |
Collapse
|
111
|
Dennler P, Schibli R, Fischer E. Enzymatic antibody modification by bacterial transglutaminase. Methods Mol Biol 2013; 1045:205-15. [PMID: 23913149 DOI: 10.1007/978-1-62703-541-5_12] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Enzymatic posttranslational modification of proteins permits more precise control over conjugation site than chemical modification of reactive amino acid side chains. Ideally, protein modification by an enzyme yields completely homogeneous conjugates with improved properties for research or therapeutic use. As an example, we here provide a protocol for bacterial transglutaminase (BTGase)-mediated conjugation of cadaverine-derivatized substrates to an IgG1, resulting in stable bond formation between glutamine 295 of the antibody heavy chain and the substrate. This procedure requires enzymatic removal of N-linked glycans from the antibody and yields a defined substrate/antibody ratio of 2:1. Alternatively, a mutant aglycosylated IgG1 variant may be generated by site-directed mutagenesis. The mutation introduces an additional glutamine and yields a substrate/antibody ratio of 4:1 after coupling. Finally, we describe an ESI-TOF mass spectrometry-based method to analyze the uniformity of the resulting conjugates. The presented approach allows the facile generation of homogeneous antibody conjugates and can be applied to any IgG1 and a wide range of cadaverine-derivatized substrates.
Collapse
Affiliation(s)
- Patrick Dennler
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, Villigen, Switzerland
| | | | | |
Collapse
|
112
|
Macierzanka A, Böttger F, Rigby NM, Lille M, Poutanen K, Mills ENC, Mackie AR. Enzymatically structured emulsions in simulated gastrointestinal environment: impact on interfacial proteolysis and diffusion in intestinal mucus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17349-17362. [PMID: 23171215 DOI: 10.1021/la302194q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fundamental knowledge of physicochemical interactions in the gastrointestinal environment is required in order to support rational designing of protein-stabilized colloidal food and pharmaceutical delivery systems with controlled behavior. In this paper, we report on the colloidal behavior of emulsions stabilized with the milk protein sodium caseinate (Na-Cas), and exposed to conditions simulating the human upper gastrointestinal tract. In particular, we looked at how the kinetics of proteolysis was affected by adsorption to an oil-water interface in emulsion and whether the proteolysis and the emulsion stability could be manipulated by enzymatic structuring of the interface. After cross-linking with the enzyme transglutaminase, the protein was digested with use of an in vitro model of gastro-duodenal proteolysis in the presence or absence of physiologically relevant surfactants (phosphatidylcholine, PC; bile salts, BS). Significant differences were found between the rates of digestion of Na-Cas cross-linked in emulsion (adsorbed protein) and in solution. In emulsion, the digestion of a population of polypeptides of M(r) ca. 50-100 kDa was significantly retarded through the gastric digestion. The persistent interfacial polypeptides maintained the original emulsion droplet size and prevented the system from phase separating. Rapid pepsinolysis of adsorbed, non-cross-linked Na-Cas and its displacement by PC led to emulsion destabilization. These results suggest that structuring of emulsions by enzymatic cross-linking of the interfacial protein may affect the phase behavior of emulsion in the stomach and the gastric digestion rate in vivo. Measurements of ζ-potential revealed that BS displaced the remaining protein from the oil droplets during the simulated duodenal phase of digestion. Diffusion of the postdigestion emulsion droplets through ex vivo porcine intestinal mucus was only significant in the presence of BS due to the high negative charge these biosurfactants imparted to the droplets. This implies that the electrostatic repulsion produced can prevent the droplets from being trapped by the mucus matrix and facilitate their transport across the small intestine mucosal barrier.
Collapse
Affiliation(s)
- Adam Macierzanka
- Institute of Food Research, Norwich Research Park, Colney Lane, Norwich NR4 7UA, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
113
|
Site-Specific PEGylation of Therapeutic Proteins via Optimization of Both Accessible Reactive Amino Acid Residues and PEG Derivatives. BioDrugs 2012; 26:209-15. [DOI: 10.1007/bf03261880] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
114
|
Meng W, Guo X, Qin M, Pan H, Cao Y, Wang W. Mechanistic insights into the stabilization of srcSH3 by PEGylation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:16133-16140. [PMID: 23106398 DOI: 10.1021/la303466w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Protein PEGylation (attaching PEG chains to proteins) has been widely used in pharmaceuticals and nanotechnology. Although it is widely known that PEGylation can increase the thermodynamic stability of proteins, the underlying mechanism remains elusive. In this Article, we studied the effect of PEGylation on the thermodynamic and kinetic stability of a protein, SH3. We show that the thermodynamic stability of SH3 is enhanced upon PEGylation, mainly due to the slowing of the unfolding rate. Moreover, PEGylation can decrease the solvent-accessible surface area of SH3, leading to an increase of the m-value (the change in free energy with respect to denaturant concentration, which is a measure of the transition cooperativity between corresponding states). Such an effect also causes an enhancement of the thermodynamic stability. We quantitatively measured how the physical properties of PEG, such as the molecular weight and the number of PEGylation sites, affect the stabilization effect. We found that the stabilization effect is largely dependent on the number of PEGylation sites but only has a weak correlation with the molecular weight of the attached PEG. These experimental findings inspire us to derive a physical model based on excluded volume effect, which can satisfactorily describe all experimental observations. This model allows quantitatively calculating the free energy change upon PEGylation based on the change of water excluded zone on the protein surface. Although it is still unknown whether such a mechanism can be extended to other proteins, our work represents a key step toward the understanding of the nature of protein stabilization upon PEGylation.
Collapse
Affiliation(s)
- Wei Meng
- National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China
| | | | | | | | | | | |
Collapse
|
115
|
Spolaore B, Raboni S, Ramos Molina A, Satwekar A, Damiano N, Fontana A. Local unfolding is required for the site-specific protein modification by transglutaminase. Biochemistry 2012; 51:8679-89. [PMID: 23083324 DOI: 10.1021/bi301005z] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transglutaminase (TGase) from Streptomyces mobaraensis catalyzes transamidation reactions in a protein substrate leading to the modification of the side chains of Gln and Lys residues according to the A-CONH(2) + H(2)N-B → A-CONH-B + NH(3) reaction, where both A and B can be a protein or a ligand. A noteworthy property of TGase is its susbstrate specificity, so that often only a few specific Gln or Lys residues can be modified in a globular protein. The molecular features of a globular protein dictating the site-specific reactions mediated by TGase are yet poorly understood. Here, we have analyzed the reactivity toward TGase of apomyoglobin (apoMb), α-lactalbumin (α-LA), and fragment 205-316 of thermolysin. These proteins are models of protein structure and folding that have been studied previously using the limited proteolysis technique to unravel regions of local unfolding in their amino acid sequences. The three proteins were modified by TGase at the level of Gln or Lys residues with dansylcadaverine or carbobenzoxy-l-glutaminylglycine, respectively. Despite these model proteins containing several Gln and Lys residues, the sites of TGase derivatization occur over restricted chain regions of the protein substrates. In particular, the TGase-mediated modifications occur in the "helix F" region in apoMb, in the β-domain in apo-α-LA in its molten globule state, and in the N-terminal region in fragment 205-316 of thermolysin. Interestingly, the sites of limited proteolysis are located in the same chain regions of these proteins, thus providing a clear-cut demonstration that chain flexibility or local unfolding overwhelmingly dictates the site-specific modification by both TGase and a protease.
Collapse
Affiliation(s)
- Barbara Spolaore
- CRIBI Biotechnology Centre, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy.
| | | | | | | | | | | |
Collapse
|
116
|
Selis F, Schrepfer R, Sanna R, Scaramuzza S, Tonon G, Dedoni S, Onali P, Orsini G, Genovese S. Enzymatic mono-pegylation of glucagon-like peptide 1 towards long lasting treatment of type 2 diabetes. RESULTS IN PHARMA SCIENCES 2012; 2:58-65. [PMID: 25755995 PMCID: PMC4167179 DOI: 10.1016/j.rinphs.2012.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 11/30/2022]
Abstract
Human glucagon-like peptide-1 (GLP-1) is a physiological gastrointestinal peptide with glucose-dependent insulinotropic effects which is therefore considered an interesting antidiabetic agent. However, after in vivo administration, exogenous GLP-1 does not exert its physiological action due to the combination of rapid proteolytic degradation by ubiquitous dipeptidyldipeptidase IV (DPP IV) enzyme and renal clearance resulting in an extremely short circulating half-life. In this work we describe the conjugation of GLP-1-(7-36)-amide derivatives with polyethylene glycol (PEG) by enzymatic site-specific transglutamination reaction as an approach to reduce both the proteolysis and the renal clearance rates. The compound GLP-1-(7-36)-amide-Q23-PEG 20 kDa monopegylated on the single glutamine residue naturally present in position 23 maintained the ability to activate the GLP-1 receptor expressed in the rat β-cell line RIN-m5F with nanomolar potency along with an increased in vitro resistance to DDP IV and a circulating half-life of about 12 h after subcutaneous administration in rats. These properties enabled GLP-(7-36)-amide-Q23-PEG 20 kDa to exert a glucose-stabilizing effect for a period as long as 8 h, as demonstrated by a single subcutaneous injection to diabetic mice concomitantly challenged with an oral glucose load. The results reported in this work indicate that GLP-(7-36)-amide-Q23-PEG 20 kDa could be a lead compound for the development of long-lasting anti-diabetic agents useful in the treatment of type 2 diabetes affected patients.
Collapse
Affiliation(s)
- Fabio Selis
- Bioker srl-Multimedica Group, c/o CNR-IGB, via P. Castellino 111, 80131 Naples, Italy
| | - Rodolfo Schrepfer
- Bioker srl-Multimedica Group, c/o Sardinia Scientific and Technological Park, Building 3, I-09010 Pula (Cagliari), Italy
| | - Riccardo Sanna
- Bioker srl-Multimedica Group, c/o Department of Neuroscience, via Pansini 5, 80131 Naples, Italy
| | - Silvia Scaramuzza
- Bioker srl-Multimedica Group, c/o CNR-IGB, via P. Castellino 111, 80131 Naples, Italy
| | - Giancarlo Tonon
- Bioker srl-Multimedica Group, c/o Sardinia Scientific and Technological Park, Building 3, I-09010 Pula (Cagliari), Italy
| | - Simona Dedoni
- Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| | - Pierluigi Onali
- Section of Biochemical Pharmacology, Department of Neuroscience, University of Cagliari, 09042 Monserrato (Cagliari), Italy
| | - Gaetano Orsini
- Bioker srl-Multimedica Group, c/o Sardinia Scientific and Technological Park, Building 3, I-09010 Pula (Cagliari), Italy
| | - Stefano Genovese
- Diabetes and Metabolic Diseases Unit, IRCCS Multimedica, Sesto San Giovanni (Milano), Italy
| |
Collapse
|
117
|
Zhang C, Yang XL, Yuan YH, Pu J, Liao F. Site-specific PEGylation of therapeutic proteins via optimization of both accessible reactive amino acid residues and PEG derivatives. BioDrugs 2012. [PMID: 22721556 DOI: 10.2165/11633350-000000000-00000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modification of accessible amino acid residues with poly(ethylene glycol) [PEG] is a widely used technique for formulating therapeutic proteins. In practice, site-specific PEGylation of all selected/engineered accessible nonessential reactive residues of therapeutic proteins with common activated PEG derivatives is a promising strategy to concomitantly improve pharmacokinetics, allow retention of activity, alleviate immunogenicity, and avoid modification isomers. Specifically, through molecular engineering of a therapeutic protein, accessible essential residues reactive to an activated PEG derivative are substituted with unreactive residues provided that protein activity is retained, and a limited number of accessible nonessential reactive residues with optimized distributions are selected/introduced. Subsequently, all accessible nonessential reactive residues are completely PEGylated with the activated PEG derivative in great excess. Branched PEG derivatives containing new PEG chains with negligible metabolic toxicity are more desirable for site-specific PEGylation. Accordingly, for the successful formulation of therapeutic proteins, optimization of the number and distributions of accessible nonessential reactive residues via molecular engineering can be integrated with the design of large-sized PEG derivatives to achieve site-specific PEGylation of all selected/engineered accessible reactive residues.
Collapse
Affiliation(s)
- Chun Zhang
- Unit for Analytical Probes and Protein Biotechnology, Key Laboratory of Medical Laboratory Diagnostics of the Education Ministry, College of Laboratory Medicine, Chongqing Medical University, China
| | | | | | | | | |
Collapse
|
118
|
Matsumoto T, Tanaka T, Kondo A. Enzyme-mediated methodologies for protein modification and bioconjugate synthesis. Biotechnol J 2012; 7:1137-46. [DOI: 10.1002/biot.201200022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 06/19/2012] [Accepted: 06/28/2012] [Indexed: 12/14/2022]
|
119
|
Mero A, Fang Z, Pasut G, Veronese FM, Viegas TX. Selective conjugation of poly(2-ethyl 2-oxazoline) to granulocyte colony stimulating factor. J Control Release 2012; 159:353-61. [DOI: 10.1016/j.jconrel.2012.02.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/17/2012] [Accepted: 02/26/2012] [Indexed: 10/28/2022]
|
120
|
Ta HT, Peter K, Hagemeyer CE. Enzymatic Antibody Tagging: Toward a Universal Biocompatible Targeting Tool. Trends Cardiovasc Med 2012; 22:105-11. [DOI: 10.1016/j.tcm.2012.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
121
|
Schloegl W, Klein A, Fürst R, Leicht U, Volkmer E, Schieker M, Jus S, Guebitz G, Stachel I, Meyer M, Wiggenhorn M, Friess W. Residual transglutaminase in collagen – Effects, detection, quantification, and removal. Eur J Pharm Biopharm 2012; 80:282-8. [DOI: 10.1016/j.ejpb.2011.10.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 09/19/2011] [Accepted: 10/25/2011] [Indexed: 11/29/2022]
|
122
|
Jung B, Theato P. Chemical Strategies for the Synthesis of Protein–Polymer Conjugates. BIO-SYNTHETIC POLYMER CONJUGATES 2012. [DOI: 10.1007/12_2012_169] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
123
|
English A, Azeem A, Gaspar DA, Keane K, Kumar P, Keeney M, Rooney N, Pandit A, Zeugolis DI. Preferential cell response to anisotropic electro-spun fibrous scaffolds under tension-free conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:137-148. [PMID: 22105221 DOI: 10.1007/s10856-011-4471-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Anisotropic alignment of collagen fibres in musculoskeletal tissues is responsible for the resistance to mechanical loading, whilst in cornea is responsible for transparency. Herein, we evaluated the response of tenocytes, osteoblasts and corneal fibroblasts to the topographies created through electro-spinning and solvent casting. We also evaluated the influence of topography on mechanical properties. At day 14, human osteoblasts seeded on aligned orientated electro-spun mats exhibited the lowest metabolic activity (P < 0.001). At day 5 and at day 7, no significant difference was observed in metabolic activity of human corneal fibroblasts and bovine tenocytes respectively seeded on different scaffold conformations (P > 0.05). Osteoblasts and corneal fibroblasts aligned parallel to the direction of the aligned orientated electro-spun mats, whilst tenocytes aligned perpendicular to the aligned orientated electro-spun mats. Mechanical evaluation demonstrated that aligned orientated electro-spun fibres exhibited significant higher stress at break values than their random aligned counterparts (P < 0.006) and random orientated electro-spun fibres exhibited significant higher strain at break values than the aligned orientated scaffolds (P < 0.006). While maintaining fibre structure, we also developed a co-deposition method of spraying and electro-spinning, which enables the incorporation of microspheres within the three-dimensional structure of the scaffold.
Collapse
Affiliation(s)
- A English
- Network of Excellence for Functional Biomaterials (NFB), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Kuwahara K, Fang JY, Yang Z, Han B. Enzymatic Crosslinking and Degradation of Gelatin as a Switch for Bone Morphogenetic Protein-2 Activity. Tissue Eng Part A 2011; 17:2955-64. [DOI: 10.1089/ten.tea.2011.0290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kenrick Kuwahara
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Josephine Y. Fang
- Department of Surgery, University of Southern California, Los Angeles, California
| | - Zhi Yang
- Department of Surgery, University of Southern California, Los Angeles, California
| | - Bo Han
- Department of Surgery, University of Southern California, Los Angeles, California
| |
Collapse
|
125
|
Pasut G, Veronese FM. State of the art in PEGylation: the great versatility achieved after forty years of research. J Control Release 2011; 161:461-72. [PMID: 22094104 DOI: 10.1016/j.jconrel.2011.10.037] [Citation(s) in RCA: 544] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 12/15/2022]
Abstract
In the recent years, protein PEGylation has become an established and highly refined technology by moving forward from initial simple random coupling approaches based on conjugation at the level of lysine ε-amino group. Nevertheless, amino PEGylation is still yielding important conjugates, currently in clinical practice, where the degree of homogeneity was improved by optimizing the reaction conditions and implementing the purification processes. However, the current research is mainly focused on methods of site-selective PEGylation that allow the obtainment of a single isomer, thus highly increasing the degree of homogeneity and the preservation of bioactivity. Protein N-terminus and free cysteines were the first sites exploited for selective PEGylation but currently further positions can be addressed thanks to approaches like bridging PEGylation (disulphide bridges), enzymatic PEGylation (glutamines and C-terminus) and glycoPEGylation (sites of O- and N-glycosylation or the glycans of a glycoprotein). Furthermore, by combining the tools of genetic engineering with specific PEGylation approaches, the polymer can be basically coupled at any position on the protein surface, owing to the substitution of a properly chosen amino acid in the sequence with a natural or unnatural amino acid bearing an orthogonal reactive group. On the other hand, PEGylation has not achieved the same success in the delivery of small drugs, despite the large interest and several studies in this field. Targeted conjugates and PEGs for combination therapy might represent the promising answers for the so far unmet needs of PEG as carrier of small drugs. This review presents a thorough panorama of recent advances in the field of PEGylation.
Collapse
Affiliation(s)
- Gianfranco Pasut
- Department of Pharmaceutical Sciences, University of Padua, Via F. Marzolo 5, 35131 Padua, Italy.
| | | |
Collapse
|
126
|
Lin X, Xie J, Chen X. Protein-based tumor molecular imaging probes. Amino Acids 2011; 41:1013-36. [PMID: 20232092 PMCID: PMC3617487 DOI: 10.1007/s00726-010-0545-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 02/24/2010] [Indexed: 12/30/2022]
Abstract
Molecular imaging is an emerging discipline which plays critical roles in diagnosis and therapeutics. It visualizes and quantifies markers that are aberrantly expressed during the disease origin and development. Protein molecules remain to be one major class of imaging probes, and the option has been widely diversified due to the recent advances in protein engineering techniques. Antibodies are part of the immunosystem which interact with target antigens with high specificity and affinity. They have long been investigated as imaging probes and were coupled with imaging motifs such as radioisotopes for that purpose. However, the relatively large size of antibodies leads to a half-life that is too long for common imaging purposes. Besides, it may also cause a poor tissue penetration rate and thus compromise some medical applications. It is under this context that various engineered protein probes, essentially antibody fragments, protein scaffolds, and natural ligands have been developed. Compared to intact antibodies, they possess more compact size, shorter clearance time, and better tumor penetration. One major challenge of using protein probes in molecular imaging is the affected biological activity resulted from random labeling. Site-specific modification, however, allows conjugation happening in a stoichiometric fashion with little perturbation of protein activity. The present review will discuss protein-based probes with focus on their application and related site-specific conjugation strategies in tumor imaging.
Collapse
Affiliation(s)
- Xin Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
127
|
Bergamini CM, Collighan RJ, Wang Z, Griffin M. Structure and regulation of type 2 transglutaminase in relation to its physiological functions and pathological roles. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2011; 78:1-46. [PMID: 22220471 DOI: 10.1002/9781118105771.ch1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Carlo M Bergamini
- Deparment of Biochemistry and Molecular Biology, University of Ferrara, Italy
| | | | | | | |
Collapse
|
128
|
Besheer A, Hertel TC, Kressler J, Mäder K, Pietzsch M. Enzymatically catalyzed conjugation of a biodegradable polymer to proteins and small molecules using microbial transglutaminase. Methods Mol Biol 2011; 751:17-27. [PMID: 21674322 DOI: 10.1007/978-1-61779-151-2_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Hydroxyethyl starch (HES) is a water-soluble, biodegradable derivative of starch that is widely used in biomedicine as a plasma volume expander. Due to its favorable properties, HES is currently being investigated at the industrial and academic levels as a biodegradable polymer substitute for polyethylene glycol. To date, only chemical methods have been suggested for HESylation; unfortunately, however, these may have negative effects on protein stability. To address this issue, we have developed an enzymatic method for protein HESylation using recombinant microbial transglutaminase (rMTG). rMTG enzyme is able to catalyze the replacement of the amide ammonia at the γ-position in glutamine residues (acyl donors) with a variety of primary amines (acyl acceptors), including the amino group of lysine (Lys). To convert HES into a suitable substrate for rMTG, the polymer was derivatized with either N-carbobenzyloxy glutaminyl glycine (Z-QG) or hexamethylenediamine to act as an acyl donor or acyl acceptor, respectively. Using SDS-PAGE, it was possible to show that the modified HES successfully coupled to test compounds, proving that it is accepted as a substrate by rMTG. Overall, the enzymatic approach described in this chapter provides a facile route to produce biodegradable polymer-drug and polymer-protein conjugates under relatively mild reaction conditions.
Collapse
|
129
|
Mero A, Clementi C, Veronese FM, Pasut G. Covalent conjugation of poly(ethylene glycol) to proteins and peptides: strategies and methods. Methods Mol Biol 2011; 751:95-129. [PMID: 21674328 DOI: 10.1007/978-1-61779-151-2_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
PEGylation, the covalent linking of PEG chains, has become the leading drug delivery approach for proteins. This technique initiated its first steps almost 40 years ago, and since then, a variety of methods and strategies for protein-polymer coupling have been devised. PEGylation can give a number of relevant advantages to the conjugated protein, such as an important in vivo half-life prolongation, a reduction or an abolishment of immunogenicity, and a reduction of aggregation. Furthermore, the technique has demonstrated a great degree of versatility and efficacy--not only PEG-protein conjugates have reached the commercial marketplace (with nine types of derivatives), but a PEG-aptamer and PEGylated liposomes are now also available. Most of this success is due to the development of several PEGylation strategies and to the large selection of PEGylating agents presently at hand for researchers. Nevertheless, this technique still requires a certain level of familiarity and knowledge in order to achieve a positive outcome for a PEGylation project. To draw general guidelines for conducting PEGylation studies is not always easy or even possible because such experiments often require case-by-case optimization. On the other hand, several common methods can be used as starting examples for the development of tailor-made coupling conditions. Therefore, this chapter aims to provide a basic introduction to a wide range of PEGylation procedures for those researchers who may not be familiar with this field.
Collapse
|
130
|
Wagner AM, Fegley MW, Warner JB, Grindley CLJ, Marotta NP, Petersson EJ. N-terminal protein modification using simple aminoacyl transferase substrates. J Am Chem Soc 2011; 133:15139-47. [PMID: 21894909 PMCID: PMC3189496 DOI: 10.1021/ja2055098] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Methods for synthetically manipulating protein structure enable greater flexibility in the study of protein function. Previous characterization of the Escherichia coli aminoacyl tRNA transferase (AaT) has shown that it can modify the N-terminus of a protein with an amino acid from a tRNA or a synthetic oligonucleotide donor. Here, we demonstrate that AaT can efficiently use a minimal adenosine substrate, which can be synthesized in one to two steps from readily available starting materials. We have characterized the enzymatic activity of AaT with aminoacyl adenosyl donors and found that reaction products do not inhibit AaT. The use of adenosyl donors removes the substrate limitations imposed by the use of synthetases for tRNA charging and avoids the complex synthesis of an oligonucleotide donor. Thus, our AaT donors increase the potential substrate scope and reaction scale for N-terminal protein modification under conditions that maintain folding.
Collapse
Affiliation(s)
- Anne M. Wagner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | - Mark W. Fegley
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | - John B. Warner
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | - Christina L. J. Grindley
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| | | | - E. James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323 USA
| |
Collapse
|
131
|
Mero A, Schiavon M, Veronese FM, Pasut G. A new method to increase selectivity of transglutaminase mediated PEGylation of salmon calcitonin and human growth hormone. J Control Release 2011; 154:27-34. [DOI: 10.1016/j.jconrel.2011.04.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/13/2011] [Accepted: 04/22/2011] [Indexed: 10/18/2022]
|
132
|
Gong N, Ma AN, Zhang LJ, Luo XS, Zhang YH, Xu M, Wang YX. Site-specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity. Br J Pharmacol 2011; 163:399-412. [PMID: 21244372 PMCID: PMC3087140 DOI: 10.1111/j.1476-5381.2011.01227.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/09/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Exenatide is a 39-amino-acid peptide widely used to manage type 2 diabetes mellitus. However, it has a short plasma half-life and requires a twice daily injection regime. To overcome these drawbacks we used maleimide-polyethylene glycol to induce site-specific PEGylation. EXPERIMENTAL APPROACH The analogue PB-105 (ExC39) was produced by replacing cysteine at position 39 of exenatide to provide a free thiol group. PB-105 showed the same glucoregulatory activity as exenatide in mice. Site-specific PEGylation of PB-105 was performed to produce PB-110 (ExC39PEG5kDa), PB-106 (ExC39PEG20kDa), PB-107 (ExC39PEG30kDa) and PB-108 (ExC39PEG40kDa). Their effects on intracellular cAMP, acute glucoregulatory activity and pharmacokinetic profile were compared in mice and rats. KEY RESULTS PEGylation shifted the concentration-response curve of PB-105 to the right in a parallel, polyethylene glycol mass-dependent manner but with an inflexion point of at least 20 kDa. The activities of PB-107 and PB-108 but not PB-106 were reduced by 90% and 99%. PEGylation affected in vivo glucoregulatory activity in the same 'Inflexion-Shift' fashion at least at 20 kDa, but linearly increased plasma duration and systemic exposure without inflexion. PB-106 had a plasma t(1/2) approximately 10-fold that of PB-105, and exhibited superior glucoregulatory activity compared with PB-105 in normal and diabetic mice. CONCLUSIONS AND IMPLICATIONS Site-specific PEGylation of exenatide with a permanent amide linkage affects its activity in a new type of 'Inflexion-Shift' fashion. PB-106 is a putative new analogue for treating diabetes; it possesses no loss of in vitro activity, prolonged plasma duration and superior, improved in vivo glucoregulatory activity compared with exenatide.
Collapse
Affiliation(s)
- Nian Gong
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
133
|
Jeger S, Zimmermann K, Blanc A, Grünberg J, Honer M, Hunziker P, Struthers H, Schibli R. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew Chem Int Ed Engl 2011; 49:9995-7. [PMID: 21110357 DOI: 10.1002/anie.201004243] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Simone Jeger
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
134
|
Liu Z, Ren Y, Pan L, Xu HM. In vivo anti-tumor activity of polypeptide HM-3 modified by different polyethylene glycols (PEG). Int J Mol Sci 2011; 12:2650-63. [PMID: 21731464 PMCID: PMC3127140 DOI: 10.3390/ijms12042650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 03/08/2011] [Accepted: 04/01/2011] [Indexed: 01/15/2023] Open
Abstract
HM-3, designed by our laboratory, is a polypeptide composed of 18 amino acids. Pharmacodynamic studies in vivo and in vitro indicated that HM-3 could inhibit endothelial cell migration and angiogenesis, thereby inhibiting tumor growth. However, the half-life of HM-3 is short. In this study, we modified HM-3 with different polyethylene glycols (PEG) in order to reduce the plasma clearance rate, extend the half-life in the body, maintain a high concentration of HM-3 in the blood and increase the therapeutic efficiency. HM-3 was modified with four different types of PEG with different molecular weights (ALD-mPEG5k, ALD-mPEG10k, SC-mPEG10k and SC-mPEG20k), resulting in four modified products (ALD-mPEG5k-HM-3, ALD-mPEG10k-HM-3, SC-mPEG10k-HM-3 and SC-mPEG20k-HM-3, respectively). Anti-tumor activity of these four modified HM-3 was determined in BALB/c mice with Taxol as a positive control and normal saline as a negative control. Tumor weight inhibition rates of mice treated with Taxol, HM-3, ALD-mPEG5k-HM-3, ALD-mPEG10k-HM-3, SC-mPEG10k-HM-3 and SC-mPEG20k-HM-3 were 44.50%, 43.92%, 37.95%, 31.64%, 20.27% and 50.23%, respectively. Tumor inhibition rates in the Taxol, HM-3 and SC-mPEG20k-HM-3 groups were significantly higher than that in the negative control group. The efficiency of tumor inhibition in the SC-mPEG20k-HM-3 group (drug treatment frequency: once per two days) was better than that in the HM-3 group (drug treatment frequency: twice per day). In addition, tumor inhibition rate in the SC-mPEG20k-HM-3 group was higher than that in the taxol group. We conclude that SC-mPEG20k-HM-3 had a low plasma clearance rate and long half-life, resulting in high anti-tumor therapeutic efficacy in vivo. Therefore, SC-mPEG20k-HM-3 could be potentially developed as new anti-tumor drugs.
Collapse
Affiliation(s)
- Zhendong Liu
- Department of Marine Pharmacy, College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China; E-Mails: (Z.L.); (Y.R.); (L.P.)
| | | | | | | |
Collapse
|
135
|
Sun J, Song X, Tian H, Jin Y, Gao X, Yao W. Synthesis of a novel histidine-targeting poly(ethylene glycol) and modification of lysozyme. J Appl Polym Sci 2011. [DOI: 10.1002/app.32908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
136
|
Kamiya N, Abe H. New fluorescent substrates of microbial transglutaminase and its application to peptide tag-directed covalent protein labeling. Methods Mol Biol 2011; 751:81-94. [PMID: 21674327 DOI: 10.1007/978-1-61779-151-2_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transglutaminase (TGase) is an enzyme that catalyzes the post-translational covalent cross-linking of Gln- and Lys-containing peptides and/or proteins according to its substrate specificity. We have recently designed a variety of Gln-donor fluorescent substrates of microbial transglutaminase (MTG) from Streptomyces mobaraensis and evaluated their potential use in MTG-mediated covalent protein labeling. The newly designed substrates are based on the relatively broad substrate recognition of MTG for the substitution of the N-terminal group of a conventional TGase substrate, benzyloxycarbonyl-L-glutaminylglycine (Z-QG). It is revealed that MTG is capable of accepting a diverse range of fluorophores in place of the N-terminal moiety of Z-QG when linked via a suitable linker. Here, we show the potential utility of a new fluorescent substrate for peptide tag-directed covalent protein labeling by employing fluorescein-4-isothiocyanate-β-Ala-QG as a model Gln-donor substrate for MTG.
Collapse
Affiliation(s)
- Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka, Japan.
| | | |
Collapse
|
137
|
|
138
|
Biedermann F, Rauwald U, Zayed JM, Scherman OA. A supramolecular route for reversible protein-polymer conjugation. Chem Sci 2011. [DOI: 10.1039/c0sc00435a] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
139
|
Jeger S, Zimmermann K, Blanc A, Grünberg J, Honer M, Hunziker P, Struthers H, Schibli R. Ortsspezifische und stöchiometrische Modifikation von Antikörpern durch bakterielle Transglutaminase. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004243] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
140
|
Sakamoto T, Sawamoto S, Tanaka T, Fukuda H, Kondo A. Enzyme-Mediated Site-Specific Antibody−Protein Modification Using a ZZ Domain as a Linker. Bioconjug Chem 2010; 21:2227-33. [DOI: 10.1021/bc100206z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Takayuki Sakamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Shiori Sawamoto
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Hideki Fukuda
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, and Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan
| |
Collapse
|
141
|
Chemoenzymatic methods for site-specific protein modification. Curr Opin Chem Biol 2010; 14:790-6. [PMID: 21030291 DOI: 10.1016/j.cbpa.2010.09.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 09/30/2010] [Accepted: 09/30/2010] [Indexed: 11/22/2022]
Abstract
In the past decade, numerous chemical technologies have been developed to allow the site-specific post-translational modification of proteins. Traditionally covalent chemical protein modification has been accomplished by the attachment of synthetic groups to nucleophilic amino acids on protein surfaces. These chemistries, however, are rarely sufficiently selective to distinguish one residue within a literal sea of chemical functionality. One solution to this problem is to introduce a unique chemical handle into the target protein that is orthogonal to the remainder of the proteome. In practice, this handle can be a novel peptide sequence, which forms a 'tag' that is selectively and irreversibly modified by enzymes. Furthermore, if the enzymes can tolerate substrate analogs, it becomes possible to engineer chemically modified proteins in a site-specific fashion. This review details the significant progress in creating techniques for the chemoenzymatic generation of protein-small molecule constructs and provides examples of novel applications of these methodologies.
Collapse
|
142
|
Xu J, Okada S, Tan L, Goodrum KJ, Kopchick JJ, Kieliszewski MJ. Human growth hormone expressed in tobacco cells as an arabinogalactan-protein fusion glycoprotein has a prolonged serum life. Transgenic Res 2010; 19:849-67. [PMID: 20135224 DOI: 10.1007/s11248-010-9367-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 01/12/2010] [Indexed: 01/30/2023]
Abstract
Therapeutic proteins with molecular weights lower than 40 kDa often have short serum half-lives due to their susceptibility to serum proteases and rapid renal clearance. Chemical derivatization, such as PEGylation, or expression as serum albumin fusions increases molecular mass and overcome these problems but at the expense of decreased bioactivity. Here we applied a new method that yields biologically potent recombinant human growth hormone (rhGH) with increased serum half-life when expressed as an arabinogalactan-protein (AGP) in tobacco BY-2 cells. Thus, rhGH was expressed with 10 repeats of the AGP glycomodule Ser-Hyp (SO) at the C-terminus (rhGH-(SO)(10)). We also expressed rhGH as an AGP-enhanced green fluorescent protein (EGFP) fusion, designated rhGH-(SO)(10)-EGFP, to assess the cellular distribution of the glycoprotein, which was mainly extracellular. Recombinant hGH-(SO)(10) bound the hGH receptor with an affinity similar to that of a rhGH standard, stimulated the same intracellular signaling pathway as hGH, but possessed an in vivo serum half-life more than sixfold that of the hGH control. Furthermore, rhGH-(SO)(10) gave a 500 fold greater secreted yield than the non-glycosylated control rhGH that was also targeted for secretion. Detailed analysis of the rhGH-(SO)(10) glycans indicated a conserved structure with relatively little microheterogeneity and an average size of 25 monosaccharide residues. These results were consistent with earlier work expressing interferon alpha 2b as an AGP chimera and further demonstrate the feasibility of this approach to the production of long-acting, biologically potent therapeutic proteins by plant cells.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | | | | | | | | | | |
Collapse
|
143
|
|
144
|
Davaran S, Asgari D, Rashidi MR, Salehi R, Omidi Y. Synthesis, characterization, and drug-release behavior of novel PEGylated bovine serum albumin as a carrier for anticancer agents. J Appl Polym Sci 2010. [DOI: 10.1002/app.32858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
145
|
Pasut G, Veronese FM. Improvement of Drug Therapy by Covalent PEG Conjugation: An Overview From a Research Laboratory. Isr J Chem 2010. [DOI: 10.1002/ijch.201000019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
146
|
Sabar MF, Yaqub M, Khan MA, Ahmad N, Ghani MU, Shahid M. Synthesis of a New Tri-Branched PEG-IFNα2 and Its Impact on Anti Viral Bioactivity. Int J Pept Res Ther 2010. [DOI: https://doi.org/10.1007/s10989-010-9219-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
147
|
Sabar MF, Yaqub M, Khan MA, Ahmad N, Ghani MU, Shahid M. Synthesis of a New Tri-Branched PEG-IFNα2 and Its Impact on Anti Viral Bioactivity. Int J Pept Res Ther 2010. [DOI: 10.1007/s10989-010-9219-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
148
|
Yokoyama K, Utsumi H, Nakamura T, Ogaya D, Shimba N, Suzuki E, Taguchi S. Screening for improved activity of a transglutaminase from Streptomyces mobaraensis created by a novel rational mutagenesis and random mutagenesis. Appl Microbiol Biotechnol 2010; 87:2087-96. [DOI: 10.1007/s00253-010-2656-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/24/2010] [Accepted: 04/27/2010] [Indexed: 11/30/2022]
|
149
|
Abstract
The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g., liposomes, polymeric microspheres, polymeric nanoparticles). Such strategies have the potential to develop as next generation protein therapeutics. This review includes a general discussion on these delivery approaches.
Collapse
Affiliation(s)
- Dipak S. Pisal
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| | - Matthew P. Kosloski
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| | - Sathy V. Balu-Iyer
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Amherst, NY14260, USA
| |
Collapse
|
150
|
Buchardt J, Selvig H, Nielsen PF, Johansen NL. Transglutaminase-mediated methods for site-selective modification of human growth hormone. Biopolymers 2010; 94:229-35. [PMID: 20225295 DOI: 10.1002/bip.21353] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Two methods for the site-selective modification of native human growth hormone (hGH) using microbial transglutaminase were developed. In the first method, 1,3-bisaminoxypropane was attached to hGH, providing a direct incorporation of reactive aminoxy groups for further modification. The reaction was shown to be selective for Gln(141), with minor modification at Gln(40). In the second method, modified glutamine substrates were developed for attachment to Lys(145) in hGH. A series of glutamine-substrates were screened, and it was shown that microbial transglutaminase was selective towards substitutions on the glutamine core structure. Products from both methods could be transformed to site selectively mono-PEGylated hGH-derivatives in good isolated yield.
Collapse
Affiliation(s)
- Jens Buchardt
- Protein Technology, Novo Nordisk A/S, Måløv, Denmark.
| | | | | | | |
Collapse
|