101
|
Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci 2020; 254:117580. [DOI: 10.1016/j.lfs.2020.117580] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022]
|
102
|
Epigenetic Mechanisms of Resistance to Immune Checkpoint Inhibitors. Biomolecules 2020; 10:biom10071061. [PMID: 32708698 PMCID: PMC7407667 DOI: 10.3390/biom10071061] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated to be highly efficient in treating solid tumors; however, many patients have limited benefits in terms of response and survival. This rapidly led to the investigation of combination therapies to enhance response rates. Moreover, predictive biomarkers were assessed to better select patients. Although PD-L1 expression remains the only validated marker in clinics, molecular profiling has brought valuable information, showing that the tumor mutation load and microsatellite instability (MSI) status were associated to higher response rates in nearly all cancer types. Moreover, in lung cancer, EGFR and MET mutations, oncogene fusions or STK11 inactivating mutations were associated with low response rates. Cancer progression towards invasive phenotypes that impede immune surveillance relies on complex regulatory networks and cell interactions within the tumor microenvironment. Epigenetic modifications, such as the alteration of histone patterns, chromatin structure, DNA methylation status at specific promoters and changes in microRNA levels, may alter the cell phenotype and reshape the tumor microenvironment, allowing cells to grow and escape from immune surveillance. The objective of this review is to make an update on the identified epigenetic changes that target immune surveillance and, ultimately, ICI responses, such as histone marks, DNA methylation and miR signatures. Translational studies or clinical trials, when available, and potential epigenetic biomarkers will be discussed as perspectives in the context of combination treatment strategies to enhance ICI responses in patients with solid tumors.
Collapse
|
103
|
Kim S, Kim A, Shin JY, Seo JS. The tumor immune microenvironmental analysis of 2,033 transcriptomes across 7 cancer types. Sci Rep 2020; 10:9536. [PMID: 32533054 PMCID: PMC7293350 DOI: 10.1038/s41598-020-66449-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
Understanding the tumor microenvironment is important to efficiently identify appropriate patients for immunotherapies in a variety of cancers. Here, we presented the tumor microenvironmental analysis of 2,033 cancer samples across 7 cancer types: colon adenocarcinoma, skin cutaneous melanoma, kidney renal papillary cell carcinoma, sarcoma, pancreatic adenocarcinoma, glioblastoma multiforme, and pheochromocytoma / paraganglioma from The Cancer Genome Atlas cohort. Unsupervised hierarchical clustering based on the gene expression profiles separated the cancer samples into two distinct clusters, and characterized those into immune-competent and immune-deficient subtypes using the estimated abundances of infiltrated immune and stromal cells. We demonstrated differential tumor microenvironmental characteristics of immune-competent subtypes across 7 cancer types, particularly immunosuppressive tumor microenvironment features in kidney renal papillary cell carcinoma with significant poorer survival rates and immune-supportive features in sarcoma and skin cutaneous melanoma. Additionally, differential genomic instability patterns between the subtypes were found across the cancer types, and discovered that immune-competent subtypes in most of cancer types had significantly higher immune checkpoint gene expressions. Overall, this study suggests that our subtyping approach based on transcriptomic data could contribute to precise prediction of immune checkpoint inhibitor responses in a wide range of cancer types.
Collapse
Affiliation(s)
- Sungjae Kim
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea.,Precision Medicine Institute, Macrogen Inc., Seongnam, 13605, Republic of Korea.,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea
| | - Ahreum Kim
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea.,CHA University School of Medicine, Seongnam, 13488, Republic of Korea
| | - Jong-Yeon Shin
- Precision Medicine Institute, Macrogen Inc., Seongnam, 13605, Republic of Korea
| | - Jeong-Sun Seo
- Precision Medicine Center, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea. .,Precision Medicine Institute, Macrogen Inc., Seongnam, 13605, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, 03080, Republic of Korea. .,Gong-Wu Genomic Medicine Institute, Seoul National University Bundang Hospital, Seongnam, 13605, Republic of Korea.
| |
Collapse
|
104
|
Photodynamic therapy produces enhanced efficacy of antitumor immunotherapy by simultaneously inducing intratumoral release of sorafenib. Biomaterials 2020; 240:119845. [DOI: 10.1016/j.biomaterials.2020.119845] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/23/2022]
|
105
|
Tormoen GW, Blair TC, Bambina S, Kramer G, Baird J, Rahmani R, Holland JM, McCarty OJT, Baine MJ, Verma V, Nabavizadeh N, Gough MJ, Crittenden M. Targeting MerTK Enhances Adaptive Immune Responses After Radiation Therapy. Int J Radiat Oncol Biol Phys 2020; 108:93-103. [PMID: 32311417 DOI: 10.1016/j.ijrobp.2020.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/09/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE The role of MerTK, a member of the Tyro3-Axl-MerTK family of receptor tyrosine kinase, in the immune response to radiation therapy (RT) is unclear. We investigated immune-mediated tumor control after RT in murine models of colorectal and pancreatic adenocarcinoma using MerTK wild-type and knock-out hosts and whether inhibition of MerTK signaling with warfarin could replicate MerTK knock-out phenotypes. METHODS AND MATERIALS Wild-type and MerTK-/- BALB/c mice were grafted in the flanks with CT26 tumors and treated with computed tomography guided RT. The role of macrophages and CD8 T cells in the response to radiation were demonstrated with cell depletion studies. The role of MerTK in priming immune responses after RT alone and with agonist antibodies to the T cell costimulatory molecule OX40 was evaluated in a Panc02-SIY model antigen system. The effect of warfarin therapy on the in-field and abscopal response to RT was demonstrated in murine models of colorectal adenocarcinoma. The association between warfarin and progression-free survival for patients treated with SABR for early-stage non-small cell lung cancer was evaluated in a multi-institutional retrospective study. RESULTS MerTK-/- hosts had better tumor control after RT compared with wild-type mice in a macrophage and CD8 T cell-dependent manner. MerTK-/- mice showed increased counts of tumor antigen-specific CD8 T cells in the peripheral blood after tumor-directed RT alone and in combination with agonist anti-OX40. Warfarin therapy phenocopied MerTK-/- for single-flank tumors treated with RT and improved abscopal responses for RT combined with anti-CTLA4. Patients on warfarin therapy when treated with SABR for non-small cell lung cancer had higher progression-free survival rates compared with non-warfarin users. CONCLUSIONS MerTK inhibits adaptive immune responses after SABR. Because warfarin inhibits MerTK signaling and phenocopies genetic deletion of MerTK in mice, warfarin therapy may have beneficial effects in combination with SABR and immune therapy in patients with cancer.
Collapse
Affiliation(s)
- Garth W Tormoen
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR.
| | - Tiffany C Blair
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR
| | - Shelly Bambina
- Earl A. Chiles Research Institute, Providence Medical Center, Portland, OR
| | - Gwen Kramer
- Earl A. Chiles Research Institute, Providence Medical Center, Portland, OR
| | - Jason Baird
- Earl A. Chiles Research Institute, Providence Medical Center, Portland, OR
| | - Ramtin Rahmani
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| | - John M Holland
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| | - Owen J T McCarty
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Sciences University, Portland, OR; Division of Hematology and Medical Oncology, School of Medicine, Oregon Health & Sciences University, Portland, Oregon
| | - Michael J Baine
- Department of Radiation Oncology, College of Medicine, University of Nebraska Medical Center, Omaha, NE; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Vivek Verma
- Department of Radiation Oncology, Alleghany General Hospital, Pittsburgh, Pennsylvania
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| | - Michael J Gough
- Earl A. Chiles Research Institute, Providence Medical Center, Portland, OR
| | - Marka Crittenden
- Earl A. Chiles Research Institute, Providence Medical Center, Portland, OR; The Oregon Clinic, Portland, Oregon
| |
Collapse
|
106
|
van Elsas MJ, van Hall T, van der Burg SH. Future Challenges in Cancer Resistance to Immunotherapy. Cancers (Basel) 2020; 12:E935. [PMID: 32290124 PMCID: PMC7226490 DOI: 10.3390/cancers12040935] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapies, including checkpoint inhibitors, adoptive T cell transfer and therapeutic cancer vaccines, have shown promising response rates in clinical trials. Unfortunately, there is an increasing number of patients in which initially regressing tumors start to regrow due to an immunotherapy-driven acquired resistance. Studies on the underlying mechanisms reveal that these can be similar to well-known tumor intrinsic and extrinsic primary resistance factors that precluded the majority of patients from responding to immunotherapy in the first place. Here, we discuss primary and secondary immune resistance and point at strategies to identify potential new mechanisms of immune evasion. Ultimately, this may lead to improved immunotherapy strategies with improved clinical outcomes.
Collapse
Affiliation(s)
| | | | - Sjoerd H. van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2300RC Leiden, The Netherlands; (M.J.v.E.); (T.v.H.)
| |
Collapse
|
107
|
Gough MJ, Sharon S, Crittenden MR, Young KH. Using Preclinical Data to Design Combination Clinical Trials of Radiation Therapy and Immunotherapy. Semin Radiat Oncol 2020; 30:158-172. [PMID: 32381295 PMCID: PMC7213059 DOI: 10.1016/j.semradonc.2019.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapies are rapidly entering the clinic as approved treatments for diverse cancer pathologies. Radiation therapy is an integral partner in cancer therapy, commonly as part of complicated multimodality approaches that optimize patient outcomes. Preclinical studies have demonstrated that the success of radiation therapy in tumor control is due in part to immune mechanisms, and that outcomes following radiation therapy can be improved through combination with a range of immunotherapies. However, preclinical models of cancer are very different from patient tumors, and the way these preclinical tumors are treated is often very different from standard of care treatment of patients. This review examines the preclinical and clinical data for the role of the immune system in radiation therapy outcomes, and how to integrate preclinical findings into clinical trials, using ongoing studies as examples.
Collapse
Affiliation(s)
- Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR.
| | - Shay Sharon
- Department of Oral and Maxillofacial Surgery, Hadassah and Hebrew University Medical Center, Jerusalem, ISRAEL
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR; The Oregon Clinic, Portland, OR
| |
Collapse
|
108
|
Phung CD, Tran TH, Kim JO. Engineered nanoparticles to enhance natural killer cell activity towards onco-immunotherapy: a review. Arch Pharm Res 2020; 43:32-45. [DOI: 10.1007/s12272-020-01218-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
|
109
|
Translational Landscape of mTOR Signaling in Integrating Cues Between Cancer and Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:69-80. [PMID: 32030685 DOI: 10.1007/978-3-030-35582-1_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The mammalian target of rapamycin (mTOR) represents a critical hub for the regulation of different processes in both normal and tumor cells. Furthermore, it is now well established the role of mTOR in integrating and shaping different environmental paracrine and autocrine stimuli in tumor microenvironment (TME) constituents. Recently, further efforts have been employed to understand how the mTOR signal transduction mechanisms modulate the sensitivity and resistance to targeted therapies, also for its involvement of mTOR also in modulating angiogenesis and tumor immunity. Indeed, interest in mTOR targeting was increased to improve immune response against cancer and to develop new long-term efficacy strategies, as demonstrated by clinical success of mTOR and immune checkpoint inhibitor combinations. In this chapter, we will describe the role of mTOR in modulating TME elements and the implication in its targeting as a great promise in clinical trials.
Collapse
|
110
|
Dobosz P, Dzieciątkowski T. The Intriguing History of Cancer Immunotherapy. Front Immunol 2019; 10:2965. [PMID: 31921205 PMCID: PMC6928196 DOI: 10.3389/fimmu.2019.02965] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
Immunotherapy is often perceived as a relatively recent advance. In reality, however, one should be looking for the beginnings of cancer immunotherapy under different names as far as in the Antiquity. The first scientific attempts to modulate patients' immune systems to cure cancer can be attributed to two German physicians, Fehleisen and Busch, who independently noticed significant tumor regression after erysipelas infection. The next significant advances came from William Bradley Coley who is known today as the Father of Immunotherapy. It was Coley who first attempted to harness the immune system for treating bone cancer in 1891. His achievements were largely unnoticed for over fifty years, and several seminal discoveries in the field of Immunology, such as the existence of T cells and their crucial role in immunity in 1967, stepped up the research toward cancer immunotherapy known today. The following paper tracks cancer immunotherapy from its known beginnings up until recent events, including the 2018 Nobel Prize award to James Allison and Tasuku Honjo for their meticulous work on checkpoint molecules as potential therapeutic targets. That work has led to the successful development of new checkpoint inhibitors, CAR T-cells and oncolytic viruses and the pace of such advances brings the highest hope for the future of cancer treatment.
Collapse
Affiliation(s)
- Paula Dobosz
- Department of Hematology, Oncology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Dzieciątkowski
- Chair and Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
111
|
Synthetic 3D scaffolds for cancer immunotherapy. Curr Opin Biotechnol 2019; 65:1-8. [PMID: 31838435 DOI: 10.1016/j.copbio.2019.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/10/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022]
Abstract
Recent clinical success of systemic cancer immunotherapy has paved the way for the next-generation therapeutics. Nevertheless, cancer immunotherapies, in particular combination therapies, are associated in some cases with severe side effects and low response rates. Synthetic scaffolds have emerged as a promising platform to deliver immunotherapeutic agents locally. Placed at strategic locations of the body, scaffolds can reduce side effects while increasing the concentration of the agent at the site of interest. Moreover, scaffolds can mimic the context, in which biochemical cues are presented in vivo to enhance cell modulation. Recent research has focused on designing three-dimensional (3D) scaffolds with specific properties to modulate the antitumor response at various stages of the cancer immunity cycle. As the number of immunotherapies in clinical trials is soaring, it is essential to critically evaluate the role that scaffolds can play in improving the safety and efficacy of existing and future therapies.
Collapse
|
112
|
Césaire M, Thariat J, Candéias SM, Stefan D, Saintigny Y, Chevalier F. Combining PARP inhibition, radiation, and immunotherapy: A possible strategy to improve the treatment of cancer? Int J Mol Sci 2018; 19:ijms19123793. [PMID: 30487462 PMCID: PMC6321381 DOI: 10.3390/ijms19123793] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy has revolutionized the practice of oncology, improving survival in certain groups of patients with cancer. Immunotherapy can synergize with radiation therapy, increase locoregional control, and have abscopal effects. Combining it with other treatments, such as targeted therapies, is a promising means of improving the efficacy of immunotherapy. Because the value of immunotherapy is amplified with the expression of tumor antigens, coupling poly(ADP-ribose) polymerase (PARP) inhibitors and immunotherapy might be a promising treatment for cancer. Further, PARP inhibitors (PARPis) are being combined with radiation therapy to inhibit DNA repair functions, thus enhancing the effects of radiation; this association might interact with the antitumor immune response. Cytotoxic T lymphocytes are central to the antitumor immune response. PARP inhibitors and ionizing radiation can enhance the infiltration of cytotoxic T lymphocytes into the tumor bed, but they can also enhance PD-1/PDL-1 expression. Thus, the addition of immune checkpoint inhibitors with PARP inhibitors and/or ionizing radiation could counterbalance such immunosuppressive effects. With the present review article, we proposed to evaluate some of these associated therapies, and we explored the biological mechanisms and medical benefits of the potential combination of radiation therapy, immunotherapy, and PARP inhibitors.
Collapse
Affiliation(s)
- Mathieu Césaire
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14076 Caen, France.
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, 14076 Caen, France.
- Radiotherapy Unit, Centre François Baclesse, 14000 Caen, France.
| | - Juliette Thariat
- Radiotherapy Unit, Centre François Baclesse, 14000 Caen, France.
| | - Serge M Candéias
- ProMD, Chemistry and Biology of Metals Laboratory, Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM, 38054 Grenoble, France.
| | - Dinu Stefan
- Radiotherapy Unit, Centre François Baclesse, 14000 Caen, France.
| | - Yannick Saintigny
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14076 Caen, France.
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, 14076 Caen, France.
| | - François Chevalier
- LARIA, iRCM, François Jacob Institute, DRF-CEA, 14076 Caen, France.
- UMR6252 CIMAP, CEA - CNRS - ENSICAEN - Université de Caen Normandie, 14076 Caen, France.
| |
Collapse
|