101
|
Crossman CA, Hamilton PK, Brown MW, Conger LA, George RC, Jackson KA, Radvan SN, Frasier TR. Effects of inbreeding on reproductive success in endangered North Atlantic right whales. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240490. [PMID: 39086821 PMCID: PMC11289666 DOI: 10.1098/rsos.240490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/24/2024] [Indexed: 08/02/2024]
Abstract
Only approximately 356 North Atlantic right whales (Eubalaena glacialis) remain. With extremely low levels of genetic diversity, limited options for mates, and variation in reproductive success across females, there is concern regarding the potential for genetic limitations of population growth from inbreeding depression. In this study, we quantified reproductive success of female North Atlantic right whales with a modified de-lifing approach using reproductive history information collected over decades of field observations. We used double-digest restriction site-associated sequencing to sequence approximately 2% of the genome of 105 female North Atlantic right whales and combined genomic inbreeding estimates with individual fecundity values to assess evidence of inbreeding depression. Inbreeding depression could not explain the variance in reproductive success of females, however we present evidence that inbreeding depression may be affecting the viability of inbred fetuses-potentially lowering the reproductive success of the species as a whole. Combined, these results allay some concerns that genetic factors are impacting species survival as genetic diversity is being retained through selection against inbred fetuses. While still far fewer calves are being born each year than expected, the small role of genetics underlying variance in female fecundity suggests that variance may be explained by external factors that can potentially be mitigated through protection measures designed to reduce serious injury and mortality from human activities.
Collapse
Affiliation(s)
- Carla A. Crossman
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
| | - Philip K. Hamilton
- Anderson Cabot Center for Ocean Life, New England Aquarium, Central Wharf, Boston, Massachusetts, USA
| | - Moira W. Brown
- Canadian Whale Institute, Welshpool, New Brunswick, Canada
| | - Lisa A. Conger
- NOAA Fisheries, Northeast Fisheries Science Center, Woods Hole, MA, USA
| | - R. Clay George
- Georgia Department of Natural Resources, Wildlife Conservation Section, Brunswick, GA, USA
| | - Katharine A. Jackson
- Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, Saint Petersburg, FL, USA
| | - Sonya N. Radvan
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
| | - Timothy R. Frasier
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
| |
Collapse
|
102
|
Cars BS, Kessler C, Hoffman EA, Côté SD, Koelsch D, Shafer ABA. Island demographics and trait associations in white-tailed deer. Heredity (Edinb) 2024; 133:1-10. [PMID: 38802598 PMCID: PMC11222433 DOI: 10.1038/s41437-024-00685-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
When a population is isolated and composed of few individuals, genetic drift is the paramount evolutionary force and results in the loss of genetic diversity. Inbreeding might also occur, resulting in genomic regions that are identical by descent, manifesting as runs of homozygosity (ROHs) and the expression of recessive traits. Likewise, the genes underlying traits of interest can be revealed by comparing fixed SNPs and divergent haplotypes between affected and unaffected individuals. Populations of white-tailed deer (Odocoileus virginianus) on islands of Saint Pierre and Miquelon (SPM, France) have high incidences of leucism and malocclusions, both considered genetic defects; on the Florida Keys islands (USA) deer exhibit smaller body sizes, a polygenic trait. Here we aimed to reconstruct island demography and identify the genes associated with these traits in a pseudo case-control design. The two island populations showed reduced levels of genomic diversity and a build-up of deleterious mutations compared to mainland deer; there was also significant genome-wide divergence in Key deer. Key deer showed higher inbreeding levels, but not longer ROHs, consistent with long-term isolation. We identified multiple trait-related genes in ROHs including LAMTOR2 which has links to pigmentation changes, and NPVF which is linked to craniofacial abnormalities. Our mixed approach of linking ROHs, fixed SNPs and haplotypes matched a high number (~50) of a-priori body size candidate genes in Key deer. This suite of biomarkers and candidate genes should prove useful for population monitoring, noting all three phenotypes show patterns consistent with a complex trait and non-Mendelian inheritance.
Collapse
Affiliation(s)
- Brooklyn S Cars
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
- Department of Forensics, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| | - Camille Kessler
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada
| | - Eric A Hoffman
- Department of Biology, University of Central Florida, 4000, Central Florida Blvd, Orlando, FL, USA
| | - Steeve D Côté
- Département de Biologie and Centre d'Études Nordiques, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Daniel Koelsch
- Fédération des chasseurs de Saint-Pierre et Miquelon, Saint-Pierre et Miquelon, France
- Direction des Territoires de l'Alimentation et de la Mer, service Biodiversité, Saint-Pierre et Miquelon, France
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Program, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
- Department of Forensics, Trent University, 2140 East Bank Drive, Peterborough, ON, K9J 7B8, Canada.
| |
Collapse
|
103
|
Cortes O, Cañon J, Andrino S, Fernanadez M, Carleos C. Inbreeding depression and runs of homozygosity islands in Asturiana de los Valles cattle breed after 30 years of selection. J Anim Breed Genet 2024; 141:440-452. [PMID: 38303546 DOI: 10.1111/jbg.12853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024]
Abstract
Inbreeding depression results in a decrease in the average phenotypic values of affected traits. It has been traditionally estimated from pedigree-based inbreeding coefficients. However, with the development of single-nucleotide polymorphism arrays, novel methods were developed for calculating the inbreeding coefficient, and consequently, inbreeding depression. The aim of the study was to analyse inbreeding depression in 6 growth and 2 reproductive traits in the Asturiana de los Valles cattle breed using both genealogical and molecular information. The pedigree group comprised 225,848 records and an average equivalent number of complete generations of 2.3. The molecular data comprised genotypes of 2693 animals using the Affymetrix medium-density chip. Using the pedigree information, three different inbreeding coefficients were estimated for the genotyped animals: the full pedigree coefficient (FPED), and the recent and ancient inbreeding coefficients based on the information of the last three generations (FPED<3G) and until the last three generations (FPED>3G), respectively. Using the molecular data, seven inbreeding coefficients were calculated. Four of them were estimated based on runs of homozygosity (ROH), considering (1) the total length (FROH), (2) segments shorter than 4 megabases (FROH<4), (3) between 4 and 17 megabases (FROH4-17), and (4) longer than 17 Mb (FROH>17). Additionally, the three inbreeding coefficients implemented in the Plink software (FHAT1-3) were estimated. Inbreeding depression was estimated using linear mixed-effects model with inbreeding coefficients used as covariates. All analysed traits (birth weight, preweaning average daily gain, weaning weight adjusted at 180 days, carcass weight, calving ease, age at first calving, calving interval) showed a statistically significant non-zero effect of inbreeding depression estimated from the pedigree group, except for the Postweaning Average Daily Gain trait. When inbreeding coefficients were based on the genomic group, statistically significant inbreeding depression was observed for two traits, Preweaning Average Daily Gain and Weaning Weight based on FROH, FROH>17, and FHAT3 inbreeding coefficients. Nevertheless, similar to inbreeding depression estimated based on pedigree information, estimates of inbreeding depression based on genomic information had no relevant economic impact. Despite this, from a long-term perspective, genotyped data could be included to maximize genetic progress in genetic programs following an optimal genetic contribution strategy and to consider individual inbreeding load instead global inbreeding. ROH islands were identified on chromosomes 2, 3, 8, 10, and 16. Such regions contain several candidate genes for growth development, intramuscular fat, body weight and lipid metabolism that are related to production traits selected in Asturiana de los Valles breed.
Collapse
Affiliation(s)
- Oscar Cortes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Cañon
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Sara Andrino
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - María Fernanadez
- Asociación Española de Criadores de Ganado Vacuno Selecto de la Raza Asturiana de los Valles, Llanera, Spain
| | - Carlos Carleos
- Departamento Estadística e Investigación Operativa, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
104
|
Mugambe J, Ahmed RH, Thaller G, Schmidtmann C. Impact of inbreeding on production, fertility, and health traits in German Holstein dairy cattle utilizing various inbreeding estimators. J Dairy Sci 2024; 107:4714-4725. [PMID: 38310961 DOI: 10.3168/jds.2023-23728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
In dairy cattle production, it is important to understand how inbreeding affects production, fertility, and health traits. However, there is still limited use of genomic information to estimate inbreeding, despite advancements in genotyping technologies. To address this gap, we investigated the effect of inbreeding on German Holstein dairy cattle using both pedigree-based and genomic-based inbreeding estimators. We employed one method based on pedigree information (Fped) together with 6 genomic-based methods, including 3 genome-wide complex trait analysis software estimators (Fhat1, Fhat2, Fhat3), VanRaden's first method (FVR1, with observed allele frequencies, and FVR0.5, when allele frequencies are set to 0.5), and one based on runs of homozygosity (Froh). Data from 24,489 cows with both phenotypes and genotypes were used, with a pedigree including 232,780 animals born between 1970 and 2018. We analyzed the effects of inbreeding depression on production, fertility, and health traits separately, using single-trait linear animal models as well as threshold models to account for the binary nature of the health traits. For the health traits, we transformed solutions from the liability scale to a probability scale for easier interpretation. Our results showed that the mean inbreeding coefficients from all estimators ranged from -0.003 to 0.243, with negative values observed for most genomic-based methods. We found out that a 1% increase in inbreeding caused a depression ranging from 25.94 kg (Fhat1) to 40.62 kg (Fhat3), 1.18 kg (Fhat2) to 1.70 kg (Fhat3), 0.90 kg (Fhat2) to 1.45 kg (Froh and Fhat3), 0.19 (Fped) to 0.34 d (Fhat3) for 305-d milk yield, fat, protein, and calving interval, respectively. The health traits showed very slight gradual changes when inbreeding was increased steadily from 0% to 50%, with digital dermatitis showing a rather contrasting trend to that of mastitis, which increased the more an animal was inbred. Overall, our study highlights the importance of considering both pedigree-based and genomic-based inbreeding estimators when assessing the impact on inbreeding, emphasizing that not all inbreeding is harmful.
Collapse
Affiliation(s)
- Julius Mugambe
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany.
| | - Rana H Ahmed
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Georg Thaller
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| | - Christin Schmidtmann
- Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany; IT-Solutions for Animal Production (vit), 27283 Verden, Germany
| |
Collapse
|
105
|
Lawson JM, Shilton CA, Lindsay-McGee V, Psifidi A, Wathes DC, Raudsepp T, de Mestre AM. Does inbreeding contribute to pregnancy loss in Thoroughbred horses? Equine Vet J 2024; 56:711-718. [PMID: 38221707 DOI: 10.1111/evj.14057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/29/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND Excessive inbreeding increases the probability of uncovering homozygous recessive genotypes and has been associated with an increased risk of retained placenta and lower semen quality. No genomic analysis has investigated the association between inbreeding levels and pregnancy loss. OBJECTIVES To compare genetic inbreeding coefficients (F) of naturally occurring Thoroughbred Early Pregnancy Loss (EPLs), Mid and Late term Pregnancy Loss (MLPL) and Controls. The F value was hypothesised to be higher in cases of pregnancy loss (EPLs and MLPLs) than Controls. STUDY DESIGN Observational case-control study. METHODS Allantochorion and fetal DNA from EPL (n = 37, gestation age 14-65 days), MLPL (n = 94, gestational age 70 days-24 h post parturition) and Controls (n = 58) were genotyped on the Axiom Equine 670K SNP Genotyping Array. Inbreeding coefficients using Runs of Homozygosity (FROH) were calculated using PLINK software. ROHs were split into size categories to investigate the recency of inbreeding. RESULTS MLPLs had significantly higher median number of ROH (188 interquartile range [IQR], 180.8-197.3), length of ROH (3.10, IQR 2.93-3.33), and total number of ROH (590.8, IQR 537.3-632.3), and FROH (0.26, IQR 0.24-0.28) when compared with the Controls and the EPLs (p < 0.05). There was no significant difference in any of the inbreeding indices between the EPLs and Controls. The MLPLs had a significantly higher proportion of long (>10 Mb) ROH (2.5%, IQR 1.6-3.6) than the Controls (1.7%, IQR 0.6-2.5), p = 0.001. No unique ROHs were found in the EPL or MLPL populations. MAIN LIMITATIONS SNP-array data does not allow analysis of every base in the sequence. CONCLUSIONS This first study of the effect of genomic inbreeding levels on pregnancy loss showed that inbreeding is a contributor to MLPL, but not EPL in the UK Thoroughbred population. Mating choices remain critical, because inbreeding may predispose to MLPL by increasing the risk of homozygosity for specific lethal allele(s).
Collapse
Affiliation(s)
- Jessica M Lawson
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Charlotte A Shilton
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| | - Victoria Lindsay-McGee
- Department of Clinical Science and Services, The Royal Veterinary College, University of London, London, UK
| | - Androniki Psifidi
- Department of Clinical Science and Services, The Royal Veterinary College, University of London, London, UK
| | - D Claire Wathes
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield, UK
| | - Terje Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Amanda M de Mestre
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
| |
Collapse
|
106
|
Puga M, Serrano JG, García EL, González Carracedo MA, Jiménez-Canino R, Pino-Yanes M, Karlsson R, Sullivan PF, Fregel R. El Hierro Genome Study: A Genomic and Health Study in an Isolated Canary Island Population. J Pers Med 2024; 14:626. [PMID: 38929847 PMCID: PMC11204744 DOI: 10.3390/jpm14060626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
El Hierro is the smallest and westernmost island of the Canary Islands, whose population derives from an admixture of different ancestral components and that has been subjected to genetic isolation. We established the "El Hierro Genome Study" to characterize the health status and the genetic composition of ~10% of the current population of the island, accounting for a total of 1054 participants. Detailed demographic and clinical data and a blood sample for DNA extraction were obtained from each participant. Genomic genotyping was performed with the Global Screening Array (Illumina). The genetic composition of El Hierro was analyzed in a subset of 416 unrelated individuals by characterizing the mitochondrial DNA (mtDNA) and Y-chromosome haplogroups and performing principal component analyses (PCAs). In order to explore signatures of isolation, runs of homozygosity (ROHs) were also estimated. Among the participants, high blood pressure, hypercholesterolemia, and diabetes were the most prevalent conditions. The most common mtDNA haplogroups observed were of North African indigenous origin, while the Y-chromosome ones were mainly European. The PCA showed that the El Hierro population clusters near 1000 Genomes' European population but with a shift toward African populations. Moreover, the ROH analysis revealed some individuals with an important portion of their genomes with ROHs exceeding 400 Mb. Overall, these results confirmed that the "El Hierro Genome" cohort offers an opportunity to study the genetic basis of several diseases in an unexplored isolated population.
Collapse
Affiliation(s)
- Marta Puga
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Javier G. Serrano
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - Elsa L. García
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
| | - Mario A. González Carracedo
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- Genetics Laboratory, Institute of Tropical Diseases and Public Health of the Canary Islands (IUETSPC), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Rubén Jiménez-Canino
- Genomics Service, Servicio General de Apoyo a la Investigación, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| | - María Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (M.P.); (E.L.G.); (M.A.G.C.); (M.P.-Y.)
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
| | - Patrick F. Sullivan
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 77 Stockholm, Sweden; (R.K.); (P.F.S.)
- Departments of Genetics and Psychiatry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rosa Fregel
- Evolution, Paleogenomics and Population Genetics Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain;
| |
Collapse
|
107
|
Steux C, Szpiech ZA. The Maintenance of Deleterious Variation in Wild Chinese Rhesus Macaques. Genome Biol Evol 2024; 16:evae115. [PMID: 38795368 PMCID: PMC11157460 DOI: 10.1093/gbe/evae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 05/27/2024] Open
Abstract
Understanding how deleterious variation is shaped and maintained in natural populations is important in conservation and evolutionary biology, as decreased fitness caused by these deleterious mutations can potentially lead to an increase in extinction risk. It is known that demographic processes can influence these patterns. For example, population bottlenecks and inbreeding increase the probability of inheriting identical-by-descent haplotypes from a recent common ancestor, creating long tracts of homozygous genotypes called runs of homozygosity (ROH), which have been associated with an accumulation of mildly deleterious homozygotes. Counterintuitively, positive selection can also maintain deleterious variants in a population through genetic hitchhiking. Here, we analyze the whole genomes of 79 wild Chinese rhesus macaques across five subspecies and characterize patterns of deleterious variation with respect to ROH and signals of recent positive selection. We show that the fraction of homozygotes occurring in long ROH is significantly higher for deleterious homozygotes than tolerated ones, whereas this trend is not observed for short and medium ROH. This confirms that inbreeding, by generating these long tracts of homozygosity, is the main driver of the high burden of homozygous deleterious alleles in wild macaque populations. Furthermore, we show evidence that homozygous LOF variants are being purged. Next, we identify seven deleterious variants at high frequency in regions putatively under selection near genes involved with olfaction and other processes. Our results shed light on how evolutionary processes can shape the distribution of deleterious variation in wild nonhuman primates.
Collapse
Affiliation(s)
- Camille Steux
- Department of Biology, Pennsylvania State University, University Park, USA
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3—Paul Sabatier (UT3), Toulouse, France
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, University Park, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, USA
| |
Collapse
|
108
|
Zhao H, Guo X, Wang W, Wang Z, Rawson P, Wilbur A, Hare M. Consequences of domestication in eastern oyster: Insights from whole genomic analyses. Evol Appl 2024; 17:e13710. [PMID: 38817396 PMCID: PMC11134191 DOI: 10.1111/eva.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Selective breeding for production traits has yielded relatively rapid successes with high-fecundity aquaculture species. Discovering the genetic changes associated with selection is an important goal for understanding adaptation and can also facilitate better predictions about the likely fitness of selected strains if they escape aquaculture farms. Here, we hypothesize domestication as a genetic change induced by inadvertent selection in culture. Our premise is that standardized culture protocols generate parallel domestication effects across independent strains. Using eastern oyster as a model and a newly developed 600K SNP array, this study tested for parallel domestication effects in multiple independent selection lines compared with their progenitor wild populations. A single contrast was made between pooled selected strains (1-17 generations in culture) and all wild progenitor samples combined. Population structure analysis indicated rank order levels of differentiation as [wild - wild] < [wild - cultured] < [cultured - cultured]. A genome scan for parallel adaptation to the captive environment applied two methodologically distinct outlier tests to the wild versus selected strain contrast and identified a total of 1174 candidate SNPs. Contrasting wild versus selected strains revealed the early evolutionary consequences of domestication in terms of genomic differentiation, standing genetic diversity, effective population size, relatedness, runs of homozygosity profiles, and genome-wide linkage disequilibrium patterns. Random Forest was used to identify 37 outlier SNPs that had the greatest discriminatory power between bulked wild and selected oysters. The outlier SNPs were in genes enriched for cytoskeletal functions, hinting at possible traits under inadvertent selection during larval culture or pediveliger setting at high density. This study documents rapid genomic changes stemming from hatchery-based cultivation of eastern oysters, identifies candidate loci responding to domestication in parallel among independent aquaculture strains, and provides potentially useful genomic resources for monitoring interbreeding between farm and wild oysters.
Collapse
Affiliation(s)
- Honggang Zhao
- Department of Natural Resources & the EnvironmentCornell UniversityIthacaNew YorkUSA
- Present address:
Center for Aquaculture TechnologySan DiegoCaliforniaUSA
| | - Ximing Guo
- Haskin Shellfish Research LaboratoryRutgers UniversityPort NorrisNew JerseyUSA
| | - Wenlu Wang
- Department of Computer SciencesTexas A&M University‐Corpus ChristiCorpus ChristiTexasUSA
| | - Zhenwei Wang
- Haskin Shellfish Research LaboratoryRutgers UniversityPort NorrisNew JerseyUSA
| | - Paul Rawson
- School of Marine SciencesUniversity of MaineOronoMaineUSA
| | - Ami Wilbur
- Shellfish Research Hatchery, Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| | - Matthew Hare
- Department of Natural Resources & the EnvironmentCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
109
|
Paijmans AJ, Berthelsen AL, Nagel R, Christaller F, Kröcker N, Forcada J, Hoffman JI. Little evidence of inbreeding depression for birth mass, survival and growth in Antarctic fur seal pups. Sci Rep 2024; 14:12610. [PMID: 38824161 PMCID: PMC11144264 DOI: 10.1038/s41598-024-62290-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024] Open
Abstract
Inbreeding depression, the loss of offspring fitness due to consanguineous mating, is generally detrimental for individual performance and population viability. We investigated inbreeding effects in a declining population of Antarctic fur seals (Arctocephalus gazella) at Bird Island, South Georgia. Here, localised warming has reduced the availability of the seal's staple diet, Antarctic krill, leading to a temporal increase in the strength of selection against inbred offspring, which are increasingly failing to recruit into the adult breeding population. However, it remains unclear whether selection operates before or after nutritional independence at weaning. We therefore used microsatellite data from 885 pups and their mothers, and SNP array data from 98 mother-offspring pairs, to quantify the effects of individual and maternal inbreeding on three important neonatal fitness traits: birth mass, survival and growth. We did not find any clear or consistent effects of offspring or maternal inbreeding on any of these traits. This suggests that selection filters inbred individuals out of the population as juveniles during the time window between weaning and recruitment. Our study brings into focus a poorly understood life-history stage and emphasises the importance of understanding the ecology and threats facing juvenile pinnipeds.
Collapse
Affiliation(s)
- A J Paijmans
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany.
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany.
| | - A L Berthelsen
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - R Nagel
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
- Centre for Biological Diversity, University of St. Andrews, St Andrews, KY16 9TH, UK
| | - F Christaller
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - N Kröcker
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
| | - J Forcada
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - J I Hoffman
- Department of Evolutionary Population Genetics, Bielefeld University, 33615, Bielefeld, Germany
- Department of Animal Behaviour, Bielefeld University, 33501, Bielefeld, Germany
- British Antarctic Survey, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Joint Institute for Individualisation in a Changing Environment (JICE), Bielefeld University and University of Münster, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Faculty of Biology, Bielefeld University, 33615, Bielefeld, Germany
| |
Collapse
|
110
|
An ZX, Shi LG, Hou GY, Zhou HL, Xun WJ. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal 2024; 18:101147. [PMID: 38843669 DOI: 10.1016/j.animal.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 06/22/2024] Open
Abstract
Understanding the genetic characteristics of indigenous goat breeds is crucial for their conservation and breeding efforts. Hainan black goats, as a native breed of south China's tropical island province of Hainan, possess distinctive traits such as black hair, a moderate growth rate, good meat quality, and small body size. However, they exhibit exceptional resilience to rough feeding conditions, possess high-quality meat, and show remarkable resistance to stress and heat. In this study, we resequenced the whole genome of Hainan black goats to study the economic traits and genetic basis of these goats, we leveraged whole-genome sequencing data from 33 Hainan black goats to analyze single nucleotide polymorphism (SNP) density, Runs of homozygosity (ROH), Integrated Haplotype Score (iHS), effective population size (Ne), Nucleotide diversity Analysis (Pi) and selection characteristics. Our findings revealed that Hainan black goats harbor a substantial degree of genetic variation, with a total of 23 608 983 SNPs identified. Analysis of ROHs identified 53 710 segments, predominantly composed of short fragments, with inbreeding events mainly occurring in ancient ancestors, the estimates of inbreeding based on ROH in Hainan black goats typically exhibit moderate values ranging from 0.107 to 0.186. This is primarily attributed to significant declines in the effective population size over recent generations. Moreover, we identified 921 candidate genes within the intersection candidate region of ROH and iHS. Several of these genes are associated with crucial traits such as immunity (PTPRC, HYAL1, HYAL2, HYAL3, CENPE and PKN1), heat tolerance (GNG2, MAPK8, CAPN2, SLC1A1 and LEPR), meat quality (ACOX1, SSTR1, CAMK2B, PPP2CA and PGM1), cashmere production (AKT4, CHRM2, OXTR, AKT3, HMCN1 and CDK19), and stress resistance (TLR2, IFI44, ENPP1, STK3 and NFATC1). The presence of these genes may be attributed to the genetic adaptation of Hainan black goats to local climate conditions. The insights gained from this study provide valuable references and a solid foundation for the preservation, breeding, and utilization of Hainan black goats and their valuable genetic resources.
Collapse
Affiliation(s)
- Z X An
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - L G Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - G Y Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - H L Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - W J Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
111
|
Zhao F, Xie R, Fang L, Xiang R, Yuan Z, Liu Y, Wang L. Analysis of 206 whole-genome resequencing reveals selection signatures associated with breed-specific traits in Hu sheep. Evol Appl 2024; 17:e13697. [PMID: 38911262 PMCID: PMC11192971 DOI: 10.1111/eva.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 01/02/2024] [Accepted: 04/13/2024] [Indexed: 06/25/2024] Open
Abstract
As an invaluable Chinese sheep germplasm resource, Hu sheep are renowned for their high fertility and beautiful wavy lambskins. Their distinctive characteristics have evolved over time through a combination of artificial and natural selection. Identifying selection signatures in Hu sheep can provide a straightforward insight into the mechanism of selection and further uncover the candidate genes associated with breed-specific traits subject to selection. Here, we conducted whole-genome resequencing on 206 Hu sheep individuals, each with an approximate 6-fold depth of coverage. And then we employed three complementary approaches, including composite likelihood ratio, integrated haplotype homozygosity score and the detection of runs of homozygosity, to detect selection signatures. In total, 10 candidate genomic regions displaying selection signatures were simultaneously identified by multiple methods, spanning 88.54 Mb. After annotating, these genomic regions harbored collectively 92 unique genes. Interestingly, 32 candidate genes associated with reproduction were distributed in nine genomic regions detected. Out of them, two stood out as star candidates: BMPR1B and GNRH2, both of which have documented associations with fertility, and a HOXA gene cluster (HOXA1-5, HOXA9, HOXA10, HOXA11 and HOXA13) had also been linked to fertility. Additionally, we identified other genes that are related to hair follicle development (LAMTOR3, EEF1A2), ear size (HOXA1, KCNQ2), fat tail formation (HOXA10, HOXA11), growth and development (FAF1, CCNDBP1, GJB2, GJA3), fat deposition (ACOXL, JAZF1, HOXA3, HOXA4, HOXA5, EBF4), immune (UBR1, FASTKD5) and feed intake (DAPP1, RNF17, NPBWR2). Our results offer novel insights into the genetic mechanisms underlying the selection of breed-specific traits in Hu sheep and provide a reference for sheep genetic improvement programs.
Collapse
Affiliation(s)
- Fuping Zhao
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
| | - Rui Xie
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
- Department of Animal Genetics, Breeding and Reproduction, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Lingzhao Fang
- Center for Quantitative Genetics and GenomicsAarhus UniversityAarhusDenmark
| | - Ruidong Xiang
- Faculty of Veterinary and Agricultural ScienceThe University of MelbourneParkvilleVictoriaAustralia
| | - Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of EducationYangzhou UniversityYangzhouChina
| | - Yang Liu
- Department of Animal Genetics, Breeding and Reproduction, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Lixian Wang
- State Key Laboratory of Animal Biotech BreedingInstitute of Animal Science, Chinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
112
|
Giovannini S, Chessari G, Riggio S, Marletta D, Sardina MT, Mastrangelo S, Sarti FM. Insight into the current genomic diversity, conservation status and population structure of Tunisian Barbarine sheep breed. Front Genet 2024; 15:1379086. [PMID: 38881792 PMCID: PMC11176520 DOI: 10.3389/fgene.2024.1379086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Local livestock breeds play a crucial role in global biodiversity, connecting natural and human-influenced environments and contributing significantly to ecosystem services. While commercial breeds dominate industrial systems, local livestock breeds in developing countries, like Barbarine sheep in Tunisia, are vital for food security and community maintenance. The Tunisian Barbarine sheep, known for its adaptability and distinctive fat-tailed morphology, faces challenges due to historical crossbreeding. In this study, the Illumina Ovine SNP50K BeadChip array was used to perform a genome-wide characterization of Tunisian Barbarine sheep to investigate its genetic diversity, the genome structure, and the relationship within the context of Mediterranean breeds. The results show moderate genetic diversity and low inbreeding. Runs of Homozygosity analysis find genomic regions linked to important traits, including fat tail characteristics. Genomic relationship analysis shows proximity to Algerian thin-tailed breeds, suggesting crossbreeding impacts. Admixture analysis reveals unique genetic patterns, emphasizing the Tunisian Barbarine's identity within the Mediterranean context and its closeness to African breeds. Current results represent a starting point for the creation of monitoring and conservation plans. In summary, despite genetic dilution due to crossbreeding, the identification of genomic regions offers crucial insights for conservation. The study confirms the importance of preserving unique genetic characteristics of local breeds, particularly in the face of ongoing crossbreeding practices and environmental challenges. These findings contribute valuable insights for the sustainable management of this unique genetic reservoir, supporting local economies and preserving sheep species biodiversity.
Collapse
Affiliation(s)
- Samira Giovannini
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| | - Giorgio Chessari
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Silvia Riggio
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Donata Marletta
- Dipartimento Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Maria Teresa Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Salvatore Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Francesca Maria Sarti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, University of Perugia, Perugia, Italy
| |
Collapse
|
113
|
Sheriff O, Ahbara AM, Haile A, Alemayehu K, Han JL, Mwacharo JM. Whole-genome resequencing reveals genomic variation and dynamics in Ethiopian indigenous goats. Front Genet 2024; 15:1353026. [PMID: 38854428 PMCID: PMC11156998 DOI: 10.3389/fgene.2024.1353026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Ethiopia has about 52 million indigenous goats with marked phenotypic variability, which is the outcome of natural and artificial selection. Here, we obtained whole-genome sequence data of three Ethiopian indigenous goat populations (Arab, Fellata, and Oromo) from northwestern Ethiopia and analyzed their genome-wide genetic diversity, population structure, and signatures of selection. We included genotype data from four other Ethiopian goat populations (Abergelle, Keffa, Gumuz, and Woyto-Guji) and goats from Asia; Europe; and eastern, southern, western, and northern Africa to investigate the genetic predisposition of the three Ethiopian populations and performed comparative genomic analysis. Genetic diversity analysis showed that Fellata goats exhibited the lowest heterozygosity values (Ho = 0.288 ± 0.005 and He = 0.334 ± 0.0001). The highest values were observed in Arab goats (Ho = 0.310 ± 0.010 and He = 0.347 ± 4.35e-05). A higher inbreeding coefficient (FROH = 0.137 ± 0.016) was recorded for Fellata goats than the 0.105 ± 0.030 recorded for Arab and the 0.112 ± 0.034 recorded for Oromo goats. This indicates that the Fellata goat population should be prioritized in future conservation activities. The three goat populations showed the majority (∼63%) of runs of homozygosity in the shorter (100-150 Kb) length category, illustrating ancient inbreeding and/or small founder effects. Population relationship and structure analysis separated the Ethiopian indigenous goats into two distinct genetic clusters lacking phylogeographic structure. Arab, Fellata, Oromo, Abergelle, and Keffa represented one genetic cluster. Gumuz and Woyto-Guji formed a separate cluster and shared a common genetic background with the Kenyan Boran goat. Genome-wide selection signature analysis identified nine strongest regions spanning 163 genes influencing adaptation to arid and semi-arid environments (HOXC12, HOXC13, HOXC4, HOXC6, and HOXC9, MAPK8IP2), immune response (IL18, TYK2, ICAM3, ADGRG1, and ADGRG3), and production and reproduction (RARG and DNMT1). Our results provide insights into a thorough understanding of genetic architecture underlying selection signatures in Ethiopian indigenous goats in a semi-arid tropical environment and deliver valuable information for goat genetic improvement, conservation strategy, genome-wide association study, and marker-assisted breeding.
Collapse
Affiliation(s)
- Oumer Sheriff
- Department of Animal Science, Assosa University, Assosa, Ethiopia
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
| | - Abulgasim M. Ahbara
- Department of Zoology, Faculty of Sciences, Misurata University, Misurata, Libya
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
| | - Aynalem Haile
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| | - Kefyalew Alemayehu
- Department of Animal Production and Technology, Bahir Dar University, Bahir Dar, Ethiopia
- Biotechnology Research Institute, Bahir Dar University, Bahir Dar, Ethiopia
- Ethiopian Agricultural Transformation Institute, Amhara Agricultural Transformation Center, Bahir Dar, Ethiopia
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Livestock Genetics Program, International Livestock Research Institute, Nairobi, Kenya
| | - Joram M. Mwacharo
- Animal and Veterinary Sciences Scotland's Rural College (SRUC) and The Centre for Tropical Livestock Genetics and Health (CTLGH), The Roslin Institute Building, Edinburgh, United Kingdom
- Resilient Agricultural Livelihood Systems Program (RALSP), International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
| |
Collapse
|
114
|
Tan X, Liu L, Dong J, Huang M, Zhang J, Li Q, Wang H, Bai L, Cui M, Zhou Z, Wu D, Xiang Y, Li W, Wang D. Genome-wide detections for runs of homozygosity and selective signatures reveal novel candidate genes under domestication in chickens. BMC Genomics 2024; 25:485. [PMID: 38755540 PMCID: PMC11097469 DOI: 10.1186/s12864-024-10349-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Indigenous chickens were developed through a combination of natural and artificial selection; essentially, changes in genomes led to the formation of these modern breeds via admixture events. However, their confusing genetic backgrounds include a genomic footprint regulating complex traits, which is not conducive to modern animal breeding. RESULTS To better evaluate the candidate regions under domestication in indigenous chickens, we considered both runs of homozygosity (ROHs) and selective signatures in 13 indigenous chickens. The genomes of Silkie feather chickens presented the highest heterozygosity, whereas the highest inbreeding status and ROH number were found in Luhua chickens. Short ROH (< 1 Mb), were the principal type in all chickens. A total of 291 ROH islands were detected, and QTLdb mapping results indicated that body weight and carcass traits were the most important traits. An ROH on chromosome 2 covering VSTM2A gene was detected in 12 populations. Combined analysis with the Tajima's D index revealed that 18 genes (e.g., VSTM2A, BBOX1, and RYR2) were under selection and covered by ROH islands. Transcriptional analysis results showed that RYR2 and BBOX1 were specifically expressed in the heart and muscle tissue, respectively. CONCLUSION Based on genome-wide scanning for ROH and selective signatures, we evaluated the genomic characteristics and detected significant candidate genes covered by ROH islands and selective signatures. The findings in this study facilitated the understanding of genetic diversity and provided valuable insights for chicken breeding and conservation strategies.
Collapse
Affiliation(s)
- Xiaodong Tan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Lu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Jinhua Jinfan Feed Co., Ltd, Jinhua, Zhejiang, 321000, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Minjie Huang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jiawen Zhang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Qinghai Li
- Animal Husbandry Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Huanhuan Wang
- Animal Husbandry Institute, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Lijuan Bai
- Zhejiang Animal Husbandry Technology Extension and Breeding Livestock and Poultry Monitoring Station, Hangzhou, 310020, China
| | - Ming Cui
- Zhejiang Animal Husbandry Technology Extension and Breeding Livestock and Poultry Monitoring Station, Hangzhou, 310020, China
| | - Zhenzhen Zhou
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - De Wu
- Postdoctoral Research Station, Jinhua Development Zone, Jinhua, Zhejiang, 321000, China
| | - Yun Xiang
- Jinhua Jinfan Feed Co., Ltd, Jinhua, Zhejiang, 321000, China.
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Deqian Wang
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
115
|
Zhong T, Hou D, Zhao Q, Zhan S, Wang L, Li L, Zhang H, Zhao W, Yang S, Niu L. Comparative whole-genome resequencing to uncover selection signatures linked to litter size in Hu Sheep and five other breeds. BMC Genomics 2024; 25:480. [PMID: 38750582 PMCID: PMC11094944 DOI: 10.1186/s12864-024-10396-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Hu sheep (HS), a breed of sheep carrying the FecB mutation gene, is known for its "year-round estrus and multiple births" and is an ideal model for studying the high fecundity mechanisms of livestock. Through analyzing and comparing the genomic selection features of Hu sheep and other sheep breeds, we identified a series of candidate genes that may play a role in Hu sheep's high fecundity mechanisms. In this study, we conducted whole-genome resequencing on six breeds and screened key mutations significantly correlated with high reproductive traits in sheep. Notably, the CC2D1B gene was selected by the fixation index (FST) and the cross-population composite likelihood ratio (XP-CLR) methods in HS and other five breeds. It was worth noting that the CC2D1B gene in HS was different from that in other sheep breeds, and seven missense mutations have been identified. Furthermore, the linkage disequilibrium (LD) analysis revealed a strong linkage disequilibrium in this specific gene region. Subsequently, by performing different grouping based on FecB genotypes in Hu sheep, genome-wide selective signal analysis screened several genes related to reproduction, such as BMPR1B and PPM1K. Besides, FST analysis identified functional genes related to reproductive traits, including RHEB, HSPA2, PPP1CC, HVCN1, and CCDC63. Additionally, a missense mutation was found in the CCDC63 gene and the haplotype was different between the high reproduction (HR) group and low reproduction (LR) group in HS. In summary, we discovered genetic differentiation among six distinct breeding sheep breeds at the whole genome level. Additionally, we identified a set of genes which were associated with reproductive performance in Hu sheep and visualized how these genes differed in different breeds. These findings laid a theoretical foundation for understanding genetic mechanisms behind high prolific traits in sheep.
Collapse
Affiliation(s)
- Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Dunying Hou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhao
- College of Animal Science, Xichang University, Xichang, 615013, China
| | - Shizhong Yang
- Academy of Agricultural Sciences Liangshan, Xichang, 615000, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
116
|
Lavanchy E, Weir BS, Goudet J. Detecting inbreeding depression in structured populations. Proc Natl Acad Sci U S A 2024; 121:e2315780121. [PMID: 38687793 PMCID: PMC11087799 DOI: 10.1073/pnas.2315780121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Measuring inbreeding and its consequences on fitness is central for many areas in biology including human genetics and the conservation of endangered species. However, there is no consensus on the best method, neither for quantification of inbreeding itself nor for the model to estimate its effect on specific traits. We simulated traits based on simulated genomes from a large pedigree and empirical whole-genome sequences of human data from populations with various sizes and structures (from the 1,000 Genomes project). We compare the ability of various inbreeding coefficients ([Formula: see text]) to quantify the strength of inbreeding depression: allele-sharing, two versions of the correlation of uniting gametes which differ in the weight they attribute to each locus and two identical-by-descent segments-based estimators. We also compare two models: the standard linear model and a linear mixed model (LMM) including a genetic relatedness matrix (GRM) as random effect to account for the nonindependence of observations. We find LMMs give better results in scenarios with population or family structure. Within the LMM, we compare three different GRMs and show that in homogeneous populations, there is little difference among the different [Formula: see text] and GRM for inbreeding depression quantification. However, as soon as a strong population or family structure is present, the strength of inbreeding depression can be most efficiently estimated only if i) the phenotypes are regressed on [Formula: see text] based on a weighted version of the correlation of uniting gametes, giving more weight to common alleles and ii) with the GRM obtained from an allele-sharing relatedness estimator.
Collapse
Affiliation(s)
- Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne1015, Switzerland
- Population Genetics and Genomics group, Swiss Institute of Bioinformatics, University of Lausanne, LausanneCH-1015, Switzerland
| | - Bruce S. Weir
- Department of Biostatistics, University of Washington, SeattleWA98195
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne1015, Switzerland
- Population Genetics and Genomics group, Swiss Institute of Bioinformatics, University of Lausanne, LausanneCH-1015, Switzerland
| |
Collapse
|
117
|
Mezzi N, Abassi N, Fatnassi F, Abdelhak S, Romdhane L. Consanguinité et son impact sur la santé et la dynamique du génome : Un exemple de la Tunisie. LA TUNISIE MEDICALE 2024; 102:256-265. [PMID: 38801282 PMCID: PMC11358831 DOI: 10.62438/tunismed.v102i5.4787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/03/2024] [Indexed: 05/29/2024]
Abstract
The genetic disease spectrum in Tunisia arises from the founder effect, genetic drift, selection, and consanguinity. The latter represents a deviation from panmixia, characterized by a non-random matrimonial choice that may be subject to several rules, such as socio-cultural, economic, or other factors. This shifts the genetic structure away from the Hardy-Weinberg equilibrium, increasing homozygous genotypes and decreasing heterozygotes, thus raising the frequency of autosomal recessive diseases. Similar to other Arab populations, Tunisia displays high consanguinity rates that vary geographically. Approximately 60% of reported diseases in Tunisia are autosomal recessive, with consanguinity possibly occurring in 80% of families for a specific disease. In inbred populations, consanguinity amplifies autosomal recessive disease risk, yet it does not influence autosomal dominant disease likelihood but rather impacts its phenotype. Consanguinity is also suggested to be a major factor in the homozygosity of deleterious variants leading to comorbid expression. At the genome level, inbred individuals inherit homozygous mutations and adjacent genomic regions known as runs of homozygosity (ROHs). Short ROHs indicate distant inbreeding, while long ROHs refer to recent inbreeding. ROHs are distributed rather irregularly across the genome, with certain short regions featuring an excess of ROH, known as ROH islands. In this review, we discuss consanguinity's impact on population health and genome dynamics, using Tunisia as a model.
Collapse
Affiliation(s)
- Nessrine Mezzi
- Biomedical Genomics and Oncogenetics Laboratory. Institut Pasteur de Tunis, University of Tunis El Manar, Tunisia
- Department of Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Najla Abassi
- Biomedical Genomics and Oncogenetics Laboratory. Institut Pasteur de Tunis, University of Tunis El Manar, Tunisia
| | - Faten Fatnassi
- Biomedical Genomics and Oncogenetics Laboratory. Institut Pasteur de Tunis, University of Tunis El Manar, Tunisia
| | - Sonia Abdelhak
- Biomedical Genomics and Oncogenetics Laboratory. Institut Pasteur de Tunis, University of Tunis El Manar, Tunisia
| | - Lilia Romdhane
- Biomedical Genomics and Oncogenetics Laboratory. Institut Pasteur de Tunis, University of Tunis El Manar, Tunisia
- Department of Life Sciences, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
118
|
Zayas GA, Rodriguez EE, Hernandez AS, Rezende FM, Mateescu RG. Exploring genomic inbreeding and selection signatures in a commercial Brangus herd through functional annotation. J Appl Genet 2024; 65:383-394. [PMID: 38528244 DOI: 10.1007/s13353-024-00859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Composite breeds, including Brangus, are widely utilized in subtropical and tropical regions to harness the advantages of both Bos t. taurus and Bos t. indicus breeds. The formation and subsequent selection of composite breeds may result in discernible signatures of selection and shifts in genomic population structure. The objectives of this study were to 1) assess genomic inbreeding, 2) identify signatures of selection, 3) assign functional roles to these signatures in a commercial Brangus herd, and 4) contrast signatures of selection between selected and non-selected cattle from the same year. A total of 4035 commercial Brangus cattle were genotyped using the GGP-F250K array. Runs of Homozygosity (ROH) were used to identify signatures of selection and calculate genomic inbreeding. Quantitative trait loci (QTL) enrichment analysis and literature search identified phenotypic traits linked to ROH islands. Genomic inbreeding averaged 5%, primarily stemming from ancestors five or more generations back. A total of nine ROH islands were identified, QTL enrichment analysis revealed traits related to growth, milk composition, carcass, reproductive, and meat quality traits. Notably, the ROH island on BTA14 encompasses the pleiomorphic adenoma (PLAG1) gene, which has been linked to growth, carcass, and reproductive traits. Moreover, ROH islands associated with milk yield and composition were more pronounced in selected replacement heifers of the population, underscoring the importance of milk traits in cow-calf production. In summary, our research sheds light on the changing genetic landscape of the Brangus breed due to selection pressures and reveals key genomic regions impacting production traits.
Collapse
Affiliation(s)
- Gabriel A Zayas
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| | | | - Aakilah S Hernandez
- Department of Animal Science, North Carolina States University, Raleigh, NC, USA
| | - Fernanda M Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Raluca G Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
119
|
dos Santos CA, Eler JP, Oliveira ECDM, Espigolan R, Giacomini G, Ferraz JBS, Paim TDP. Selective signatures in composite MONTANA TROPICAL beef cattle reveal potential genomic regions for tropical adaptation. PLoS One 2024; 19:e0301937. [PMID: 38662691 PMCID: PMC11045132 DOI: 10.1371/journal.pone.0301937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Genomic regions related to tropical adaptability are of paramount importance for animal breeding nowadays, especially in the context of global climate change. Moreover, understanding the genomic architecture of these regions may be very relevant for aiding breeding programs in choosing the best selection scheme for tropical adaptation and/or implementing a crossbreeding scheme. The composite MONTANA TROPICAL® population was developed by crossing cattle of four different biological types to improve production in harsh environments. Pedigree and genotype data (51962 SNPs) from 3215 MONTANA TROPICAL® cattle were used to i) characterize the population structure; ii) identify signatures of selection with complementary approaches, i.e. Integrated Haplotype Score (iHS) and Runs of Homozygosity (ROH); and iii) understand genes and traits related to each selected region. The population structure based on principal components had a weak relationship with the genetic contribution of the different biological types. Clustering analyses (ADMIXTURE) showed different clusters according to the number of generations within the composite population. Considering results of both selection signatures approaches, we identified only one consensus region on chromosome 20 (35399405-40329703 bp). Genes in this region are related to immune function, regulation of epithelial cell differentiation, and cell response to ionizing radiation. This region harbors the slick locus which is related to slick hair and epidermis anatomy, both of which are related to heat stress adaptation. Also, QTLs in this region were related to feed intake, milk yield, mastitis, reproduction, and slick hair coat. The signatures of selection detected here arose in a few generations after crossbreeding between contrasting breeds. Therefore, it shows how important this genomic region may be for these animals to thrive in tropical conditions. Further investigations on sequencing this region can identify candidate genes for animal breeding and/or gene editing to tackle the challenges of climate change.
Collapse
Affiliation(s)
- Camila Alves dos Santos
- Programa de Pós-graduação em Zootecnia, Instituto Federal de Ciência, Educação e Tecnologia Goiano, Rio Verde, Goiás, Brazil
| | - Joanir Pereira Eler
- Departamento de Zootecnia, Faculdade de Zootecnia e Engenharia de alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Rafael Espigolan
- Departamento de Zootecnia, Faculdade de Zootecnia e Engenharia de alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Gabriela Giacomini
- Associação Internacional de criadores de Montana, Mogi Mirim, São Paulo, Brazil
| | - José Bento Sterman Ferraz
- Departamento de Zootecnia, Faculdade de Zootecnia e Engenharia de alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Tiago do Prado Paim
- Programa de Pós-graduação em Zootecnia, Instituto Federal de Ciência, Educação e Tecnologia Goiano, Rio Verde, Goiás, Brazil
| |
Collapse
|
120
|
Steux C, Szpiech ZA. The Maintenance of Deleterious Variation in Wild Chinese Rhesus Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560901. [PMID: 38712222 PMCID: PMC11071285 DOI: 10.1101/2023.10.04.560901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Understanding how deleterious variation is shaped and maintained in natural populations is important in conservation and evolutionary biology, as decreased fitness caused by these deleterious mutations can potentially lead to an increase in extinction risk. It is known that demographic processes can influence these patterns. For example, population bottlenecks and inbreeding increase the probability of inheriting identical-by-descent haplotypes from a recent common ancestor, creating long tracts of homozygous genotypes called runs of homozygosity (ROH), which have been associated with an accumulation of mildly deleterious homozygotes. Counter intuitively, positive selection can also maintain deleterious variants in a population through genetic hitchhiking. Here we analyze the whole genomes of 79 wild Chinese rhesus macaques across five subspecies and characterize patterns of deleterious variation with respect to ROH and signals of recent positive selection. We show that the fraction of homozygotes occurring in long ROH is significantly higher for deleterious homozygotes than tolerated ones, whereas this trend is not observed for short and medium ROH. This confirms that inbreeding, by generating these long tracts of homozygosity, is the main driver of the high burden of homozygous deleterious alleles in wild macaque populations. Furthermore, we show evidence that homozygous LOF variants are being purged. Next, we identify 7 deleterious variants at high frequency in regions putatively under selection near genes involved with olfaction and other processes. Our results shed light on how evolutionary processes can shape the distribution of deleterious variation in wild non-human primates.
Collapse
Affiliation(s)
- Camille Steux
- Department of Biology, Pennsylvania State University, USA
- Centre de Recherche sur la Biodiversité et l’Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 – Paul Sabatier (UT3), Toulouse, France
- Département de Biologie, École Normale Supérieure, PSL Université Paris, Paris, France
| | - Zachary A. Szpiech
- Department of Biology, Pennsylvania State University, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, USA
| |
Collapse
|
121
|
Zhao Q, Huang C, Chen Q, Su Y, Zhang Y, Wang R, Su R, Xu H, Liu S, Ma Y, Zhao Q, Ye S. Genomic Inbreeding and Runs of Homozygosity Analysis of Cashmere Goat. Animals (Basel) 2024; 14:1246. [PMID: 38672394 PMCID: PMC11047310 DOI: 10.3390/ani14081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Cashmere goats are valuable genetic resources which are famous worldwide for their high-quality fiber. Runs of homozygosity (ROHs) have been identified as an efficient tool to assess inbreeding level and identify related genes under selection. However, there is limited research on ROHs in cashmere goats. Therefore, we investigated the ROH pattern, assessed genomic inbreeding levels and examined the candidate genes associated with the cashmere trait using whole-genome resequencing data from 123 goats. Herein, the Inner Mongolia cashmere goat presented the lowest inbreeding coefficient of 0.0263. In total, we identified 57,224 ROHs. Seventy-four ROH islands containing 50 genes were detected. Certain identified genes were related to meat, fiber and milk production (FGF1, PTPRM, RERE, GRID2, RARA); fertility (BIRC6, ECE2, CDH23, PAK1); disease or cold resistance and adaptability (PDCD1LG2, SVIL, PRDM16, RFX4, SH3BP2); and body size and growth (TMEM63C, SYN3, SDC1, STRBP, SMG6). 135 consensus ROHs were identified, and we found candidate genes (FGF5, DVL3, NRAS, KIT) were associated with fiber length or color. These findings enhance our comprehension of inbreeding levels in cashmere goats and the genetic foundations of traits influenced by selective breeding. This research contributes significantly to the future breeding, reservation and use of cashmere goats and other goat breeds.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (C.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Chang Huang
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (C.H.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yingxiao Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yanjun Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (R.W.); (R.S.)
| | - Ruijun Wang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (R.W.); (R.S.)
| | - Rui Su
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (Y.Z.); (R.W.); (R.S.)
| | - Huijuan Xu
- Chifeng Hanshan White Cashmere Goat Breeding Farm, Chifeng 024506, China; (H.X.); (S.L.)
| | - Shucai Liu
- Chifeng Hanshan White Cashmere Goat Breeding Farm, Chifeng 024506, China; (H.X.); (S.L.)
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Shaohui Ye
- Department of Animal Breeding and Reproduction, College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Q.Z.); (C.H.)
| |
Collapse
|
122
|
Khan H, Harripaul R, Mikhailov A, Herzi S, Bowers S, Ayub M, Shabbir MI, Vincent JB. Biallelic variants identified in 36 Pakistani families and trios with autism spectrum disorder. Sci Rep 2024; 14:9230. [PMID: 38649688 PMCID: PMC11035605 DOI: 10.1038/s41598-024-57942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
With its high rate of consanguineous marriages and diverse ethnic population, little is currently understood about the genetic architecture of autism spectrum disorder (ASD) in Pakistan. Pakistan has a highly ethnically diverse population, yet with a high proportion of endogamous marriages, and is therefore anticipated to be enriched for biallelic disease-relate variants. Here, we attempt to determine the underlying genetic abnormalities causing ASD in thirty-six small simplex or multiplex families from Pakistan. Microarray genotyping followed by homozygosity mapping, copy number variation analysis, and whole exome sequencing were used to identify candidate. Given the high levels of consanguineous marriages among these families, autosomal recessively inherited variants were prioritized, however de novo/dominant and X-linked variants were also identified. The selected variants were validated using Sanger sequencing. Here we report the identification of sixteen rare or novel coding variants in fifteen genes (ARAP1, CDKL5, CSMD2, EFCAB12, EIF3H, GML, NEDD4, PDZD4, POLR3G, SLC35A2, TMEM214, TMEM232, TRANK1, TTC19, and ZNF292) in affected members in eight of the families, including ten homozygous variants in four families (nine missense, one loss of function). Three heterozygous de novo mutations were also identified (in ARAP1, CSMD2, and NEDD4), and variants in known X-linked neurodevelopmental disorder genes CDKL5 and SLC35A2. The current study offers information on the genetic variability associated with ASD in Pakistan, and demonstrates a marked enrichment for biallelic variants over that reported in outbreeding populations. This information will be useful for improving approaches for studying ASD in populations where endogamy is commonly practiced.
Collapse
Affiliation(s)
- Hamid Khan
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - Ricardo Harripaul
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Anna Mikhailov
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Sumayah Herzi
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | - Sonya Bowers
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada
| | | | - Muhammad Imran Shabbir
- Department of Biological Sciences, International Islamic University Islamabad, Islamabad, Pakistan
| | - John B Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Centre for Addiction and Mental Health, 250 College St, Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
123
|
Rajawat D, Ghildiyal K, Sonejita Nayak S, Sharma A, Parida S, Kumar S, Ghosh AK, Singh U, Sivalingam J, Bhushan B, Dutt T, Panigrahi M. Genome-wide mining of diversity and evolutionary signatures revealed selective hotspots in Indian Sahiwal cattle. Gene 2024; 901:148178. [PMID: 38242377 DOI: 10.1016/j.gene.2024.148178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The Sahiwal cattle breed is the best indigenous dairy cattle breed, and it plays a pivotal role in the Indian dairy industry. This is due to its exceptional milk-producing potential, adaptability to local tropical conditions, and its resilience to ticks and diseases. The study aimed to identify selective sweeps and estimate intrapopulation genetic diversity parameters in Sahiwal cattle using ddRAD sequencing-based genotyping data from 82 individuals. After applying filtering criteria, 78,193 high-quality SNPs remained for further analysis. The population exhibited an average minor allele frequency of 0.221 ± 0.119. Genetic diversity metrics, including observed (0.597 ± 0.196) and expected heterozygosity (0.433 ± 0.096), nucleotide diversity (0.327 ± 0.114), the proportion of polymorphic SNPs (0.726), and allelic richness (1.323 ± 0.134), indicated ample genomic diversity within the breed. Furthermore, an effective population size of 74 was observed in the most recent generation. The overall mean linkage disequilibrium (r2) for pairwise SNPs was 0.269 ± 0.057. Moreover, a greater proportion of short Runs of Homozygosity (ROH) segments were observed suggesting that there may be low levels of recent inbreeding in this population. The genomic inbreeding coefficients, computed using different inbreeding estimates (FHOM, FUNI, FROH, and FGROM), ranged from -0.0289 to 0.0725. Subsequently, we found 146 regions undergoing selective sweeps using five distinct statistical tests: Tajima's D, CLR, |iHS|, |iHH12|, and ROH. These regions, located in non-overlapping 500 kb windows, were mapped and revealed various protein-coding genes associated with enhanced immune systems and disease resistance (IFNL3, IRF8, BLK), as well as production traits (NRXN1, PLCE1, GHR). Notably, we identified interleukin 2 (IL2) on Chr17: 35217075-35223276 as a gene linked to tick resistance and uncovered a cluster of genes (HSPA8, UBASH3B, ADAMTS18, CRTAM) associated with heat stress. These findings indicate the evolutionary impact of natural and artificial selection on the environmental adaptation of the Sahiwal cattle population.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Pharmacology & Toxicology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Shive Kumar
- Department of Animal Genetics and Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - A K Ghosh
- Department of Animal Genetics and Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Umesh Singh
- ICAR Central Institute for Research on Cattle, Meerut, UP, India
| | | | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
124
|
Värv S, Põlluäär T, Sild E, Viinalass H, Kaart T. Genetic Variation and Composition of Two Commercial Estonian Dairy Cattle Breeds Assessed by SNP Data. Animals (Basel) 2024; 14:1101. [PMID: 38612340 PMCID: PMC11010984 DOI: 10.3390/ani14071101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The aims of this study were to assess the genomic relatedness of Estonian and selected European dairy cattle breeds and to examine the within-breed diversity of two Estonian dairy breeds using genome-wide SNP data. This study was based on a genotyped heifer population of the Estonian Red (ER) and Estonian Holstein (EH) breeds, including about 10% of all female cattle born in 2017-2020 (sample sizes n = 215 and n = 2265, respectively). The within-breed variation study focused on the level of inbreeding using the ROH-based inbreeding coefficient. The genomic relatedness analyses were carried out among two Estonian and nine European breeds from the WIDDE database. Admixture analysis revealed the heterogeneity of ER cattle with a mixed pattern showing several ancestral populations containing a relatively low proportion (1.5-37.0%) of each of the reference populations used. There was a higher FROH in EH (FROH = 0.115) than in ER (FROH = 0.044). Compared to ER, the long ROHs of EH indicated more closely related parents. The paternal origin of the genetic material used in breeding had a low effect on the inbreeding level. However, among EH, the highest genomic inbreeding was estimated in daughters of USA-born sires.
Collapse
Affiliation(s)
- Sirje Värv
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (T.P.); (E.S.); (H.V.)
| | | | | | | | - Tanel Kaart
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Fr. R. Kreutzwaldi 1, 51006 Tartu, Estonia; (T.P.); (E.S.); (H.V.)
| |
Collapse
|
125
|
Zhang Y, Wei Z, Zhang M, Wang S, Gao T, Huang H, Zhang T, Cai H, Liu X, Fu T, Liang D. Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data. Genes (Basel) 2024; 15:351. [PMID: 38540410 PMCID: PMC10970060 DOI: 10.3390/genes15030351] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 06/14/2024] Open
Abstract
With a rich breeding history, Nanyang cattle (NY cattle) have undergone extensive natural and artificial selection, resulting in distinctive traits such as high fertility, excellent meat quality, and disease resistance. This makes them an ideal model for studying the mechanisms of environmental adaptability. To assess the population structure and genetic diversity of NY cattle, we performed whole-genome resequencing on 30 individuals. These data were then compared with published whole-genome resequencing data from 432 cattle globally. The results indicate that the genetic structure of NY cattle is significantly different from European commercial breeds and is more similar to North-Central Chinese breeds. Furthermore, among all breeds, NY cattle exhibit the highest genetic diversity and the lowest population inbreeding levels. A genome-wide selection signal analysis of NY cattle and European commercial breeds using Fst, θπ-ratio, and θπ methods revealed significant selection signals in genes associated with reproductive performance and immunity. Our functional annotation analysis suggests that these genes may be responsible for reproduction (MAP2K2, PGR, and GSE1), immune response (NCOA2, HSF1, and PAX5), and olfaction (TAS1R3). We provide a comprehensive overview of sequence variations in the NY cattle genome, revealing insights into the population structure and genetic diversity of NY cattle. Additionally, we identify candidate genes associated with important economic traits, offering valuable references for future conservation and breeding efforts of NY cattle.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Zhitong Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Man Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Shiwei Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Tengyun Gao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Hetian Huang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Tianliu Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Xian Liu
- Henan Animal Husbandry Station, Zhengzhou 450008, China;
| | - Tong Fu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| | - Dong Liang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; (Y.Z.); (Z.W.); (M.Z.); (S.W.); (T.G.); (H.H.); (T.Z.); (H.C.); (T.F.)
| |
Collapse
|
126
|
Bazvand B, Rashidi A, Zandi MB, Moradi MH, Rostamzadeh J. Genome-wide analysis of population structure, effective population size and inbreeding in Iranian and exotic horses. PLoS One 2024; 19:e0299109. [PMID: 38442089 PMCID: PMC10914290 DOI: 10.1371/journal.pone.0299109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/05/2024] [Indexed: 03/07/2024] Open
Abstract
Population structure and genetic diversity are the key parameters to study the breeding history of animals. This research aimed to provide a characterization of the population structure and to compare the effective population size (Ne), LD decay, genetic diversity, and genomic inbreeding in Iranian native Caspian (n = 38), Turkmen (n = 24) and Kurdish (n = 29) breeds and some other exotic horses consisting of Arabian (n = 24), Fell pony (n = 21) and Akhal-Teke (n = 20). A variety of statistical population analysis techniques, such as principal component analysis (PCA), discriminant analysis of principal component (DAPC) and model-based method (STRUCTURE) were employed. The results of the population analysis clearly demonstrated a distinct separation of native and exotic horse breeds and clarified the relationships between studied breeds. The effective population size (Ne) for the last six generations was estimated 54, 49, 37, 35, 27 and 26 for the Caspian, Kurdish, Arabian, Turkmen, Akhal-Teke and Fell pony breeds, respectively. The Caspian breed showed the lowest LD with an average r2 value of 0.079, while the highest was observed in Fell pony (0.148). The highest and lowest average observed heterozygosity were found in the Kurdish breeds (0.346) and Fell pony (0.290) breeds, respectively. The lowest genomic inbreeding coefficient based on run of homozygosity (FROH) and excess of homozygosity (FHOM) was in the Caspian and Kurdish breeds, respectively, while based on genomic relationship matrix) FGRM) and correlation between uniting gametes) FUNI) the lowest genomic inbreeding coefficient was found in the Kurdish breed. The estimation of genomic inbreeding rates in the six breeds revealed that FROH yielded lower estimates compared to the other three methods. Additionally, the Iranian breeds displayed lower levels of inbreeding compared to the exotic breeds. Overall, the findings of this study provide valuable insights for the development of effective breeding management strategies aimed at preserving these horse breeds.
Collapse
Affiliation(s)
- B. Bazvand
- Department of Animal Science, Faculty of Agriculture, University of Kurdishistan, Sanandaj, Kurdishistan, Iran
| | - A. Rashidi
- Department of Animal Science, Faculty of Agriculture, University of Kurdishistan, Sanandaj, Kurdishistan, Iran
| | - M. B. Zandi
- Department of Animal Science, Faculty of Agriculture, University of Zanjan, Zanjan, Iran
| | - M. H. Moradi
- Department of Animal Science, Faculty of Agriculture and Natural Resources, Arak University, Arak, Iran
| | - J. Rostamzadeh
- Department of Animal Science, Faculty of Agriculture, University of Kurdishistan, Sanandaj, Kurdishistan, Iran
| |
Collapse
|
127
|
Santos MF, Silva MC, Freitas TMS, Dias JM, Moura MI, Juliano RS, Fioravanti CS, Carmo AS. Identification of runs of homozygosity (ROHs) in Curraleiro Pé-Duro and Pantaneiro cattle breeds. Trop Anim Health Prod 2024; 56:92. [PMID: 38430430 DOI: 10.1007/s11250-024-03933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
This study aimed to identify and characterize runs of homozygosis (ROHs), genes involved in production characteristics and adaptation to tropical systems and to estimate the inbreeding coefficient of Curraleiro Pé-Duro (CPD) and Pantaneiro (PANT), two brazilian locally adapted cattle breeds. The results demonstrated that 79.25% and 54.29% of ROH segments were bigger than 8 Mb in CPD and PANT, respectively, indicating recent inbred matings in the studied population. Six homozygosis islands were identified simultaneously in both breeds, where 175 QTLs and 1072 genes previously described as associated with production traits are located. The inbreeding coefficient (FROH) estimated based on ROHs (FROH) showed that inbreeding is low (2 to 4%), which is different from expected for small populations such as locally adapted ones.
Collapse
Affiliation(s)
- M F Santos
- School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - M C Silva
- Federal University of Grande Dourados, Grande Dourados, Dourados, MS, Brazil
| | - T M S Freitas
- Brasilia University Center of Goiás, São Luís dos Montes Belos, GO, Brazil
- Goiás State University - West Campus, São Luís de Montes Belos, GO, Brazil
| | - J M Dias
- School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - M I Moura
- Veterinary Medicine Department, Pontifical Catholic University of Goiás, Goiânia, GO, Brazil
| | - R S Juliano
- EMBRAPA - Brazilian Agricultural Research Corporation, Pantanal, MS, Brazil
| | - C S Fioravanti
- School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil
| | - A S Carmo
- School of Veterinary and Animal Science, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
128
|
Ojeda-Marín C, Gutiérrez JP, Formoso-Rafferty N, Goyache F, Cervantes I. Differential patterns in runs of homozygosity in two mice lines under divergent selection for environmental variability for birth weight. J Anim Breed Genet 2024; 141:193-206. [PMID: 37990938 DOI: 10.1111/jbg.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Runs of homozygosity (ROH) are defined as long continuous homozygous stretches in the genome which are assumed to originate from a common ancestor. It has been demonstrated that divergent selection for variability in mice is possible and that low variability in birth weight is associated with robustness. To analyse ROH patterns and ROH-based genomic inbreeding, two mouse lines that were divergently selected for birth weight variability for 26 generations were used, with: 752 individuals for the high variability line (H-Line), 766 individuals for the low variability line (L-Line) and 74 individuals as a reference population. Individuals were genotyped using the high density Affymetrix Mouse Diversity Genotyping Array. ROH were identified using both the sliding windows (SW) and the consecutive runs (CR) methods. Inbreeding coefficients were calculated based on pedigree (FPED ) information, on ROH identified using the SW method (FROHSW ) and on ROH identified using the CR method (FROHCR ). Differences in genomic inbreeding were not consistent across generations and these parameters did not show clear differences between lines. Correlations between FPED and FROH were high, particularly for FROHSW . Moreover, correlations between FROHSW and FPED were even higher when ROH were identified with no restrictions in the number of heterozygotes per ROH. The comparison of FROH estimates between either of the selected lines were based on significant differences at the chromosome level, mainly in chromosomes 3, 4, 6, 8, 11, 15 and 19. ROH-based inbreeding estimates that were computed using longer homozygous segments had a higher relationship with FPED . Differences in robustness between lines were not attributable to a higher homozygosis in the L-Line, but maybe to the different distribution of ROH at the chromosome level between lines. The analysis identified a set of genomic regions for future research to establish the genomic basis of robustness.
Collapse
Affiliation(s)
- Candela Ojeda-Marín
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Pablo Gutiérrez
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | | | - Félix Goyache
- Departamento de Producción Agraria, E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Cervantes
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
129
|
Judson JM, Hoekstra LA, Janzen FJ. Demographic history and genomic signatures of selection in a widespread vertebrate ectotherm. Mol Ecol 2024; 33:e17269. [PMID: 38234254 PMCID: PMC10922411 DOI: 10.1111/mec.17269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Environmental conditions vary greatly across large geographic ranges, and yet certain species inhabit entire continents. In such species, genomic sequencing can inform our understanding of colonization history and the impact of selection on the genome as populations experience diverse local environments. As ectothermic vertebrates are among the most vulnerable to environmental change, it is critical to understand the contributions of local adaptation to population survival. Widespread ectotherms offer an opportunity to explore how species can successfully inhabit such differing environments and how future climatic shifts will impact species' survival. In this study, we investigated the widespread painted turtle (Chrysemys picta) to assess population genomic structure, demographic history, and genomic signatures of selection in the western extent of the range. We found support for a substantial role of serial founder effects in shaping population genomic structure: demographic analysis and runs of homozygosity were consistent with bottlenecks of increasing severity from eastern to western populations during and following the Last Glacial Maximum, and edge populations were more strongly diverged and had less genetic diversity than those from the centre of the range. We also detected outlier loci, but allelic patterns in many loci could be explained by either genetic surfing or selection. While range expansion complicates the identification of loci under selection, we provide candidates for future study of local adaptation in a long-lived, widespread ectotherm that faces an uncertain future as the global climate continues to rapidly change.
Collapse
Affiliation(s)
- Jessica M. Judson
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| | - Luke A. Hoekstra
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: Department of Integrative Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Fredric J. Janzen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
- Current Address: W. K. Kellogg Biological Station, Departments of Fisheries and Wildlife & Integrative Biology, Michigan State University, Hickory Corners, MI 49060, USA
| |
Collapse
|
130
|
Carrara ER, Lopes PS, Veroneze R, Pereira RJ, Zadra LEF, Peixoto MGCD. Assessment of runs of homozygosity, heterozygosity-rich regions and genomic inbreeding estimates in a subpopulation of Guzerá (Bos indicus) dual-purpose cattle. J Anim Breed Genet 2024; 141:207-219. [PMID: 38010317 DOI: 10.1111/jbg.12836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
For decades, inbreeding in cattle has been evaluated using pedigree information. Nowadays, inbreeding coefficients can be obtained using genomic information such as runs of homozygosity (ROH). The aims of this study were to quantify ROH and heterozygosity-rich regions (HRR) in a subpopulation of Guzerá dual-purpose cattle, to examine ROH and HRR islands, and to compare inbreeding coefficients obtained by ROH with alternative genomic inbreeding coefficients. A subpopulation of 1733 Guzerá animals genotyped for 50k SNPs was used to obtain the ROH and HRR segments. Inbreeding coefficients by ROH (FROH ), by genomic relationship matrix based on VanRaden's method 1 using reference allele frequency in the population (FGRM ), by genomic relationship matrix based on VanRaden's method 1 using allele frequency fixed in 0.5 (FGRM_0.5 ), and by the proportion of homozygous loci (FHOM ) were calculated. A total of 15,660 ROH were identified, and the chromosome with the highest number of ROH was BTA6. A total of 4843 HRRs were identified, and the chromosome with the highest number of HRRs was BTA23. No ROH and HRR islands were identified according to established criteria, but the regions closest to the definition of an island were examined from 64 to 67 Mb of BTA6, from 36 to 37 Mb of BTA2 and from 0.50 to 1.25 Mb of BTA23. The genes identified in ROH islands have previously been associated with dairy and beef traits, while genes identified on HRR islands have previously been associated with reproductive traits and disease resistance. FROH was equal to 0.095 ± 0.084, and its Spearman correlation with FGRM was low (0.44) and moderate-high with FHOM (0.79) and with FGRM_0.5 (0.80). The inbreeding coefficients determined by ROH were higher than other cattle breeds' and higher than pedigree-based inbreeding in the Guzerá breed obtained in previous studies. It is recommended that future studies investigate the effects of inbreeding determined by ROH on the traits under selection in the subpopulation studied.
Collapse
Affiliation(s)
- E R Carrara
- Department of Animal Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - P S Lopes
- Department of Animal Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - R Veroneze
- Department of Animal Science, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - R J Pereira
- Mato Grosso Animal Breeding Group, Institute of Agrarian and Technological Sciences, Federal University of Rondonópolis, Rondonópolis, Mato Grosso, Brazil
| | - L E F Zadra
- Brazilian Center for the Genetic Improvement of Guzerá, Belo Horizonte, Minas Gerais, Brazil
| | | |
Collapse
|
131
|
Schuermans A, Truong B, Ardissino M, Bhukar R, Slob EAW, Nakao T, Dron JS, Small AM, Cho SMJ, Yu Z, Hornsby W, Antoine T, Lannery K, Postupaka D, Gray KJ, Yan Q, Butterworth AS, Burgess S, Wood MJ, Scott NS, Harrington CM, Sarma AA, Lau ES, Roh JD, Januzzi JL, Natarajan P, Honigberg MC. Genetic Associations of Circulating Cardiovascular Proteins With Gestational Hypertension and Preeclampsia. JAMA Cardiol 2024; 9:209-220. [PMID: 38170504 PMCID: PMC10765315 DOI: 10.1001/jamacardio.2023.4994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024]
Abstract
Importance Hypertensive disorders of pregnancy (HDPs), including gestational hypertension and preeclampsia, are important contributors to maternal morbidity and mortality worldwide. In addition, women with HDPs face an elevated long-term risk of cardiovascular disease. Objective To identify proteins in the circulation associated with HDPs. Design, Setting, and Participants Two-sample mendelian randomization (MR) tested the associations of genetic instruments for cardiovascular disease-related proteins with gestational hypertension and preeclampsia. In downstream analyses, a systematic review of observational data was conducted to evaluate the identified proteins' dynamics across gestation in hypertensive vs normotensive pregnancies, and phenome-wide MR analyses were performed to identify potential non-HDP-related effects associated with the prioritized proteins. Genetic association data for cardiovascular disease-related proteins were obtained from the Systematic and Combined Analysis of Olink Proteins (SCALLOP) consortium. Genetic association data for the HDPs were obtained from recent European-ancestry genome-wide association study meta-analyses for gestational hypertension and preeclampsia. Study data were analyzed October 2022 to October 2023. Exposures Genetic instruments for 90 candidate proteins implicated in cardiovascular diseases, constructed using cis-protein quantitative trait loci (cis-pQTLs). Main Outcomes and Measures Gestational hypertension and preeclampsia. Results Genetic association data for cardiovascular disease-related proteins were obtained from 21 758 participants from the SCALLOP consortium. Genetic association data for the HDPs were obtained from 393 238 female individuals (8636 cases and 384 602 controls) for gestational hypertension and 606 903 female individuals (16 032 cases and 590 871 controls) for preeclampsia. Seventy-five of 90 proteins (83.3%) had at least 1 valid cis-pQTL. Of those, 10 proteins (13.3%) were significantly associated with HDPs. Four were robust to sensitivity analyses for gestational hypertension (cluster of differentiation 40, eosinophil cationic protein [ECP], galectin 3, N-terminal pro-brain natriuretic peptide [NT-proBNP]), and 2 were robust for preeclampsia (cystatin B, heat shock protein 27 [HSP27]). Consistent with the MR findings, observational data revealed that lower NT-proBNP (0.76- to 0.88-fold difference vs no HDPs) and higher HSP27 (2.40-fold difference vs no HDPs) levels during the first trimester of pregnancy were associated with increased risk of HDPs, as were higher levels of ECP (1.60-fold difference vs no HDPs). Phenome-wide MR analyses identified 37 unique non-HDP-related protein-disease associations, suggesting potential on-target effects associated with interventions lowering HDP risk through the identified proteins. Conclusions and Relevance Study findings suggest genetic associations of 4 cardiovascular disease-related proteins with gestational hypertension and 2 associated with preeclampsia. Future studies are required to test the efficacy of targeting the corresponding pathways to reduce HDP risk.
Collapse
Affiliation(s)
- Art Schuermans
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Buu Truong
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Maddalena Ardissino
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rohan Bhukar
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Eric A. W. Slob
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
- Department of Applied Economics, Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, the Netherlands
- Erasmus University Rotterdam Institute for Behavior and Biology, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Tetsushi Nakao
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Jacqueline S. Dron
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Aeron M. Small
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - So Mi Jemma Cho
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Zhi Yu
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Whitney Hornsby
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Tajmara Antoine
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kim Lannery
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Darina Postupaka
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
| | - Kathryn J. Gray
- Division of Maternal-Fetal Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Qi Yan
- Department of Obstetrics and Gynecology, Columbia University, New York, New York
| | - Adam S. Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- BHF Centre of Research Excellence, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, United Kingdom
| | - Malissa J. Wood
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Lee Health, Fort Myers, Florida
| | - Nandita S. Scott
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Colleen M. Harrington
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Amy A. Sarma
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Emily S. Lau
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Jason D. Roh
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - James L. Januzzi
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
- Baim Institute for Clinical Research, Boston, Massachusetts
| | - Pradeep Natarajan
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| | - Michael C. Honigberg
- Program in Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Cardiology Division, Massachusetts General Hospital, Boston
| |
Collapse
|
132
|
Bukhman YV, Morin PA, Meyer S, Chu LF, Jacobsen JK, Antosiewicz-Bourget J, Mamott D, Gonzales M, Argus C, Bolin J, Berres ME, Fedrigo O, Steill J, Swanson SA, Jiang P, Rhie A, Formenti G, Phillippy AM, Harris RS, Wood JMD, Howe K, Kirilenko BM, Munegowda C, Hiller M, Jain A, Kihara D, Johnston JS, Ionkov A, Raja K, Toh H, Lang A, Wolf M, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. A High-Quality Blue Whale Genome, Segmental Duplications, and Historical Demography. Mol Biol Evol 2024; 41:msae036. [PMID: 38376487 PMCID: PMC10919930 DOI: 10.1093/molbev/msae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | | | | | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Maylie Gonzales
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cara Argus
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Mark E Berres
- University of Wisconsin Biotechnology Center, Bioinformatics Resource Center, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - John Steill
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Scott A Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Arang Rhie
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - Adam M Phillippy
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Alexander Ionkov
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Aimee Lang
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Magnus Wolf
- Institute for Evolution and Biodiversity (IEB), University of Muenster, 48149, Muenster, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
133
|
Kar D, Ganguly I, Singh S, Bhatia AK, Dixit SP. Genome-wide runs of homozygosity signatures in diverse Indian goat breeds. 3 Biotech 2024; 14:81. [PMID: 38375512 PMCID: PMC10874352 DOI: 10.1007/s13205-024-03921-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/05/2024] [Indexed: 02/21/2024] Open
Abstract
The present study analyzed ROH and consensus ROH regions in 102 animals of eleven diverse Indian goat (Capra hircus) breeds using whole genome sequencing. A total of 51,705 ROH and 21,271 consensus regions were identified. The mean number of ROH per animal was highest in the meat breed, Jharkhand Black (2693) and lowest in the pashmina breed, Changthangi (60). The average length of ROH (ALROH) was maximum in Kanniadu (974.11 Kb) and minimum in Tellicherry (146.98 Kb). Long ROH is typically associated with more recent inbreeding, whereas short ROH is connected to more ancient inbreeding. The overall ROH-based genomic inbreeding (FROH) was highest for Jharkhand Black (0.602) followed by Kanniadu (0.120) and Sangamneri (0.108) among all breeds. FROH of Jharkhand Black was higher than Kanniadu up to 5 Mb ROH length category. However, in > 20 Mb ROH length category, Kanniadu (0.98) exhibited significantly higher FROH than Jharkhand Black (0.46). This implies that Kanniadu had higher levels of recent inbreeding than Jharkhand Black. Despite this, due to the presence of both recent and ancient inbreeding, Jharkhand Black demonstrated higher overall FROH compared to Kanniadu. ROH patterns revealed dual purpose (meat and dairy) and pashmina breeds as less consanguineous while recent inbreeding was apparent in meat breeds. Analysis of ROH consensus regions identified selection sweeps in key genes governing intramuscular fat deposition, meat tenderisation, lean meat production and carcass weight (CDK4, ALOX15, CASP9, PRDM16, DVL1) in meat breeds; milk fat percentage and mammary gland development (POLD1, NOTCH2, ARHGAP35) in dual purpose (meat and dairy) breeds; while cold adaptation and hair follicle development (APOBEC1, DNAJC3, F2RL1, FGF9) in pashmina breed. MAPK, RAS, BMP and Wnt signaling pathways associated with hair follicle morphogenesis in Changthangi were also identified. PCA analysis based on ROH consensus regions revealed that meat breeds are more diverse than other goat breeds/populations. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03921-y.
Collapse
Affiliation(s)
- Dibyasha Kar
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
- Division of Animal Genetics and Breeding, ICAR-National Dairy Research Institute, Karnal, Haryana 132001 India
| | - Indrajit Ganguly
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Sanjeev Singh
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - Avnish Kumar Bhatia
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| | - S. P. Dixit
- Division of Animal Genetics, ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana 132001 India
| |
Collapse
|
134
|
Neves PD, Watanabe A, Watanabe EH, Narcizo AM, Nunes K, Lerario AM, Ferreira FM, Cavalcante LB, Wongboonsin J, Malheiros DM, Jorge LB, Sampson MG, Noronha IL, Onuchic LF. Idiopathic collapsing glomerulopathy is associated with APOL1 high-risk genotypes or Mendelian variants in most affected individuals in a highly admixed population. Kidney Int 2024; 105:593-607. [PMID: 38143038 DOI: 10.1016/j.kint.2023.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/04/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
Collapsing glomerulopathy (CG) is most often associated with fast progression to kidney failure with an incidence apparently higher in Brazil than in other countries. However, the reason for this occurrence is unknown. To better understand this, we performed an integrated analysis of clinical, histological, therapeutic, causative genetic and genetic ancestry data in a highly genetically admixed cohort of 70 children and adult patients with idiopathic CG (ICG). The disease onset occurred at 23 (interquartile range: 17-31) years and approximately half of patients progressed to chronic kidney disease requiring kidney replacement therapy (CKD-KRT) 36 months after diagnosis. Causative genetic bases, assessed by targeted-gene panel or whole-exome sequencing, were identified in 58.6% of patients. Among these cases, 80.5% harbored APOL1 high-risk genotypes (HRG) and 19.5% causative Mendelian variants (MV). Self-reported non-White patients more frequently had HRG. MV was an independent risk factor for progression to CKD-KRT by 36 months and the end of follow-up, while remission was an independent protective factor. All patients with HRG manifested CG at 9-44 years of age, whereas in those with APOL1 low-risk genotype, the disease arose throughout life. HRGs were associated with higher proportion of African genetic ancestry. Novel causative MVs were identified in COL4A5, COQ2 and PLCE1 and previously described causative MVs were identified in MYH9, TRPC6, COQ2, COL4A3 and TTC21B. Three patients displayed HRG combined with a variant of uncertain significance (ITGB4, LAMA5 or PTPRO). MVs were associated with worse kidney prognosis. Thus, our data reveal that the genetic status plays a major role in ICG pathogenesis, accounting for more than half of cases in a highly admixed Brazilian population.
Collapse
Affiliation(s)
- Precil D Neves
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil; Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil; Nephrology and Dialysis Center, Oswaldo Cruz German Hospital, São Paulo, Brazil
| | - Andreia Watanabe
- Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil; Division of Pediatric Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Elieser H Watanabe
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil; Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Amanda M Narcizo
- Large-Scale Sequencing Laboratory, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Kelly Nunes
- Human Genome Center, Institute of Biosciences/University of São Paulo, São Paulo, Brazil
| | - Antonio M Lerario
- Division of Endocrinology, University of Michigan, Ann Arbor, Michigan, USA
| | - Frederico M Ferreira
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lívia B Cavalcante
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Janewit Wongboonsin
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA; Division of Nephrology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Denise M Malheiros
- Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lectícia B Jorge
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Irene L Noronha
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz F Onuchic
- Division of Nephrology, University of São Paulo School of Medicine, São Paulo, Brazil; Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.
| |
Collapse
|
135
|
Huang C, Zhao Q, Chen Q, Su Y, Ma Y, Ye S, Zhao Q. Runs of Homozygosity Detection and Selection Signature Analysis for Local Goat Breeds in Yunnan, China. Genes (Basel) 2024; 15:313. [PMID: 38540373 PMCID: PMC10970279 DOI: 10.3390/genes15030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/25/2024] [Accepted: 02/25/2024] [Indexed: 06/14/2024] Open
Abstract
Runs of Homozygosity (ROH) are continuous homozygous DNA segments in diploid genomes, which have been used to estimate the genetic diversity, inbreeding levels, and genes associated with specific traits in livestock. In this study, we analyzed the resequencing data from 10 local goat breeds in Yunnan province of China and five additional goat populations obtained from a public database. The ROH analysis revealed 21,029 ROH segments across the 15 populations, with an average length of 1.27 Mb, a pattern of ROH, and the assessment of the inbreeding coefficient indicating genetic diversity and varying levels of inbreeding. iHS (integrated haplotype score) was used to analyze high-frequency Single-Nucleotide Polymorphisms (SNPs) in ROH regions, specific genes related to economic traits such as coat color and weight variation. These candidate genes include OCA2 (OCA2 melanosomal transmembrane protein) and MLPH (melanophilin) associated with coat color, EPHA6 (EPH receptor A6) involved in litter size, CDKAL1 (CDK5 regulatory subunit associated protein 1 like 1) and POMC (proopiomelanocortin) linked to weight variation and some putative genes associated with high-altitude adaptability and immune. This study uncovers genetic diversity and inbreeding levels within local goat breeds in Yunnan province, China. The identification of specific genes associated with economic traits and adaptability provides actionable insights for utilization and conservation efforts.
Collapse
Affiliation(s)
- Chang Huang
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Qian Chen
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yinxiao Su
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Yuehui Ma
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| | - Shaohui Ye
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (C.H.); (Q.Z.)
| | - Qianjun Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (Q.C.); (Y.S.); (Y.M.)
| |
Collapse
|
136
|
Paul K, Restoux G, Phocas F. Genome-wide detection of positive and balancing signatures of selection shared by four domesticated rainbow trout populations (Oncorhynchus mykiss). Genet Sel Evol 2024; 56:13. [PMID: 38389056 PMCID: PMC10882880 DOI: 10.1186/s12711-024-00884-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Evolutionary processes leave footprints along the genome over time. Highly homozygous regions may correspond to positive selection of favorable alleles, while maintenance of heterozygous regions may be due to balancing selection phenomena. We analyzed data from 176 fish from four disconnected domestic rainbow trout populations that were genotyped using a high-density Axiom Trout genotyping 665K single nucleotide polymorphism array, including 20 from the US and 156 from three French lines. Using methods based on runs of homozygosity and extended haplotype homozygosity, we detected signatures of selection in these four populations. RESULTS Nine genomic regions that included 253 genes were identified as being under positive selection in all four populations Most were located on chromosome 2 but also on chromosomes 12, 15, 16, and 20. In addition, four heterozygous regions that contain 29 genes that are putatively under balancing selection were also shared by the four populations. These were located on chromosomes 10, 13, and 19. Regardless of the homozygous or heterozygous nature of the regions, in each region, we detected several genes that are highly conserved among vertebrates due to their critical roles in cellular and nuclear organization, embryonic development, or immunity. We identified new candidate genes involved in rainbow trout fitness, as well as 17 genes that were previously identified to be under positive selection, 10 of which in other fishes (auts2, atp1b3, zp4, znf135, igf-1α, brd2, col9a2, mrap2, pbx1, and emilin-3). CONCLUSIONS Using material from disconnected populations of different origins allowed us to draw a genome-wide map of signatures of positive selection that are shared between these rainbow trout populations, and to identify several regions that are putatively under balancing selection. These results provide a valuable resource for future investigations of the dynamics of genetic diversity and genome evolution during domestication.
Collapse
Affiliation(s)
- Katy Paul
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Gwendal Restoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| |
Collapse
|
137
|
Ristanic M, Zorc M, Glavinic U, Stevanovic J, Blagojevic J, Maletic M, Stanimirovic Z. Genome-Wide Analysis of Milk Production Traits and Selection Signatures in Serbian Holstein-Friesian Cattle. Animals (Basel) 2024; 14:669. [PMID: 38473054 DOI: 10.3390/ani14050669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/05/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
To improve the genomic evaluation of milk-related traits in Holstein-Friesian (HF) cattle it is essential to identify the associated candidate genes. Novel SNP-based analyses, such as the genetic mapping of inherited diseases, GWAS, and genomic selection, have led to a new era of research. The aim of this study was to analyze the association of each individual SNP in Serbian HF cattle with milk production traits and inbreeding levels. The SNP 60 K chip Axiom Bovine BovMDv3 was deployed for the genotyping of 334 HF cows. The obtained genomic results, together with the collected phenotypic data, were used for a GWAS. Moreover, the identification of ROH segments was performed and served for inbreeding coefficient evaluation and ROH island detection. Using a GWAS, a polymorphism, rs110619097 (located in the intron of the CTNNA3 gene), was detected to be significantly (p < 0.01) associated with the milk protein concentration in the first lactation (adjusted to 305 days). The average genomic inbreeding value (FROH) was 0.079. ROH islands were discovered in proximity to genes associated with milk production traits and genomic regions under selection pressure for other economically important traits of dairy cattle. The findings of this pilot study provide useful information for a better understanding of the genetic architecture of milk production traits in Serbian HF dairy cows and can be used to improve lactation performances in Serbian HF cattle breeding programs.
Collapse
Affiliation(s)
- Marko Ristanic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Minja Zorc
- Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, 1000 Ljubljana, Slovenia
| | - Uros Glavinic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jevrosima Stevanovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Jovan Blagojevic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Milan Maletic
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| | - Zoran Stanimirovic
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, Bul. Oslobodjenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
138
|
Coban-Akdemir Z, Song X, Ceballos FC, Pehlivan D, Karaca E, Bayram Y, Mitani T, Gambin T, Bozkurt-Yozgatli T, Jhangiani SN, Muzny DM, Lewis RA, Liu P, Boerwinkle E, Hamosh A, Gibbs RA, Sutton VR, Sobreira N, Carvalho CM, Shaw CA, Posey JE, Valle D, Lupski JR. The impact of the Turkish population variome on the genomic architecture of rare disease traits. GENETICS IN MEDICINE OPEN 2024; 2:101830. [PMID: 39669594 PMCID: PMC11613692 DOI: 10.1016/j.gimo.2024.101830] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 12/14/2024]
Abstract
Purpose The variome of the Turkish (TK) population, a population with a considerable history of admixture and consanguinity, has not been deeply investigated for insights on the genomic architecture of disease. Methods We generated and analyzed a database of variants derived from exome sequencing data of 773 TK unrelated, clinically affected individuals with various suspected Mendelian disease traits and 643 unaffected relatives. Results Using uniform manifold approximation and projection, we showed that the TK genomes are more similar to those of Europeans and consist of 2 main subpopulations: clusters 1 and 2 (N = 235 and 1181, respectively), which differ in admixture proportion and variome (https://turkishvariomedb.shinyapps.io/tvdb/). Furthermore, the higher inbreeding coefficient values observed in the TK affected compared with unaffected individuals correlated with a larger median span of long-sized (>2.64 Mb) runs of homozygosity (ROH) regions (P value = 2.09e-18). We show that long-sized ROHs are more likely to be formed on recently configured haplotypes enriched for rare homozygous deleterious variants in the TK affected compared with TK unaffected individuals (P value = 3.35e-11). Analysis of genotype-phenotype correlations reveals that genes with rare homozygous deleterious variants in long-sized ROHs provide the most comprehensive set of molecular diagnoses for the observed disease traits with a systematic quantitative analysis of Human Phenotype Ontology terms. Conclusion Our findings support the notion that novel rare variants on newly configured haplotypes arising within the recent past generations of a family or clan contribute significantly to recessive disease traits in the TK population.
Collapse
Affiliation(s)
- Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
| | - Xiaofei Song
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL
| | | | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Section of Neurology, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pathology, Baylor University Medical Center, Dallas, TX
- Texas A&M School of Medicine, Texas A&M University, Dallas, TX
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Division of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland
| | - Tugce Bozkurt-Yozgatli
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | | | - Donna M. Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, TX
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Ada Hamosh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - V. Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| | - Nara Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Claudia M.B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Pacific Northwest Research Institute, Seattle, WA
| | - Chad A. Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Baylor Genetics, Houston, TX
| | - Jennifer E. Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - David Valle
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
- Texas Children’s Hospital, Houston, TX
| |
Collapse
|
139
|
Li W, Wu X, Xiang D, Zhang W, Wu L, Meng X, Huo J, Yin Z, Fu G, Zhao G. Genome-Wide Detection for Runs of Homozygosity in Baoshan Pigs Using Whole Genome Resequencing. Genes (Basel) 2024; 15:233. [PMID: 38397222 PMCID: PMC10887577 DOI: 10.3390/genes15020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Baoshan pigs (BS) are a local breed in Yunnan Province that may face inbreeding owing to its limited population size. To accurately evaluate the inbreeding level of the BS pig population, we used whole-genome resequencing to identify runs of homozygosity (ROH) regions in BS pigs, calculated the inbreeding coefficient based on pedigree and ROH, and screened candidate genes with important economic traits from ROH islands. A total of 22,633,391 SNPS were obtained from the whole genome of BS pigs, and 201 ROHs were detected from 532,450 SNPS after quality control. The number of medium-length ROH (1-5 Mb) was the highest (98.43%), the number of long ROH (>5 Mb) was the lowest (1.57%), and the inbreeding of BS pigs mainly occurred in distant generations. The inbreeding coefficient FROH, calculated based on ROH, was 0.018 ± 0.016, and the FPED, calculated based on the pedigree, was 0.027 ± 0.028, which were positively correlated. Forty ROH islands were identified, containing 507 genes and 891 QTLs. Several genes were associated with growth and development (IGFALS, PTN, DLX5, DKK1, WNT2), meat quality traits (MC3R, ACSM3, ECI1, CD36, ROCK1, CACNA2D1), and reproductive traits (NPW, TSHR, BMP7). This study provides a reference for the protection and utilization of BS pigs.
Collapse
Affiliation(s)
- Wenjun Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xudong Wu
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Decai Xiang
- Institute of Pig and Animal Research, Yunnan Academy of Animal Husbandry and Veterinary Science, Kunming 650201, China;
| | - Wei Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230036, China; (X.W.); (W.Z.)
| | - Lingxiang Wu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Xintong Meng
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Jinlong Huo
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Guowen Fu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| | - Guiying Zhao
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (W.L.); (L.W.); (X.M.); (J.H.); (G.F.)
| |
Collapse
|
140
|
Fabbri MC, Lozada-Soto E, Tiezzi F, Čandek-Potokar M, Bovo S, Schiavo G, Fontanesi L, Muñoz M, Ovilo C, Bozzi R. Persistence of autozygosity in crossbreds between autochthonous and cosmopolitan breeds of swine: a simulation study. Animal 2024; 18:101070. [PMID: 38401921 DOI: 10.1016/j.animal.2023.101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/26/2024] Open
Abstract
Crossbreeding might be a valid strategy to valorize local pig breeds. Crossbreeding should reduce homozygosity and, as a consequence, yield hybrid vigor for fitness and production traits. This study aimed to quantify the persistence of autozygosity in terminal crossbred pigs compared with purebreds and, in turn, identify genomic regions where autozygosity's persistence would not be found. The study was based on genotyping data from 20 European local pig breeds and three cosmopolitan pig breeds used to simulate crossbred offspring. This study consisted of two steps. First, one hundred matings were simulated for each pairwise combination of the 23 considered breeds (for a total of 276 combinations), ignoring the sex of the parent individuals in order to generate purebred and crossbred matings leveraging all the germplasm available. Second, a few preselected terminal-maternal breed pairs were used to mimic a realistic terminal crossbreeding system: (i) Mora Romagnola (boars) or Cinta Senese (boars) crossed with Large White (sows) or Landrace (sows); (ii) Duroc (boars) crossed with Mora Romagnola (sows) or Cinta Senese (sows). Runs of homozygosity was used to estimate genome-wide autozygosity (FROH). Observed FROH was higher in purebreds than in crossbreds, although some crossbred combinations showed higher FROH than other purebred combinations. Among the purebreds, the highest FROH values were observed in Mora Romagnola and Turopolje (0.50 and 0.46, respectively). FROH ranged from 0.04 to 0.16 in the crossbreds Alentejana × Large White and Alentejana × Iberian, respectively. Persistence of autozygosity was found in several genomic segments harboring regions where quantitative trait loci (QTLs) were found in the literature. The regions were enriched in QTLs involved in fatty acid metabolism and associated with performance traits. This simulation shows that autozygosity persists in most breed combinations of terminal crosses. Results suggest that a strategy for crossbreeding is implemented when leveraging autochthonous and cosmopolitan breeds to obtain most of the hybrid vigor.
Collapse
Affiliation(s)
- Maria Chiara Fabbri
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy.
| | - Emmanuel Lozada-Soto
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695, United States
| | - Francesco Tiezzi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
| | | | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127 Bologna, Italy
| | - Maria Muñoz
- Departamento Mejora Genética Animal, INIA-CSIC, Crta. de la Coruña, km. 7,5, 28040 Madrid, Spain
| | - Cristina Ovilo
- Departamento Mejora Genética Animal, INIA-CSIC, Crta. de la Coruña, km. 7,5, 28040 Madrid, Spain
| | - Riccardo Bozzi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
| |
Collapse
|
141
|
Rajawat D, Panigrahi M, Nayak SS, Bhushan B, Mishra BP, Dutt T. Dissecting the genomic regions of selection on the X chromosome in different cattle breeds. 3 Biotech 2024; 14:50. [PMID: 38268984 PMCID: PMC10803714 DOI: 10.1007/s13205-023-03905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Mammalian X and Y chromosomes independently evolved from various autosomes approximately 300 million years ago (MYA). To fully understand the relationship between genomic composition and phenotypic diversity arising due to the course of evolution, we have scanned regions of selection signatures on the X chromosome in different cattle breeds. In this study, we have prepared the datasets of 184 individuals of different cattle breeds and explored the complete X chromosome by utilizing four within-population and two between-population methods. There were 23, 25, 30, 17, 17, and 12 outlier regions identified in Tajima's D, CLR, iHS, ROH, FST, and XP-EHH. Bioinformatics analysis showed that these regions harbor important candidate genes like AKAP4 for reproduction in Brown Swiss, MBTS2 for production traits in Brown Swiss and Guernsey, CXCR3 and CITED1 for health traits in Jersey and Nelore, and BMX and CD40LG for regulation of X chromosome inactivation in Nelore and Gir. We identified genes shared among multiple methods, such as TRNAC-GCA and IL1RAPL1, which appeared in Tajima's D, ROH, and iHS analyses. The gene TRNAW-CCA was found in ROH, CLR and iHS analyses. The X chromosome exhibits a distinctive interaction between demographic factors and genetic variations, and these findings may provide new insight into the X-linked selection in different cattle breeds.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - B. P. Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
142
|
Barazandeh M, Kriti D, Fickel J, Nislow C. The Addis Ababa Lions: Whole-Genome Sequencing of a Rare and Precious Population. Genome Biol Evol 2024; 16:evae021. [PMID: 38302110 PMCID: PMC10871700 DOI: 10.1093/gbe/evae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/18/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
Lions are widely known as charismatic predators that once roamed across the globe, but their populations have been greatly affected by environmental factors and human activities over the last 150 yr. Of particular interest is the Addis Ababa lion population, which has been maintained in captivity at around 20 individuals for over 75 yr, while many wild African lion populations have become extinct. In order to understand the molecular features of this unique population, we conducted a whole-genome sequencing study on 15 Addis Ababa lions and detected 4.5 million distinct genomic variants compared with the reference African lion genome. Using functional annotation, we identified several genes with mutations that potentially impact various traits such as mane color, body size, reproduction, gastrointestinal functions, cardiovascular processes, and sensory perception. These findings offer valuable insights into the genetics of this threatened lion population.
Collapse
Affiliation(s)
- Marjan Barazandeh
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Divya Kriti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jörns Fickel
- Institute for Biochemistry and Biology, University Potsdam, Potsdam, Germany
- Department of Evolutionary Genetics, Research Institute for Zoo and Wildlife Research (IZW), Berlin, Germany
| | - Corey Nislow
- Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
143
|
Illa SK, Mumtaz S, Nath S, Mukherjee S, Mukherjee A. Characterization of runs of Homozygosity revealed genomic inbreeding and patterns of selection in indigenous sahiwal cattle. J Appl Genet 2024; 65:167-180. [PMID: 38110827 DOI: 10.1007/s13353-023-00816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023]
Abstract
Runs of homozygosity (ROH) are contiguous genomic regions, homozygous across all sites which arise in an individual due to the parents transmitting identical haplotypes to their offspring. The genetic improvement program of Sahiwal cattle after decades of selection needs re-assessment of breeding strategy and population phenomena. Hence, the present study was carried out to optimize input parameters in PLINK for ROH estimates, to explore ROH islands and assessment of pedigree and genome-based inbreeding in Sahiwal cattle. The sliding window approach with parameters standardized to define ROH for the specific population under study was used for the identification of runs. The optimum maximum gap, density, window-snp and window-threshold were 250 Kb, 120 Kb/SNP, 10, 0.05 respectively and ROH patterns were also characterized. ROH islands were defined as the short homozygous genomic regions shared by a large proportion of individuals in a population, containing significantly higher occurrences of ROH than the population specific threshold level. These were identified using the -homozyg-group function of the PLINK v1.9 program. Our results indicated that the Islands of ROH harbor a few candidate genes, ACAD11, RFX4, BANP, UBA5 that are associated with major economic traits. The average FPED (Pedigree based inbreeding coefficient), FROH (Genomic inbreeding coefficient), FHOM (Inbreeding estimated as the ratio of observed and expected homozygous genotypes), FGRM (Inbreeding estimated on genomic relationship method) and FGRM0.5 (Inbreeding estimated from the diagonal of a GRM with allele frequencies near to 0.5) were 0.009, 0.091, 0.035, -0.104 and -0.009, respectively. Our study revealed the optimum parameter setting in PLINK viz. maximal gaps between two SNPs, minimal density of SNPs in a segment (in kb/SNP) and scanning window size to identify ROH segments, which will enable ROH estimation more efficient and comparable across various SNP genotyping-based studies. The result further emphasized the significant role of genomics in unraveling population diversity, selection signatures and inbreeding in the ongoing Sahiwal breed improvement programs.
Collapse
Affiliation(s)
- Satish Kumar Illa
- Livestock Research Station, Garividi, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh State, India
| | - Shabahat Mumtaz
- Animal Husbandry Department, Kolkata, West Bengal State, India
| | - Sapna Nath
- College of Veterinary Science, Garividi, Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh State, India
| | - Sabyasachi Mukherjee
- Animal Genetics & Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana State, India.
| | - Anupama Mukherjee
- Animal Genetics & Breeding Division, Indian Council of Agricultural Research (ICAR)-National Dairy Research Institute (NDRI), Karnal, Haryana State, India.
| |
Collapse
|
144
|
Nayak SS, Panigrahi M, Rajawat D, Ghildiyal K, Sharma A, Jain K, Bhushan B, Dutt T. Deciphering climate resilience in Indian cattle breeds by selection signature analyses. Trop Anim Health Prod 2024; 56:46. [PMID: 38233536 DOI: 10.1007/s11250-023-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
The signature of selection is a crucial concept in evolutionary biology that refers to the pattern of genetic variation which arises in a population due to natural selection. In the context of climate adaptation, the signature of selection can reveal the genetic basis of adaptive traits that enable organisms to survive and thrive in changing environmental conditions. Breeds living in diverse agroecological zones exhibit genetic "footprints" within their genomes that mirror the influence of climate-induced selective pressures, subsequently impacting phenotypic variance. It is assumed that the genomes of animals residing in these regions have been altered through selection for various climatic adaptations. These regions are known as signatures of selection and can be identified using various summary statistics. We examined genotypic data from eight different cattle breeds (Gir, Hariana, Kankrej, Nelore, Ongole, Red Sindhi, Sahiwal, and Tharparkar) that are adapted to diverse regional climates. To identify selection signature regions in this investigation, we used four intra-population statistics: Tajima's D, CLR, iHS, and ROH. In this study, we utilized Bovine 50 K chip data and four genome scan techniques to assess the genetic regions of positive selection for high-temperature adaptation. We have also performed a genome-wide investigation of genetic diversity, inbreeding, and effective population size in our target dataset. We identified potential regions for selection that are likely to be caused by adverse climatic conditions. We observed many adaptation genes in several potential selection signature areas. These include genes like HSPB2, HSPB3, HSP20, HSP90AB1, HSF4, HSPA1B, CLPB, GAP43, MITF, and MCHR1 which have been reported in the cattle populations that live in varied climatic regions. The findings demonstrated that genes involved in disease resistance and thermotolerance were subjected to intense selection. The findings have implications for marker-assisted breeding, understanding the genetic landscape of climate-induced adaptation, putting breeding and conservation programs into action.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
145
|
Wang Z, Zhong Z, Xie X, Wang F, Pan D, Wang Q, Pan Y, Xiao Q, Tan Z. Detection of Runs of Homozygosity and Identification of Candidate Genes in the Whole Genome of Tunchang Pigs. Animals (Basel) 2024; 14:201. [PMID: 38254370 PMCID: PMC10812771 DOI: 10.3390/ani14020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Tunchang pigs are an indigenous pig population in China known for their high tolerance to roughage, delicious meat, and fecundity. However, the number of Tunchang pigs has been declining due to the influence of commercial breeds and African swine fever, which could potentially lead to inbreeding. To assess the inbreeding level and the genetic basis of important traits in Tunchang pigs, our research investigated the patterns in "runs of homozygosity" (ROHs) using whole genome resequencing data from 32 Tunchang pigs. The study aimed to determine the length, number, coverage, and distribution model of ROHs in Tunchang pigs, as well as genomic regions with high ROH frequencies. The results of the study revealed that a total of 20,499,374 single-nucleotide polymorphisms (SNPs) and 1953 ROH fragments were recognized in 32 individuals. The ROH fragments in Tunchang pigs were predominantly short, ranging from 0.5 to 1 megabases (Mb) in length. Furthermore, the coverage of ROHs varied across chromosomes, with chromosome 3 having the highest coverage and chromosome 11 having the lowest coverage. The genetic diversity of Tunchang pigs was found to be relatively high based on the values of HE (expected heterozygosity), HO (observed heterozygosity), pi (nucleotide diversity), Ne (effective population size), and MAF (minor allele frequency). The average inbreeding coefficients of Tunchang pigs, as determined by three different methods (FHOM, FGRM, and FROH), were 0.019, 0.0138, and 0.0304, respectively. These values indicate that the level of inbreeding in Tunchang pigs is currently low. Additionally, the study identified a total of 13 ROH islands on all chromosomes, which in total contained 38,913 SNPs and 120 genes. These ROH islands included genes associated with economically important traits, including meat quality (GYS1, PHLPP1, SLC27A5, and CRTC1), growth and development (ANKS1A, TAF11, SPDEF, LHB, and PACSIN1), and environmental adaptation (SLC26A7). The findings of this research offer valuable perspectives on the present status of Tunchang pig resources and offer a reference for breeding conservation plans and the efficient utilization of Tunchang pigs in the future. By understanding the inbreeding level and genetic basis of important traits in Tunchang pigs, conservation efforts can be targeted towards maintaining genetic diversity and promoting the sustainable development of this indigenous pig population.
Collapse
Affiliation(s)
- Ziyi Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Ziqi Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Xinfeng Xie
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Feifan Wang
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Deyou Pan
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Qishan Wang
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Yuchun Pan
- Hainan Yazhou Bay Seed Laboratory, Yongyou Industrial Park, Yazhou Bay Sci-Tech City, Sanya 572025, China
- Department of Animal Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Qian Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| | - Zhen Tan
- Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.W.)
| |
Collapse
|
146
|
Falchi L, Cesarani A, Criscione A, Hidalgo J, Garcia A, Mastrangelo S, Macciotta NPP. Effect of genotyping density on the detection of runs of homozygosity and heterozygosity in cattle. J Anim Sci 2024; 102:skae147. [PMID: 38798158 PMCID: PMC11197001 DOI: 10.1093/jas/skae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
Runs of homozygosity (ROHom) are contiguous stretches of homozygous regions of the genome. In contrast, runs of heterozygosity (ROHet) are heterozygosity-rich regions. The detection of these two types of genomic regions (ROHom and ROHet) is influenced by the parameters involved in their identification and the number of available single-nucleotide polymorphisms (SNPs). The present study aimed to test the effect of chip density in detecting ROHom and ROHet in the Italian Simmental cattle breed. A sample of 897 animals were genotyped at low density (50k SNP; 397 individuals), medium density (140k SNP; 348 individuals), or high density (800k SNP; 152 individuals). The number of ROHom and ROHet per animal (nROHom and nROHet, respectively) and their average length were calculated. ROHom or ROHet shared by more than one animal and the number of times a particular SNP was inside a run were also computed (SNPROHom and SNPROHet). As the chip density increased, the nROHom increased, whereas their average length decreased. In contrast, the nROHet decreased and the average length increased as the chip density increased. The most repeated ROHom harbored no genes, whereas in the most repeated ROHet four genes (SNRPN, SNURF, UBE3A, and ATP10A) previously associated with reproductive traits were found. Across the 3 datasets, 31 SNP, located on Bos taurus autosome (BTA) 6, and 37 SNP (located on BTA21) exceeded the 99th percentile in the distribution of the SNPROHom and SNPROHet, respectively. The genomic region on BTA6 mapped the SLIT2, PACRGL, and KCNIP4 genes, whereas 19 and 18 genes were mapped on BTA16 and BTA21, respectively. Interestingly, most of genes found through the ROHet analysis were previously reported to be related to health, reproduction, and fitness traits. The results of the present study confirm that the detection of ROHom is more reliable when the chip density increases, whereas the ROHet trend seems to be the opposite. Genes and quantitative trait loci (QTL) mapped in the highlighted regions confirm that ROHet can be due to balancing selection, thus related to fitness traits, health, and reproduction, whereas ROHom are mainly involved in production traits. The results of the present study strengthened the usefulness of these parameters in analyzing the genomes of livestock and their biological meaning.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy
- Department of Animal and Dairy Science, University of Georgia, Athens 30602, USA
| | - Andrea Criscione
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania 95123, Italy
| | - Jorge Hidalgo
- Department of Animal and Dairy Science, University of Georgia, Athens 30602, USA
| | - Andre Garcia
- American Angus Association, Angus Genetics Inc., Saint Joseph, MO, USA
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari, e Forestali, Università degli Studi di Palermo, Palermo 90128, Italy
| | | |
Collapse
|
147
|
Chang Y, Zhou Y, Zhou J, Li W, Cao J, Jing Y, Zhang S, Shen Y, Lin Q, Fan X, Yang H, Dong X, Zhang S, Yi X, Shuai L, Shi L, Liu Z, Yang J, Ma X, Hao J, Chen K, Li MJ, Wang F, Huang D. Unraveling the causal genes and transcriptomic determinants of human telomere length. Nat Commun 2023; 14:8517. [PMID: 38129441 PMCID: PMC10739845 DOI: 10.1038/s41467-023-44355-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Telomere length (TL) shortening is a pivotal indicator of biological aging and is associated with many human diseases. The genetic determinates of human TL have been widely investigated, however, most existing studies were conducted based on adult tissues which are heavily influenced by lifetime exposure. Based on the analyses of terminal restriction fragment (TRF) length of telomere, individual genotypes, and gene expressions on 166 healthy placental tissues, we systematically interrogate TL-modulated genes and their potential functions. We discover that the TL in the placenta is comparatively longer than in other adult tissues, but exhibiting an intra-tissue homogeneity. Trans-ancestral TL genome-wide association studies (GWASs) on 644,553 individuals identify 20 newly discovered genetic associations and provide increased polygenic determination of human TL. Next, we integrate the powerful TL GWAS with placental expression quantitative trait locus (eQTL) mapping to prioritize 23 likely causal genes, among which 4 are functionally validated, including MMUT, RRM1, KIAA1429, and YWHAZ. Finally, modeling transcriptomic signatures and TRF-based TL improve the prediction performance of human TL. This study deepens our understanding of causal genes and transcriptomic determinants of human TL, promoting the mechanistic research on fine-grained TL regulation.
Collapse
Affiliation(s)
- Ying Chang
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Yao Zhou
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Junrui Zhou
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wen Li
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Jiasong Cao
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Yaqing Jing
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Zhang
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yongmei Shen
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Qimei Lin
- Tianjin Key Lab of Human Development and Reproductive Regulation, Tianjin Central Hospital of Obstetrics and Gynecology, Nankai University, Tianjin, China
| | - Xutong Fan
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongxi Yang
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiaobao Dong
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shijie Zhang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xianfu Yi
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ling Shuai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Central Hospital of Gynecology Obstetrics/Tianjin Key Laboratory of Human Development and Reproductive Regulation, Nankai University, Tianjin, China
| | - Lei Shi
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xin Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jihui Hao
- Department of Pancreatic Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Department of Epidemiology and Biostatistics, Tianjin Key Laboratory of Molecular Cancer Epidemiology, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| | - Feng Wang
- Department of Genetics and Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Tianjin Medical University School of Stomatology, Tianjin Medical University, Tianjin, China.
- Department of Geriatrics, Tianjin Medical University General Hospital; Tianjin Geriatrics Institute, Tianjin, China.
| | - Dandan Huang
- Department of Pharmacology, Tianjin Key Laboratory of Inflammation Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
148
|
Zhang M, Wang S, Xu R, Liu Y, Zhang H, Sun M, Wang J, Liu Z, Wu K. Managing genomic diversity in conservation programs of Chinese domestic chickens. Genet Sel Evol 2023; 55:92. [PMID: 38097971 PMCID: PMC10722821 DOI: 10.1186/s12711-023-00866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Effective conservation and utilization of farm animals are fundamental for realizing sustainable increases in food production. In situ and ex situ conservation are the two main strategies that are currently used to protect the genetic integrity of Chinese domestic chicken breeds. However, genomic diversity and population structure have not been compared in these conserved populations. RESULTS Three hundred and sixty-one individuals from three Chinese domestic chicken breeds were collected from populations conserved in situ and ex situ and genotyped using genotyping-by-sequencing (GBS). First, we used different parameters based on heterozygosity, genomic inbreeding, and linkage disequilibrium to estimate the genomic diversity of these populations, and applied principal component analysis (PCA), neighbor-joining tree, and ADMIXTURE to analyze population structure. We found that the small ex situ conserved populations, which have been maintained in controlled environments, retained less genetic diversity than the in situ conserved populations. In addition, genetic differentiation was detected between the in situ and ex situ conserved populations of the same breed. Next, we analyzed signatures of selection using three statistical methods (fixation index (FST), nucleotide diversity (Pi), and cross-population extended haplotype homozygosity (XP-EHH) to study the genetic footprints that underlie the differentiation between in situ and ex situ conserved populations. We concluded that, in these small populations, differentiation might be caused by genetic drift or by mutations from the original populations. The differentiation observed in the population of Beijing You chicken probably reflects adaptation to environmental changes in temperature and humidity that the animals faced when they were moved from their place of origin to the new site for ex situ conservation. CONCLUSIONS Conservation programs of three Chinese domestic chicken breeds have maintained their genomic diversity to a sustainable degree. The small ex situ conserved populations, which are maintained in controlled environments, retain less genetic diversity than populations conserved in situ. In addition, the transfer of populations from their place of origin to another site for conservation purposes results in genetic differentiation, which may be caused by genetic drift or adaptation. This study provides a basis for further optimization of in situ and ex situ conservation programs for domestic chicken breeds in China.
Collapse
Affiliation(s)
- Mengmeng Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- Beijing Capital Agribusiness Future Biotechnology Co., Ltd., No. 75 Bingjiaokou Hutong, Beijing, 100088, People's Republic of China
| | - Shiwei Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ran Xu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yijun Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
- College of Animal Science, Southwest University, Chongqing, 402460, People's Republic of China
| | - Han Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Mengxia Sun
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Junyan Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhexi Liu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Keliang Wu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
149
|
Mujica PC, Martinez V. A purebred South American breed showing high effective population size and independent breed ancestry: The Chilean Terrier. Anim Genet 2023; 54:772-785. [PMID: 37778752 DOI: 10.1111/age.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/31/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
The Chilean Terrier is a known breed in Chile that has not been genetically assessed despite its distinctive color patterns, agility, and hardiness across the diversity of climates encountered within the Chilean landscape. The population structure and its relatedness with other breeds, as well as the actual origin of the breed, remain unknown. We estimated several population parameters using samples from individuals representing the distribution of the Chilean Terrier across the country. By utilizing the Illumina HD canine genotyping array, we computed the effective population size (Ne ), individual inbreeding, and relatedness to evaluate the genetic diversity of the breed. The results show that linkage disequilibrium was relatively low and decayed rapidly; in fact, Ne was very high when compared to other breeds, and similar to other American indigenous breeds (such as the Chihuahua with values of Ne near 500). These results are in line with the low estimates of genomic inbreeding and relatedness and the relatively large number of effective chromosome segments (Me = 2467) obtained using the properties of the genomic relationship matrix. Between population analysis (cross-population extended haplotype homozygosity, di ) with other breeds such as the Jack Russell Terrier, the Peruvian-Inca Orchid, and the Chihuahua suggested that candidate regions harboring FGF5, PAX3, and ASIP, probably explained some morphological traits, such as the distinctive color pattern characteristic of the breed. When considering Admixture estimates and phylogenetic analysis, together with other breeds of American and European origin, the Chilean Terrier does not have a recent European ancestry. Overall, the results suggest that the breed has evolved independently in Chile from other terrier breeds, from an unknown European terrier ancestor.
Collapse
Affiliation(s)
- Paola C Mujica
- FAVET-INBIOGEN Laboratory, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| | - Víctor Martinez
- FAVET-INBIOGEN Laboratory, Faculty of Veterinary Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
150
|
Gislason H. SNP heterozygosity, relatedness and inbreeding of whole genomes from the isolated population of the Faroe Islands. BMC Genomics 2023; 24:707. [PMID: 37996805 PMCID: PMC10666429 DOI: 10.1186/s12864-023-09763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The population of the Faroe Islands is an isolated population but very little is known about it from whole genome sequencing. The population of about 50000 people has a high incidence of rare diseases e.g., 1:300 for Primary Carnitine Deficiency. A screening programme was implemented, and eleven persons were also whole genome sequenced at x37 coverage for diagnostic purposes of those cases that were not affected by the known mutations. The purpose of our study is to utilize the high coverage data to explore the genomic variation and the ancestral history of the population. We study the SNP heterozygosity, the pairwise relatedness from kinship, the inbreeding from runs of homozygosity ROH, and we find the minor allele frequency distribution. We estimate the population ancestry and the timing of the founding event by using the whole genomes from eight consenting individuals. RESULTS We find the number of SNPs and the heterozygosity for the eight individual samples, and for merged samples, for which we also study the relatedness. We find close relatedness between the supposedly unrelated individuals. From ROH, we interpret the high relatedness as an ancient property of the isolated population. A bottleneck event is estimated starting between years [Formula: see text] with a maximum consanguineous population in year [Formula: see text] and similarly consanguineous between years [Formula: see text]. The ancestry analysis shows the population descends from founders of [Formula: see text] European and [Formula: see text] Admixed American ancestry. A distinct clustering near the central European and British populations of the 1000 Genome Project is likely the result of the population isolation and genetic drift. The minor allele frequency distribution suggests many rare variants. CONCLUSIONS The ancestry is mainly European while the inbreeding is higher compared to European populations and population isolates. The Faroese population has inbreeding more like ancient Europeans. We discovered a bottlenecked and consanguineous population event and estimated it starting in the 1st-4th century as compared to the oldest archaeological findings from the 4th-6th century.
Collapse
Affiliation(s)
- Hannes Gislason
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands.
| |
Collapse
|