101
|
Staab-Weijnitz CA, Fernandez IE, Knüppel L, Maul J, Heinzelmann K, Juan-Guardela BM, Hennen E, Preissler G, Winter H, Neurohr C, Hatz R, Lindner M, Behr J, Kaminski N, Eickelberg O. FK506-Binding Protein 10, a Potential Novel Drug Target for Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2015; 192:455-67. [PMID: 26039104 DOI: 10.1164/rccm.201412-2233oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Increased abundance and stiffness of the extracellular matrix, in particular collagens, is a hallmark of idiopathic pulmonary fibrosis (IPF). FK506-binding protein 10 (FKBP10) is a collagen chaperone, mutations of which have been indicated in the reduction of extracellular matrix stiffness (e.g., in osteogenesis imperfecta). OBJECTIVES To assess the expression and function of FKBP10 in IPF. METHODS We assessed FKBP10 expression in bleomycin-induced lung fibrosis (using quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunofluorescence), analyzed microarray data from 99 patients with IPF and 43 control subjects from a U.S. cohort, and performed Western blot analysis from 6 patients with IPF and 5 control subjects from a German cohort. Subcellular localization of FKBP10 was assessed by immunofluorescent stainings. The expression and function of FKBP10, as well as its regulation by endoplasmic reticulum stress or transforming growth factor-β1, was analyzed by small interfering RNA-mediated loss-of-function experiments, quantitative reverse transcriptase-polymerase chain reaction, Western blot, and quantification of secreted collagens in the lung and in primary human lung fibroblasts (phLF). Effects on collagen secretion were compared with those of the drugs nintedanib and pirfenidone, recently approved for IPF. MEASUREMENTS AND MAIN RESULTS FKBP10 expression was up-regulated in bleomycin-induced lung fibrosis and IPF. Immunofluorescent stainings demonstrated localization to interstitial (myo)fibroblasts and CD68(+) macrophages. Transforming growth factor-β1, but not endoplasmic reticulum stress, induced FKBP10 expression in phLF. The small interfering RNA-mediated knockdown of FKBP10 attenuated expression of profibrotic mediators and effectors, including collagens I and V and α-smooth muscle actin, on the transcript and protein level. Importantly, loss of FKBP10 expression significantly suppressed collagen secretion by phLF. CONCLUSIONS FKBP10 might be a novel drug target for IPF.
Collapse
Affiliation(s)
- Claudia A Staab-Weijnitz
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Isis E Fernandez
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Larissa Knüppel
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia Maul
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Katharina Heinzelmann
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Brenda M Juan-Guardela
- 2 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Elisabeth Hennen
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Gerhard Preissler
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Hauke Winter
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany
| | - Claus Neurohr
- 4 Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Member of the German Center of Lung Research (DZL), Munich, Germany; and
| | - Rudolf Hatz
- 3 Thoraxchirurgisches Zentrum, Klinik für Allgemeine, Viszeral, Transplantations, Gefäß- und Thoraxchirurgie, Klinikum Großhadern, Ludwig-Maximilians-Universität, Munich, Germany.,5 Asklepios Fachkliniken München-Gauting, Munich, Germany
| | | | - Jürgen Behr
- 4 Medizinische Klinik und Poliklinik V, Klinikum der Ludwig-Maximilians-Universität, Member of the German Center of Lung Research (DZL), Munich, Germany; and.,5 Asklepios Fachkliniken München-Gauting, Munich, Germany
| | - Naftali Kaminski
- 2 Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Oliver Eickelberg
- 1 Comprehensive Pneumology Center, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
102
|
Genetic Defects in TAPT1 Disrupt Ciliogenesis and Cause a Complex Lethal Osteochondrodysplasia. Am J Hum Genet 2015; 97:521-34. [PMID: 26365339 DOI: 10.1016/j.ajhg.2015.08.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 08/18/2015] [Indexed: 11/22/2022] Open
Abstract
The evolutionarily conserved transmembrane anterior posterior transformation 1 protein, encoded by TAPT1, is involved in murine axial skeletal patterning, but its cellular function remains unknown. Our study demonstrates that TAPT1 mutations underlie a complex congenital syndrome, showing clinical overlap between lethal skeletal dysplasias and ciliopathies. This syndrome is characterized by fetal lethality, severe hypomineralization of the entire skeleton and intra-uterine fractures, and multiple congenital developmental anomalies affecting the brain, lungs, and kidneys. We establish that wild-type TAPT1 localizes to the centrosome and/or ciliary basal body, whereas defective TAPT1 mislocalizes to the cytoplasm and disrupts Golgi morphology and trafficking and normal primary cilium formation. Knockdown of tapt1b in zebrafish induces severe craniofacial cartilage malformations and delayed ossification, which is shown to be associated with aberrant differentiation of cranial neural crest cells.
Collapse
|
103
|
Abstract
Osteogenesis imperfecta (OI) is an uncommon genetic bone disease associated with brittle bones and fractures in children and adults. Although OI is most commonly associated with mutations of the genes for type I collagen, many other genes (some associated with type I collagen processing) have now been identified. The genetics of OI and advances in our understanding of the biomechanical properties of OI bone are reviewed in this article. Treatment includes physiotherapy, fall prevention, and sometimes orthopedic procedures. In this brief review, we will also discuss current understanding of pharmacologic therapies for treatment of OI.
Collapse
Affiliation(s)
- Joseph L Shaker
- Endocrinology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Carolyne Albert
- Orthopaedic and Rehabilitation Engineering Center, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA ; Shriners Hospitals for Children, Chicago, IL, USA
| | - Jessica Fritz
- Orthopaedic and Rehabilitation Engineering Center, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gerald Harris
- Orthopaedic and Rehabilitation Engineering Center, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA ; Shriners Hospitals for Children, Chicago, IL, USA
| |
Collapse
|
104
|
Besio R, Forlino A. New frontiers for dominant osteogenesis imperfecta treatment: gene/cellular therapy approaches. ACTA ACUST UNITED AC 2015. [DOI: 10.3402/arb.v2.27964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
105
|
Westgren M, Götherström C. Stem cell transplantation before birth - a realistic option for treatment of osteogenesis imperfecta? Prenat Diagn 2015; 35:827-32. [PMID: 25962526 DOI: 10.1002/pd.4611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 04/28/2015] [Accepted: 04/28/2015] [Indexed: 01/17/2023]
Abstract
Osteogenesis imperfecta (OI) is characterized by severe bone deformities, growth retardation and bones that break easily, often from little or no apparent cause. OI is a genetic disorder primarily with defective type I collagen with a wide spectrum of clinical expression. In the more severe cases, it can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC) has the potential to improve the bone structure and stability, growth and fracture healing. Prenatal and postnatal cell transplantation has been investigated in preclinical and clinical studies of OI and suggests that this procedure is safe and has positive effects. Cell transplantation resulted in improved linear growth, mobility and reduced fracture incidence. However, the effect is transient and for this reason re-transplantation may be needed. So far there is limited experience in this area, and proper studies are required to accurately determine if MSC transplantation is of clinical benefit in the treatment of OI. In this review, we summarize what is currently known in this field.
Collapse
Affiliation(s)
- Magnus Westgren
- Center for Fetal Medicine, Karolinska University Hospital, Stockholm, Sweden.,Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Götherström
- Division of Obstetrics and Gynaecology, Karolinska Institutet, Stockholm, Sweden.,Center for Haematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
106
|
Genetic epidemiology, prevalence, and genotype-phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur J Hum Genet 2015; 23:1042-50. [PMID: 25944380 DOI: 10.1038/ejhg.2015.81] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 11/08/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a rare hereditary bone fragility disorder, caused by collagen I mutations in 90% of cases. There are no comprehensive genotype-phenotype studies on >100 families outside North America, and no population-based studies determining the genetic epidemiology of OI. Here, detailed clinical phenotypes were recorded, and the COL1A1 and COL1A2 genes were analyzed in 164 Swedish OI families (223 individuals). Averages for bone mineral density (BMD), height and yearly fracture rate were calculated and related to OI and mutation type. N-terminal helical mutations in both the α1- and α2-chains were associated with the absence of dentinogenesis imperfecta (P<0.0001 vs 0.0049), while only those in the α1-chain were associated with blue sclera (P=0.0110). Comparing glycine with serine substitutions, α1-alterations were associated with more severe phenotype (P=0.0031). Individuals with type I OI caused by qualitative vs quantitative mutations were shorter (P<0.0001), but did not differ considering fractures or BMD. The children in this cohort were estimated to represent >95% of the complete Swedish pediatric OI population. The prevalence of OI types I, III, and IV was 5.16, 0.89, and 1.35/100 000, respectively (7.40/100 000 overall), corresponding to what has been estimated but not unequivocally proven in any population. Collagen I mutation analysis was performed in the family of 97% of known cases, with causative mutations found in 87%. Qualitative mutations caused 32% of OI type I. The data reported here may be helpful to predict phenotype, and describes for the first time the genetic epidemiology in >95% of an entire OI population.
Collapse
|
107
|
Lietman CD, Marom R, Munivez E, Bertin TK, Jiang MM, Chen Y, Dawson B, Weis M, Eyre D, Lee B. A transgenic mouse model of OI type V supports a neomorphic mechanism of the IFITM5 mutation. J Bone Miner Res 2015; 30:489-98. [PMID: 25251575 PMCID: PMC4333000 DOI: 10.1002/jbmr.2363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 09/09/2014] [Accepted: 09/16/2014] [Indexed: 01/24/2023]
Abstract
Osteogenesis imperfecta (OI) type V is characterized by increased bone fragility, long bone deformities, hyperplastic callus formation, and calcification of interosseous membranes. It is caused by a recurrent mutation in the 5' UTR of the IFITM5 gene (c.-14C > T). This mutation introduces an alternative start codon, adding 5 amino acid residues to the N-terminus of the protein. The mechanism whereby this novel IFITM5 protein causes OI type V is yet to be defined. To address this, we created transgenic mice expressing either the wild-type or the OI type V mutant IFITM5 under the control of an osteoblast-specific Col1a1 2.3-kb promoter. These mutant IFITM5 transgenic mice exhibited perinatal lethality, whereas wild-type IFITM5 transgenic mice showed normal growth and development. Skeletal preparations and radiographs performed on E15.5 and E18.5 OI type V transgenic embryos revealed delayed/abnormal mineralization and skeletal defects, including abnormal rib cage formation, long bone deformities, and fractures. Primary osteoblast cultures, derived from mutant mice calvaria at E18.5, showed decreased mineralization by Alizarin red staining, and RNA isolated from calvaria showed reduced expression of osteoblast differentiation markers such as Osteocalcin, compared with nontransgenic littermates and wild-type mice calvaria, consistent with the in vivo phenotype. Importantly, overexpression of wild-type Ifitm5 did not manifest a significant bone phenotype. Collectively, our results suggest that expression of mutant IFITM5 causes abnormal skeletal development, low bone mass, and abnormal osteoblast differentiation. Given that neither overexpression of the wild-type Ifitm5, as shown in our model, nor knock-out of Ifitm5, as previously published, showed significant bone abnormalities, we conclude that the IFITM5 mutation in OI type V acts in a neomorphic fashion.
Collapse
Affiliation(s)
- Caressa D. Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Terry K. Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Brian Dawson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Houston, TX 77030, USA
| |
Collapse
|
108
|
Cho SY, Asharani P, Kim OH, Iida A, Miyake N, Matsumoto N, Nishimura G, Ki CS, Hong G, Kim SJ, Sohn YB, Park SW, Lee J, Kwun Y, Carney TJ, Huh R, Ikegawa S, Jin DK. Identification andIn VivoFunctional Characterization of Novel Compound HeterozygousBMP1Variants in Osteogenesis Imperfecta. Hum Mutat 2015; 36:191-5. [DOI: 10.1002/humu.22731] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/29/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Sung Yoon Cho
- Department of Pediatrics, Sungkyunkwan University School of Medicine; Seoul Republic of Korea
| | - P.V. Asharani
- Institute of Molecular and Cell Biology; Proteos Singapore
| | - Ok-Hwa Kim
- Department of Radiology Gachon University Gil Medical Center; Incheon Republic of Korea
| | - Aritoshi Iida
- Laboratory for Bone and Joint Diseases; RIKEN Center for Integrated Medical Sciences; Tokyo Japan
| | - Noriko Miyake
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Naomichi Matsumoto
- Department of Human Genetics; Yokohama City University Graduate School of Medicine; Yokohama Japan
| | - Gen Nishimura
- Department of Pediatric Imaging; Tokyo Metropolitan Children's Medical Center; Fuchu Japan
| | - Chang-Seok Ki
- Department of Laboratory Medicine and Genetics; Sungkyunkwan University School of Medicine; Seoul Republic of Korea
| | - Geehay Hong
- Department of Laboratory Medicine and Genetics; Sungkyunkwan University School of Medicine; Seoul Republic of Korea
| | - Su Jin Kim
- Department of Pediatrics; Kwandong University College of Medicine; Myongji Hospital; Goyang Republic of Korea
| | - Young Bae Sohn
- Department of Medical Genetics; Ajou University Hospital; Ajou University School of Medicine; Suwon Republic of Korea
| | - Sung Won Park
- Department of Pediatrics; Kwandong University College of Medicine; Cheil General Hospital and Woman's Health Care Center; Seoul Republic of Korea
| | - Jieun Lee
- Department of Pediatrics, Sungkyunkwan University School of Medicine; Seoul Republic of Korea
| | - Younghee Kwun
- Department of Pediatrics, Sungkyunkwan University School of Medicine; Seoul Republic of Korea
| | - Thomas J. Carney
- Institute of Molecular and Cell Biology; Proteos Singapore
- Lee Kong Chian School of Medicine; Nanyang Technological University; Singapore
| | - Rimm Huh
- Department of Pediatrics, Sungkyunkwan University School of Medicine; Seoul Republic of Korea
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases; RIKEN Center for Integrated Medical Sciences; Tokyo Japan
| | - Dong-Kyu Jin
- Department of Pediatrics, Sungkyunkwan University School of Medicine; Seoul Republic of Korea
| |
Collapse
|
109
|
Reich A, Bae AS, Barnes AM, Cabral WA, Hinek A, Stimec J, Hill SC, Chitayat D, Marini JC. Type V OI primary osteoblasts display increased mineralization despite decreased COL1A1 expression. J Clin Endocrinol Metab 2015; 100:E325-32. [PMID: 25387264 PMCID: PMC4318905 DOI: 10.1210/jc.2014-3082] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CONTEXT Patients with type V osteogenesis imperfecta (OI) are heterozygous for a dominant IFITM5 c.-14C>T mutation, which adds five residues to the N terminus of bone-restricted interferon-induced transmembrane-like protein (BRIL), a transmembrane protein expressed in osteoblasts. Type V OI skeletal findings include hyperplastic callus formation, ossification of the forearm interosseous membrane, and dense metaphyseal bands. OBJECTIVE The objective of this study was to examine the role of osteoblasts in the active mineralization traits of type V OI and the effect of the IFITM5 mutation on type I collagen. METHODS We identified eight patients with the IFITM5 c.-14C>T mutation. Cultured osteoblasts from type V OI patients were used to study osteoblast differentiation and mineralization. RESULTS We verified the expression and stability of mutant IFITM5 transcripts. In differentiated type V OI primary osteoblasts in culture, the IFITM5 expression and BRIL level is comparable with control. Both early and late markers of osteoblast differentiation are increased in type V OI osteoblasts. Mineralization, assayed by alizarin red staining, was increased in type V OI osteoblasts compared with control. However, type V OI osteoblasts have significantly decreased COL1A1 transcripts in mid- to late differentiation. Type I collagen protein is concomitantly decreased, with decreased cross-linked collagen in matrix and altered appearance of fibrils deposited in culture. CONCLUSIONS This study demonstrates that type V OI mineralization has a gain-of-function mechanism at the osteoblast level, which likely underlies the overactive tissue mineralization seen in patients. Decreased type I collagen expression, secretion, and matrix incorporation establish type V OI as a collagen-related defect.
Collapse
Affiliation(s)
- Adi Reich
- Bone and Extracellular Matrix Branch (A.R., A.S.B., A.M.B., W.A.C., J.C.M.), Eunice Kennedy Shriver National Institute of Child Health and Human Development, and Department of Diagnostic Radiology (S.C.H.), National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, Maryland 20892; Physiology and Experimental Medicine Program (A.H.), Heart Center, Hospital for Sick Children, University of Toronto, Ontario, Canada M5S 3OA4; Division of Diagnostic Imaging (J.S.), Department of Pediatrics, and Division of Clinical and Metabolic Genetics (D.C.), Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada M5G 1X8; and The Prenatal Diagnosis and Medical Genetics Program (D.C.), Department of Obstetrics and Gynecology, Mt Sinai Hospital, University of Toronto, Toronto, Ontario, Canada M5G 1Z5
| | | | | | | | | | | | | | | | | |
Collapse
|
110
|
|
111
|
Arsenault PR, Heaton-Johnson KJ, Li LS, Song D, Ferreira VS, Patel N, Master SR, Lee FS. Identification of prolyl hydroxylation modifications in mammalian cell proteins. Proteomics 2015; 15:1259-67. [PMID: 25421965 DOI: 10.1002/pmic.201400398] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 09/17/2014] [Accepted: 11/20/2014] [Indexed: 01/22/2023]
Abstract
Prolyl hydroxylation is a PTM that plays an important role in the formation of collagen fibrils and in the oxygen-dependent regulation of hypoxia inducible factor-α (HIF-α). While this modification has been well characterized in the context of these proteins, it remains unclear to what extent it occurs in the remaining mammalian proteome. We explored this question using MS to analyze cellular extracts subjected to various fractionation strategies. In one strategy, we employed the von Hippel Lindau tumor suppressor protein, which recognizes prolyl hydroxylated HIF-α, as a scaffold for generating hydroxyproline capture reagents. We report novel sites of prolyl hydroxylation within five proteins: FK506-binding protein 10, myosin heavy chain 10, hexokinase 2, pyruvate kinase, and C-1 Tetrahydrofolate synthase. Furthermore, we show that identification of prolyl hydroxylation presents a significant technical challenge owing to widespread isobaric methionine oxidation, and that manual inspection of spectra of modified peptides in this context is critical for validation.
Collapse
Affiliation(s)
- Patrick R Arsenault
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
112
|
Romano S, D'Angelillo A, Romano MF. Pleiotropic roles in cancer biology for multifaceted proteins FKBPs. Biochim Biophys Acta Gen Subj 2015; 1850:2061-8. [PMID: 25592270 DOI: 10.1016/j.bbagen.2015.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND FK506 binding proteins (FKBP) are multifunctional proteins highly conserved across the species and abundantly expressed in the cell. In addition to a well-established role in immunosuppression, FKBPs modulate several signal transduction pathways in the cell, due to their isomerase activity and the capability to interact with other proteins, inducing changes in conformation and function of protein partners. Increasing literature data support the concept that FKBPs control cancer related pathways. SCOPE OF THE REVIEW The aim of the present article is to review current knowledge on FKBPs roles in regulation of key signaling pathways associated with cancer. MAJOR CONCLUSIONS Some family members appear to promote disease while others are protective against tumorigenesis. GENERAL SIGNIFICANCE FKBPs family proteins are expected to provide new biomarkers and small molecular targets, in the near future, increasing diagnostic and therapeutic opportunities in the cancer field. This article is part of a Special Issue entitled Proline-Directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Anna D'Angelillo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy; Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy.
| |
Collapse
|
113
|
Mao M, Alavi MV, Labelle-Dumais C, Gould DB. Type IV Collagens and Basement Membrane Diseases. CURRENT TOPICS IN MEMBRANES 2015; 76:61-116. [DOI: 10.1016/bs.ctm.2015.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
114
|
Duran I, Nevarez L, Sarukhanov A, Wu S, Lee K, Krejci P, Weis M, Eyre D, Krakow D, Cohn DH. HSP47 and FKBP65 cooperate in the synthesis of type I procollagen. Hum Mol Genet 2014; 24:1918-28. [PMID: 25510505 DOI: 10.1093/hmg/ddu608] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a genetic disorder that results in low bone mineral density and brittle bones. Most cases result from dominant mutations in the type I procollagen genes, but mutations in a growing number of genes have been identified that produce autosomal recessive forms of the disease. Among these include mutations in the genes SERPINH1 and FKBP10, which encode the type I procollagen chaperones HSP47 and FKBP65, respectively, and predominantly produce a moderately severe form of OI. Little is known about the biochemical consequences of the mutations and how they produce OI. We have identified a new OI mutation in SERPINH1 that results in destabilization and mislocalization of HSP47 and secondarily has similar effects on FKBP65. We found evidence that HSP47 and FKBP65 act cooperatively during posttranslational maturation of type I procollagen and that FKBP65 and HSP47 but fail to properly interact in mutant HSP47 cells. These results thus reveal a common cellular pathway in cases of OI caused by HSP47 and FKBP65 deficiency.
Collapse
Affiliation(s)
| | | | | | - Sulin Wu
- Department of Orthopaedic Surgery
| | - Katrina Lee
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Pavel Krejci
- Department of Pediatrics, David Geffen School of Medicine at the University of California at Los Angeles, Los Angeles, CA 90095, USA, Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Maryann Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA, USA
| | - Deborah Krakow
- Department of Orthopaedic Surgery, Department of Human Genetics, Department of Obstetrics and Gynecology and
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
115
|
Harrington J, Sochett E, Howard A. Update on the evaluation and treatment of osteogenesis imperfecta. Pediatr Clin North Am 2014; 61:1243-57. [PMID: 25439022 DOI: 10.1016/j.pcl.2014.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Osteogenesis imperfecta (OI) is a heritable bone fragility disorder that presents with a wide clinical phenotype spectrum: from perinatal lethality and severe deformities to very mild forms without fractures. Most cases of OI are due to autosomal dominant mutations of the type I collagen genes. A multidisciplinary approach with rehabilitation, orthopedic surgery, and consideration of medical therapy with bisphosphonates underpins current management. Greater understanding of the pathogenesis of OI may lead to novel, therapeutic approaches to help improve clinical symptoms of children with OI in the future.
Collapse
Affiliation(s)
- Jennifer Harrington
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G1X8, Canada
| | - Etienne Sochett
- Division of Endocrinology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G1X8, Canada
| | - Andrew Howard
- Division of Orthopedic Surgery, Department of Pediatrics, Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario M5G1X8, Canada.
| |
Collapse
|
116
|
Minillo RM, Sobreira N, de Faria Soares MDF, Jurgens J, Ling H, Hetrick KN, Doheny KF, Valle D, Brunoni D, Perez ABA. Novel Deletion of SERPINF1 Causes Autosomal Recessive Osteogenesis Imperfecta Type VI in Two Brazilian Families. Mol Syndromol 2014; 5:268-75. [PMID: 25565926 DOI: 10.1159/000369108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2014] [Indexed: 12/17/2022] Open
Abstract
Autosomal recessive osteogenesis imperfecta (OI) accounts for 10% of all OI cases, and, currently, mutations in 10 genes (CRTAP, LEPRE1, PPIB, SERPINH1, FKBP10, SERPINF1, SP7, BMP1, TMEM38B, and WNT1) are known to be responsible for this form of the disease. PEDF is a secreted glycoprotein of the serpin superfamily that maintains bone homeostasis and regulates osteoid mineralization, and it is encoded by SERPINF1, currently associated with OI type VI (MIM 172860). Here, we report a consanguineous Brazilian family in which multiple individuals from at least 4 generations are affected with a severe form of OI, and we also report an unrelated individual from the same small city in Brazil with a similar but more severe phenotype. In both families the same homozygous SERPINF1 19-bp deletion was identified which is not known in the literature yet. We described intra- and interfamilial clinical and radiological phenotypic variability of OI type VI caused by the same homozygous SERPINF1 19-bp deletion and suggest a founder effect. Furthermore, the SERPINF1 genotypes/phenotypes reported so far in the literature are reviewed.
Collapse
Affiliation(s)
| | - Nara Sobreira
- McKusick-Nathan Institute of Genetic Medicine, Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Md., USA
| | | | - Julie Jurgens
- McKusick-Nathan Institute of Genetic Medicine, Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Md., USA
| | - Hua Ling
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Md., USA
| | - Kurt N Hetrick
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Md., USA
| | - Kimberly F Doheny
- Center for Inherited Disease Research, Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Md., USA
| | - David Valle
- McKusick-Nathan Institute of Genetic Medicine, Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Md., USA
| | - Decio Brunoni
- Center of Medical Genetics, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Ana B Alvarez Perez
- Center of Medical Genetics, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
117
|
Schiene-Fischer C. Multidomain Peptidyl Prolyl cis/trans Isomerases. Biochim Biophys Acta Gen Subj 2014; 1850:2005-16. [PMID: 25445709 DOI: 10.1016/j.bbagen.2014.11.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Peptidyl prolyl cis/trans isomerases (PPIases) assist the folding and restructuring of client proteins by catalysis of the slow rotational motion of peptide bonds preceding a proline residue. Catalysis is performed by relatively small, distinct protein domains of 10 to 18kDa for all PPIase families. PPIases are involved in a wide variety of physiological and pathophysiological processes like signal transduction, cell differentiation, apoptosis as well as viral, bacterial and parasitic infection. SCOPE OF REVIEW There are multidomain PPIases consisting of one to up to four catalytic domains of the respective PPIase family supplemented by N- or C-terminal extensions. This review examines the biochemical and functional properties of the members of the PPIase class of enzymes which contain additional protein domains with defined biochemical functions. MAJOR CONCLUSIONS The versatile domain architecture of multidomain PPIases is important for the control of enzyme specificity and organelle-specific targeting, the establishment of molecular connections and hence the coordination of PPIase functions across the cellular network. GENERAL SIGNIFICANCE Accessory domains covalently linked to a PPIase domain supply an additional layer of control to the catalysis of prolyl isomerization in specific client proteins. Understanding these control mechanisms will provide new insights into the physiological mode of action of the multidomain PPIases and their ability to form therapeutic targets. This article is part of a Special Issue entitled Proline-directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Cordelia Schiene-Fischer
- Department of Enzymology, Institute for Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Weinbergweg 22, 06120 Halle (Saale), Germany.
| |
Collapse
|
118
|
Valadares ER, Carneiro TB, Santos PM, Oliveira AC, Zabel B. What is new in genetics and osteogenesis imperfecta classification? J Pediatr (Rio J) 2014; 90:536-41. [PMID: 25046257 DOI: 10.1016/j.jped.2014.05.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/01/2014] [Accepted: 05/27/2014] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Literature review of new genes related to osteogenesis imperfecta (OI) and update of its classification. SOURCES Literature review in the PubMed and OMIM databases, followed by selection of relevant references. SUMMARY OF THE FINDINGS In 1979, Sillence et al. developed a classification of OI subtypes based on clinical features and disease severity: OI type I, mild, common, with blue sclera; OI type II, perinatal lethal form; OI type III, severe and progressively deforming, with normal sclera; and OI type IV, moderate severity with normal sclera. Approximately 90% of individuals with OI are heterozygous for mutations in the COL1A1 and COL1A2 genes, with dominant pattern of inheritance or sporadic mutations. After 2006, mutations were identified in the CRTAP, FKBP10, LEPRE1, PLOD2, PPIB, SERPINF1, SERPINH1, SP7, WNT1, BMP1, and TMEM38B genes, associated with recessive OI and mutation in the IFITM5 gene associated with dominant OI. Mutations in PLS3 were recently identified in families with osteoporosis and fractures, with X-linked inheritance pattern. In addition to the genetic complexity of the molecular basis of OI, extensive phenotypic variability resulting from individual loci has also been documented. CONCLUSIONS Considering the discovery of new genes and limited genotype-phenotype correlation, the use of next-generation sequencing tools has become useful in molecular studies of OI cases. The recommendation of the Nosology Group of the International Society of Skeletal Dysplasias is to maintain the classification of Sillence as the prototypical form, universally accepted to classify the degree of severity in OI, while maintaining it free from direct molecular reference.
Collapse
Affiliation(s)
- Eugênia R Valadares
- Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Túlio B Carneiro
- Hospital das Clínicas, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Paula M Santos
- Faculdade de Odontologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Oliveira
- Faculdade de Odontologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Bernhard Zabel
- Pediatric Clinic, Freiburg University, Freiburg, Germany
| |
Collapse
|
119
|
Valadares ER, Carneiro TB, Santos PM, Oliveira AC, Zabel B. What is new in genetics and osteogenesis imperfecta classification? JORNAL DE PEDIATRIA (VERSÃO EM PORTUGUÊS) 2014. [DOI: 10.1016/j.jpedp.2014.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
120
|
Chan JKY, Götherström C. Prenatal transplantation of mesenchymal stem cells to treat osteogenesis imperfecta. Front Pharmacol 2014; 5:223. [PMID: 25346689 PMCID: PMC4191163 DOI: 10.3389/fphar.2014.00223] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 12/28/2022] Open
Abstract
Osteogenesis imperfecta (OI) can be a severe disorder that can be diagnosed before birth. Transplantation of mesenchymal stem cells (MSC) has the potential to improve the bone structure, growth, and fracture healing. In this review, we give an introduction to OI and MSC, and the basis for pre- and postnatal transplantation in OI. We also summarize the two patients with OI who have received pre- and postnatal transplantation of MSC. The findings suggest that prenatal transplantation of allogeneic MSC in OI is safe. The cell therapy is of likely clinical benefit with improved linear growth, mobility, and reduced fracture incidence. Unfortunately, the effect is transient. For this reason, postnatal booster infusions using same-donor MSC have been performed with clinical benefit, and without any adverse events. So far there is limited experience in this specific field and proper studies are required to accurately conclude on clinical benefits of MSC transplantation to treat OI.
Collapse
Affiliation(s)
- Jerry K Y Chan
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine and National University of Singapore , Singapore, Singapore ; Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore , Singapore ; Cancer and Stem Cell Biology, Duke-National University of Singapore Graduate Medical School, Singapore , Singapore
| | - Cecilia Götherström
- Division for Obstetrics and Gynecology, Department of Clinical Science Intervention and Technology, Karolinska Institutet , Stockholm, Sweden ; Center for Hematology and Regenerative Medicine, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
121
|
Zhou P, Liu Y, Lv F, Nie M, Jiang Y, Wang O, Xia W, Xing X, Li M. Novel mutations in FKBP10 and PLOD2 cause rare Bruck syndrome in Chinese patients. PLoS One 2014; 9:e107594. [PMID: 25238597 PMCID: PMC4169569 DOI: 10.1371/journal.pone.0107594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/13/2014] [Indexed: 12/02/2022] Open
Abstract
Bruck syndrome (BS) is an extremely rare form of osteogenesis imperfecta characterized by congenital joint contracture, multiple fractures and short stature. We described the phenotypes of BS in two Chinese patients for the first time. The novel compound heterozygous mutations c.764_772dupACGTCCTCC (p.255_257dupHisValLeu) in exon 5 and c.1405G>T (p.Gly469X) in exon 9 of FKBP10 were identified in one proband. The novel compound heterozygous mutations c.1624delT (p.Tyr542Thrfs*18) in exon 14 and c.1880T>C (p.Val627Ala) in exon 17 of PLOD2 were identified in another probrand. Intravenous zoledronate was a potent agent for these patients, confirmed the efficacy of bisphosphonates on this disease. In conclusion, the novel causative mutations identified in the patients expand the genotypic spectrum of BS.
Collapse
Affiliation(s)
- Peiran Zhou
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Liu
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Lv
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Nie
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Jiang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ou Wang
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Weibo Xia
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoping Xing
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mei Li
- Department of Endocrinology, Key Laboratory of Endocrinology of Ministry of Health, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
122
|
[Osteogenesis imperfecta]. DER ORTHOPADE 2014; 43:764-71. [PMID: 25116245 DOI: 10.1007/s00132-013-2229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is the most common genetic disease of bone and is characterized by fragile bones and growth disorders of varying severity. Most cases of OI are inherited autosomal dominant and caused by a mutation in the collagen type I gene. DIAGNOSTICS Indications for OI are bone fragility, stunted growth, scoliosis, skull deformities, blue sclera, loss of hearing, dentinogenesis imperfecta and increased laxity of ligaments and skin. In most cases it is possible to make a clinical diagnosis but a skin biopsy or genetic testing can be useful; however, negative results for these tests do not exclude OI. THERAPY Therapy must be carried out in a multidisciplinary team and includes conservative (e.g. physiotherapy, rehabilitation programs and orthopedic aids), operative (e.g. intramedullary stabilization procedures) and pharmaceutical (e.g. biphosphonates and growth hormones) procedures. PROGNOSIS The prognosis depends on the type of OI and ranges from normal life expectations for type 1 patients up to up to perinatal mortality for type II patients.
Collapse
|
123
|
Abstract
BACKGROUND Osteogenesis imperfecta (OI) is a heterogeneous rare connective tissue disorder commonly caused by mutations in the collagen type I genes. Pharmacological treatment has been most extensively studied in children, and there are only few studies comprising adult OI patients. OBJECTIVES i) To review the literature on the current medical management of OI in children and adults, and thereby identify unmet medical needs and ii) to present an overview of possible future treatment options. RESULTS Individualization and optimization of OI treatment in adults remain a challenge, because available treatments do not target the underlying collagen defect, and available literature gives weak support for treatment decisions for adult patients. CONCLUSIONS Bisphosphonates are still the most widely used pharmacological treatment for adult OI, but the current evidence supporting this is sparse and investigations on indications for choice and duration of treatment are needed.
Collapse
Affiliation(s)
- Katarina Lindahl
- Department of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | - Bente Langdahl
- Department of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | - Östen Ljunggren
- Department of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| | - Andreas Kindmark
- Department of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, SwedenDepartment of Medical SciencesUppsala University Hospital, Ing 40, 5tr, SE-75185 Uppsala, SwedenDepartment of Endocrinology and Internal Medicine THGAarhus University Hospital, DK-8000 Aarhus C, DenmarkScience for Life LaboratoryDepartment of Medical Sciences, Uppsala University Hospital, SE-75185 Uppsala, Sweden
| |
Collapse
|
124
|
Marini JC, Reich A, Smith SM. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation. Curr Opin Pediatr 2014; 26:500-7. [PMID: 25007323 PMCID: PMC4183132 DOI: 10.1097/mop.0000000000000117] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW Osteogenesis imperfecta or 'brittle bone disease' has mainly been considered a bone disorder caused by collagen mutations. Within the last decade, however, a surge of genetic discoveries has created a new paradigm for osteogenesis imperfecta as a collagen-related disorder, where most cases are due to autosomal dominant type I collagen defects, while rare, mostly recessive, forms are due to defects in genes whose protein products interact with collagen protein. This review is both timely and relevant in outlining the genesis, development, and future of this paradigm shift in the understanding of osteogenesis imperfecta. RECENT FINDINGS Bone-restricted interferon-induced transmembrane (IFITM)-like protein (BRIL) and pigment epithelium-derived factor (PEDF) defects cause types V and VI osteogenesis imperfecta via defective bone mineralization, while defects in cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1), and cyclophilin B (CYPB) cause types VII-IX osteogenesis imperfecta via defective collagen post-translational modification. Heat shock protein 47 (HSP47) and FK506-binding protein-65 (FKBP65) defects cause types X and XI osteogenesis imperfecta via aberrant collagen crosslinking, folding, and chaperoning, while defects in SP7 transcription factor, wingless-type MMTV integration site family member 1 (WNT1), trimeric intracellular cation channel type b (TRIC-B), and old astrocyte specifically induced substance (OASIS) disrupt osteoblast development. Finally, absence of the type I collagen C-propeptidase bone morphogenetic protein 1 (BMP1) causes type XII osteogenesis imperfecta due to altered collagen maturation/processing. SUMMARY Identification of these multiple causative defects has provided crucial information for accurate genetic counseling, inspired a recently proposed functional grouping of osteogenesis imperfecta types by shared mechanism to simplify current nosology, and has prodded investigations into common pathways in osteogenesis imperfecta. Such investigations could yield critical information on cellular and bone tissue mechanisms and translate to new mechanistic insight into clinical therapies for patients.
Collapse
Affiliation(s)
- Joan C. Marini
- Bone and Extracellular Matrix Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Adi Reich
- Bone and Extracellular Matrix Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Simone M. Smith
- Bone and Extracellular Matrix Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
125
|
Abstract
BACKGROUND Osteogenesis imperfecta is caused by a genetic defect resulting in an abnormal type I collagen bone matrix which typically results in multiple fractures with little or no trauma. Bisphosphonates are used in an attempt to increase bone mineral density and reduce these fractures in people with osteogenesis imperfecta. OBJECTIVES To assess the effectiveness and safety of bisphosphonates in increasing bone mineral density, reducing fractures and improving clinical function in people with osteogenesis imperfecta. SEARCH METHODS We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Inborn Errors of Metabolism Trials Register which comprises references identified from comprehensive electronic database searches, handsearches of journals and conference proceedings. We additionally searched PubMed and major conference proceedings.Date of the most recent search: 07 April 2014. SELECTION CRITERIA Randomised and quasi-randomised controlled trials comparing bisphosphonates to placebo, no treatment, or comparator interventions in all types of osteogenesis imperfecta. DATA COLLECTION AND ANALYSIS Two authors independently extracted data and assessed the risk of bias of the included trials. MAIN RESULTS Fourteen trials (819 participants) were included. Overall, the trials were mainly at a low risk of bias, although selective reporting was an issue in several of the trials. Data for oral bisphosphonates versus placebo could not be aggregated; a statistically significant difference favouring oral bisphosphonates in fracture risk reduction and number of fractures was noted in two trials. No differences were reported in the remaining three trials which commented on fracture incidence. Five trials reported data for spine bone mineral density; all found statistically significant increased lumbar spine density z scores for at least one time point studied. For intravenous bisphosphonates versus placebo, aggregated data from two trials showed no statistically significant difference for the number of participants with at least one fracture, risk ratio 0.56 (95% confidence interval 0.30 to 1.06). In the remaining trial no statistically significant difference was noted in fracture incidence. For spine bone mineral density, no statistically significant difference was noted in the aggregated data from two trials, mean difference 9.96 (95% confidence interval -2.51 to 22.43). In the remaining trial a statistically significant difference in mean per cent change in spine bone mineral density z score favoured intravenous bisphosphonates at six and 12 months. Data describing growth, bone pain, and functional outcomes after oral or intravenous bisphosphonate therapy, or both, as compared to placebo were incomplete among all studies, but do not show consistent improvements in these outcomes. Two studies compared different doses of bisphosphonates. No differences were found between doses when bone mineral density, fractures, and height or length z score were assessed. One study compared oral versus intravenous bisphosphonates and found no differences in primary outcomes. Two studies compared the intravenous bisphosphonates zoledronic acid and pamidronate. There were no significant differences in primary outcome. However, the studies were at odds as to the relative benefit of zoledronic acid over pamidronate for lumbosacral bone mineral density at 12 months. AUTHORS' CONCLUSIONS Bisphophonates are commonly prescribed to individuals with osteogenesis imperfecta. Current evidence, albeit limited, demonstrates oral or intravenous bisphosphonates increase bone mineral density in children and adults with this condition. These were not shown to be different in their ability to increase bone mineral density. It is unclear whether oral or intravenous bisphosphonate treatment consistently decreases fractures, though multiple studies report this independently and no studies report an increased fracture rate with treatment. The studies included here do not show bisphosphonates conclusively improve clinical status (reduce pain; improve growth and functional mobility) in people with osteogenesis imperfecta. Given their current widespread and expected continued use, the optimal method, duration of therapy and long-term safety of bisphosphonate therapy require further investigation. In addition, attention should be given to long-term fracture reduction and improvement in quality of life indicators.
Collapse
Affiliation(s)
- Kerry Dwan
- Department of Biostatistics, University of Liverpool, Alder Hey Children's NHS Foundation Trust, Eaton Road, Liverpool, England, UK, L12 2AP
| | | | | | | |
Collapse
|
126
|
Chen F, Guo R, Itoh S, Moreno L, Rosenthal E, Zappitelli T, Zirngibl RA, Flenniken A, Cole W, Grynpas M, Osborne LR, Vogel W, Adamson L, Rossant J, Aubin JE. First mouse model for combined osteogenesis imperfecta and Ehlers-Danlos syndrome. J Bone Miner Res 2014; 29:1412-23. [PMID: 24443344 DOI: 10.1002/jbmr.2177] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/11/2014] [Accepted: 01/17/2014] [Indexed: 11/08/2022]
Abstract
By using a genome-wide N-ethyl-N-nitrosourea (ENU)-induced dominant mutagenesis screen in mice, a founder with low bone mineral density (BMD) was identified. Mapping and sequencing revealed a T to C transition in a splice donor of the collagen alpha1 type I (Col1a1) gene, resulting in the skipping of exon 9 and a predicted 18-amino acid deletion within the N-terminal region of the triple helical domain of Col1a1. Col1a1(Jrt) /+ mice were smaller in size, had lower BMD associated with decreased bone volume/tissue volume (BV/TV) and reduced trabecular number, and furthermore exhibited mechanically weak, brittle, fracture-prone bones, a hallmark of osteogenesis imperfecta (OI). Several markers of osteoblast differentiation were upregulated in mutant bone, and histomorphometry showed that the proportion of trabecular bone surfaces covered by activated osteoblasts (Ob.S/BS and N.Ob/BS) was elevated, but bone surfaces undergoing resorption (Oc.S/BS and N.Oc/BS) were not. The number of bone marrow stromal osteoprogenitors (CFU-ALP) was unaffected, but mineralization was decreased in cultures from young Col1a1(Jrt) /+ versus +/+ mice. Total collagen and type I collagen content of matrices deposited by Col1a1(Jrt) /+ dermal fibroblasts in culture was ∼40% and 30%, respectively, that of +/+ cells, suggesting that mutant collagen chains exerted a dominant negative effect on type I collagen biosynthesis. Mutant collagen fibrils were also markedly smaller in diameter than +/+ fibrils in bone, tendon, and extracellular matrices deposited by dermal fibroblasts in vitro. Col1a1(Jrt) /+ mice also exhibited traits associated with Ehlers-Danlos syndrome (EDS): Their skin had reduced tensile properties, tail tendon appeared more frayed, and a third of the young adult mice had noticeable curvature of the spine. Col1a1(Jrt) /+ is the first reported model of combined OI/EDS and will be useful for exploring aspects of OI and EDS pathophysiology and treatment.
Collapse
Affiliation(s)
- Frieda Chen
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Patel RM, Nagamani SCS, Cuthbertson D, Campeau PM, Krischer JP, Shapiro JR, Steiner RD, Smith PA, Bober MB, Byers PH, Pepin M, Durigova M, Glorieux FH, Rauch F, Lee BH, Hart T, Sutton VR. A cross-sectional multicenter study of osteogenesis imperfecta in North America - results from the linked clinical research centers. Clin Genet 2014; 87:133-40. [PMID: 24754836 DOI: 10.1111/cge.12409] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 04/08/2014] [Accepted: 04/19/2014] [Indexed: 02/06/2023]
Abstract
Osteogenesis imperfecta (OI) is the most common skeletal dysplasia that predisposes to recurrent fractures and bone deformities. In spite of significant advances in understanding the genetic basis of OI, there have been no large-scale natural history studies. To better understand the natural history and improve the care of patients, a network of Linked Clinical Research Centers (LCRC) was established. Subjects with OI were enrolled in a longitudinal study, and in this report, we present cross-sectional data on the largest cohort of OI subjects (n = 544). OI type III subjects had higher prevalence of dentinogenesis imperfecta, severe scoliosis, and long bone deformities as compared to those with OI types I and IV. Whereas the mean lumbar spine area bone mineral density (LS aBMD) was low across all OI subtypes, those with more severe forms had lower bone mass. Molecular testing may help predict the subtype in type I collagen-related OI. Analysis of such well-collected and unbiased data in OI can not only help answering questions that are relevant to patient care but also foster hypothesis-driven research, especially in the context of 'phenotypic expansion' driven by next-generation sequencing.
Collapse
Affiliation(s)
- R M Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Ishikawa Y, Bächinger HP. A substrate preference for the rough endoplasmic reticulum resident protein FKBP22 during collagen biosynthesis. J Biol Chem 2014; 289:18189-201. [PMID: 24821723 DOI: 10.1074/jbc.m114.561944] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of collagens occurs in the rough endoplasmic reticulum and requires a large numbers of molecular chaperones, foldases, and post-translational modification enzymes. Collagens contain a large number of proline residues that are post-translationally modified to 3-hydroxyproline or 4-hydroxyproline, and the rate-limiting step in formation of the triple helix is the cis-trans isomerization of peptidyl-proline bonds. This step is catalyzed by peptidyl-prolyl cis-trans isomerases. There are seven peptidyl-prolyl cis-trans isomerases in the rER, and so far, two of these enzymes, cyclophilin B and FKBP65, have been shown to be involved in collagen biosynthesis. The absence of either cyclophilin B or FKBP65 leads to a recessive form of osteogenesis imperfecta. The absence of FKBP22 leads to a kyphoscoliotic type of Ehlers-Danlos syndrome (EDS), and this type of EDS is classified as EDS type VI, which can also be caused by a deficiency in lysyl-hydroxylase 1. However, the lack of FKBP22 shows a wider spectrum of clinical phenotypes than the absence of lysyl-hydroxylase 1 and additionally includes myopathy, hearing loss, and aortic rupture. Here we show that FKBP22 catalyzes the folding of type III collagen and interacts with type III collagen, type VI collagen, and type X collagen, but not with type I collagen, type II collagen, or type V collagen. These restrictive interactions might help explain the broader phenotype observed in patients that lack FKBP22.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and the Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| | - Hans Peter Bächinger
- From the Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon 97239 and the Research Department, Shriners Hospital for Children, Portland, Oregon 97239
| |
Collapse
|
129
|
Lietman CD, Rajagopal A, Homan EP, Munivez E, Jiang MM, Bertin TK, Chen Y, Hicks J, Weis M, Eyre D, Lee B, Krakow D. Connective tissue alterations in Fkbp10-/- mice. Hum Mol Genet 2014; 23:4822-31. [PMID: 24777781 DOI: 10.1093/hmg/ddu197] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Osteogenesis imperfecta (OI) is an inherited brittle bone disorder characterized by bone fragility and low bone mass. Loss of function mutations in FK506-binding protein 10 (FKBP10), encoding the FKBP65 protein, result in recessive OI and Bruck syndrome, of which the latter is additionally characterized by joint contractures. FKBP65 is thought to act as a collagen chaperone, but it is unknown how loss of FKBP65 affects collagen synthesis and extracellular matrix formation. We evaluated the developmental and postnatal expression of Fkbp10 and analyzed the consequences of its generalized loss of function. Fkbp10 is expressed at low levels in E13.5 mouse embryos, particularly in skeletal tissues, and steadily increases through E17.5 with expression in not only skeletal tissues, but also in visceral tissues. Postnatally, expression is limited to developing bone and ligaments. In contrast to humans, with complete loss of function mutations, Fkbp10(-/-) mice do not survive birth, and embryos present with growth delay and tissue fragility. Type I calvarial collagen isolated from these mice showed reduced stable crosslink formation at telopeptide lysines. Furthermore, Fkbp10(-/-) mouse embryonic fibroblasts show retention of procollagen in the cell layer and associated dilated endoplasmic reticulum. These data suggest a requirement for FKBP65 function during embryonic connective tissue development in mice, but the restricted expression postnatally in bone, ligaments and tendons correlates with the bone fragility and contracture phenotype in humans.
Collapse
Affiliation(s)
- Caressa D Lietman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Abbhirami Rajagopal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erica P Homan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Elda Munivez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - Terry K Bertin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yuqing Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Houston, TX 77030, USA
| | - John Hicks
- Department of Pathology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - MaryAnn Weis
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - David Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, WA 98195, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Howard Hughes Medical Institute, Houston, TX 77030, USA,
| | - Deborah Krakow
- Department of Orthopaedic Surgery and Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
130
|
Valencia M, Caparrós-Martin JA, Sirerol-Piquer MS, García-Verdugo JM, Martínez-Glez V, Lapunzina P, Temtamy S, Aglan M, Lund AM, Nikkels PGJ, Ruiz-Perez VL, Ostergaard E. Report of a newly indentified patient with mutations inBMP1and underlying pathogenetic aspects. Am J Med Genet A 2014; 164A:1143-50. [DOI: 10.1002/ajmg.a.36427] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/12/2013] [Indexed: 12/11/2022]
Affiliation(s)
- María Valencia
- Instituto de Investigaciones Biomédicas; Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid; Madrid Spain
| | - Jose A. Caparrós-Martin
- Instituto de Investigaciones Biomédicas; Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid; Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | | | | | - Víctor Martínez-Glez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
- Instituto de Genética Médica y Molecular (INGEMM); Hospital Universitario La Paz-IdiPaz; Universidad Autónoma de Madrid; Madrid Spain
| | - Pablo Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
- Instituto de Genética Médica y Molecular (INGEMM); Hospital Universitario La Paz-IdiPaz; Universidad Autónoma de Madrid; Madrid Spain
| | - Samia Temtamy
- Human Genetics and Genome Research Division; National Research Centre; El-Dokki Cairo Egypt
| | - Mona Aglan
- Human Genetics and Genome Research Division; National Research Centre; El-Dokki Cairo Egypt
| | - Allan M. Lund
- Department of Clinical Genetics 4062; Centre for Inherited Metabolic Diseases; Copenhagen University Hospital Rigshospitalet; Copenhagen Denmark
| | | | - Victor L. Ruiz-Perez
- Instituto de Investigaciones Biomédicas; Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid; Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Elsebet Ostergaard
- Department of Clinical Genetics 4062; Centre for Inherited Metabolic Diseases; Copenhagen University Hospital Rigshospitalet; Copenhagen Denmark
| |
Collapse
|
131
|
Gruenwald K, Castagnola P, Besio R, Dimori M, Chen Y, Akel NS, Swain FL, Skinner RA, Eyre DR, Gaddy D, Suva LJ, Morello R. Sc65 is a novel endoplasmic reticulum protein that regulates bone mass homeostasis. J Bone Miner Res 2014; 29:666-75. [PMID: 23959653 PMCID: PMC4130166 DOI: 10.1002/jbmr.2075] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/02/2013] [Accepted: 08/09/2013] [Indexed: 12/22/2022]
Abstract
Members of the Leprecan family of proteins include enzymes, prolyl 3-hydroxylase 1 (P3h1), P3h2, and P3h3, and nonenzymatic proteins, Crtap and Sc65. Mutations in CRTAP and LEPRE1 (encoding P3H1) have been associated with human disease such as recessive osteogenesis imperfecta; however, the function of Sc65, which is closely related and highly homologous to Crtap, is unknown. Sc65 has been described as a synaptonemal complex protein, a nucleolar protein, and a cytoplasmic adapter protein. In light of its high sequence similarity with Crtap, an endoplasmic reticulum (ER)-associated protein, and the importance of post-translational modifications such as collagen prolyl 3-hydroxylation in bone metabolism, we hypothesized that Sc65 was an ER-resident protein that would have an important role in bone homeostasis. In this study, we demonstrate that Sc65 is a previously unrecognized ER protein and that it does not localize in the nucleus of somatic cells. Moreover, Sc65 is expressed and functional during skeletal development because loss of Sc65 results in a progressive osteopenia that affects both trabecular and cortical bone. Bone loss is the result of increased bone resorption mediated by a non-cell-autonomous effect on osteoclasts. Therefore, Sc65, like its related family member Crtap, is an important modulator of bone homeostasis, acting as a negative regulator of osteoclastogenesis.
Collapse
Affiliation(s)
- Katrin Gruenwald
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Lazarus S, Moffatt P, Duncan EL, Thomas GP. A brilliant breakthrough in OI type V. Osteoporos Int 2014; 25:399-405. [PMID: 24030286 DOI: 10.1007/s00198-013-2465-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/10/2013] [Indexed: 11/26/2022]
Abstract
Interferon-induced transmembrane protein 5 or bone-restricted ifitm-like gene (Bril) was first identified as a bone gene in 2008, although no in vivo role was identified at that time. A role in human bone has now been demonstrated with a number of recent studies identifying a single point mutation in Bril as the causative mutation in osteogenesis imperfecta type V (OI type V). Such a discovery suggests a key role for Bril in skeletal regulation, and the completely novel nature of the gene raises the possibility of a new regulatory pathway in bone. Furthermore, the phenotype of OI type V has unique and quite divergent features compared with other forms of OI involving defects in collagen biology. Currently it appears that the underlying genetic defect in OI type V may be unrelated to collagen regulation, which also raises interesting questions about the classification of this form of OI. This review will discuss current knowledge of OI type V, the function of Bril, and the implications of this recent discovery.
Collapse
Affiliation(s)
- S Lazarus
- University of Queensland Diamantina Institute, Level 4, 37 Kent Street, Woolloongabba, QLD, 4102, Australia
| | | | | | | |
Collapse
|
133
|
Guillén-Navarro E, Ballesta-Martínez MJ, Valencia M, Bueno AM, Martinez-Glez V, López-González V, Burnyte B, Utkus A, Lapunzina P, Ruiz-Perez VL. Two mutations inIFITM5causing distinct forms of osteogenesis imperfecta. Am J Med Genet A 2014; 164A:1136-42. [DOI: 10.1002/ajmg.a.36409] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/07/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Encarna Guillén-Navarro
- Unidad de Genética Médica; Servicio de Pediatría; Hospital Clínico Universitario Virgen de la Arrixaca; El Palmar Murcia Spain
- Cátedra de Genética Médica; Universidad Católica de San Antonio (UCAM); Murcia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - María Juliana Ballesta-Martínez
- Unidad de Genética Médica; Servicio de Pediatría; Hospital Clínico Universitario Virgen de la Arrixaca; El Palmar Murcia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - María Valencia
- Instituto de Investigaciones Biomédicas; Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid; Madrid Spain
| | - Ana María Bueno
- Department of Orthopedic Surgery; Hospital Universitario de Getafe; Madrid Spain
| | - Victor Martinez-Glez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
- Instituto de Genética Médica y Molecular (INGEMM); Hospital Universitario La Paz-IdiPaz; Universidad Autónoma de Madrid; Madrid Spain
| | - Vanesa López-González
- Unidad de Genética Médica; Servicio de Pediatría; Hospital Clínico Universitario Virgen de la Arrixaca; El Palmar Murcia Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Birute Burnyte
- Department of Human and Medical Genetics; Faculty of Medicine; Vilnius University; Vilnius Lithuania
| | - Algirdas Utkus
- Department of Human and Medical Genetics; Faculty of Medicine; Vilnius University; Vilnius Lithuania
| | - Pablo Lapunzina
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
- Instituto de Genética Médica y Molecular (INGEMM); Hospital Universitario La Paz-IdiPaz; Universidad Autónoma de Madrid; Madrid Spain
| | - Victor L. Ruiz-Perez
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Instituto de Salud Carlos III (ISCIII); Madrid Spain
- Instituto de Investigaciones Biomédicas; Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid; Madrid Spain
| |
Collapse
|
134
|
Byers PH, Murray ML. Ehlers–Danlos syndrome: A showcase of conditions that lead to understanding matrix biology. Matrix Biol 2014; 33:10-5. [DOI: 10.1016/j.matbio.2013.07.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 11/28/2022]
|
135
|
McInerney-Leo AM, Marshall MS, Gardiner B, Coucke PJ, Van Laer L, Loeys BL, Summers KM, Symoens S, West JA, West MJ, Paul Wordsworth B, Zankl A, Leo PJ, Brown MA, Duncan EL. Whole exome sequencing is an efficient, sensitive and specific method of mutation detection in osteogenesis imperfecta and Marfan syndrome. BONEKEY REPORTS 2013; 2:456. [PMID: 24501682 DOI: 10.1038/bonekey.2013.190] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 10/16/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022]
Abstract
Osteogenesis imperfecta (OI) and Marfan syndrome (MFS) are common Mendelian disorders. Both conditions are usually diagnosed clinically, as genetic testing is expensive due to the size and number of potentially causative genes and mutations. However, genetic testing may benefit patients, at-risk family members and individuals with borderline phenotypes, as well as improving genetic counseling and allowing critical differential diagnoses. We assessed whether whole exome sequencing (WES) is a sensitive method for mutation detection in OI and MFS. WES was performed on genomic DNA from 13 participants with OI and 10 participants with MFS who had known mutations, with exome capture followed by massive parallel sequencing of multiplexed samples. Single nucleotide polymorphisms (SNPs) and small indels were called using Genome Analysis Toolkit (GATK) and annotated with ANNOVAR. CREST, exomeCopy and exomeDepth were used for large deletion detection. Results were compared with the previous data. Specificity was calculated by screening WES data from a control population of 487 individuals for mutations in COL1A1, COL1A2 and FBN1. The target capture of five exome capture platforms was compared. All 13 mutations in the OI cohort and 9/10 in the MFS cohort were detected (sensitivity=95.6%) including non-synonymous SNPs, small indels (<10 bp), and a large UTR5/exon 1 deletion. One mutation was not detected by GATK due to strand bias. Specificity was 99.5%. Capture platforms and analysis programs differed considerably in their ability to detect mutations. Consumable costs for WES were low. WES is an efficient, sensitive, specific and cost-effective method for mutation detection in patients with OI and MFS. Careful selection of platform and analysis programs is necessary to maximize success.
Collapse
Affiliation(s)
- Aideen M McInerney-Leo
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital , Brisbane, Queensland, Australia
| | - Mhairi S Marshall
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital , Brisbane, Queensland, Australia
| | - Brooke Gardiner
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital , Brisbane, Queensland, Australia
| | - Paul J Coucke
- Medical Genetics, The University Hospital Ghent , Gent, Belgium
| | - Lut Van Laer
- University of Antwerp, Antwerp University Hospital , Antwerp, Belgium
| | - Bart L Loeys
- University of Antwerp, Antwerp University Hospital , Antwerp, Belgium ; Department of Genetics, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Kim M Summers
- The Roslin Institute and R(D)SVS, University of Edinburgh , Midlothian, UK
| | - Sofie Symoens
- Medical Genetics, The University Hospital Ghent , Gent, Belgium
| | - Jennifer A West
- The University of Qld Northside Clinical School, Prince Charles Hospital , Chermside, Queensland, Australia
| | - Malcolm J West
- The University of Qld Northside Clinical School, Prince Charles Hospital , Chermside, Queensland, Australia
| | - B Paul Wordsworth
- NIHR Oxford Musculoskeletal Biomedical Research Unit, Nuffield Orthopaedic Centre , Oxford, UK
| | - Andreas Zankl
- The University of Queensland, UQ Centre for Clinical Research , Herston, Queensland, Australia ; Sydney Medical School, University of Sydney , Sydney, New South Wales, Australia ; Academic Department of Medical Genetics, The Children's Hospital at Westmead , Sydney, New South Wales, Australia
| | - Paul J Leo
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital , Brisbane, Queensland, Australia
| | - Matthew A Brown
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital , Brisbane, Queensland, Australia
| | - Emma L Duncan
- The University of Queensland Diamantina Institute, Translational Research Institute, Princess Alexandra Hospital , Brisbane, Queensland, Australia ; Department of Endocrinology, Royal Brisbane and Women's Hospital , Herston, Queensland, Australia
| |
Collapse
|
136
|
Fitzgerald J, Holden P, Wright H, Wilmot B, Hata A, Steiner RD, Basel D. PHENOTYPIC VARIABILITY IN INDIVIDUALS WITH TYPE V OSTEOGENESIS IMPERFECTA WITH IDENTICAL IFITM5 MUTATIONS. THE JOURNAL OF RARE DISORDERS 2013; 1:37-42. [PMID: 28824928 PMCID: PMC5560441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
BACKGROUND Osteogenesis imperfecta (OI) type V is a dominantly inherited skeletal dysplasia characterized by fractures and progressive deformity of long bones. In addition, patients often present with radial head dislocation, hyperplastic callus, and calcification of the forearm interosseous membrane. Recently, a specific mutation in the IFITM5 gene was found to be responsible for OI type V. This mutation, a C to T transition 14 nucleotides upstream from the endogenous start codon, creates a new start methionine that appears to be preferentially used by the translational machinery. However, the mechanism by which the lengthened protein results in a dominant type of OI is unknown. METHODS AND RESULTS We report 7 ethnically diverse (African-American, Caucasian, Hispanic, and African) individuals with OI type V from 2 families and 2 sporadic cases. Exome sequencing failed to identify a causative mutation. Using Sanger sequencing, we found that all affected individuals in our cohort possess the c.-14 IFITM5 variant, further supporting the notion that OI type V is caused by a single, discrete mutation. Our patient cohort demonstrated inter-and intrafamilial phenotypic variability, including a father with classic OI type V whose daughter had a phenotype similar to OI type I. This clinical variability suggests that modifier genes influence the OI type V phenotype. We also confirm that the mutation creates an aberrant IFITM5 protein containing an additional 5 amino acids at the N-terminus. CONCLUSIONS The variable clinical signs in these cases illustrate the significant variability of the OI type V phenotype caused by the c.-14 IFITM5 mutation. The affected individuals are more ethnically diverse than previously reported.
Collapse
Affiliation(s)
- Jamie Fitzgerald
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University (OHSU), Portland, Oregon
- Department of Molecular and Medical Genetics, OHSU
- Shriners Hospital for Children, Portland, Oregon
| | - Paul Holden
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University (OHSU), Portland, Oregon
| | - Hollis Wright
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, OHSU
| | - Beth Wilmot
- Knight Cancer Institute, OHSU
- Oregon Clinical and Translational Research Institute, OHSU
| | - Abigail Hata
- Shriners Hospital for Children, Portland, Oregon
- Department of Pediatrics, OHSU
| | | | - Don Basel
- Department of Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
137
|
Boudko SP, Ishikawa Y, Nix J, Chapman MS, Bächinger HP. Structure of human peptidyl-prolyl cis-trans isomerase FKBP22 containing two EF-hand motifs. Protein Sci 2013; 23:67-75. [PMID: 24272907 DOI: 10.1002/pro.2391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/23/2013] [Accepted: 10/24/2013] [Indexed: 11/09/2022]
Abstract
The FK506-binding protein (FKBP) family consists of proteins with a variety of protein-protein interaction domains and versatile cellular functions. It is assumed that all members are peptidyl-prolyl cis-trans isomerases with the enzymatic function attributed to the FKBP domain. Six members of this family localize to the mammalian endoplasmic reticulum (ER). Four of them, FKBP22 (encoded by the FKBP14 gene), FKBP23 (FKBP7), FKBP60 (FKBP9), and FKBP65 (FKBP10), are unique among all FKBPs as they contain the EF-hand motifs. Little is known about the biological roles of these proteins, but emerging genetics studies are attracting great interest to the ER resident FKBPs, as mutations in genes encoding FKBP10 and FKBP14 were shown to cause a variety of matrix disorders. Although the structural organization of the FKBP-type domain as well as of the EF-hand motif has been known for a while, it is difficult to conclude how these structures are combined and how it affects the protein functionality. We have determined a unique 1.9 Å resolution crystal structure for human FKBP22, which can serve as a prototype for other EF hand-containing FKBPs. The EF-hand motifs of two FKBP22 molecules form a dimeric complex with an elongated and predominantly hydrophobic cavity that can potentially be occupied by an aliphatic ligand. The FKBP-type domains are separated by a cleft and their putative active sites can catalyze isomerazation of two bonds within a polypeptide chain in extended conformation. These structural results are of prime interest for understanding biological functions of ER resident FKBPs containing EF-hand motifs.
Collapse
Affiliation(s)
- Sergei P Boudko
- Research Department, Shriners Hospital for Children, Portland, Oregon, 97239; Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, Oregon, 97239
| | | | | | | | | |
Collapse
|
138
|
A molecular ensemble in the rER for procollagen maturation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2479-91. [DOI: 10.1016/j.bbamcr.2013.04.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 04/06/2013] [Accepted: 04/08/2013] [Indexed: 01/18/2023]
|
139
|
Miao M, Reichheld SE, Muiznieks LD, Huang Y, Keeley FW. Elastin Binding Protein and FKBP65 Modulate in Vitro Self-Assembly of Human Tropoelastin. Biochemistry 2013; 52:7731-41. [DOI: 10.1021/bi400760f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ming Miao
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Sean E. Reichheld
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lisa D. Muiznieks
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Yayi Huang
- Research
Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Fred W. Keeley
- Department
of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
140
|
Eyre DR, Weis MA. Bone collagen: new clues to its mineralization mechanism from recessive osteogenesis imperfecta. Calcif Tissue Int 2013; 93:338-47. [PMID: 23508630 PMCID: PMC3758449 DOI: 10.1007/s00223-013-9723-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 03/01/2013] [Indexed: 12/12/2022]
Abstract
Until 2006 the only mutations known to cause osteogenesis imperfecta (OI) were in the two genes coding for type I collagen chains. These dominant mutations affecting the expression or primary sequence of collagen α1(I) and α2(I) chains account for over 90% of OI cases. Since then a growing list of mutant genes causing the 5-10% of recessive cases has rapidly emerged. They include CRTAP, LEPRE1, and PPIB, which encode three proteins forming the prolyl 3-hydroxylase complex; PLOD2 and FKBP10, which encode, respectively, lysyl hydroxylase 2 and a foldase required for its activity in forming mature cross-links in bone collagen; SERPINH1, which encodes the collagen chaperone HSP47; SERPINF1, which encodes pigment epithelium-derived factor required for osteoid mineralization; and BMP1, which encodes the type I procollagen C-propeptidase. All cause fragile bone in infancy, which can include overmineralization or undermineralization defects as well as abnormal collagen posttranslational modifications. Consistently both dominant and recessive variants lead to abnormal cross-linking chemistry in bone collagen. These recent discoveries strengthen the potential for a common pathogenic mechanism of misassembled collagen fibrils. Of the new genes identified, eight encode proteins required for collagen posttranslational modification, chaperoning of newly synthesized collagen chains into native molecules, or transport through the endoplasmic reticulum and Golgi for polymerization, cross-linking, and mineralization. In reviewing these findings, we conclude that a common theme is emerging in the pathogenesis of brittle bone disease of mishandled collagen assembly with important insights on posttranslational features of bone collagen that have evolved to optimize it as a biomineral template.
Collapse
Affiliation(s)
- David R Eyre
- Department of Orthopaedics and Sports Medicine, University of Washington, 1959 NE Pacific St, P.O. Box 356500, Seattle, WA, 98195, USA,
| | | |
Collapse
|
141
|
Abstract
The long-established study of osteogenesis imperfecta (OI) has opened a realm of scientific research surrounding connective tissue disorders. Over the past decade alone there have been vast advancements in the understanding of the underlying genetic variations of this disease, pharmacologic treatments, and the technological and surgical options for fracture deformity. It is important to appreciate the progressive nature of the advances concerning OI. This article aims to synthesize the expanding evolution of the field surrounding OI over the past decade.
Collapse
Affiliation(s)
- Dominique Laron
- Department of Orthopedic Surgery, University of California San Francisco, Children's Hospital and Research Center Oakland, 747 52nd Street, Oakland, CA 94609, USA
| | | |
Collapse
|
142
|
Symoens S, Malfait F, D'hondt S, Callewaert B, Dheedene A, Steyaert W, Bächinger HP, De Paepe A, Kayserili H, Coucke PJ. Deficiency for the ER-stress transducer OASIS causes severe recessive osteogenesis imperfecta in humans. Orphanet J Rare Dis 2013; 8:154. [PMID: 24079343 PMCID: PMC3850743 DOI: 10.1186/1750-1172-8-154] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/15/2013] [Indexed: 12/21/2022] Open
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous brittle bone disorder. Whereas dominant OI is mostly due to heterozygous mutations in either COL1A1 or COL1A2, encoding type I procollagen, recessive OI is caused by biallelic mutations in genes encoding proteins involved in type I procollagen processing or chaperoning. Hitherto, some OI cases remain molecularly unexplained. We detected a homozygous genomic deletion of CREB3L1 in a family with severe OI. CREB3L1 encodes OASIS, an endoplasmic reticulum-stress transducer that regulates type I procollagen expression during murine bone formation. This is the first report linking CREB3L1 to human recessive OI, thereby expanding the OI gene spectrum.
Collapse
Affiliation(s)
- Sofie Symoens
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
143
|
Autosomal Recessive Osteogenesis Imperfecta: A Puzzle for Bone Formation, Structure and Function. CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-013-0026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
144
|
Zhang Z, Li M, He JW, Fu WZ, Zhang CQ, Zhang ZL. Phenotype and genotype analysis of Chinese patients with osteogenesis imperfecta type V. PLoS One 2013; 8:e72337. [PMID: 23977282 PMCID: PMC3748067 DOI: 10.1371/journal.pone.0072337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/08/2013] [Indexed: 11/29/2022] Open
Abstract
Osteogenesis imperfecta (OI) type V is an autosomal-dominant disease characterized by calcification of the forearm interosseous membrane, radial head dislocation, a subphyseal metaphyseal radiodense line, and hyperplastic callus formation. The causative mutation, c.-14C>T in the 5'-untranslated region of IFITM5, was recently discovered to be involved in this disease. However, in spite of the little genotypic variability, considerable phenotypic variability has been recognized in two cohorts of patients, the majority of whom were Caucasians. Using exome sequencing, we identified the same heterozygous mutation in four Chinese families with OI type V. This study confirms the molecular cause of OI type V and describes the phenotype of Chinese patients with this disorder. In conclusion, the phenotype of Chinese patients was generally similar to that of Caucasian patients.
Collapse
Affiliation(s)
- Zeng Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affliated the Sixth People’s Hospital, Shanghai, PR China
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affliated the Sixth People’s Hospital, Shanghai, PR China
| | - Mei Li
- Key Laboratory of Endocrinology, Department of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, PR China
| | - Jin-Wei He
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affliated the Sixth People’s Hospital, Shanghai, PR China
| | - Wen-Zhen Fu
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affliated the Sixth People’s Hospital, Shanghai, PR China
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affliated the Sixth People’s Hospital, Shanghai, PR China
| | - Zhen-Lin Zhang
- Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affliated the Sixth People’s Hospital, Shanghai, PR China
- * E-mail:
| |
Collapse
|
145
|
Abstract
Osteogenesis imperfecta (OI) is a heritable bone dysplasia characterized by bone fragility and deformity and growth deficiency. Most cases of OI (classical types) have autosomal dominant inheritance and are caused by mutations in the type I collagen genes. During the past several years, a number of noncollagenous genes whose protein products interact with collagen have been identified as the cause(s) of rare forms of OI. This has led to a paradigm shift for OI as a collagen-related condition. The majority of the non-classical OI types have autosomal recessive inheritance and null mutations in their respective genes. The exception is a unique dominant defect in IFITM5, which encodes Bril and leads to hypertrophic callus and interosseous membrane ossification. Three recessive OI types arise from defects in any of the components of the collagen prolyl 3-hydroxylation complex (CRTAP, P3H1, CyPB), which modifies the collagen α1(I)Pro986 residue. Complex dysfunction leads to delayed folding of the procollagen triple helix and increased helical modification. Next, defects in collagen chaperones, HSP47 and FKBP65, lead to improper procollagen folding and deficient collagen cross-linking in matrix, respectively. A form of OI with a mineralization defect is caused by mutations in SERPINF1, whose protein product, PEDF, is a well-known antiangiogenesis factor. Defects in the C-propeptide cleavage enzyme, BMP1, also cause recessive OI. Additional genes, including SP7 and TMEM38B, have been implicated in recessive OI but are as yet unclassified. Elucidating the mechanistic pathways common to dominant and recessive OI may lead to novel therapeutic approaches to improve clinical manifestations.
Collapse
Affiliation(s)
- Joan C Marini
- Bone and Extracellular Matrix Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
146
|
Skeletal diseases caused by mutations that affect collagen structure and function. Int J Biochem Cell Biol 2013; 45:1556-67. [DOI: 10.1016/j.biocel.2013.05.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/15/2022]
|
147
|
Sule G, Campeau PM, Zhang VW, Nagamani SCS, Dawson BC, Grover M, Bacino CA, Sutton VR, Brunetti-Pierri N, Lu JT, Lemire E, Gibbs RA, Cohn DH, Cui H, Wong LJ, Lee BH. Next-generation sequencing for disorders of low and high bone mineral density. Osteoporos Int 2013; 24:2253-9. [PMID: 23443412 PMCID: PMC3709009 DOI: 10.1007/s00198-013-2290-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/03/2013] [Indexed: 10/27/2022]
Abstract
UNLABELLED To achieve an efficient molecular diagnosis of osteogenesis imperfecta (OI), Ehlers-Danlos syndrome (EDS), and osteopetrosis (OPT), we designed a next-generation sequencing (NGS) platform to sequence 34 genes. We validated this platform on known cases and have successfully identified the causative mutation in most patients without a prior molecular diagnosis. INTRODUCTION Osteogenesis imperfecta, Ehlers-Danlos syndrome, and osteopetrosis are collectively common inherited skeletal diseases. Evaluation of subjects with these conditions often includes molecular testing which has important counseling and therapeutic and sometimes legal implications. Since several different genes have been implicated in these conditions, Sanger sequencing of each gene can be a prohibitively expensive and time-consuming way to reach a molecular diagnosis. METHODS In order to circumvent these problems, we have designed and tested a NGS platform that would allow simultaneous sequencing on a single diagnostic platform of different genes implicated in OI, OPT, EDS, and other inherited conditions, leading to low or high bone mineral density. We used a liquid-phase probe library that captures 602 exons (~100 kb) of 34 selected genes and have applied it to test clinical samples from patients with bone disorders. RESULTS NGS of the captured exons by Illumina HiSeq 2000 resulted in an average coverage of over 900X. The platform was successfully validated by identifying mutations in six patients with known mutations. Moreover, in four patients with OI or OPT without a prior molecular diagnosis, the assay was able to detect the causative mutations. CONCLUSIONS In conclusion, our NGS panel provides a fast and accurate method to arrive at a molecular diagnosis in most patients with inherited high or low bone mineral density disorders.
Collapse
Affiliation(s)
- G Sule
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, R814, MS225, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Sparrow DB, Faqeih EA, Sallout B, Alswaid A, Ababneh F, Al-Sayed M, Rukban H, Eyaid WM, Kageyama R, Ellard S, Turnpenny PD, Dunwoodie SL. Mutation of HES7
in a large extended family with spondylocostal dysostosis and dextrocardia with situs inversus. Am J Med Genet A 2013; 161A:2244-9. [DOI: 10.1002/ajmg.a.36073] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/03/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Duncan B. Sparrow
- Developmental and Stem Cell Biology Division; Victor Chang Cardiac Research Institute; Sydney Australia
- St. Vincent's Clinical School, Faculty of Medicine; UNSW; Sydney Australia
| | - Eissa Ali Faqeih
- Section of Medical Genetics, Department of Pediatrics; Children's Hospital, King Fahad Medical City; Riyadh, Kingdom of Saudi Arabia
| | - Bahauddin Sallout
- Women's Specialist Hospital, Maternal Fetal Department, King Fahad Medical City; Riyadh, Kingdom of Saudi Arabia
| | - Abdulrahman Alswaid
- Section of Medical Genetics, Department of Pediatrics; King Abdulaziz Medical City; Riyadh, Kingdom of Saudi Arabia
| | - Faroug Ababneh
- Section of Medical Genetics, Department of Pediatrics; King Abdulaziz Medical City; Riyadh, Kingdom of Saudi Arabia
| | - Moeenaldeen Al-Sayed
- Department of Medical Genetics; King Faisal Specialist Hospital & Research Centre; Riyadh, Kingdom of Saudi Arabia
| | - Hadeel Rukban
- Department of Pediatrics; King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Science; Riyadh, Kingdom of Saudi Arabia
| | - Wafaa M. Eyaid
- Department of Pediatrics; King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Science; Riyadh, Kingdom of Saudi Arabia
| | | | - Sian Ellard
- Molecular Genetics Laboratory; Royal Devon and Exeter Hospital; Exeter UK
| | - Peter D. Turnpenny
- Clinical Genetics Department; Royal Devon and Exeter Hospital; Exeter UK
| | - Sally L. Dunwoodie
- Developmental and Stem Cell Biology Division; Victor Chang Cardiac Research Institute; Sydney Australia
- St. Vincent's Clinical School, Faculty of Medicine; UNSW; Sydney Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science; UNSW; Sydney Australia
| |
Collapse
|
149
|
Barnes AM, Duncan G, Weis M, Paton W, Cabral WA, Mertz EL, Makareeva E, Gambello MJ, Lacbawan FL, Leikin S, Fertala A, Eyre DR, Bale SJ, Marini JC. Kuskokwim syndrome, a recessive congenital contracture disorder, extends the phenotype of FKBP10 mutations. Hum Mutat 2013; 34:1279-88. [PMID: 23712425 DOI: 10.1002/humu.22362] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/16/2013] [Indexed: 11/09/2022]
Abstract
Recessive mutations in FKBP10 at 17q21.2, encoding FKBP65, cause both osteogenesis imperfecta (OI) and Bruck syndrome (OI plus congenital contractures). Contractures are a variable manifestation of null/missense FKBP10 mutations. Kuskokwim syndrome (KS) is an autosomal recessive congenital contracture disorder found among Yup'ik Eskimos. Linkage mapping of KS to chromosome 17q21, together with contractures as a feature of FKBP10 mutations, made FKBP10 a candidate gene. We identified a homozygous three-nucleotide deletion in FKBP10 (c.877_879delTAC) in multiple Kuskokwim pedigrees; 3% of regional controls are carriers. The mutation deletes the highly conserved p.Tyr293 residue in FKBP65's third peptidyl-prolyl cis-trans isomerase domain. FKBP10 transcripts are normal, but mutant FKBP65 is destabilized to a residual 5%. Collagen synthesized by KS fibroblasts has substantially decreased hydroxylation of the telopeptide lysine crucial for collagen cross-linking, with 2%-10% hydroxylation in probands versus 60% in controls. Matrix deposited by KS fibroblasts has marked reduction in maturely cross-linked collagen. KS collagen is disorganized in matrix, and fibrils formed in vitro had subtle loosening of monomer packing. Our results imply that FKBP10 mutations affect collagen indirectly, by ablating FKBP65 support for collagen telopeptide hydroxylation by lysyl hydroxylase 2, thus decreasing collagen cross-links in tendon and bone matrix. FKBP10 mutations may also underlie other arthrogryposis syndromes.
Collapse
Affiliation(s)
- Aileen M Barnes
- Bone and Extracellular Matrix Branch, NICHD/NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Caparrós-Martin JA, Valencia M, Pulido V, Martínez-Glez V, Rueda-Arenas I, Amr K, Farra C, Lapunzina P, Ruiz-Perez VL, Temtamy S, Aglan M. Clinical and molecular analysis in families with autosomal recessive osteogenesis imperfecta identifies mutations in five genes and suggests genotype-phenotype correlations. Am J Med Genet A 2013; 161A:1354-69. [DOI: 10.1002/ajmg.a.35938] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 01/14/2013] [Indexed: 01/28/2023]
Affiliation(s)
| | - María Valencia
- Instituto de Investigaciones Biomédicas; Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid; Madrid; Spain
| | - Veronica Pulido
- Instituto de Investigaciones Biomédicas; Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid; Madrid; Spain
| | | | - Inmaculada Rueda-Arenas
- Instituto de Genética Médica y Molecular (INGEMM); Hospital Universitario La Paz-IdiPaz, Universidad Autónoma de Madrid; Madrid; Spain
| | - Khalda Amr
- Human Genetics and Genome Research Division; National Research Centre; El-Dokki, Cairo; Egypt
| | - Chantal Farra
- Department of Pathology and Laboratory Medicine; American University of Beirut Medical Center; Beirut; Lebanon
| | | | | | - Samia Temtamy
- Human Genetics and Genome Research Division; National Research Centre; El-Dokki, Cairo; Egypt
| | - Mona Aglan
- Human Genetics and Genome Research Division; National Research Centre; El-Dokki, Cairo; Egypt
| |
Collapse
|