101
|
Dorling L, Carvalho S, Allen J, Parsons MT, Fortuno C, González-Neira A, Heijl SM, Adank MA, Ahearn TU, Andrulis IL, Auvinen P, Becher H, Beckmann MW, Behrens S, Bermisheva M, Bogdanova NV, Bojesen SE, Bolla MK, Bremer M, Briceno I, Camp NJ, Campbell A, Castelao JE, Chang-Claude J, Chanock SJ, Chenevix-Trench G, Collée JM, Czene K, Dennis J, Dörk T, Eriksson M, Evans DG, Fasching PA, Figueroa J, Flyger H, Gabrielson M, Gago-Dominguez M, García-Closas M, Giles GG, Glendon G, Guénel P, Gündert M, Hadjisavvas A, Hahnen E, Hall P, Hamann U, Harkness EF, Hartman M, Hogervorst FBL, Hollestelle A, Hoppe R, Howell A, Jakubowska A, Jung A, Khusnutdinova E, Kim SW, Ko YD, Kristensen VN, Lakeman IMM, Li J, Lindblom A, Loizidou MA, Lophatananon A, Lubiński J, Luccarini C, Madsen MJ, Mannermaa A, Manoochehri M, Margolin S, Mavroudis D, Milne RL, Mohd Taib NA, Muir K, Nevanlinna H, Newman WG, Oosterwijk JC, Park SK, Peterlongo P, Radice P, Saloustros E, Sawyer EJ, Schmutzler RK, Shah M, Sim X, Southey MC, Surowy H, Suvanto M, Tomlinson I, Torres D, Truong T, van Asperen CJ, Waltes R, Wang Q, Yang XR, Pharoah PDP, Schmidt MK, Benitez J, Vroling B, Dunning AM, Teo SH, Kvist A, de la Hoya M, Devilee P, Spurdle AB, Vreeswijk MPG, Easton DF. Breast cancer risks associated with missense variants in breast cancer susceptibility genes. Genome Med 2022; 14:51. [PMID: 35585550 PMCID: PMC9116026 DOI: 10.1186/s13073-022-01052-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 05/04/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Protein truncating variants in ATM, BRCA1, BRCA2, CHEK2, and PALB2 are associated with increased breast cancer risk, but risks associated with missense variants in these genes are uncertain. METHODS We analyzed data on 59,639 breast cancer cases and 53,165 controls from studies participating in the Breast Cancer Association Consortium BRIDGES project. We sampled training (80%) and validation (20%) sets to analyze rare missense variants in ATM (1146 training variants), BRCA1 (644), BRCA2 (1425), CHEK2 (325), and PALB2 (472). We evaluated breast cancer risks according to five in silico prediction-of-deleteriousness algorithms, functional protein domain, and frequency, using logistic regression models and also mixture models in which a subset of variants was assumed to be risk-associated. RESULTS The most predictive in silico algorithms were Helix (BRCA1, BRCA2 and CHEK2) and CADD (ATM). Increased risks appeared restricted to functional protein domains for ATM (FAT and PIK domains) and BRCA1 (RING and BRCT domains). For ATM, BRCA1, and BRCA2, data were compatible with small subsets (approximately 7%, 2%, and 0.6%, respectively) of rare missense variants giving similar risk to those of protein truncating variants in the same gene. For CHEK2, data were more consistent with a large fraction (approximately 60%) of rare missense variants giving a lower risk (OR 1.75, 95% CI (1.47-2.08)) than CHEK2 protein truncating variants. There was little evidence for an association with risk for missense variants in PALB2. The best fitting models were well calibrated in the validation set. CONCLUSIONS These results will inform risk prediction models and the selection of candidate variants for functional assays and could contribute to the clinical reporting of gene panel testing for breast cancer susceptibility.
Collapse
Affiliation(s)
- Leila Dorling
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Sara Carvalho
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Jamie Allen
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael T Parsons
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Cristina Fortuno
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Anna González-Neira
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
| | | | - Muriel A Adank
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Thomas U Ahearn
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Irene L Andrulis
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Päivi Auvinen
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, 70210, Kuopio, Finland
- Department of Oncology, Cancer Center, Kuopio University Hospital, 70210, Kuopio, Finland
| | - Heiko Becher
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Matthias W Beckmann
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
| | - Sabine Behrens
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Marina Bermisheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
| | - Natalia V Bogdanova
- Department of Radiation Oncology, Hannover Medical School, 30625, Hannover, Germany
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
- N.N. Alexandrov Research Institute of Oncology and Medical Radiology, 223040, Minsk, Belarus
| | - Stig E Bojesen
- Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Manjeet K Bolla
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael Bremer
- Department of Radiation Oncology, Hannover Medical School, 30625, Hannover, Germany
| | - Ignacio Briceno
- Medical Faculty, Universidad de La Sabana, 140013, Bogota, Colombia
| | - Nicola J Camp
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Cancer, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, EH16 4UX, UK
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur (IISGS), Xerencia de Xestion Integrada de Vigo-SERGAS, 36312, Vigo, Spain
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Georgia Chenevix-Trench
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - J Margriet Collée
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, 3015 CN, The Netherlands
| | - Kamila Czene
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Joe Dennis
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Thilo Dörk
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Mikael Eriksson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - D Gareth Evans
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Nightingale & Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Peter A Fasching
- Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), 91054, Erlangen, Germany
- David Geffen School of Medicine, Department of Medicine Division of Hematology and Oncology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jonine Figueroa
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, EH16 4UX, UK
- Cancer Research UK Edinburgh Centre, The University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Henrik Flyger
- Department of Breast Surgery, Herlev and Gentofte Hospital, Copenhagen University Hospital, 2730, Herlev, Denmark
| | - Marike Gabrielson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complejo Hospitalario Universitario de Santiago, SERGAS, , 15706, Santiago de Compostela, Spain
- Moores Cancer Center, University of California San Diego, La Jolla, CA, 92037, USA
| | - Montserrat García-Closas
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Gord Glendon
- Fred A. Litwin Center for Cancer Genetics, Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, ON, M5G 1X5, Canada
| | - Pascal Guénel
- Team "Exposome and Heredity", CESP, Inserm, Gustave Roussy, University Paris-Saclay, UVSQ, Villejuif, France
| | - Melanie Gündert
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Andreas Hadjisavvas
- Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
| | - Eric Hahnen
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Per Hall
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, 171 65, Stockholm, Sweden
- Department of Oncology, 118 83, Södersjukhuset, Stockholm, Sweden
| | - Ute Hamann
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elaine F Harkness
- Nightingale & Genesis Prevention Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, M23 9LT, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Mikael Hartman
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
- Department of Surgery, National University Health System, Singapore, 119228, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, 119228, Singapore
| | - Frans B L Hogervorst
- Family Cancer Clinic, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Antoinette Hollestelle
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, 3015 GD, The Netherlands
| | - Reiner Hoppe
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376, Stuttgart, Germany
- University of Tübingen, 72074, Tübingen, Germany
| | - Anthony Howell
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- Division of Cancer Sciences, University of Manchester, Manchester, M13 9PL, UK
| | - Anna Jakubowska
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252, Szczecin, Poland
- Independent Laboratory of Molecular Biology and Genetic Diagnostics, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Audrey Jung
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, 450054, Russia
- Department of Genetics and Fundamental Medicine, Bashkir State University, Ufa, 450000, Russia
| | - Sung-Won Kim
- Department of Surgery, Daerim Saint Mary's Hospital, Seoul, 07442, Korea
| | - Yon-Dschun Ko
- Department of Internal Medicine, Johanniter GmbH Bonn, Johanniter Krankenhaus, 53113, Bonn, Germany
| | - Vessela N Kristensen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0450, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, 0379, Oslo, Norway
| | - Inge M M Lakeman
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Jingmei Li
- Department of Surgery, National University Health System, Singapore, 119228, Singapore
- Human Genetics Division, Genome Institute of Singapore, Singapore, 138672, Singapore
| | - Annika Lindblom
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Maria A Loizidou
- Cancer Genetics, Therapeutics and Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology & Genetics, 2371, Nicosia, Cyprus
| | - Artitaya Lophatananon
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Jan Lubiński
- Department of Genetics and Pathology, Pomeranian Medical University, 71-252, Szczecin, Poland
| | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Michael J Madsen
- Department of Internal Medicine and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84112, USA
| | - Arto Mannermaa
- Translational Cancer Research Area, University of Eastern Finland, 70210, Kuopio, Finland
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, 70210, Kuopio, Finland
- Biobank of Eastern Finland, Kuopio University Hospital, Kuopio, Finland
| | - Mehdi Manoochehri
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Sara Margolin
- Department of Oncology, 118 83, Södersjukhuset, Stockholm, Sweden
- Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, 118 83, Stockholm, Sweden
| | - Dimitrios Mavroudis
- Department of Medical Oncology, University Hospital of Heraklion, 711 10, Heraklion, Greece
| | - Roger L Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
| | - Nur Aishah Mohd Taib
- Breast Cancer Research Unit, Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Surgery, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kenneth Muir
- Division of Population Health, Health Services Research and Primary Care, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PL, UK
| | - Heli Nevanlinna
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - William G Newman
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- North West Genomics Laboratory Hub, Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M13 9WL, UK
| | - Jan C Oosterwijk
- Department of Genetics, University Medical Center Groningen, University Groningen, Groningen, 9713 GZ, The Netherlands
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, 03080, Korea
- Convergence Graduate Program in Innovative Medical Science, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Paolo Peterlongo
- Genome Diagnostics Program, IFOM - the FIRC Institute of Molecular Oncology, 20139, Milan, Italy
| | - Paolo Radice
- Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori (INT), 20133, Milan, Italy
| | | | - Elinor J Sawyer
- School of Cancer & Pharmaceutical Sciences, Comprehensive Cancer Centre, Guy's Campus, King's College London, London, UK
| | - Rita K Schmutzler
- Center for Familial Breast and Ovarian Cancer, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Integrated Oncology (CIO), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Mitul Shah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, 117549, Singapore
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, 3004, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, 3168, Australia
- Department of Clinical Pathology, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Harald Surowy
- Molecular Epidemiology Group, C080, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Molecular Biology of Breast Cancer, University Womens Clinic Heidelberg, University of Heidelberg, 69120, Heidelberg, Germany
| | - Maija Suvanto
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, 00290, Helsinki, Finland
| | - Ian Tomlinson
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- Wellcome Trust Centre for Human Genetics and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 7BN, UK
| | - Diana Torres
- Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Human Genetics, Pontificia Universidad Javeriana, 110231, Bogota, Colombia
| | - Thérèse Truong
- Team "Exposome and Heredity", CESP, Inserm, Gustave Roussy, University Paris-Saclay, UVSQ, Villejuif, France
| | - Christi J van Asperen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Regina Waltes
- Gynaecology Research Unit, Hannover Medical School, 30625, Hannover, Germany
| | - Qin Wang
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Xiaohong R Yang
- Division of Cancer Epidemiology and Genetics, Department of Health and Human Services, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20850, USA
| | - Paul D P Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Marjanka K Schmidt
- Division of Molecular Pathology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
- Division of Psychosocial Research and Epidemiology, The Netherlands Cancer Institute - Antoni Van Leeuwenhoek Hospital, Amsterdam, 1066 CX, The Netherlands
| | - Javier Benitez
- Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), 28029, Madrid, Spain
- Biomedical Network On Rare Diseases (CIBERER), 28029, Madrid, Spain
| | - Bas Vroling
- Bio-Prodict, Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alison M Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Soo Hwang Teo
- Breast Cancer Research Unit, Faculty of Medicine, University Malaya Cancer Research Institute, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Breast Cancer Research Programme, Cancer Research Malaysia, Subang Jaya, 47500, Selangor, Malaysia
| | - Anders Kvist
- Division of Oncology and Pathology, Department of Clinical Sciences Lund, Lund University, 22381, Lund, Sweden
| | - Miguel de la Hoya
- Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC (Instituto de Investigación Sanitaria del Hospital Clínico San Carlos), 28040, Madrid, Spain
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Amanda B Spurdle
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Douglas F Easton
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK.
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK.
| |
Collapse
|
102
|
Tian Y, Zhai QX, Li XJ, Shi Z, Cheng CF, Fan CX, Tang B, Zhang Y, He YY, Li WB, Luo S, Hou C, Chen WX, Liao WP, Wang J. ATP6V0C Is Associated With Febrile Seizures and Epilepsy With Febrile Seizures Plus. Front Mol Neurosci 2022; 15:889534. [PMID: 35600075 PMCID: PMC9120599 DOI: 10.3389/fnmol.2022.889534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose To identify novel genetic causes of febrile seizures (FS) and epilepsy with febrile seizures plus (EFS+). Methods We performed whole-exome sequencing in a cohort of 32 families, in which at least two individuals were affected by FS or EFS+. The probands, their parents, and available family members were recruited to ascertain whether the genetic variants were co-segregation. Genes with repetitively identified variants with segregations were selected for further studies to define the gene-disease association. Results We identified two heterozygous ATP6V0C mutations (c.64G > A/p.Ala22Thr and c.361_373del/p.Thr121Profs*7) in two unrelated families with six individuals affected by FS or EFS+. The missense mutation was located in the proteolipid c-ring that cooperated with a-subunit forming the hemichannel for proton transferring. It also affected the hydrogen bonds with surround residues and the protein stability, implying a damaging effect. The frameshift mutation resulted in a loss of function by yielding a premature termination of 28 residues at the C-terminus of the protein. The frequencies of ATP6V0C mutations identified in this cohort were significantly higher than that in the control populations. All the six affected individuals suffered from their first FS at the age of 7-8 months. The two probands later manifested afebrile seizures including myoclonic seizures that responded well to lamotrigine. They all displayed favorable outcomes without intellectual or developmental abnormalities, although afebrile seizures or frequent seizures occurred. Conclusion This study suggests that ATP6V0C is potentially a candidate pathogenic gene of FS and EFS+. Screening for ATP6V0C mutations would help differentiating patients with Dravet syndrome caused by SCN1A mutations, which presented similar clinical manifestation but different responses to antiepileptic treatment.
Collapse
Affiliation(s)
- Yang Tian
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiong-Xiang Zhai
- Department of Pediatrics, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Jing Li
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Zhen Shi
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Chuan-Fang Cheng
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Cui-Xia Fan
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Bin Tang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Ying Zhang
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yun-Yan He
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Wen-Bin Li
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Chi Hou
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen-Xiong Chen
- Department of Neurology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Jie Wang
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| |
Collapse
|
103
|
Samanta D. DEPDC5-related epilepsy: A comprehensive review. Epilepsy Behav 2022; 130:108678. [PMID: 35429726 DOI: 10.1016/j.yebeh.2022.108678] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 11/03/2022]
Abstract
DEPDC5-related epilepsy, caused by pathogenic germline variants(with or without additional somatic variants in the brain) of DEPDC5 (Dishevelled, Egl-10 and Pleckstrin domain-containing protein 5) gene, is a newly discovered predominantly focal epilepsy linked to enhanced mTORC1 pathway. DEPDC5-related epilepsy includes several familial epilepsy syndromes, including familial focal epilepsy with variable foci (FFEVF) and rare sporadic nonlesional focal epilepsy. DEPDC5 has been identified as one of the more common epilepsy genes linked to infantile spasms and sudden unexpected death (SUDEP). Although intelligence usually is unaffected in DEPDC5-related epilepsy, some people have been diagnosed with intellectual disabilities, autism spectrum disorder, and other psychiatric problems. DEPDC5 variants have also been found in 20% of individuals with various brain abnormalities, challenging the traditional distinction between lesional and nonlesional epilepsies. The most exciting development of DEPDC5 variants is the possibility of precision therapeutics using mTOR inhibitors, as evidenced with phenotypic rescue in many animal models. However, more research is needed to better understand the functional impact of diverse (particularly missense or splice-region) variants, the specific involvement of DEPDC5 in epileptogenesis, and the creation and utilization of precision therapies in humans. Precision treatments for DEPDC5-related epilepsy will benefit not only a small number of people with the condition, but they will also pave the way for new therapeutic approaches in epilepsy (including acquired epilepsies in which mTORC1 activation occurs, for example, post-traumatic epilepsy) and other neurological disorders involving a dysfunctional mTOR pathway.
Collapse
Affiliation(s)
- Debopam Samanta
- Child Neurology Section, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States.
| |
Collapse
|
104
|
Exome sequencing in bipolar disorder identifies AKAP11 as a risk gene shared with schizophrenia. Nat Genet 2022; 54:541-547. [DOI: 10.1038/s41588-022-01034-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/15/2022] [Indexed: 12/30/2022]
|
105
|
Koko M, Motelow JE, Stanley KE, Bobbili DR, Dhindsa RS, May P. Association of ultra-rare coding variants with genetic generalized epilepsy: A case-control whole exome sequencing study. Epilepsia 2022; 63:723-735. [PMID: 35032048 PMCID: PMC8891088 DOI: 10.1111/epi.17166] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/29/2021] [Accepted: 12/29/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE We aimed to identify genes associated with genetic generalized epilepsy (GGE) by combining large cohorts enriched with individuals with a positive family history. Secondarily, we set out to compare the association of genes independently with familial and sporadic GGE. METHODS We performed a case-control whole exome sequencing study in unrelated individuals of European descent diagnosed with GGE (previously recruited and sequenced through multiple international collaborations) and ancestry-matched controls. The association of ultra-rare variants (URVs; in 18 834 protein-coding genes) with epilepsy was examined in 1928 individuals with GGE (vs. 8578 controls), then separately in 945 individuals with familial GGE (vs. 8626 controls), and finally in 1005 individuals with sporadic GGE (vs. 8621 controls). We additionally examined the association of URVs with familial and sporadic GGE in two gene sets important for inhibitory signaling (19 genes encoding γ-aminobutyric acid type A [GABAA ] receptors, 113 genes representing the GABAergic pathway). RESULTS GABRG2 was associated with GGE (p = 1.8 × 10-5 ), approaching study-wide significance in familial GGE (p = 3.0 × 10-6 ), whereas no gene approached a significant association with sporadic GGE. Deleterious URVs in the most intolerant subgenic regions in genes encoding GABAA receptors were associated with familial GGE (odds ratio [OR] = 3.9, 95% confidence interval [CI] = 1.9-7.8, false discovery rate [FDR]-adjusted p = .0024), whereas their association with sporadic GGE had marginally lower odds (OR = 3.1, 95% CI = 1.3-6.7, FDR-adjusted p = .022). URVs in GABAergic pathway genes were associated with familial GGE (OR = 1.8, 95% CI = 1.3-2.5, FDR-adjusted p = .0024) but not with sporadic GGE (OR = 1.3, 95% CI = .9-1.9, FDR-adjusted p = .19). SIGNIFICANCE URVs in GABRG2 are likely an important risk factor for familial GGE. The association of gene sets of GABAergic signaling with familial GGE is more prominent than with sporadic GGE.
Collapse
Affiliation(s)
- Mahmoud Koko
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Joshua E. Motelow
- Institute for Genomic Medicine, Columbia University, 10032 New York, USA
| | - Kate E. Stanley
- Institute for Genomic Medicine, Columbia University, 10032 New York, USA
| | - Dheeraj R. Bobbili
- Luxembourg Centre for Systems Biomedicine, University Luxembourg, 4367 Belvaux, Luxembourg
| | - Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University, 10032 New York, USA
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine, University Luxembourg, 4367 Belvaux, Luxembourg
| | | | | | | | | | | |
Collapse
|
106
|
Vogel FD, Krenn M, Westphal DS, Graf E, Wagner M, Leiz S, Koniuszewski F, Augé‐Stock M, Kramer G, Scholze P, Ernst M. A de novo missense variant in
GABRA4
alters receptor function in an epileptic and neurodevelopmental phenotype. Epilepsia 2022; 63:e35-e41. [PMID: 35152403 PMCID: PMC9304230 DOI: 10.1111/epi.17188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/06/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022]
Abstract
Variants in γ‐aminobutyric acid A (GABAA) receptor genes cause different forms of epilepsy and neurodevelopmental disorders. To date, GABRA4, encoding the α4‐subunit, has not been associated with a monogenic condition. However, preclinical evidence points toward seizure susceptibility. Here, we report a de novo missense variant in GABRA4 (c.899C>T, p.Thr300Ile) in an individual with early‐onset drug‐resistant epilepsy and neurodevelopmental abnormalities. An electrophysiological characterization of the variant, which is located in the pore‐forming domain, shows accelerated desensitization and a lack of seizure‐protective neurosteroid function. In conclusion, our findings strongly suggest an association between de novo variation in GABRA4 and a neurodevelopmental disorder with epilepsy.
Collapse
Affiliation(s)
- Florian D. Vogel
- Department of Pathobiology of the Nervous System Center for Brain Research Medical University Vienna Vienna Austria
| | - Martin Krenn
- Department of Neurology Medical University of Vienna Vienna Austria
- Institute of Human Genetics School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Dominik S. Westphal
- Institute of Human Genetics School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
- Department of Internal Medicine I School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Elisabeth Graf
- Institute of Human Genetics School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Matias Wagner
- Institute of Human Genetics School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
- Institute of Neurogenomics Helmholtz Zentrum München Neuherberg Germany
- Department of Pediatrics Dr. von Hauner Children's Hospital LMU University Hospital Munich Germany
- Division of Pediatric Neurology LMU Center for Development and Children with Medical Complexity Ludwig‐Maximilians‐University Munich Munich Germany
| | - Steffen Leiz
- Divison of Neuropediatrics Klinikum Dritter Orden Munich Germany
| | - Filip Koniuszewski
- Department of Pathobiology of the Nervous System Center for Brain Research Medical University Vienna Vienna Austria
| | - Maximilian Augé‐Stock
- Department of Pathobiology of the Nervous System Center for Brain Research Medical University Vienna Vienna Austria
| | - Georg Kramer
- Department of Pathobiology of the Nervous System Center for Brain Research Medical University Vienna Vienna Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System Center for Brain Research Medical University Vienna Vienna Austria
| | - Margot Ernst
- Department of Pathobiology of the Nervous System Center for Brain Research Medical University Vienna Vienna Austria
| |
Collapse
|
107
|
Xu J, Li L, Ren J, Zhong X, Xie C, Zheng A, Abudukadier A, Tuerxun M, Zhang S, Tang L, Hairoula D, Zou X. Whole-Exome Sequencing Implicates the USP34 rs777591A > G Intron Variant in Chronic Obstructive Pulmonary Disease in a Kashi Cohort. Front Cell Dev Biol 2022; 9:792027. [PMID: 35198563 PMCID: PMC8859106 DOI: 10.3389/fcell.2021.792027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/08/2021] [Indexed: 12/17/2022] Open
Abstract
Genetic factors are important factors in chronic obstructive pulmonary disease (COPD) onset. Plenty of risk and new causative genes for COPD have been identified in patients of the Chinese Han population. In contrast, we know considerably little concerning the genetics in the Kashi COPD population (Uyghur). This study aims at clarifying the genetic maps regarding COPD susceptibility in Kashi (China). Whole-exome sequencing (WES) was used to analyze three Uyghur families with COPD in Kashi (eight patients and one healthy control). Sanger sequencing was also used to verify the WES results in 541 unrelated Uyghur COPD patients and 534 Uyghur healthy controls. WES showed 72 single nucleotide variants (SNVs), two deletions, and small insertions (InDels), 26 copy number variants (CNVs), and 34 structural variants (SVs), including g.71230620T > A (rs12449210T > A, NC_000,016.10) in the HYDIN axonemal central pair apparatus protein (HYDIN) gene and g.61190482A > G (rs777591A > G, NC_000002.12) in the ubiquitin-specific protease 34 (USP34) gene. After Sanger sequencing, we found that rs777591“AA” under different genetic models except for the dominant model (adjusted OR = 0.8559, 95%CI 0.6568–1.115, p > .05), could significantly reduce COPD risk, but rs12449210T > A was not related to COPD. In stratified analysis of smoking status, rs777591“AA” reduced COPD risk significantly among the nonsmoker group. Protein and mRNA expression of USP34 in cigarette smoke extract-treated BEAS-2b cells increased significantly compared with those in the control group. Our findings associate the USP34 rs777591“AA” genotype as a protector factor in COPD.
Collapse
Affiliation(s)
- Jingran Xu
- Department of Medical College, Shihezi University, Shihezi, China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Xuemei Zhong
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Chengxin Xie
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Aifang Zheng
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Ayiguzali Abudukadier
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Maimaitiaili Tuerxun
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Sujie Zhang
- Department of Medical College, Shihezi University, Shihezi, China
| | - Lifeng Tang
- Department of Medical College, Shihezi University, Shihezi, China
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Dilare Hairoula
- Department of Medical College, Shihezi University, Shihezi, China
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
| | - Xiaoguang Zou
- Department of Medical College, Shihezi University, Shihezi, China
- Department of Respiratory and Critical Care Medicine, First People’s Hospital of Kashi, Kashi, China
- *Correspondence: Xiaoguang Zou,
| |
Collapse
|
108
|
Genetic generalized epilepsies in adults - challenging assumptions and dogmas. Nat Rev Neurol 2022; 18:71-83. [PMID: 34837042 DOI: 10.1038/s41582-021-00583-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2021] [Indexed: 01/16/2023]
Abstract
Genetic generalized epilepsy (GGE) syndromes start during childhood or adolescence, and four commonly persist into adulthood, making up 15-20% of all cases of epilepsy in adults. These four GGE syndromes are childhood absence epilepsy, juvenile absence epilepsy, juvenile myoclonic epilepsy and epilepsy with generalized tonic-clonic seizures alone. However, in ~20% of patients with GGE, characteristics of more than one syndrome are present. Novel insights into the genetic aetiology, comorbidities and prognosis of the GGE syndromes have emerged and challenge traditional concepts about these conditions. Evidence has shown that the mode of inheritance in GGE is mostly polygenic. Neuropsychological and imaging studies indicate similar abnormalities in unaffected relatives of patients with GGE, supporting the concept that underlying alterations in bilateral frontothalamocortical networks are genetically determined. Contrary to popular belief, first-line anti-seizure medication often fails to provide seizure freedom in combination with good tolerability. Nevertheless, long-term follow-up studies have shown that with advancing age, many patients can discontinue their anti-seizure medication without seizure relapses. Several outcome predictors have been identified, but prognosis across the syndromes is more homogeneous than previously assumed. Overall, overlap in pathophysiology, seizure types, treatment responses and outcomes support the idea that GGEs are not separate nosological entities but represent a neurobiological continuum.
Collapse
|
109
|
Scheffer IE. Lightning progress in child neurology in the past 20 years. Lancet Neurol 2022; 21:111-113. [DOI: 10.1016/s1474-4422(22)00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/29/2022]
|
110
|
Whole-exome sequencing with targeted analysis and epilepsy after acute symptomatic neonatal seizures. Pediatr Res 2022; 91:896-902. [PMID: 33846556 PMCID: PMC9064802 DOI: 10.1038/s41390-021-01509-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND The contribution of pathogenic gene variants with development of epilepsy after acute symptomatic neonatal seizures is not known. METHODS Case-control study of 20 trios in children with a history of acute symptomatic neonatal seizures: 10 with and 10 without post-neonatal epilepsy. We performed whole-exome sequencing (WES) and identified pathogenic de novo, transmitted, and non-transmitted variants from established and candidate epilepsy association genes and correlated prevalence of these variants with epilepsy outcomes. We performed a sensitivity analysis with genes associated with coronary artery disease (CAD). We analyzed variants throughout the exome to evaluate for differential enrichment of functional properties using exploratory KEGG searches. RESULTS Querying 200 established and candidate epilepsy genes, pathogenic variants were identified in 5 children with post-neonatal epilepsy yet in only 1 child without subsequent epilepsy. There was no difference in the number of trios with non-transmitted pathogenic variants in epilepsy or CAD genes. An exploratory KEGG analysis demonstrated a relative enrichment in cell death pathways in children without subsequent epilepsy. CONCLUSIONS In this pilot study, children with epilepsy after acute symptomatic neonatal seizures had a higher prevalence of coding variants with a targeted epilepsy gene sequencing analysis compared to those patients without subsequent epilepsy. IMPACT We performed whole-exome sequencing (WES) in 20 trios, including 10 children with epilepsy and 10 without epilepsy, both after acute symptomatic neonatal seizures. Children with post-neonatal epilepsy had a higher burden of pathogenic variants in epilepsy-associated genes compared to those without post-neonatal epilepsy. Future studies evaluating this association may lead to a better understanding of the risk of epilepsy after acute symptomatic neonatal seizures and elucidate molecular pathways that are dysregulated after brain injury and implicated in epileptogenesis.
Collapse
|
111
|
Gozzelino L, Kochlamazashvili G, Baldassari S, Mackintosh AI, Licchetta L, Iovino E, Liu YC, Bennett CA, Bennett MF, Damiano JA, Zsurka G, Marconi C, Giangregorio T, Magini P, Kuijpers M, Maritzen T, Norata GD, Baulac S, Canafoglia L, Seri M, Tinuper P, Scheffer IE, Bahlo M, Berkovic SF, Hildebrand MS, Kunz WS, Giordano L, Bisulli F, Martini M, Haucke V, Hirsch E, Pippucci T. OUP accepted manuscript. Brain 2022; 145:2313-2331. [PMID: 35786744 PMCID: PMC9337808 DOI: 10.1093/brain/awac082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/13/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is one of the most frequent neurological diseases, with focal epilepsy accounting for the largest number of cases. The genetic alterations involved in focal epilepsy are far from being fully elucidated. Here, we show that defective lipid signalling caused by heterozygous ultra-rare variants in PIK3C2B, encoding for the class II phosphatidylinositol 3-kinase PI3K-C2β, underlie focal epilepsy in humans. We demonstrate that patients’ variants act as loss-of-function alleles, leading to impaired synthesis of the rare signalling lipid phosphatidylinositol 3,4-bisphosphate, resulting in mTORC1 hyperactivation. In vivo, mutant Pik3c2b alleles caused dose-dependent neuronal hyperexcitability and increased seizure susceptibility, indicating haploinsufficiency as a key driver of disease. Moreover, acute mTORC1 inhibition in mutant mice prevented experimentally induced seizures, providing a potential therapeutic option for a selective group of patients with focal epilepsy. Our findings reveal an unexpected role for class II PI3K-mediated lipid signalling in regulating mTORC1-dependent neuronal excitability in mice and humans.
Collapse
Affiliation(s)
| | | | | | - Albert Ian Mackintosh
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Laura Licchetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies—EpiCARE), Bologna, Italy
| | - Emanuela Iovino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Yu Chi Liu
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VictoriaAustralia
| | - Caitlin A Bennett
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Mark F Bennett
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VictoriaAustralia
| | - John A Damiano
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Gábor Zsurka
- Department of Experimental Epileptology and Cognition Research and Department of Epileptology, University Bonn Medical Center, Venusberg Campus 1, D-53105 Bonn, Germany
| | - Caterina Marconi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Tania Giangregorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Pamela Magini
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Marijn Kuijpers
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Tanja Maritzen
- Department of Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Strasse 10, 13125 Berlin, Germany
- Department of Nanophysiology, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Giuseppe Danilo Norata
- Department of Excellence in Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan and Center for the Study of Atherosclerosis, SISA Bassini Hospital Cinisello B, Italy
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, F-75013 Paris, France
| | - Laura Canafoglia
- Unit of Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Seri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Paolo Tinuper
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies—EpiCARE), Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Ingrid E Scheffer
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Melbourne, Victoria, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
- Department of Pediatrics, University of Melbourne, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Melanie Bahlo
- Spedali Civili, Neuropsychiatric Department, Brescia, Italy
- Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
| | - Michael S Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Melbourne, Victoria, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville, Melbourne, Victoria, Australia
| | - Wolfram S Kunz
- Department of Experimental Epileptology and Cognition Research and Department of Epileptology, University Bonn Medical Center, Venusberg Campus 1, D-53105 Bonn, Germany
| | - Lucio Giordano
- Spedali Civili, Neuropsychiatric Department, Brescia, Italy
| | - Francesca Bisulli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Epilepsy Center (Reference Center for Rare and Complex Epilepsies—EpiCARE), Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | | | - Volker Haucke
- Volker Haucke Robert-Roessle-Strasse 10, 13125 Berlin, Germany E-mail:
| | - Emilio Hirsch
- Correspondence may also be addressed to: Emilio Hirsch via Nizza 52, 10126 Torino (TO), Italy E-mail:
| | - Tommaso Pippucci
- Correspondence to: Tommaso Pippucci Via Giuseppe Massarenti 9, 40138 Bologna (BO), Italy E-mail:
| |
Collapse
|
112
|
Mansour H, Banaganapalli B, Nasser KK, Al-Aama JY, Shaik NA, Saadah OI, Elango R. Genome-Wide Association Study-Guided Exome Rare Variant Burden Analysis Identifies IL1R1 and CD3E as Potential Autoimmunity Risk Genes for Celiac Disease. Front Pediatr 2022; 10:837957. [PMID: 35237542 PMCID: PMC8882628 DOI: 10.3389/fped.2022.837957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 12/14/2022] Open
Abstract
Celiac disease (CeD) is a multifactorial autoimmune enteropathy characterized by the overactivation of the immune system in response to dietary gluten. The molecular etiology of CeD is still not well-understood. Therefore, this study aims to identify potential candidate genes involved in CeD pathogenesis by applying multilayered system biology approaches. Initially, we identified rare coding variants shared between the affected siblings in two rare Arab CeD families by whole-exome sequencing (WES). Then we used the STRING database to construct a protein network of rare variants and genome-wide association study (GWAS) loci to explore their molecular interactions in CeD. Furthermore, the hub genes identified based on network topology parameters were subjected to a series of computational validation analyses like pathway enrichment, gene expression, knockout mouse model, and variant pathogenicity predictions. Our findings have shown the absence of rare variants showing classical Mendelian inheritance in both families. However, interactome analysis of rare WES variants and GWAS loci has identified a total of 11 hub genes. The multidimensional computational analysis of hub genes has prioritized IL1R1 for family A and CD3E for family B as potential genes. These genes were connected to CeD pathogenesis pathways of T-cell selection, cytokine signaling, and adaptive immune response. Future multi-omics studies may uncover the roles of IL1R1 and CD3E in gluten sensitivity. The present investigation lays forth a novel approach integrating next-generation sequencing (NGS) of familial cases, GWAS, and computational analysis for solving the complex genetic architecture of CeD.
Collapse
Affiliation(s)
- Haifa Mansour
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Yousuf Al-Aama
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Omar Ibrahim Saadah
- Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Centre of Artificial Intelligence in Precision Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
113
|
Zou D, Wang L, Liao J, Xiao H, Duan J, Zhang T, Li J, Yin Z, Zhou J, Yan H, Huang Y, Zhan N, Yang Y, Ye J, Chen F, Zhu S, Wen F, Guo J. Genome sequencing of 320 Chinese children with epilepsy: a clinical and molecular study. Brain 2021; 144:3623-3634. [PMID: 34145886 PMCID: PMC8719847 DOI: 10.1093/brain/awab233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/25/2021] [Accepted: 06/05/2021] [Indexed: 02/05/2023] Open
Abstract
The aim of this study is to evaluate the diagnostic value of genome sequencing in children with epilepsy, and to provide genome sequencing-based insights into the molecular genetic mechanisms of epilepsy to help establish accurate diagnoses, design appropriate treatments and assist in genetic counselling. We performed genome sequencing on 320 Chinese children with epilepsy, and interpreted single-nucleotide variants and copy number variants of all samples. The complete pedigree and clinical data of the probands were established and followed up. The clinical phenotypes, treatments, prognoses and genotypes of the patients were analysed. Age at seizure onset ranged from 1 day to 17 years, with a median of 4.3 years. Pathogenic/likely pathogenic variants were found in 117 of the 320 children (36.6%), of whom 93 (29.1%) had single-nucleotide variants, 22 (6.9%) had copy number variants and two had both single-nucleotide variants and copy number variants. Single-nucleotide variants were most frequently found in SCN1A (10/95, 10.5%), which is associated with Dravet syndrome, followed by PRRT2 (8/95, 8.4%), which is associated with benign familial infantile epilepsy, and TSC2 (7/95, 7.4%), which is associated with tuberous sclerosis. Among the copy number variants, there were three with a length <25 kilobases. The most common recurrent copy number variants were 17p13.3 deletions (5/24, 20.8%), 16p11.2 deletions (4/24, 16.7%), and 7q11.23 duplications (2/24, 8.3%), which are associated with epilepsy, developmental retardation and congenital abnormalities. Four particular 16p11.2 deletions and two 15q11.2 deletions were considered to be susceptibility factors contributing to neurodevelopmental disorders associated with epilepsy. The diagnostic yield was 75.0% in patients with seizure onset during the first postnatal month, and gradually decreased in patients with seizure onset at a later age. Forty-two patients (13.1%) were found to be specifically treatable for the underlying genetic cause identified by genome sequencing. Three of them received corresponding targeted therapies and demonstrated favourable prognoses. Genome sequencing provides complete genetic diagnosis, thus enabling individualized treatment and genetic counselling for the parents of the patients. Genome sequencing is expected to become the first choice of methods for genetic testing of patients with epilepsy.
Collapse
Affiliation(s)
- Dongfang Zou
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | - Lin Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jianxiang Liao
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | | | - Jing Duan
- Department of Neurology, Shenzhen Children’s Hospital, Shenzhen, China
| | | | | | | | - Jing Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | | | - Ying Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Jingyu Ye
- BGI-Shenzhen, Shenzhen 518083, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children’s Hospital, Shenzhen, China
- Correspondence may also be addressed to: Feiqiu Wen Shenzhen Children’s Hospital No. 7019 Yitian Road, Shenzhen 518038 Guangdong, China E-mail:
| | - Jian Guo
- BGI-Shenzhen, Shenzhen 518083, China
- Correspondence to: Jian Guo BGI-Shenzhen, Beishan Industry Zone Shenzhen 518083, Guangdong, China E-mail:
| |
Collapse
|
114
|
Bukina ES, Kondratyev NV, Kozin SV, Golimbet VE, Artyuhov AS, Dashinimaev EB. SLC6A1 and Neuropsychiatric Diseases: The Role of Mutations and Prospects for Treatment with Genome Editing Systems. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421040048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
115
|
Liu XR, Xu XX, Lin SM, Fan CY, Ye TT, Tang B, Shi YW, Su T, Li BM, Yi YH, Luo JH, Liao WP. GRIN2A Variants Associated With Idiopathic Generalized Epilepsies. Front Mol Neurosci 2021; 14:720984. [PMID: 34720871 PMCID: PMC8551482 DOI: 10.3389/fnmol.2021.720984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022] Open
Abstract
Objective: The objective of this study is to explore the role of GRIN2A gene in idiopathic generalized epilepsies and the potential underlying mechanism for phenotypic variation. Methods: Whole-exome sequencing was performed in a cohort of 88 patients with idiopathic generalized epilepsies. Electro-physiological alterations of the recombinant N-methyl-D-aspartate receptors (NMDARs) containing GluN2A mutants were examined using two-electrode voltage-clamp recordings. The alterations of protein expression were detected by immunofluorescence staining and biotinylation. Previous studies reported that epilepsy related GRIN2A missense mutations were reviewed. The correlation among phenotypes, functional alterations, and molecular locations was analyzed. Results: Three novel heterozygous missense GRIN2A mutations (c.1770A > C/p.K590N, c.2636A > G/p.K879R, and c.3199C > T/p.R1067W) were identified in three unrelated cases. Electrophysiological analysis demonstrated R1067W significantly increased the current density of GluN1/GluN2A NMDARs. Immunofluorescence staining indicated GluN2A mutants had abundant distribution in the membrane and cytoplasm. Western blotting showed the ratios of surface and total expression of the three GluN2A-mutants were significantly increased comparing to the wild type. Further analysis on the reported missense mutations demonstrated that mutations with severe gain-of-function were associated with epileptic encephalopathy, while mutations with mild gain of function were associated with mild phenotypes, suggesting a quantitative correlation between gain-of-function and phenotypic severity. The mutations located around transmembrane domains were more frequently associated with severe phenotypes and absence seizure-related mutations were mostly located in carboxyl-terminal domain, suggesting molecular sub-regional effects. Significance: This study revealed GRIN2A gene was potentially a candidate pathogenic gene of idiopathic generalized epilepsies. The functional quantitative correlation and the molecular sub-regional implication of mutations helped in explaining the relatively mild clinical phenotypes and incomplete penetrance associated with GRIN2A variants.
Collapse
Affiliation(s)
- Xiao-Rong Liu
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xing-Xing Xu
- Department of Physiology, Wenzhou Medical University, Wenzhou, China
| | - Si-Mei Lin
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Cui-Ying Fan
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Ting-Ting Ye
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bin Tang
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yi-Wu Shi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Tao Su
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Mei Li
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yong-Hong Yi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Hong Luo
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei-Ping Liao
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Institute of Neuroscience and Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
116
|
Dahawi M, Elmagzoub MS, A. Ahmed E, Baldassari S, Achaz G, Elmugadam FA, Abdelgadir WA, Baulac S, Buratti J, Abdalla O, Gamil S, Alzubeir M, Abubaker R, Noé E, Elsayed L, Ahmed AE, Leguern E. Involvement of ADGRV1 Gene in Familial Forms of Genetic Generalized Epilepsy. Front Neurol 2021; 12:738272. [PMID: 34744978 PMCID: PMC8567843 DOI: 10.3389/fneur.2021.738272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Genetic generalized epilepsies (GGE) including childhood absence epilepsy (CAE), juvenile absence epilepsy (JAE), juvenile myoclonic epilepsy (JME), and GGE with tonic-clonic seizures alone (GGE-TCS), are common types of epilepsy mostly determined by a polygenic mode of inheritance. Recent studies showed that susceptibility genes for GGE are numerous, and their variants rare, challenging their identification. In this study, we aimed to assess GGE genetic etiology in a Sudanese population. Methods: We performed whole-exome sequencing (WES) on DNA of 40 patients from 20 Sudanese families with GGE searching for candidate susceptibility variants, which were prioritized by CADD software and functional features of the corresponding gene. We assessed their segregation in 138 individuals and performed genotype-phenotype correlations. Results: In a family including three sibs with GGE-TCS, we identified a rare missense variant in ADGRV1 encoding an adhesion G protein-coupled receptor V1, which was already involved in the autosomal recessive Usher type C syndrome. In addition, five other ADGRV1 rare missense variants were identified in four additional families and absent from 119 Sudanese controls. In one of these families, an ADGRV1 variant was found at a homozygous state, in a female more severely affected than her heterozygous brother, suggesting a gene dosage effect. In the five families, GGE phenotype was statistically associated with ADGRV1 variants (0R = 0.9 103). Conclusion: This study highly supports, for the first time, the involvement of ADGRV1 missense variants in familial GGE and that ADGRV1 is a susceptibility gene for CAE/JAE and GGE-TCS phenotypes.
Collapse
Affiliation(s)
- Maha Dahawi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Mohamed S. Elmagzoub
- Faculty of Medicine, National Ribat University, Khartoum, Sudan
- Neuroscience Department, College of Applied Medical Sciences, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Elhami A. Ahmed
- UNESCO Chair on Bioethics, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sara Baldassari
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Guillaume Achaz
- Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, Paris, France
- SMILE Group, CIRB, Collège de France, CNRS, INSERM, Paris, France
- Éco-anthropologie, Muséum National d'Histoire Naturelle, Université de Paris, Paris, France
| | | | - Wasma A. Abdelgadir
- Department of Biochemistry and Molecular Biology, Faculty of Sciences and Technology, Al-Neelain University, Khartoum, Sudan
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
| | - Julien Buratti
- Department of Medical Genetics, AP-HP Sorbonne Université, Sorbonne Université, Paris, France
| | - Omer Abdalla
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Sahar Gamil
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Maha Alzubeir
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Neurology, Sudan Medical Council, Khartoum, Sudan
| | - Rayan Abubaker
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Eric Noé
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Sorbonne Université, Paris, France
| | - Liena Elsayed
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Basic Sciences, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ammar E. Ahmed
- Department of Physiology, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Neurology, Sudan Medical Council, Khartoum, Sudan
| | - Eric Leguern
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, Paris, France
- Department of Medical Genetics, AP-HP Sorbonne Université, Sorbonne Université, Paris, France
| |
Collapse
|
117
|
Moloney PB, Cavalleri GL, Delanty N. Epilepsy in the mTORopathies: opportunities for precision medicine. Brain Commun 2021; 3:fcab222. [PMID: 34632383 PMCID: PMC8495134 DOI: 10.1093/braincomms/fcab222] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 01/16/2023] Open
Abstract
The mechanistic target of rapamycin signalling pathway serves as a ubiquitous regulator of cell metabolism, growth, proliferation and survival. The main cellular activity of the mechanistic target of rapamycin cascade funnels through mechanistic target of rapamycin complex 1, which is inhibited by rapamycin, a macrolide compound produced by the bacterium Streptomyces hygroscopicus. Pathogenic variants in genes encoding upstream regulators of mechanistic target of rapamycin complex 1 cause epilepsies and neurodevelopmental disorders. Tuberous sclerosis complex is a multisystem disorder caused by mutations in mechanistic target of rapamycin regulators TSC1 or TSC2, with prominent neurological manifestations including epilepsy, focal cortical dysplasia and neuropsychiatric disorders. Focal cortical dysplasia type II results from somatic brain mutations in mechanistic target of rapamycin pathway activators MTOR, AKT3, PIK3CA and RHEB and is a major cause of drug-resistant epilepsy. DEPDC5, NPRL2 and NPRL3 code for subunits of the GTPase-activating protein (GAP) activity towards Rags 1 complex (GATOR1), the principal amino acid-sensing regulator of mechanistic target of rapamycin complex 1. Germline pathogenic variants in GATOR1 genes cause non-lesional focal epilepsies and epilepsies associated with malformations of cortical development. Collectively, the mTORopathies are characterized by excessive mechanistic target of rapamycin pathway activation and drug-resistant epilepsy. In the first large-scale precision medicine trial in a genetically mediated epilepsy, everolimus (a synthetic analogue of rapamycin) was effective at reducing seizure frequency in people with tuberous sclerosis complex. Rapamycin reduced seizures in rodent models of DEPDC5-related epilepsy and focal cortical dysplasia type II. This review outlines a personalized medicine approach to the management of epilepsies in the mTORopathies. We advocate for early diagnostic sequencing of mechanistic target of rapamycin pathway genes in drug-resistant epilepsy, as identification of a pathogenic variant may point to an occult dysplasia in apparently non-lesional epilepsy or may uncover important prognostic information including, an increased risk of sudden unexpected death in epilepsy in the GATORopathies or favourable epilepsy surgery outcomes in focal cortical dysplasia type II due to somatic brain mutations. Lastly, we discuss the potential therapeutic application of mechanistic target of rapamycin inhibitors for drug-resistant seizures in GATOR1-related epilepsies and focal cortical dysplasia type II.
Collapse
Affiliation(s)
- Patrick B Moloney
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Gianpiero L Cavalleri
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| | - Norman Delanty
- FutureNeuro, the Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, D02 VN51, Ireland
| |
Collapse
|
118
|
Distinct gene-set burden patterns underlie common generalized and focal epilepsies. EBioMedicine 2021; 72:103588. [PMID: 34571366 PMCID: PMC8479647 DOI: 10.1016/j.ebiom.2021.103588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
Background Analyses of few gene-sets in epilepsy showed a potential to unravel key disease associations. We set out to investigate the burden of ultra-rare variants (URVs) in a comprehensive range of biologically informed gene-sets presumed to be implicated in epileptogenesis. Methods The burden of 12 URV types in 92 gene-sets was compared between cases and controls using whole exome sequencing data from individuals of European descent with developmental and epileptic encephalopathies (DEE, n = 1,003), genetic generalized epilepsy (GGE, n = 3,064), or non-acquired focal epilepsy (NAFE, n = 3,522), collected by the Epi25 Collaborative, compared to 3,962 ancestry-matched controls. Findings Missense URVs in highly constrained regions were enriched in neuron-specific and developmental genes, whereas genes not expressed in brain were not affected. GGE featured a higher burden in gene-sets derived from inhibitory vs. excitatory neurons or associated receptors, whereas the opposite was found for NAFE, and DEE featured a burden in both. Top-ranked susceptibility genes from recent genome-wide association studies (GWAS) and gene-sets derived from generalized vs. focal epilepsies revealed specific enrichment patterns of URVs in GGE vs. NAFE. Interpretation Missense URVs affecting highly constrained sites differentially impact genes expressed in inhibitory vs. excitatory pathways in generalized vs. focal epilepsies. The excess of URVs in top-ranked GWAS risk-genes suggests a convergence of rare deleterious and common risk-variants in the pathogenesis of generalized and focal epilepsies. Funding DFG Research Unit FOR-2715 (Germany), FNR (Luxembourg), NHGRI (US), NHLBI (US), DAAD (Germany).
Collapse
|
119
|
Stanley K, Hostyk J, Tran L, Amengual-Gual M, Dugan P, Clark J, Choi H, Tchapyjnikov D, Perucca P, Fernandes C, Andrade D, Devinsky O, Cavalleri GL, Depondt C, Sen A, O'Brien T, Heinzen E, Loddenkemper T, Goldstein DB, Mikati MA, Delanty N. Genomic analysis of "microphenotypes" in epilepsy. Am J Med Genet A 2021; 188:138-146. [PMID: 34569149 DOI: 10.1002/ajmg.a.62505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/22/2021] [Accepted: 07/23/2021] [Indexed: 11/07/2022]
Abstract
Large international consortia examining the genomic architecture of the epilepsies focus on large diagnostic subgroupings such as "all focal epilepsy" and "all genetic generalized epilepsy". In addition, phenotypic data are generally entered into these large discovery databases in a unidirectional manner at one point in time only. However, there are many smaller phenotypic subgroupings in epilepsy, many of which may have unique genomic risk factors. Such a subgrouping or "microphenotype" may be defined as an uncommon or rare phenotype that is well recognized by epileptologists and the epilepsy community, and which may or may not be formally recognized within the International League Against Epilepsy classification system. Here we examine the genetic structure of a number of such microphenotypes and report in particular on two interesting clinical phenotypes, Jeavons syndrome and pediatric status epilepticus. Although no single gene reached exome-wide statistical significance to be associated with any of the diagnostic categories, we observe enrichment of rare damaging variants in established epilepsy genes among Landau-Kleffner patients (GRIN2A) and pediatric status epilepticus patients (MECP2, SCN1A, SCN2A, SCN8A).
Collapse
Affiliation(s)
- Kate Stanley
- Columbia Presbyterian Medical Center, New York, New York, USA
| | - Joseph Hostyk
- Institute for Genomic Medicine, Columbia Presbyterian Medical Center, New York, New York, USA
| | - Linh Tran
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Marta Amengual-Gual
- Division of Epilepsy and Clinical Neurophysiology, Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Patricia Dugan
- Department of Neurology, NYU Langone Medical Center, New York, New York, USA
| | - Justice Clark
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Hyunmi Choi
- Department of Neurology, Columbia Presbyterian Medical Center, New York, New York, USA
| | | | - Piero Perucca
- Department of Neurology, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | | | - Danielle Andrade
- Division of Neurology, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Orrin Devinsky
- Department of Neurology, School of Medicine, New York University, New York, New York, USA
| | | | - Gianpiero L Cavalleri
- School of Pharmacy and Biomedical Sciences, and FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Arjune Sen
- Department of Clinical Neurosciences - Neurology, University of Oxford Nuffield, Oxford, UK
| | - Terence O'Brien
- Department of Medicine, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Erin Heinzen
- Pharmacy and Genetics, University of North Carolina System, Chapel Hill, North Carolina, USA
| | - Tobias Loddenkemper
- Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia Presbyterian Medical Center, New York, New York, USA
| | - Mohamed A Mikati
- Division of Pediatric Neurology and Developmental Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Norman Delanty
- Department of Neurology, Beaumont Hospital, School of Pharmacy and Biomedical Sciences, and FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
120
|
Turkdogan D, Turkyilmaz A, Sager G, Ozturk G, Unver O, Say M. Chromosomal microarray and exome sequencing in unexplained early infantile epileptic encephalopathies in a highly consanguineous population. Int J Neurosci 2021:1-18. [PMID: 34380004 DOI: 10.1080/00207454.2021.1967349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM To identify genetic causes for early infantile epileptic encephalopathies (EIEE) in Turkish children with mostly consanguineous parents. METHODS In a selected EIEE group (N = 59) based on results of nongenetic and initial genetic testing with unexplained etiology, 49 patients underwent array-based comparative genomic hybridization (aCGH) and 49 patients underwent whole exome sequencing (WES) including 39 with negative aCGH results and 10 with WES-only. RESULTS Diagnostic yield of aCGH and WES for pathogenic or likely pathogenic variants was 14.3% and 38.8%, respectively. Including de novo variants of uncertain significance linked to compatible phenotypes, increased the diagnostic yield of WES to 61.2%. Out of 38 positive variants, 18 (47.4%) were novel and 16 (42.1%) were de novo. Twenty-one (56.8%) patients had recessive variants inherited from mostly consanguineous healthy parents (85.7%). Fourteen (37.8%) of patients with diagnostic results had positive variants in established EIEE genes. Seizures started during neonatal period in 32.4% patients. Posture or movement disorders were comorbid with EIEE in 40.5% of diagnosed patients. We identified treatable metabolic disorders in 8.1% of patients and pathogenic variants in genes which support using targeted medicine in 19% of patients. CONCLUSIONS Detailed electro-clinical phenotyping led to expansion of some of the known phenotypes with non-neurological and neurological findings in addition to seizures, as well as suggestion of candidate genes (SEC24B, SLC16A2 and PRICKLE2) and a copy number variant (microduplication of Xp21.1p11.4). The high ratio of recessive inheritance could be important for family counseling.
Collapse
Affiliation(s)
- Dilsad Turkdogan
- Medical Faculty, Department of Pediatric Neurology, Marmara University, Pendik, Istanbul, Turkey
| | - Ayberk Turkyilmaz
- Medical Faculty, Department of Medical Genetics, Marmara University, Pendik, Istanbul, Turkey
| | - Gunes Sager
- Medical Faculty, Department of Pediatric Neurology, Marmara University, Pendik, Istanbul, Turkey
| | - Gulten Ozturk
- Medical Faculty, Department of Pediatric Neurology, Marmara University, Pendik, Istanbul, Turkey
| | - Olcay Unver
- Medical Faculty, Department of Pediatric Neurology, Marmara University, Pendik, Istanbul, Turkey
| | - Merve Say
- Bioinformatics, Private Practice, Kadıkoy, Istanbul, Turkey
| |
Collapse
|
121
|
Ji X, Zeng Y, Wu J. The CB 2 Receptor as a Novel Therapeutic Target for Epilepsy Treatment. Int J Mol Sci 2021; 22:ijms22168961. [PMID: 34445666 PMCID: PMC8396521 DOI: 10.3390/ijms22168961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/10/2021] [Indexed: 02/05/2023] Open
Abstract
Epilepsy is characterized by repeated spontaneous bursts of neuronal hyperactivity and high synchronization in the central nervous system. It seriously affects the quality of life of epileptic patients, and nearly 30% of individuals are refractory to treatment of antiseizure drugs. Therefore, there is an urgent need to develop new drugs to manage and control refractory epilepsy. Cannabinoid ligands, including selective cannabinoid receptor subtype (CB1 or CB2 receptor) ligands and non-selective cannabinoid (synthetic and endogenous) ligands, may serve as novel candidates for this need. Cannabinoid appears to regulate seizure activity in the brain through the activation of CB1 and CB2 cannabinoid receptors (CB1R and CB2R). An abundant series of cannabinoid analogues have been tested in various animal models, including the rat pilocarpine model of acquired epilepsy, a pentylenetetrazol model of myoclonic seizures in mice, and a penicillin-induced model of epileptiform activity in the rats. The accumulating lines of evidence show that cannabinoid ligands exhibit significant benefits to control seizure activity in different epileptic models. In this review, we summarize the relationship between brain CB2 receptors and seizures and emphasize the potential mechanisms of their therapeutic effects involving the influences of neurons, astrocytes, and microglia cells. The unique features of CB2Rs, such as lower expression levels under physiological conditions and high inducibility under epileptic conditions, make it an important target for future research on drug-resistant epilepsy.
Collapse
Affiliation(s)
- Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
| | - Yang Zeng
- Medical Education Assessment and Research Center, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
| | - Jie Wu
- Brain Function and Disease Laboratory, Shantou University Medical College, Xin-Ling Road #22, Shantou 515041, China;
- Correspondence: or
| |
Collapse
|
122
|
Davies FCJ, Hope JE, McLachlan F, Marshall GF, Kaminioti-Dumont L, Qarkaxhija V, Nunez F, Dando O, Smith C, Wood E, MacDonald J, Hardt O, Abbott CM. Recapitulation of the EEF1A2 D252H neurodevelopmental disorder-causing missense mutation in mice reveals a toxic gain of function. Hum Mol Genet 2021; 29:1592-1606. [PMID: 32160274 DOI: 10.1093/hmg/ddaa042] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/24/2022] Open
Abstract
Heterozygous de novo mutations in EEF1A2, encoding the tissue-specific translation elongation factor eEF1A2, have been shown to cause neurodevelopmental disorders including often severe epilepsy and intellectual disability. The mutational profile is unusual; ~50 different missense mutations have been identified but no obvious loss of function mutations, though large heterozygous deletions are known to be compatible with life. A key question is whether the heterozygous missense mutations operate through haploinsufficiency or a gain of function mechanism, an important prerequisite for design of therapeutic strategies. In order both to address this question and to provide a novel model for neurodevelopmental disorders resulting from mutations in EEF1A2, we created a new mouse model of the D252H mutation. This mutation causes the eEF1A2 protein to be expressed at lower levels in brain but higher in muscle in the mice. We compared both heterozygous and homozygous D252H and null mutant mice using behavioural and motor phenotyping alongside molecular modelling and analysis of binding partners. Although the proteomic analysis pointed to a loss of function for the D252H mutant protein, the D252H homozygous mice were more severely affected than null homozygotes on the same genetic background. Mice that are heterozygous for the missense mutation show no behavioural abnormalities but do have sex-specific deficits in body mass and motor function. The phenotyping of our novel mouse lines, together with analysis of molecular modelling and interacting proteins, suggest that the D252H mutation results in a gain of function.
Collapse
Affiliation(s)
- Faith C J Davies
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Jilly E Hope
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Fiona McLachlan
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Grant F Marshall
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Laura Kaminioti-Dumont
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Vesa Qarkaxhija
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Francis Nunez
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Owen Dando
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Colin Smith
- Academic Department of Neuropathology, Centre for Clinical Brain Sciences, Edinburgh, EH16 4SB, United Kingdom
| | - Emma Wood
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Josephine MacDonald
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
| | - Oliver Hardt
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.,Department of Psychology, McGill University, Montreal, QC H3A 1B1, Canada
| | - Catherine M Abbott
- Centre for Genomic & Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.,Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
123
|
Spratt PWE, Alexander RPD, Ben-Shalom R, Sahagun A, Kyoung H, Keeshen CM, Sanders SJ, Bender KJ. Paradoxical hyperexcitability from Na V1.2 sodium channel loss in neocortical pyramidal cells. Cell Rep 2021; 36:109483. [PMID: 34348157 PMCID: PMC8719649 DOI: 10.1016/j.celrep.2021.109483] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022] Open
Abstract
Loss-of-function variants in the gene SCN2A, which encodes the sodium channel NaV1.2, are strongly associated with autism spectrum disorder and intellectual disability. An estimated 20%-30% of children with these variants also suffer from epilepsy, with altered neuronal activity originating in neocortex, a region where NaV1.2 channels are expressed predominantly in excitatory pyramidal cells. This is paradoxical, as sodium channel loss in excitatory cells would be expected to dampen neocortical activity rather than promote seizure. Here, we examined pyramidal neurons lacking NaV1.2 channels and found that they were intrinsically hyperexcitable, firing high-frequency bursts of action potentials (APs) despite decrements in AP size and speed. Compartmental modeling and dynamic-clamp recordings revealed that NaV1.2 loss prevented potassium channels from properly repolarizing neurons between APs, increasing overall excitability by allowing neurons to reach threshold for subsequent APs more rapidly. This cell-intrinsic mechanism may, therefore, account for why SCN2A loss-of-function can paradoxically promote seizure.
Collapse
Affiliation(s)
- Perry W E Spratt
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Ryan P D Alexander
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Roy Ben-Shalom
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Atehsa Sahagun
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Henry Kyoung
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Caroline M Keeshen
- Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Stephan J Sanders
- Department of Psychiatry, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Neuroscience Graduate Program, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, Kavli Institute for Fundamental Neuroscience, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
124
|
Recent ultra-rare inherited variants implicate new autism candidate risk genes. Nat Genet 2021; 53:1125-1134. [PMID: 34312540 DOI: 10.1038/s41588-021-00899-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 06/18/2021] [Indexed: 01/28/2023]
Abstract
Autism is a highly heritable complex disorder in which de novo mutation (DNM) variation contributes significantly to risk. Using whole-genome sequencing data from 3,474 families, we investigate another source of large-effect risk variation, ultra-rare variants. We report and replicate a transmission disequilibrium of private, likely gene-disruptive (LGD) variants in probands but find that 95% of this burden resides outside of known DNM-enriched genes. This variant class more strongly affects multiplex family probands and supports a multi-hit model for autism. Candidate genes with private LGD variants preferentially transmitted to probands converge on the E3 ubiquitin-protein ligase complex, intracellular transport and Erb signaling protein networks. We estimate that these variants are approximately 2.5 generations old and significantly younger than other variants of similar type and frequency in siblings. Overall, private LGD variants are under strong purifying selection and appear to act on a distinct set of genes not yet associated with autism.
Collapse
|
125
|
Silk M, Pires DEV, Rodrigues CHM, D'Souza EN, Olshansky M, Thorne N, Ascher DB. MTR3D: identifying regions within protein tertiary structures under purifying selection. Nucleic Acids Res 2021; 49:W438-W445. [PMID: 34050760 PMCID: PMC8265191 DOI: 10.1093/nar/gkab428] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
The identification of disease-causal variants is non-trivial. By mapping population variation from over 448,000 exome and genome sequences to over 81,000 experimental structures and homology models of the human proteome, we have calculated both regional intolerance to missense variation (Missense Tolerance Ratio, MTR), using a sliding window of 21–41 codons, and introduce a new 3D spatial intolerance to missense variation score (3D Missense Tolerance Ratio, MTR3D), using spheres of 5–8 Å. We show that the MTR3D is less biased by regions with limited data and more accurately identifies regions under purifying selection than estimates relying on the sequence alone. Intolerant regions were highly enriched for both ClinVar pathogenic and COSMIC somatic missense variants (Mann–Whitney U test P < 2.2 × 10−16). Further, we combine sequence- and spatial-based scores to generate a consensus score, MTRX, which distinguishes pathogenic from benign variants more accurately than either score separately (AUC = 0.85). The MTR3D server enables easy visualisation of population variation, MTR, MTR3D and MTRX scores across the entire gene and protein structure for >17,000 human genes and >42,000 alternative alternate transcripts, including both Ensembl and RefSeq transcripts. MTR3D is freely available by user-friendly web-interface and API at http://biosig.unimelb.edu.au/mtr3d/.
Collapse
Affiliation(s)
- Michael Silk
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia.,Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Melbourne, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Douglas E V Pires
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia.,Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Melbourne, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Australia.,School of Computing and Information Systems, University of Melbourne, Melbourne, Australia
| | - Carlos H M Rodrigues
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia.,Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Melbourne, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Elston N D'Souza
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia.,Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Melbourne, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Australia
| | - Moshe Olshansky
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Natalie Thorne
- Melbourne Genomics Health Alliance, Melbourne, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, Australia.,Structural Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, University of Melbourne, Melbourne, Melbourne, Australia.,Systems and Computational Biology, Bio21 Institute, University of Melbourne, Melbourne, Australia.,Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
126
|
Lea-Henry TN, Chuah A, Stanley M, Athanasopoulos V, Starkey MR, Christiadi D, Kitching AR, Cook MC, Andrews TD, Vinuesa CG, Walters GD, Jiang SH. Increased burden of rare variants in genes of the endosomal Toll-like receptor pathway in patients with systemic lupus erythematosus. Lupus 2021; 30:1756-1763. [PMID: 34266320 DOI: 10.1177/09612033211033979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To compare the frequency of rare variants in genes of the pathophysiologically relevant endosomal Toll-like receptor (eTLR) pathway and any quantifiable differences in variant rarity, predicted deleteriousness, or molecular proximity in patients with systemic lupus erythematosus (SLE) and healthy controls. PATIENTS AND METHODS 65 genes associated with the eTLR pathway were identified by literature search and pathway analysis. Using next generation sequencing techniques, these were compared in two randomised cohorts of patients with SLE (n = 114 and n = 113) with 197 healthy controls. Genetically determined ethnicity was used to normalise minor allele frequencies (MAF) for the identified genetic variants and these were then compared by their frequency: rare (MAF < 0.005), uncommon (MAF 0.005-0.02), and common (MAF >0.02). This was compared to the results for 65 randomly selected genes. RESULTS Patients with SLE are more likely to carry a rare nonsynonymous variant affecting proteins within the eTLR pathway than healthy controls. Furthermore, individuals with SLE are more likely to have multiple rare variants in this pathway. There were no differences in rarity, Combined Annotation Dependent Depletion (CADD) score, or molecular proximity for rare eTLR pathway variants. CONCLUSIONS Rare non-synonymous variants are enriched in patients with SLE in the eTLR pathway. This supports the hypothesis that SLE arises from several rare variants of relatively large effect rather than many common variants of small effect.
Collapse
Affiliation(s)
- Tom N Lea-Henry
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Aaron Chuah
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Maurice Stanley
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia
| | - Vicki Athanasopoulos
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China
| | - Malcolm R Starkey
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Daniel Christiadi
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia
| | - A Richard Kitching
- Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,Centre for Inflammatory Diseases, 439191Monash University Department of Medicine, Monash University Department of Medicine, Clayton, VIC, Australia.,Department of Nephrology, Monash Health, Clayton, VIC, Australia.,Department of Paediatric Nephrology. Monash Health, Clayton, VIC, Australia
| | - Matthew C Cook
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China
| | - Thomas D Andrews
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carola G Vinuesa
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China
| | - Giles D Walters
- Department of Renal Medicine, 34381Canberra Hospital, The Canberra Hospital, Garran, ACT, Australia
| | - Simon H Jiang
- Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia.,Centre for Personalised Immunology, NHMRC Centre for Research Excellence, Canberra, ACT, Australia.,China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Jiao Tong University Shanghai, Huangpu Qu, China.,Department of Renal Medicine, 34381Canberra Hospital, The Canberra Hospital, Garran, ACT, Australia
| |
Collapse
|
127
|
Wolking S, Moreau C, McCormack M, Krause R, Krenn M, Berkovic S, Cavalleri GL, Delanty N, Depondt C, Johnson MR, Koeleman BPC, Kunz WS, Lerche H, Marson AG, O’Brien TJ, Petrovski S, Sander JW, Sills GJ, Striano P, Zara F, Zimprich F, Sisodiya SM, Girard SL, Cossette P. Assessing the role of rare genetic variants in drug-resistant, non-lesional focal epilepsy. Ann Clin Transl Neurol 2021; 8:1376-1387. [PMID: 34018700 PMCID: PMC8283173 DOI: 10.1002/acn3.51374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/08/2021] [Accepted: 04/14/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE Resistance to antiseizure medications (ASMs) is one of the major concerns in the treatment of epilepsy. Despite the increasing number of ASMs available, the proportion of individuals with drug-resistant epilepsy remains unchanged. In this study, we aimed to investigate the role of rare genetic variants in ASM resistance. METHODS We performed exome sequencing of 1,128 individuals with non-familial non-acquired focal epilepsy (NAFE) (762 non-responders, 366 responders) and were provided with 1,734 healthy controls. We undertook replication in a cohort of 350 individuals with NAFE (165 non-responders, 185 responders). We performed gene-based and gene-set-based kernel association tests to investigate potential enrichment of rare variants in relation to drug response status and to risk for NAFE. RESULTS We found no gene or gene set that reached genome-wide significance. Yet, we identified several prospective candidate genes - among them DEPDC5, which showed a potential association with resistance to ASMs. We found some evidence for an enrichment of truncating variants in dominant familial NAFE genes in our cohort of non-familial NAFE and in association with drug-resistant NAFE. INTERPRETATION Our study identifies potential candidate genes for ASM resistance. Our results corroborate the role of rare variants for non-familial NAFE and imply their involvement in drug-resistant epilepsy. Future large-scale genetic research studies are needed to substantiate these findings.
Collapse
Affiliation(s)
- Stefan Wolking
- Université de MontréalMontrealCanada
- Neurology and EpileptologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- Department of Epileptology and NeurologyUniversity of AachenAachenGermany
| | - Claudia Moreau
- Centre Intersectoriel en Santé DurableUniversité du Québec à ChicoutimiSaguenayCanada
| | - Mark McCormack
- Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublinIreland
| | - Roland Krause
- Luxembourg Centre for Systems BiomedicineUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Martin Krenn
- Department of NeurologyMedical University of ViennaViennaAustria
| | | | - Samuel Berkovic
- Department of MedicineEpilepsy Research Centre, Austin HealthUniversity of MelbourneMelbourneAustralia
- Department of NeurologyAustin HealthHeidelbergAustralia
| | - Gianpiero L. Cavalleri
- Department of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro Research CentreScience Foundation IrelandDublinIreland
- Division of Brain SciencesImperial College Faculty of MedicineLondonUK
| | - Norman Delanty
- Department of Molecular and Cellular TherapeuticsRoyal College of Surgeons in IrelandDublinIreland
- FutureNeuro Research CentreScience Foundation IrelandDublinIreland
- Division of NeurologyBeaumont HospitalDublinIreland
| | - Chantal Depondt
- Department of NeurologyHôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | | | | | - Wolfram S. Kunz
- Institute of Experimental Epileptology and Cognition Research and Department of EpileptologyUniversity of BonnBonnGermany
| | - Holger Lerche
- Neurology and EpileptologyHertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
| | - Anthony G. Marson
- Department of Molecular and Clinical PharmacologyInstitute of Translational MedicineUniversity of LiverpoolLiverpoolUK
- The Walton Centre NHS Foundation TrustLiverpoolUK
- Liverpool Health PartnersLiverpoolUK
| | - Terence J. O’Brien
- Departments of Medicine and NeurologyRoyal Melbourne HospitalUniversity of MelbourneParkvilleAustralia
- Departments of Neuroscience and NeurologyThe Central Clinical SchoolMonash University and The Alfred HospitalMelbourneAustralia
| | - Slave Petrovski
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&DAstraZenecaCambridgeUK
| | - Josemir W. Sander
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- Chalfont Centre for EpilepsyChalfont‐St‐PeterUK
- Stichting Epilepsie Instellingen Nederland (SEIN)HeemstedeNetherlands
| | | | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases UnitIRCCS "G. Gaslini" InstituteGenovaItaly
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenovaItaly
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child HealthUniversity of GenoaGenovaItaly
- Laboratory of Neurogenetics and NeuroscienceIRCCS "G. Gaslini" InstituteGenovaItaly
| | - Fritz Zimprich
- Department of NeurologyMedical University of ViennaViennaAustria
| | - Sanjay M. Sisodiya
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUK
- Chalfont Centre for EpilepsyChalfont‐St‐PeterUK
| | - Simon L. Girard
- Centre Intersectoriel en Santé DurableUniversité du Québec à ChicoutimiSaguenayCanada
| | | |
Collapse
|
128
|
Carvill GL, Matheny T, Hesselberth J, Demarest S. Haploinsufficiency, Dominant Negative, and Gain-of-Function Mechanisms in Epilepsy: Matching Therapeutic Approach to the Pathophysiology. Neurotherapeutics 2021; 18:1500-1514. [PMID: 34648141 PMCID: PMC8608973 DOI: 10.1007/s13311-021-01137-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 02/04/2023] Open
Abstract
This review summarizes the pathogenic mechanisms that underpin the monogenic epilepsies and discusses the potential of novel precision therapeutics to treat these disorders. Pathogenic mechanisms of epilepsy include recessive (null alleles), haploinsufficiency, imprinting, gain-of-function, and dominant negative effects. Understanding which pathogenic mechanism(s) that underlie each genetic epilepsy is pivotal to design precision therapies that are most likely to be beneficial for the patient. Novel therapeutics discussed include gene therapy, gene editing, antisense oligonucleotides, and protein replacement. Discussions are illustrated and reinforced with examples from the literature.
Collapse
Affiliation(s)
- Gemma L Carvill
- Departments of Neurology, Pharmacology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tyler Matheny
- Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA
| | - Jay Hesselberth
- Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA
| | - Scott Demarest
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|
129
|
Shcheglovitov A, Peterson RT. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics 2021; 18:1478-1489. [PMID: 34595731 PMCID: PMC8608971 DOI: 10.1007/s13311-021-01115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Recent advances in molecular and cellular engineering, such as human cell reprogramming, genome editing, and patient-specific organoids, have provided unprecedented opportunities for investigating human disorders in both animals and human-based models at an improved pace and precision. This progress will inevitably lead to the development of innovative drug-screening platforms and new patient-specific therapeutics. In this review, we discuss recent advances that have been made using zebrafish and human-induced pluripotent stem cell (iPSC)-derived neurons and organoids for modeling genetic epilepsies. We also provide our prospective on how these models can potentially be combined to build new screening platforms for antiseizure and antiepileptogenic drug discovery that harness the robustness and tractability of zebrafish models as well as the patient-specific genetics and biology of iPSC-derived neurons and organoids.
Collapse
|
130
|
Li Q, Wang Y, Pan Y, Wang J, Yu W, Wang X. Unraveling synonymous and deep intronic variants causing aberrant splicing in two genetically undiagnosed epilepsy families. BMC Med Genomics 2021; 14:152. [PMID: 34107977 PMCID: PMC8188693 DOI: 10.1186/s12920-021-01008-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Variants identified through parent-child trio-WES yield up to 28-55% positive diagnostic rate across a variety of Mendelian disorders, there remain numerous patients who do not receive a genetic diagnosis. Studies showed that some aberrant splicing variants, which are either not readily detectable by WES or could be miss-interpreted by regular detecting pipelines, are highly relevant to human diseases. METHODS We retrospectively investigated the negative molecular diagnostics through trio-WES for 15 genetically undiagnosed patients whose clinical manifestations were highly suspected to be genetic disorders with well-established genotype-phenotype relationships. We scrutinized the synonymous variants from WES data and Sanger sequenced the suspected intronic region for deep intronic variants. The functional consequences of variants were analyzed by in vitro minigene experiments. RESULTS Here, we report two abnormal splicing events, one of which caused exon truncating due to the activation of cryptic splicing site by a synonymous variant; the other caused partial intron retention due to the generation of splicing sites by a deep intronic variant. CONCLUSIONS We suggest that, despite initial negative genetic test results in clinically highly suspected genetic diseases, the combination of predictive bioinformatics and functional analysis should be considered to unveil the genetic etiology of undiagnosed rare diseases.
Collapse
Affiliation(s)
- Qiang Li
- Guiyang Maternal and Child Health Care Hospital, Guiyang, 550002, China.
| | | | - Yijun Pan
- Guiyang Maternal and Child Health Care Hospital, Guiyang, 550002, China
| | - Jia Wang
- Cipher Gene, Ltd., Beijing, 100080, China
| | - Weishi Yu
- Cipher Gene, Ltd., Beijing, 100080, China
| | | |
Collapse
|
131
|
Abstract
Pathogenic variants in epilepsy genes result in a spectrum of clinical severity. One source of phenotypic heterogeneity is modifier genes that affect expressivity of a primary pathogenic variant. Mouse epilepsy models also display varying degrees of clinical severity on different genetic backgrounds. Mice with heterozygous deletion of Scn1a (Scn1a+/−) model Dravet syndrome, a severe epilepsy most often caused by SCN1A haploinsufficiency. Scn1a+/− mice recapitulate features of Dravet syndrome, including spontaneous seizures, sudden death, and cognitive/behavioral deficits. Scn1a+/− mice maintained on the 129S6/SvEvTac (129) strain have normal lifespan and no spontaneous seizures. In contrast, admixture with C57BL/6J (B6) results in epilepsy and premature lethality. We previously mapped Dravet Survival Modifier loci (Dsm1-Dsm5) responsible for strain-dependent differences in survival. Gabra2, encoding the GABAA α2 subunit, was nominated as a candidate modifier at Dsm1. Direct measurement of GABAA receptors found lower abundance of α2-containing receptors in hippocampal synapses of B6 mice relative to 129. We also identified a B6-specific single nucleotide deletion within Gabra2 that lowers mRNA and protein by nearly 50%. Repair of this deletion reestablished normal levels of Gabra2 expression. In this study, we used B6 mice with a repaired Gabra2 allele to evaluate Gabra2 as a genetic modifier of severity in Scn1a+/− mice. Gabra2 repair restored transcript and protein expression, increased abundance of α2-containing GABAA receptors in hippocampal synapses, and rescued epilepsy phenotypes of Scn1a+/− mice. These findings validate Gabra2 as a genetic modifier of Dravet syndrome, and support enhancing function of α2-containing GABAA receptors as treatment strategy for Dravet syndrome.
Collapse
|
132
|
Motelow JE, Povysil G, Dhindsa RS, Stanley KE, Allen AS, Feng YCA, Howrigan DP, Abbott LE, Tashman K, Cerrato F, Cusick C, Singh T, Heyne H, Byrnes AE, Churchhouse C, Watts N, Solomonson M, Lal D, Gupta N, Neale BM, Cavalleri GL, Cossette P, Cotsapas C, De Jonghe P, Dixon-Salazar T, Guerrini R, Hakonarson H, Heinzen EL, Helbig I, Kwan P, Marson AG, Petrovski S, Kamalakaran S, Sisodiya SM, Stewart R, Weckhuysen S, Depondt C, Dlugos DJ, Scheffer IE, Striano P, Freyer C, Krause R, May P, McKenna K, Regan BM, Bennett CA, Leu C, Leech SL, O’Brien TJ, Todaro M, Stamberger H, Andrade DM, Ali QZ, Sadoway TR, Krestel H, Schaller A, Papacostas SS, Kousiappa I, Tanteles GA, Christou Y, Štěrbová K, Vlčková M, Sedláčková L, Laššuthová P, Klein KM, Rosenow F, Reif PS, Knake S, Neubauer BA, Zimprich F, Feucht M, Reinthaler EM, Kunz WS, Zsurka G, Surges R, Baumgartner T, von Wrede R, Pendziwiat M, Muhle H, Rademacher A, van Baalen A, von Spiczak S, Stephani U, Afawi Z, Korczyn AD, Kanaan M, Canavati C, Kurlemann G, Müller-Schlüter K, Kluger G, Häusler M, Blatt I, Lemke JR, Krey I, Weber YG, Wolking S, Becker F, Lauxmann S, Boßelmann C, Kegele J, Hengsbach C, Rau S, Steinhoff BJ, Schulze-Bonhage A, Borggräfe I, Schankin CJ, Schubert-Bast S, Schreiber H, Mayer T, Korinthenberg R, Brockmann K, Wolff M, Dennig D, Madeleyn R, Kälviäinen R, Saarela A, Timonen O, Linnankivi T, Lehesjoki AE, Rheims S, Lesca G, Ryvlin P, Maillard L, Valton L, Derambure P, Bartolomei F, Hirsch E, Michel V, Chassoux F, Rees MI, Chung SK, Pickrell WO, Powell R, Baker MD, Fonferko-Shadrach B, Lawthom C, Anderson J, Schneider N, Balestrini S, Zagaglia S, Braatz V, Johnson MR, Auce P, Sills GJ, Baum LW, Sham PC, Cherny SS, Lui CH, Delanty N, Doherty CP, Shukralla A, El-Naggar H, Widdess-Walsh P, Barišić N, Canafoglia L, Franceschetti S, Castellotti B, Granata T, Ragona F, Zara F, Iacomino M, Riva A, Madia F, Vari MS, Salpietro V, Scala M, Mancardi MM, Nobili L, Amadori E, Giacomini T, Bisulli F, Pippucci T, Licchetta L, Minardi R, Tinuper P, Muccioli L, Mostacci B, Gambardella A, Labate A, Annesi G, Manna L, Gagliardi M, Parrini E, Mei D, Vetro A, Bianchini C, Montomoli M, Doccini V, Barba C, Hirose S, Ishii A, Suzuki T, Inoue Y, Yamakawa K, Beydoun A, Nasreddine W, Khoueiry Zgheib N, Tumiene B, Utkus A, Sadleir LG, King C, Caglayan SH, Arslan M, Yapıcı Z, Topaloglu P, Kara B, Yis U, Turkdogan D, Gundogdu-Eken A, Bebek N, Uğur-İşeri S, Baykan B, Salman B, Haryanyan G, Yücesan E, Kesim Y, Özkara Y, Tsai MH, Ho CJ, Lin CH, Lin KL, Chou IJ, Poduri A, Shiedley BR, Shain C, Noebels JL, Goldman A, Busch RM, Jehi L, Najm IM, Ferguson L, Khoury J, Glauser TA, Clark PO, Buono RJ, Ferraro TN, Sperling MR, Lo W, Privitera M, French JA, Schachter S, Kuzniecky RI, Devinsky O, Hegde M, Greenberg DA, Ellis CA, Goldberg E, Helbig KL, Cosico M, Vaidiswaran P, Fitch E, Berkovic SF, Lerche H, Lowenstein DH, Goldstein DB. Sub-genic intolerance, ClinVar, and the epilepsies: A whole-exome sequencing study of 29,165 individuals. Am J Hum Genet 2021; 108:965-982. [PMID: 33932343 PMCID: PMC8206159 DOI: 10.1016/j.ajhg.2021.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/08/2021] [Indexed: 12/23/2022] Open
Abstract
Both mild and severe epilepsies are influenced by variants in the same genes, yet an explanation for the resulting phenotypic variation is unknown. As part of the ongoing Epi25 Collaboration, we performed a whole-exome sequencing analysis of 13,487 epilepsy-affected individuals and 15,678 control individuals. While prior Epi25 studies focused on gene-based collapsing analyses, we asked how the pattern of variation within genes differs by epilepsy type. Specifically, we compared the genetic architectures of severe developmental and epileptic encephalopathies (DEEs) and two generally less severe epilepsies, genetic generalized epilepsy and non-acquired focal epilepsy (NAFE). Our gene-based rare variant collapsing analysis used geographic ancestry-based clustering that included broader ancestries than previously possible and revealed novel associations. Using the missense intolerance ratio (MTR), we found that variants in DEE-affected individuals are in significantly more intolerant genic sub-regions than those in NAFE-affected individuals. Only previously reported pathogenic variants absent in available genomic datasets showed a significant burden in epilepsy-affected individuals compared with control individuals, and the ultra-rare pathogenic variants associated with DEE were located in more intolerant genic sub-regions than variants associated with non-DEE epilepsies. MTR filtering improved the yield of ultra-rare pathogenic variants in affected individuals compared with control individuals. Finally, analysis of variants in genes without a disease association revealed a significant burden of loss-of-function variants in the genes most intolerant to such variation, indicating additional epilepsy-risk genes yet to be discovered. Taken together, our study suggests that genic and sub-genic intolerance are critical characteristics for interpreting the effects of variation in genes that influence epilepsy.
Collapse
|
133
|
Phenotypic homogeneity in childhood epilepsies evolves in gene-specific patterns across 3251 patient-years of clinical data. Eur J Hum Genet 2021; 29:1690-1700. [PMID: 34031551 PMCID: PMC8560769 DOI: 10.1038/s41431-021-00908-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022] Open
Abstract
While genetic studies of epilepsies can be performed in thousands of individuals, phenotyping remains a manual, non-scalable task. A particular challenge is capturing the evolution of complex phenotypes with age. Here, we present a novel approach, applying phenotypic similarity analysis to a total of 3251 patient-years of longitudinal electronic medical record data from a previously reported cohort of 658 individuals with genetic epilepsies. After mapping clinical data to the Human Phenotype Ontology, we determined the phenotypic similarity of individuals sharing each genetic etiology within each 3-month age interval from birth up to a maximum age of 25 years. 140 of 600 (23%) of all 27 genes and 3-month age intervals with sufficient data for calculation of phenotypic similarity were significantly higher than expect by chance. 11 of 27 genetic etiologies had significant overall phenotypic similarity trajectories. These do not simply reflect strong statistical associations with single phenotypic features but appear to emerge from complex clinical constellations of features that may not be strongly associated individually. As an attempt to reconstruct the cognitive framework of syndrome recognition in clinical practice, longitudinal phenotypic similarity analysis extends the traditional phenotyping approach by utilizing data from electronic medical records at a scale that is far beyond the capabilities of manual phenotyping. Delineation of how the phenotypic homogeneity of genetic epilepsies varies with age could improve the phenotypic classification of these disorders, the accuracy of prognostic counseling, and by providing historical control data, the design and interpretation of precision clinical trials in rare diseases.
Collapse
|
134
|
Soh MS, Bagnall RD, Bennett MF, Bleakley LE, Mohamed Syazwan ES, Phillips AM, Chiam MDF, McKenzie CE, Hildebrand M, Crompton D, Bahlo M, Semsarian C, Scheffer IE, Berkovic SF, Reid CA. Loss-of-function variants in K v 11.1 cardiac channels as a biomarker for SUDEP. Ann Clin Transl Neurol 2021; 8:1422-1432. [PMID: 34002542 PMCID: PMC8283159 DOI: 10.1002/acn3.51381] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/27/2021] [Indexed: 01/14/2023] Open
Abstract
Objective To compare the frequency and impact on the channel function of KCNH2 variants in SUDEP patients with epilepsy controls comprising patients older than 50 years, a group with low SUDEP risk, and establish loss‐of‐function KCNH2 variants as predictive biomarkers of SUDEP risk. Methods We searched for KCNH2 variants with a minor allele frequency of <5%. Functional analysis in Xenopus laevis oocytes was performed for all KCNH2 variants identified. Results KCNH2 variants were found in 11.1% (10/90) of SUDEP individuals compared to 6.0% (20/332) of epilepsy controls (p = 0.11). Loss‐of‐function KCNH2 variants, defined as causing >20% reduction in maximal amplitude, were observed in 8.9% (8/90) SUDEP patients compared to 3.3% (11/332) epilepsy controls suggesting about threefold enrichment (nominal p = 0.04). KCNH2 variants that did not change channel function occurred at a similar frequency in SUDEP (2.2%; 2/90) and epilepsy control (2.7%; 9/332) cohorts (p > 0.99). Rare KCNH2 variants (<1% allele frequency) associated with greater loss of function and an ~11‐fold enrichment in the SUDEP cohort (nominal p = 0.03). In silico tools were unable to predict the impact of a variant on function highlighting the need for electrophysiological analysis. Interpretation These data show that loss‐of‐function KCNH2 variants are enriched in SUDEP patients when compared to an epilepsy population older than 50 years, suggesting that cardiac mechanisms contribute to SUDEP risk. We propose that genetic screening in combination with functional analysis can identify loss‐of‐function KCNH2 variants that could act as biomarkers of an individual’s SUDEP risk.
Collapse
Affiliation(s)
- Ming S Soh
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Richard D Bagnall
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Mark F Bennett
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Lauren E Bleakley
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Erlina S Mohamed Syazwan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A Marie Phillips
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,School of Biosciences, University of Melbourne, Melbourne, VIC, Australia
| | - Mathew D F Chiam
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Chaseley E McKenzie
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Michael Hildebrand
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Douglas Crompton
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.,Neurology Department, Northern Health, Epping, VIC, Australia
| | - Melanie Bahlo
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Christopher Semsarian
- Agnes Ginges Centre for Molecular Cardiology at Centenary Institute, The University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ingrid E Scheffer
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia.,Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, Australia.,Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, VIC, Australia
| | - Samuel F Berkovic
- Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| | - Christopher A Reid
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia.,Epilepsy Research Centre, Department of Medicine, University of Melbourne, Austin Health, Heidelberg, VIC, Australia
| |
Collapse
|
135
|
Lewis-Smith D, Galer PD, Balagura G, Kearney H, Ganesan S, Cosico M, O'Brien M, Vaidiswaran P, Krause R, Ellis CA, Thomas RH, Robinson PN, Helbig I. Modeling seizures in the Human Phenotype Ontology according to contemporary ILAE concepts makes big phenotypic data tractable. Epilepsia 2021; 62:1293-1305. [PMID: 33949685 PMCID: PMC8272408 DOI: 10.1111/epi.16908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/19/2021] [Accepted: 04/01/2021] [Indexed: 01/08/2023]
Abstract
Objective: The clinical features of epilepsy determine how it is defined, which in turn guides management. Therefore, consideration of the fundamental clinical entities that comprise an epilepsy is essential in the study of causes, trajectories, and treatment responses. The Human Phenotype Ontology (HPO) is used widely in clinical and research genetics for concise communication and modeling of clinical features, allowing extracted data to be harmonized using logical inference. We sought to redesign the HPO seizure subontology to improve its consistency with current epileptological concepts, supporting the use of large clinical data sets in high-throughput clinical and research genomics. Methods: We created a new HPO seizure subontology based on the 2017 International League Against Epilepsy (ILAE) Operational Classification of Seizure Types, and integrated concepts of status epilepticus, febrile, reflex, and neonatal seizures at different levels of detail. We compared the HPO seizure subontology prior to, and following, our revision, according to the information that could be inferred about the seizures of 791 individuals from three independent cohorts: 2 previously published and 150 newly recruited individuals. Each cohort’s data were provided in a different format and harmonized using the two versions of the HPO. Results: The new seizure subontology increased the number of descriptive concepts for seizures 5-fold. The number of seizure descriptors that could be annotated to the cohort increased by 40% and the total amount of information about individuals’ seizures increased by 38%. The most important qualitative difference was the relationship of focal to bilateral tonic-clonic seizure to generalized-onset and focal-onset seizures.
Collapse
Affiliation(s)
- David Lewis-Smith
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Department of Clinical Neurosciences, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Peter D Galer
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ganna Balagura
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy
| | - Hugh Kearney
- FutureNeuro the SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin, Ireland.,Department of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Shiva Ganesan
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mahgenn Cosico
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Margaret O'Brien
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Priya Vaidiswaran
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Roland Krause
- Luxembourg Centre for Systems Biomedicine, Université du Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Colin A Ellis
- The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rhys H Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, UK.,Department of Clinical Neurosciences, Royal Victoria Infirmary, Newcastle-upon-Tyne, UK
| | - Peter N Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Ingo Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,The Epilepsy NeuroGenetics Initiative (ENGIN), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Biomedical and Health Informatics (DBHi), Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
136
|
Doyle GA, Reiner BC, Crist RC, Rao AM, Ojeah NS, Arauco-Shapiro G, Levinson RN, Shah LD, Sperling MR, Ferraro TN, Buono RJ, Berrettini WH. Investigation of long interspersed element-1 retrotransposons as potential risk factors for idiopathic temporal lobe epilepsy. Epilepsia 2021; 62:1329-1342. [PMID: 33826137 DOI: 10.1111/epi.16897] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine if long interspersed element-1 (L1) retrotransposons convey risk for idiopathic temporal lobe epilepsy (TLE). METHODS Surgically resected temporal cortex from individuals with TLE (N = 33) and postmortem temporal cortex from individuals with no known neurological disease (N = 33) were analyzed for L1 content by Restriction Enzyme Based Enriched L1Hs sequencing (REBELseq). Expression of three KCNIP4 splice variants was assessed by droplet digital PCR (ddPCR). Protein ANalysis THrough Evolutionary Relationships (PANTHER) was used to determine ontologies and pathways for lists of genes harboring L1 insertions. RESULTS We identified novel L1 insertions specific to individuals with TLE, and others specific to controls. Although there were no statistically significant differences between cases and controls in the numbers of known and novel L1 insertions, PANTHER analyses of intragenic L1 insertions showed statistically significant enrichments for epilepsy-relevant gene ontologies in both cases and controls. Gene ontologies "neuron projection development" and "calcium ion transmembrane transport" were among those found only in individuals with TLE. We confirmed novel L1 insertions in several genes associated with seizures/epilepsy, including a de novo somatic L1 retrotransposition in KCNIP4 that occurred after neural crest formation in one patient. However, ddPCR results suggest this de novo L1 did not alter KCNIP4 mRNA expression. SIGNIFICANCE Given current data from this small cohort, we conclude that L1 elements, either rare heritable germline insertions or de novo somatic retrotranspositions, may contribute only minimally to overall genetic risk for idiopathic TLE. We suggest that further studies in additional patients and additional brain regions are warranted.
Collapse
Affiliation(s)
- Glenn A Doyle
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Benjamin C Reiner
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Richard C Crist
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aditya M Rao
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Nkechi S Ojeah
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Lincoln University of School of Natural Sciences and Mathematics, Lincoln University, Lincoln, PA, USA
| | - Gabriella Arauco-Shapiro
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel N Levinson
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Lokesh D Shah
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Michael R Sperling
- Department of Neurology, Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Thomas N Ferraro
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Russell J Buono
- Department of Neurology, Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, PA, USA.,Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Wade H Berrettini
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
137
|
Heron SE, Regan BM, Harris RV, Gardner AE, Coleman MJ, Bennett MF, Grinton BE, Helbig KL, Sperling MR, Haut S, Geller EB, Widdess-Walsh P, Pelekanos JT, Bahlo M, Petrovski S, Heinzen EL, Hildebrand MS, Corbett MA, Scheffer IE, Gécz J, Berkovic SF. Association of SLC32A1 Missense Variants With Genetic Epilepsy With Febrile Seizures Plus. Neurology 2021; 96:e2251-e2260. [PMID: 34038384 DOI: 10.1212/wnl.0000000000011855] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/05/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify the causative gene in a large unsolved family with genetic epilepsy with febrile seizures plus (GEFS+), we sequenced the genomes of family members, and then determined the contribution of the identified gene to the pathogenicity of epilepsies by examining sequencing data from 2,772 additional patients. METHODS We performed whole genome sequencing of 3 members of a GEFS+ family. Subsequently, whole exome sequencing data from 1,165 patients with epilepsy from the Epi4K dataset and 1,329 Australian patients with epilepsy from the Epi25 dataset were interrogated. Targeted resequencing was performed on 278 patients with febrile seizures or GEFS+ phenotypes. Variants were validated and familial segregation examined by Sanger sequencing. RESULTS Eight previously unreported missense variants were identified in SLC32A1, coding for the vesicular inhibitory amino acid cotransporter VGAT. Two variants cosegregated with the phenotype in 2 large GEFS+ families containing 8 and 10 affected individuals, respectively. Six further variants were identified in smaller families with GEFS+ or idiopathic generalized epilepsy (IGE). CONCLUSION Missense variants in SLC32A1 cause GEFS+ and IGE. These variants are predicted to alter γ-aminobutyric acid (GABA) transport into synaptic vesicles, leading to altered neuronal inhibition. Examination of further epilepsy cohorts will determine the full genotype-phenotype spectrum associated with SLC32A1 variants.
Collapse
Affiliation(s)
- Sarah E Heron
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Brigid M Regan
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Rebekah V Harris
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Alison E Gardner
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Matthew J Coleman
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mark F Bennett
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Bronwyn E Grinton
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Katherine L Helbig
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Michael R Sperling
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Sheryl Haut
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Eric B Geller
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Peter Widdess-Walsh
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - James T Pelekanos
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melanie Bahlo
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Slavé Petrovski
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Erin L Heinzen
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Michael S Hildebrand
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Mark A Corbett
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Ingrid E Scheffer
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jozef Gécz
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Samuel F Berkovic
- From the Adelaide Medical School, Faculty of Health and Medical Sciences (S.E.H., A.E.G., M.A.C., J.G.), and Robinson Research Institute (J.G.), The University of Adelaide; Epilepsy Research Centre, Department of Medicine (B.M.R., R.V.H., M.C., B.E.G., M.F.B., S.P., M.S.H., I.E.S., S.F.B.), Austin Health, University of Melbourne, Heidelberg; Population Health and Immunity Division (M.F.B., M.B.), The Walter and Eliza Hall Institute of Medical Research; Department of Medical Biology (M.F.B., M.B.), University of Melbourne, Parkville, Australia; Division of Neurology (K.L.H.), Children's Hospital of Philadelphia; Department of Neurology (M.R.S.), Thomas Jefferson University, Philadelphia, PA; Department of Neurology (S.H.), Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY; Institute of Neurology and Neurosurgery at Saint Barnabas (E.B.G.), Livingston, NJ; Department of Neurology (P.W.-W.), Beaumont Hospital, Dublin, Ireland; Royal Brisbane and Women's Hospital (J.T.P.), Brisbane, Australia; Centre for Genomics Research (S.P.), Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK; Institute for Genomic Medicine (E.L.H.), Columbia University Medical Center, New York, NY; Murdoch Children's Research Institute (M.S.H., I.E.S.), Parkville; Department of Paediatrics (I.E.S.), Royal Children's Hospital, University of Melbourne; Florey Institute of Neuroscience and Mental Health (I.E.S.), Melbourne; and Healthy Mothers, Babies and Children (J.G.), South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
138
|
Hernandez CC, Tian X, Hu N, Shen W, Catron MA, Yang Y, Chen J, Jiang Y, Zhang Y, Macdonald RL. Dravet syndrome-associated mutations in GABRA1, GABRB2 and GABRG2 define the genetic landscape of defects of GABA A receptors. Brain Commun 2021; 3:fcab033. [PMID: 34095830 PMCID: PMC8176149 DOI: 10.1093/braincomms/fcab033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/07/2021] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Dravet syndrome is a rare, catastrophic epileptic encephalopathy that begins in the first year of life, usually with febrile or afebrile hemiclonic or generalized tonic-clonic seizures followed by status epilepticus. De novo variants in genes that mediate synaptic transmission such as SCN1A and PCDH19 are often associated with Dravet syndrome. Recently, GABAA receptor subunit genes (GABRs) encoding α1 (GABRA1), β3 (GABRB3) and γ2 (GABRG2), but not β2 (GABRB2) or β1 (GABRB1), subunits are frequently associated with Dravet syndrome or Dravet syndrome-like phenotype. We performed next generation sequencing on 870 patients with Dravet syndrome and identified nine variants in three different GABRs. Interestingly, the variants were all in genes encoding the most common GABAA receptor, the α1β2γ2 receptor. Mutations in GABRA1 (c.644T>C, p. L215P; c.640C>T, p. R214C; c.859G>A; V287I; c.641G>A, p. R214H) and GABRG2 (c.269C>G, p. T90R; c.1025C>T, p. P342L) presented as de novo cases, while in GABRB2 two variants were de novo (c.992T>C, p. F331S; c.542A>T, p. Y181F) and one was autosomal dominant and inherited from the maternal side (c.990_992del, p.330_331del). We characterized the effects of these GABR variants on GABAA receptor biogenesis and channel function. We found that defects in receptor gating were the common deficiency of GABRA1 and GABRB2 Dravet syndrome variants, while mainly trafficking defects were found with the GABRG2 (c.269C>G, p. T90R) variant. It seems that variants in α1 and β2 subunits are less tolerated than in γ2 subunits, since variant α1 and β2 subunits express well but were functionally deficient. This suggests that all of these GABR variants are all targeting GABR genes that encode the assembled α1β2γ2 receptor, and regardless of which of the three subunits are mutated, variants in genes coding for α1, β2 and γ2 receptor subunits make them candidate causative genes in the pathogenesis of Dravet syndrome.
Collapse
Affiliation(s)
- Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48198, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - XiaoJuan Tian
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Department of Neurology, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing 100045, China
| | - Ningning Hu
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Wangzhen Shen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| | - Mackenzie A Catron
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37240, USA
| | - Ying Yang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Jiaoyang Chen
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Yuwu Jiang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China
| | - Yuehua Zhang
- Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
| | - Robert L Macdonald
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
139
|
Abstract
The voltage-gated sodium channel α-subunit genes comprise a highly conserved gene family. Mutations of three of these genes, SCN1A, SCN2A and SCN8A, are responsible for a significant burden of neurological disease. Recent progress in identification and functional characterization of patient variants is generating new insights and novel approaches to therapy for these devastating disorders. Here we review the basic elements of sodium channel function that are used to characterize patient variants. We summarize a large body of work using global and conditional mouse mutants to characterize the in vivo roles of these channels. We provide an overview of the neurological disorders associated with mutations of the human genes and examples of the effects of patient mutations on channel function. Finally, we highlight therapeutic interventions that are emerging from new insights into mechanisms of sodium channelopathies.
Collapse
|
140
|
Dhindsa RS, Zoghbi AW, Krizay DK, Vasavda C, Goldstein DB. A Transcriptome-Based Drug Discovery Paradigm for Neurodevelopmental Disorders. Ann Neurol 2021; 89:199-211. [PMID: 33159466 PMCID: PMC8122510 DOI: 10.1002/ana.25950] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Advances in genetic discoveries have created substantial opportunities for precision medicine in neurodevelopmental disorders. Many of the genes implicated in these diseases encode proteins that regulate gene expression, such as chromatin-associated proteins, transcription factors, and RNA-binding proteins. The identification of targeted therapeutics for individuals carrying mutations in these genes remains a challenge, as the encoded proteins can theoretically regulate thousands of downstream targets in a considerable number of cell types. Here, we propose the application of a drug discovery approach originally developed for cancer called "transcriptome reversal" for these neurodevelopmental disorders. This approach attempts to identify compounds that reverse gene-expression signatures associated with disease states. ANN NEUROL 2021;89:199-211.
Collapse
Affiliation(s)
- Ryan S. Dhindsa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Anthony W. Zoghbi
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, USA; New York State Psychiatric Institute, New York, USA
| | - Daniel K. Krizay
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, USA
| | - Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David B. Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, USA
- Department of Genetics & Development, Columbia University Irving Medical Center, New York, USA
| |
Collapse
|
141
|
Abstract
One in three epilepsy cases is drug resistant, and seizures often begin in infancy, when they are life-threatening and when therapeutic options are highly limited. An important tool for prioritizing and validating genes associated with epileptic conditions, which is suitable for large-scale screening, is disease modeling in Drosophila. Approximately two-thirds of disease genes are conserved in Drosophila, and gene-specific fly models exhibit behavioral changes that are related to symptoms of epilepsy. Models are based on behavior readouts, seizure-like attacks and paralysis following stimulation, and neuronal, cell-biological readouts that are in the majority based on changes in nerve cell activity or morphology. In this review, we focus on behavioral phenotypes. Importantly, Drosophila modeling is independent of, and complementary to, other approaches that are computational and based on systems analysis. The large number of known epilepsy-associated gene variants indicates a need for efficient research strategies. We will discuss the status quo of epilepsy disease modelling in Drosophila and describe promising steps towards the development of new drugs to reduce seizure rates and alleviate other epileptic symptoms.
Collapse
Affiliation(s)
- Paul Lasko
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
- Department of Biology, McGill University, Montréal, Québec, Canada
| | - Kevin Lüthy
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
142
|
Peng J, Zhou Y, Wang K. Multiplex gene and phenotype network to characterize shared genetic pathways of epilepsy and autism. Sci Rep 2021; 11:952. [PMID: 33441621 PMCID: PMC7806931 DOI: 10.1038/s41598-020-78654-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
It is well established that epilepsy and autism spectrum disorder (ASD) commonly co-occur; however, the underlying biological mechanisms of the co-occurence from their genetic susceptibility are not well understood. Our aim in this study is to characterize genetic modules of subgroups of epilepsy and autism genes that have similar phenotypic manifestations and biological functions. We first integrate a large number of expert-compiled and well-established epilepsy- and ASD-associated genes in a multiplex network, where one layer is connected through protein-protein interaction (PPI) and the other layer through gene-phenotype associations. We identify two modules in the multiplex network, which are significantly enriched in genes associated with both epilepsy and autism as well as genes highly expressed in brain tissues. We find that the first module, which represents the Gene Ontology category of ion transmembrane transport, is more epilepsy-focused, while the second module, representing synaptic signaling, is more ASD-focused. However, because of their enrichment in common genes and association with both epilepsy and ASD phenotypes, these modules point to genetic etiologies and biological processes shared between specific subtypes of epilepsy and ASD. Finally, we use our analysis to prioritize new candidate genes for epilepsy (i.e. ANK2, CACNA1E, CACNA2D3, GRIA2, DLG4) for further validation. The analytical approaches in our study can be applied to similar studies in the future to investigate the genetic connections between different human diseases.
Collapse
Affiliation(s)
- Jacqueline Peng
- grid.25879.310000 0004 1936 8972School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.239552.a0000 0001 0680 8770Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Yunyun Zhou
- grid.239552.a0000 0001 0680 8770Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Kai Wang
- grid.239552.a0000 0001 0680 8770Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
143
|
Zhang W, Wang H, Liu B, Jiang M, Gu Y, Yan S, Han X, Hou AY, Tang C, Jiang Z, Shen H, Na M, Lin Z. Differential DNA Methylation Profiles in Patients with Temporal Lobe Epilepsy and Hippocampal Sclerosis ILAE Type I. J Mol Neurosci 2021; 71:1951-1966. [PMID: 33403589 DOI: 10.1007/s12031-020-01780-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/15/2020] [Indexed: 02/02/2023]
Abstract
Hippocampal sclerosis (HS) is one of the most prevalent pathological types of temporal lobe epilepsy (TLE), and it significantly affects patient prognoses. The methylation of DNA plays an important role in the development of epilepsy. However, few studies have focused on HS subtypes to determine DNA methylation profiles in TLE. This study aimed to determine the pathogenesis of TLE from an epigenetic perspective in patients with TLE-HS type I (TLE-HSTI) and TLE without HS (TLE-nHS) using whole-genome bisulfite sequencing (WGBS). We defined 1171 hypermethylated and 2537 hypomethylated regions and found 632 differentially methylated genes (DMG) in the promoter region that were primarily involved in the regulation of various aspects of epilepsy development. Twelve DMG overlapped with differentially expressed genes (DEG) in the promoter region, and RT-qPCR findings revealed significant overexpression of the SBNO2, CBX3, RASAL3, and TMBIM4 genes in TLE-HSTI. We present the first systematic analysis of methylation profiles of TLE-HSTI and TLE-nHS from an epigenetic perspective using WGBS. Overall, our preliminary data highlight the underlying mechanism of TLE-HSTI, providing a new perspective for guiding treatment of TLE.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Haiyang Wang
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Binchao Liu
- Department of Neurosurgery of Xing Tai People's Hospital, Xing Tai, China
| | - Miaomiao Jiang
- Department of Pathology of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Yifei Gu
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Shi Yan
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Xian Han
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Alicia Y Hou
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, Florida, USA
| | - Chongyang Tang
- SanboBrain Hospital Capital Medical University, Beijing, China
| | - Zhenfeng Jiang
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Hong Shen
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China
| | - Meng Na
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China.
| | - Zhiguo Lin
- Department of Neurosurgery of the First Affiliate Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
144
|
Sun D, Liu Y, Cai W, Ma J, Ni K, Chen M, Wang C, Liu Y, Zhu Y, Liu Z, Zhu F. Detection of Disease-Causing SNVs/Indels and CNVs in Single Test Based on Whole Exome Sequencing: A Retrospective Case Study in Epileptic Encephalopathies. Front Pediatr 2021; 9:635703. [PMID: 34055682 PMCID: PMC8155357 DOI: 10.3389/fped.2021.635703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Epileptic encephalopathies (EEs) are a pediatric entity with highly phenotypic and genetic heterogeneity. Both single nucleotide variants (SNVs)/Indels and copy number variations (CNVs) could be the causes. Whole exome sequencing (WES) is widely applied to detect SNVs/Indels, but the bioinformatics approach for detecting CNVs is still limited and weak. In the current study, the possibility of profiling both disease-causing SNVs/Indels and CNVs in a single test based on WES in EEs was evaluated. Methods: The infants diagnosed with EEs were enrolled from a single pediatric epilepsy center between January 2018 and February 2020. Demographic and clinical data were collected. In WES data, the pathogenic SNVs were identified through an in-house pipeline, and pathogenic CNVs were identified by CNVkit. The diagnostic rate was evaluated, and the molecular findings were characterized. Results: A total of 73 infants were included; 36 (49.32%) of them were males. The median age was 7 months. Thirty-two (43.84%) infants had been diagnosed with epilepsy syndrome. The most common type of syndrome was West syndrome (22/73, 30.1%), followed by Dravet syndrome (20/77, 27.4%). Fifty-four (73.97%) had intellectual development delay. The genetic cause of EEs, pathogenic or likely pathogenic variants, were successfully discovered in 46.6% (34/73) of the infants, and 29 (39.7%) infants carried SNVs/Indels, while 5 (6.8%) carried CNVs. The majority of the disease-causing variants were inherited in de novo pattern (25, 71.4%). In addition to showing that the variants in the ion channel encoding genes accounted for the main etiology, we discovered and confirmed two new disease-causing genes, CACNA1E and WDR26. Five discovered CNVs were deletions of 2q24.3, 1p36, 15q11-q13, 16p11.2, and 17p13.3, and all were confirmed by array comparative genomic hybridization. Conclusion: The application of both SNVs/Indels and CNVs detection in a single test based on WES yielded a high diagnosis rate in EEs. WES may serve as a first-tier test with cost-effective benefit in EEs.
Collapse
Affiliation(s)
- Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Cai
- Department of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiehui Ma
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Ni
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Chen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Cheng Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongchu Liu
- Aegicare Technology Co., Ltd. Shenzhen, China
| | | | - Zhisheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
145
|
Niestroj LM, Perez-Palma E, Howrigan DP, Zhou Y, Cheng F, Saarentaus E, Nürnberg P, Stevelink R, Daly MJ, Palotie A, Lal D. Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17 458 subjects. Brain 2020; 143:2106-2118. [PMID: 32568404 DOI: 10.1093/brain/awaa171] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 11/14/2022] Open
Abstract
Cytogenic testing is routinely applied in most neurological centres for severe paediatric epilepsies. However, which characteristics of copy number variants (CNVs) confer most epilepsy risk and which epilepsy subtypes carry the most CNV burden, have not been explored on a genome-wide scale. Here, we present the largest CNV investigation in epilepsy to date with 10 712 European epilepsy cases and 6746 ancestry-matched controls. Patients with genetic generalized epilepsy, lesional focal epilepsy, non-acquired focal epilepsy, and developmental and epileptic encephalopathy were included. All samples were processed with the same technology and analysis pipeline. All investigated epilepsy types, including lesional focal epilepsy patients, showed an increase in CNV burden in at least one tested category compared to controls. However, we observed striking differences in CNV burden across epilepsy types and investigated CNV categories. Genetic generalized epilepsy patients have the highest CNV burden in all categories tested, followed by developmental and epileptic encephalopathy patients. Both epilepsy types also show association for deletions covering genes intolerant for truncating variants. Genome-wide CNV breakpoint association showed not only significant loci for genetic generalized and developmental and epileptic encephalopathy patients but also for lesional focal epilepsy patients. With a 34-fold risk for developing genetic generalized epilepsy, we show for the first time that the established epilepsy-associated 15q13.3 deletion represents the strongest risk CNV for genetic generalized epilepsy across the whole genome. Using the human interactome, we examined the largest connected component of the genes overlapped by CNVs in the four epilepsy types. We observed that genetic generalized epilepsy and non-acquired focal epilepsy formed disease modules. In summary, we show that in all common epilepsy types, 1.5-3% of patients carry epilepsy-associated CNVs. The characteristics of risk CNVs vary tremendously across and within epilepsy types. Thus, we advocate genome-wide genomic testing to identify all disease-associated types of CNVs.
Collapse
Affiliation(s)
- Lisa-Marie Niestroj
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, 50931, Germany
| | - Eduardo Perez-Palma
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Yadi Zhou
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Elmo Saarentaus
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, 50931, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, 50931, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, 50931, Germany
| | - Remi Stevelink
- Department of Child Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mark J Daly
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Aarno Palotie
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, FI-00014, Finland.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Dennis Lal
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, 50931, Germany.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | | |
Collapse
|
146
|
Jiang YL, Song C, Wang Y, Zhao J, Yang F, Gao Q, Leng X, Man Y, Jiang W. Clinical Utility of Exome Sequencing and Reinterpreting Genetic Test Results in Children and Adults With Epilepsy. Front Genet 2020; 11:591434. [PMID: 33391346 PMCID: PMC7775549 DOI: 10.3389/fgene.2020.591434] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/30/2020] [Indexed: 11/16/2022] Open
Abstract
The clinical utility of genetic testing for epilepsy has been enhanced with the advancement of next-generation sequencing (NGS) technology along with the rapid updating of publicly available databases. The aim of this study was to evaluate the diagnostic yield of NGS and assess the value of reinterpreting genetic test results in children and adults with epilepsy. We performed genetic testing on 200 patients, including 82 children and 118 adults. The results were classified into three categories: positive, inconclusive, or negative. The reinterpretation of inconclusive results was conducted in April 2020. Overall, we identified disease-causing variants in 12% of the patients in the original analysis, and 14.5% at reinterpretation. The diagnostic yield for adults with epilepsy was similar to that for children (11 vs. 19.5%, p = 0.145). After reinterpretation, 9 of the 86 patients who initially had inconclusive results obtained a clinically significant change in diagnosis. Among these nine revised cases, five obtained positive diagnoses, representing a diagnosis rate of 5.8% (5/86). Manual searches for additional evidence of pathogenicity for candidate variants and updated patient clinical information were the main reasons for diagnostic reclassification. This study emphasizes the diagnostic potential of combining NGS and reinterpretation of inconclusive genetic test reports in children and adults with epilepsy.
Collapse
Affiliation(s)
- Yong-Li Jiang
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Changgeng Song
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Wang
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jingjing Zhao
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Yang
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiong Gao
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiuxiu Leng
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yulin Man
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Jiang
- Department of Neurology, Comprehensive Epilepsy Center, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
147
|
Cognitive performance and behavior across idiopathic/genetic epilepsies in children and adolescents. Sci Rep 2020; 10:21543. [PMID: 33298990 PMCID: PMC7725836 DOI: 10.1038/s41598-020-78218-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
We investigated the cognitive and behavioral profile of three distinct groups of epilepsies with a genetic background for intergroup differences: (1) idiopathic/genetic generalized epilepsies (IGE/GGE group); (2) idiopathic focal epilepsies (IFE group); and (3) epilepsies with proven or strongly suggested monogenic or structural/numeric chromosomal etiology (genetic epilepsies, GE group). Cognitive (total IQ and subcategories) and behavioral parameters (CBCL) were assessed at the tertiary epilepsy center of the University of Munich (Germany). We used ANOVA with post-hoc Bonferroni-correction to explore significant mean differences and Fisher’s exact test for significant proportional differences of intelligence impairment and behavioral problems. 126 (56 IGE/GGE, 26 IFE, 44 GE) patients were available. Total IQ was 89.0 ± 15.9 (95% CI 84.5–93.4) for IGE/GGE, 94.8 ± 18.1 (95% CI 87.3–102.3) for IFE and 76.4 ± 22.4 (95% CI 67.6–85.3) for GE (p = 0.001). The same trend was significant for all but one IQ subcategory. The rate of patients with an intelligence impairment (total IQ < 70) was higher for GE (40%) than for IGE/GGE (14%) and for IFE (7%) patients (p = 0.033). There were no significant differences between groups for behavior scores and behavioral problems. This study shows that the current ILAE classification of epilepsies with genetic etiology creates a heterogeneous group of patients with respect to cognitive performance but not behavior. These findings may help in further delineating epilepsies as regards cognitive performance, notwithstanding their closely related etiological classification.
Collapse
|
148
|
Kim YJ, Lee J, Kim NY, Hong S, Cho YS, Yoon J. The burden of rare damaging variants in hereditary atypical parkinsonism genes is increased in patients with Parkinson's disease. Neurobiol Aging 2020; 100:118.e5-118.e13. [PMID: 33423827 DOI: 10.1016/j.neurobiolaging.2020.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 01/25/2023]
Abstract
Increased burdens of rare coding variants in genes related to lysosomal storage disease or mitochondrial pathways were reported to be associated with idiopathic Parkinson's disease. Under a hypothesis that the burden of damaging rare coding variants is increased in causative genes for hereditary parkinsonism, we analyzed the burdens of rare coding variants with a case-control design. Two cohorts of whole-exome sequencing data and a cohort of genome-wide genotyping data of clinically validated idiopathic Parkinson's disease cases and controls, which were open to the public, were used. The sequence kernel association test-optimal was used to analyze the burden of rare variants in the hereditary parkinsonism gene set, which was constructed from the Online Mendelian Inheritance in Man database through manual curation. The hereditary parkinsonism gene set consisted of 17 genes with a locus symbol prefix for familial Parkinson's disease and 75 hereditary atypical parkinsonism genes. We detected a significant association of enriched burdens of predicted damaging rare coding variants in hereditary parkinsonism genes in all three datasets. Meta-analyses of the rare variant burden test in a subgroup of gene sets revealed an association between burdens of rare damaging variants with PD in a hereditary atypical parkinsonism gene set, but not in a subgroup gene set with a locus symbol prefix for familial Parkinson's disease. Our results highlight the roles of rare damaging variants in causative genes for hereditary atypical parkinsonian disorders. We propose that Mendelian genes associated with hereditary disorders accompanying parkinsonism are involved in Parkinson's disease-related genetic networks.
Collapse
Affiliation(s)
- Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea; Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, South Korea.
| | - Jinwoo Lee
- Department of Computer Engineering, Hallym University, Chuncheon, South Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Medical Center, Anyang, South Korea
| | - SangKyoon Hong
- Hallym Institute of Translational Genomics & Bioinformatics, Hallym University Medical Center, Anyang, South Korea
| | - Yoon Shin Cho
- Department of Biomedical Science, Hallym University, Chuncheon, South Korea
| | - Jeehee Yoon
- Department of Computer Engineering, Hallym University, Chuncheon, South Korea.
| |
Collapse
|
149
|
Yu W, Hill SF, Xenakis JG, Pardo-Manuel de Villena F, Wagnon JL, Meisler MH. Gabra2 is a genetic modifier of Scn8a encephalopathy in the mouse. Epilepsia 2020; 61:2847-2856. [PMID: 33140451 PMCID: PMC7756374 DOI: 10.1111/epi.16741] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/23/2022]
Abstract
Objective SCN8A encephalopathy is a developmental epileptic encephalopathy typically caused by de novo gain‐of‐function mutations in Nav1.6. Severely affected individuals exhibit refractory seizures, developmental delay, cognitive disabilities, movement disorders, and elevated risk of sudden death. Patients with the identical SCN8A variant can differ in clinical course, suggesting a role for modifier genes in determining disease severity. The identification of genetic modifiers contributes to understanding disease pathogenesis and suggesting therapeutic interventions. Methods We generated F1 and F2 crosses between inbred mouse strains and mice carrying the human pathogenic variants SCN8A‐R1872W and SCN8A‐N1768D. Quantitative trait locus (QTL) analysis of seizure‐related phenotypes was used for chromosomal mapping of modifier loci. Results In an F2 cross between strain SJL/J and C57BL/6J mice carrying the patient mutation R1872W, we identified a major QTL on chromosome 5 containing the Gabra2 gene. Strain C57BL/6J carries a splice site mutation that reduces expression of Gabra2, encoding the α2 subunit of the aminobutyric acid type A receptor. The protective wild‐type allele of Gabra2 from strain SJL/J delays the age at seizure onset and extends life span of the Scn8a mutant mice. Additional Scn8a modifiers were observed in the F2 cross and in an F1 cross with strain C3HeB/FeJ. Significance These studies demonstrate that the SJL/J strain carries multiple modifiers with protective effects against seizures induced by gain‐of‐function mutations in Scn8a. Homozygosity for the hypomorphic variant of Gabra2 in strain C57BL/6J is associated with early seizure onset and short life span. GABRA2 is a potential therapeutic target for SCN8A encephalopathy.
Collapse
Affiliation(s)
- Wenxi Yu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Sophie F Hill
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - James G Xenakis
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Jacy L Wagnon
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
150
|
Gamirova RG, Gamirova RR, Esin RG. [Genetics of epilepsy: successes, problems and development prospects]. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:144-150. [PMID: 33081460 DOI: 10.17116/jnevro2020120091144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors present a detailed review of current advances in the field of genetics of epilepsy. Separately, new views on the etiology and pathogenesis of genetic epileptic encephalopathies, focal epilepsy and idiopathic generalized epilepsies are examined. The authors emphasize the importance of genetic discoveries for the clinical practice, including the prospects in the development of patients' personalized treatment. A comparative analysis of the value of various methods of genetic research in the diagnosis of epilepsy, methods of integrating molecular genetic analyses into everyday practical medicine is presented.
Collapse
Affiliation(s)
- R G Gamirova
- Kazan State Medical Academy - branch of Russian Medical Academy of Continuing Professional Education, Kazan, Russia.,Kazan (Volga Region) Federal University, Kazan, Russia
| | - R R Gamirova
- Kazan (Volga Region) Federal University, Kazan, Russia
| | - R G Esin
- Kazan State Medical Academy - branch of Russian Medical Academy of Continuing Professional Education, Kazan, Russia.,Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|