101
|
Guo Y, Zhao L, Ma Q, Ji C. Novel strategies for degradation of aflatoxins in food and feed: A review. Food Res Int 2020; 140:109878. [PMID: 33648196 DOI: 10.1016/j.foodres.2020.109878] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Aflatoxins are toxic secondary metabolites mainly produced by Aspergillus fungi, posing high carcinogenic potency in humans and animals. Dietary exposure to aflatoxins is a global problem in both developed and developing countries especially where there is poor regulation of their levels in food and feed. Thus, academics have been striving over the decades to develop effective strategies for degrading aflatoxins in food and feed. These strategies are technologically diverse and based on physical, chemical, or biological principles. This review summarizes the recent progress on novel aflatoxin degradation strategies including irradiation, cold plasma, ozone, electrolyzed oxidizing water, organic acids, natural plant extracts, microorganisms and enzymes. A clear understanding of the detoxification efficiency, mechanism of action, degradation products, application potential and current limitations of these methods is presented. In addition, the development and future perspective of nanozymes in aflatoxins degradation are introduced.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
102
|
Anjum T, Iram W, Iqbal M, Ghaffar A, Abbas M. Identification of degradation products of aflatoxin B1 and B2 resulting after their biodetoxification by aqueous extracts of Acacia nilotica. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2018.2411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Contamination of food and feed items with mycotoxins causes extensive economic damage. It is therefore important to explore environmentally friendly approaches to manage these toxins with less drawbacks. Phytochemicals can provide a safe alternative to synthetic chemicals. This study was designed to investigate the detoxification potential of water-based extracts of Acacia nilotica against aflatoxins B1 and B2. First trials were carried out to standardise temperature, pH and incubation time for biodetoxification in spiked maize. A significant percentage of detoxification was observed under all tested conditions, showing an increasing detoxifying potential with an increase in all three parameters. Leaf extract was found to be more effective than shoot extract. Leaf extract resulted in 86-90% detoxification of both aflatoxin B1 and B2 when incubated for 72 h at 60 °C and pH 10. To avoid the detrimental effects of very high temperature and pH, experiments on spiked maize were conducted at 30 °C and pH 8. A significant detoxification of 82-83% was recorded during trials with spiked maize. MS/MS analyses showed conversion of aflatoxins B1 into seven and aflatoxins B2 into two new compounds. Most of the compounds were formed due to the removal of the double bond in the terminal furan ring and modification of the lactone group, indicating less toxicity as compared to the parent compounds. Decontamination and reduction in toxicity of treated aflatoxins was corroborated by a brine shrimps bioassay.
Collapse
Affiliation(s)
- T. Anjum
- Institute of Agricultural Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - W. Iram
- Institute of Agricultural Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore 54590, Pakistan
| | - M. Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | - A. Ghaffar
- Department of Chemistry, University of Engineering and Technology, Lahore 54000, Pakistan
| | - M. Abbas
- Department of Toxicology, Quality Operating Laboratory, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| |
Collapse
|
103
|
Szabó B, Bálint B, Mézes M, Balogh K. Agricultural trichothecene mycotoxin contamination affects the life-history and reduced glutathione content of Folsomia candida Willem (Collembola). ACTA ZOOL ACAD SCI H 2020. [DOI: 10.17109/azh.66.4.379.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is limited data available concerning the effect of T-2/HT-2 toxin or deoxynivalenol (DON) on invertebrates such as springtails, and no data on their life history and oxidative stress. Control maize and DON or T-2 toxin contaminated maize were fed to Folsomia candida with a toxin content of 16324 mg DON kg–1 or 671 mg T-2 kg–1 maize. Ten to twelve days old animals were investigated in a life-history test and a stress protein test.T-2 toxin did not affect Folsomia candida in any measured parameters. The DON exposed group showed decreased growth and reproduction, and a higher survival rate. DON treatment resulted in lower protein content, while reduced glutathione content was higher than in control. It suggests that DON activated the glutathione-related detoxification pathway, which possibly causes a higher survival rate. The results also suggest that the oral toxicity of DON or T-2 is lower than through physical contact.For that reason, DON and T-2 toxin contaminated maize is not suggested to be used as green manure in the native state. Alternative solutions could be using mycotoxin contaminated maize for biogas production, or after decontamination by bacterial strains, it can be used as organic fertilizer.
Collapse
|
104
|
He Y, Wu L, Liu X, Jiang P, Yu L, Qiu J, Wang G, Zhang X, Ma H. TaUGT6, a Novel UDP-Glycosyltransferase Gene Enhances the Resistance to FHB and DON Accumulation in Wheat. FRONTIERS IN PLANT SCIENCE 2020; 11:574775. [PMID: 33178244 PMCID: PMC7596251 DOI: 10.3389/fpls.2020.574775] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/18/2020] [Indexed: 05/04/2023]
Abstract
Fusarium head blight (FHB), a devastating wheat disease, results in loss of yield and production of mycotoxins including deoxynivalenol (DON) in infected grains. DON is harmful to human and animal health and facilitates the spread of FHB symptoms. Its conversion into DON-3-glucoside (D3G) by UDP-glycosyltransferases (UGTs) is correlated with FHB resistance, and only few gene members in wheat have been investigated. Here, Fusarium graminearum and DON-induced TaUGT6 expression in the resistant cultivar Sumai 3 was cloned and characterized. TaUGT6::GFP was subcellularly located throughout cells. Purified TaUGT6 protein could convert DON into D3G to some extent in vitro. Transformation of TaUGT6 into Arabidopsis increased root tolerance when grown on agar plates containing DON. Furthermore, TaUGT6 overexpression in wheat showed improved resistance to Fusarium spread after F. graminearum inoculation. Overall, this study provides useful insight into a novel UGT gene for FHB resistance in wheat.
Collapse
Affiliation(s)
- Yi He
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lei Wu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiang Liu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Tibet Agriculture and Animal Husbandry University, Linzhi, China
| | - Peng Jiang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lixuan Yu
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianbo Qiu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Wang
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu Zhang
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Hongxiang Ma
- CIMMYT-JAAS Joint Center for Wheat Diseases, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
105
|
Qasim M, Islam SU, Islam W, Noman A, Khan KA, Hafeez M, Hussain D, Dash CK, Bamisile BS, Akutse KS, Rizwan M, Nisar MS, Jan S, Wang L. Characterization of mycotoxins from entomopathogenic fungi (Cordyceps fumosorosea) and their toxic effects to the development of asian citrus psyllid reared on healthy and diseased citrus plants. Toxicon 2020; 188:39-47. [PMID: 33058930 DOI: 10.1016/j.toxicon.2020.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/29/2020] [Accepted: 10/11/2020] [Indexed: 12/16/2022]
Abstract
Entomopathogenic fungi (EPF) produce multiple mycotoxins, which play an essential role in improving fungal pathogenesis and virulence. To characterize various mycotoxins from the crude methanol extract of Cordyceps fumosorosea, a major EPF against various insect pests, we performed ultra-performance liquid chromatography coupled to quadrupole time of flight mass spectrometer (UPLC-QTOF MS) technique, and all compounds were identified through molecular mass and formulae. Bassianolide was assessed against the nymphs and adults of Diaphorina citri reared on healthy and Huánglóngbìng (HLB)-diseased Citrus spp. Plants under laboratory conditions. Overall, 17 compounds were identified from the fungal extract and categorized into three groups, i.e. (1) alkaloids (Isariotins A-C), (2) peptides (Bassianolide, Beauverolides, Beauvericin A, Isaridins and Destruxin E) and (3) polyketide (Tenuipyrone). The detected beauverolides (B, C, F, I, Ja) from C. fumosorosea were novel mycotoxins, and their detection intensity was the highest in the fungal extract. Furthermore, bassianolide caused more than 70% and 80% mortality of D. citri nymphs and adults after two days of application, respectively. After three days of chemical application, all nymphal and adult populations of D. citri were killed by bassianolide. However, the mortality rates of both populations, nymphs and adults, were higher on HLB-diseased plants as compared to healthy plants.
Collapse
Affiliation(s)
- Muhammad Qasim
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China; Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Science, Zhejiang University, Hangzhou, 310058, PR China.
| | - Saif Ul Islam
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Waqar Islam
- College of Geography, Fujian Normal University, Fuzhou, 350002, PR China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, 38040, Pakistan
| | - Khalid Ali Khan
- Research Center for Advanced Materials Science (RCAMS), Unit of Bee Research and Honey Production, Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Hafeez
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China
| | - Dilbar Hussain
- Entomological Research Institute, Ayub Agricultural Research Institute, Faisalabad, 38850, Pakistan
| | - Chandra Kanta Dash
- Faculty of Agriculture, Sylhet Agricultural University, Sylhet, 3300, Bangladesh
| | - Bamisope Steve Bamisile
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China
| | - Komivi Senyo Akutse
- Department of Plant Health, International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Muhammad Rizwan
- Department of Entomology, University of Agriculture, Faisalabad, 38040, Pakistan
| | | | - Saad Jan
- Department of Agriculture, Bacha Khan University Charsadda, 24420, Pakistan
| | - Liande Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, PR China.
| |
Collapse
|
106
|
Tran VN, Viktorová J, Ruml T. Mycotoxins: Biotransformation and Bioavailability Assessment Using Caco-2 Cell Monolayer. Toxins (Basel) 2020; 12:E628. [PMID: 33008111 PMCID: PMC7601793 DOI: 10.3390/toxins12100628] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/24/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
The determination of mycotoxins content in food is not sufficient for the prediction of their potential in vivo cytotoxicity because it does not reflect their bioavailability and mutual interactions within complex matrices, which may significantly alter the toxic effects. Moreover, many mycotoxins undergo biotransformation and metabolization during the intestinal absorption process. Biotransformation is predominantly the conversion of mycotoxins meditated by cytochrome P450 and other enzymes. This should transform the toxins to nontoxic metabolites but it may possibly result in unexpectedly high toxicity. Therefore, the verification of biotransformation and bioavailability provides valuable information to correctly interpret occurrence data and biomonitoring results. Among all of the methods available, the in vitro models using monolayer formed by epithelial cells from the human colon (Caco-2 cell) have been extensively used for evaluating the permeability, bioavailability, intestinal transport, and metabolism of toxic and biologically active compounds. Here, the strengths and limitations of both in vivo and in vitro techniques used to determine bioavailability are reviewed, along with current detailed data about biotransformation of mycotoxins. Furthermore, the molecular mechanism of mycotoxin effects is also discussed regarding the disorder of intestinal barrier integrity induced by mycotoxins.
Collapse
Affiliation(s)
| | | | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Technicka 3, 166 28 Prague 6, Czech Republic; (V.N.T.); (J.V.)
| |
Collapse
|
107
|
Hashempour-Baltork F, Hosseini SM, Assarehzadegan MA, Khosravi-Darani K, Hosseini H. Safety assays and nutritional values of mycoprotein produced by Fusarium venenatum IR372C from date waste as substrate. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4433-4441. [PMID: 32406520 DOI: 10.1002/jsfa.10483] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/16/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Nutritional and environmental benefits of mycoprotein verify its beneficial role on the health of humankind in the next decades. Agro-industrial wastes can be used as cheap substrates to decrease the total cost of product. However, fungi may produce toxins or lead to allergic reactions in consumers. Therefore, the study of the safety and nutritional aspects of this product are very important. RESULTS Fusarium venenatum IR372C was cultured on date wastes and ammonium salts in submerge fermentation. The safety and nutritional issues of produced mycoprotein were investigated including allergy tests and analyses of toxins, as well as existence of toxin genes, and content of heavy metals, metals, amino acids and fatty acids. The results showed that fumonisin genes in F. venenatum IR372C remain without any gene expression during 1 week fermentation. Zearalenone and deoxynivalenol cannot be detected in the fermentation medium after 3 weeks. Prick tests on 30 volunteers demonstrated no sensitivities to mycoprotein. The content of lead was 658 μg kg-1 as the highest heavy metal followed by arsenic, cadmium and mercury at 161, 30.57 and 0 μg kg-1 , respectively. Produced mycoprotein includes essential amino acids at appropriate contents and the ratio of unsaturated to saturated fatty acid was nearly 2:1. Also, calcium, iron, magnesium and zinc were found in mycoprotein, which could have health beneficial impacts on consumers. CONCLUSION This study has provided information on safety aspects of mycoprotein production by F. venentaum IR372C from date wastes. However, further studies with focus on long-term clinical benefits of diets containing mycoprotein are necessary. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Science, Tehran, Iran
| | - Kianoush Khosravi-Darani
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
108
|
Otto M, Pretorius B, Kritzinger Q, Schönfeldt H. Contamination of freshly harvested Bambara groundnut (
Vigna subterranea
) seed from Mpumalanga, South Africa, with mycotoxigenic fungi. J Food Saf 2020. [DOI: 10.1111/jfs.12846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Margot Otto
- Department of Animal and Wildlife Science, Institute of Food Nutrition and Well‐Being University of Pretoria Pretoria South Africa
| | - Beulah Pretorius
- Department of Animal and Wildlife Science, Institute of Food Nutrition and Well‐Being University of Pretoria Pretoria South Africa
| | - Quenton Kritzinger
- Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa
| | - Hettie Schönfeldt
- Department of Animal and Wildlife Science, Institute of Food Nutrition and Well‐Being University of Pretoria Pretoria South Africa
| |
Collapse
|
109
|
Leong F, Hua X, Wang M, Chen T, Song Y, Tu P, Chen XJ. Quality standard of traditional Chinese medicines: comparison between European Pharmacopoeia and Chinese Pharmacopoeia and recent advances. Chin Med 2020; 15:76. [PMID: 32742301 PMCID: PMC7388521 DOI: 10.1186/s13020-020-00357-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Traditional Chinese medicine (TCM) are becoming more and more popular all over the world. However, quality issues of TCM may lead to medical incidents in practice and therefore quality control is essential to TCM. In this review, the state of TCM in European Pharmacopoeia are compared with that in Chinese Pharmacopoeia, and herbal drugs that are not considered as TCM and not elaborated by TCM working party at European Directorate for the Quality of Medicines & Health Care (EDQM) but present in both European Pharmacopoeia and Chinese Pharmacopoeias are also discussed. Different aspects in quality control of TCM including origins, identification, tests and assays, as well as sample preparation, marker selection and TCM processing are covered to address the importance of establishing comprehensive quality standard of TCM. Furthermore, advanced analytical techniques for quality control and standard establishment of TCM are also reviewed.
Collapse
Affiliation(s)
- Fong Leong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao People's Republic of China
| | - Xue Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao People's Republic of China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Sylviusweg72, 2333BE Leiden, The Netherlands
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405 China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029 China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191 China
| | - Xiao-Jia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao People's Republic of China
| |
Collapse
|
110
|
Xiong K, Zhi HW, Liu JY, Wang XY, Zhao ZY, Pei PG, Deng L, Xiong SY. Detoxification of Ochratoxin A by a novel Aspergillus oryzae strain and optimization of its biodegradation. Rev Argent Microbiol 2020; 53:48-58. [PMID: 32693928 DOI: 10.1016/j.ram.2020.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 11/25/2022] Open
Abstract
The mycotoxin Ochratoxin A (OTA) causes serious health risks and is found in food products throughout the world. The most promising method to detoxify this compound is biodegradation. In this study, Aspergillus oryzae strain M30011 was isolated and characterized based on its considerable capacity to degrade OTA. The degradation product (compound I) of A. oryzae-treated OTA was isolated, and its toxicity response was also evaluated. Furthermore, the relationships between three key cultivation condition factors affecting the OTA degradation rate were examined using the response surface methodology (RSM). Compound I was identified as ochratoxin α (C11H9O5Cl), and the toxicity response experiments indicated that A. oryzae detoxified OTA to a great extent. A maximum degradation rate of 94% was observed after 72h. This study demonstrates the potential for using A. oryzae to detoxify OTA and suggests that it could be applied in the food industry to improve food safety and quality.
Collapse
Affiliation(s)
- Ke Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hui-Wei Zhi
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jia-Yun Liu
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xiao-Yi Wang
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Zhi-Yao Zhao
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Peng-Gang Pei
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Lei Deng
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Su-Yue Xiong
- Beijing Innovation Centre of Food Nutrition and Human, Beijing Technology & Business University (BTBU), Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
111
|
Rodríguez-Aguilar M, Solís-Mercado J, Flores-Ramírez R, Díaz-Barriga F, Zuki-Orozco A, Cilia-López V. Aflatoxins and the traditional process of nixtamalisation in indigenous communities from the Huasteca Potosina region. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aflatoxins represent one of the biggest public health problems in food safety, due to their toxic potential for humans and animals. They can lead to serious threats, such as hepatotoxicity, teratogenicity and immunotoxicity. Maize is the most important cereal consumed in Mexico, with which tortillas, tamales, flours, toasts and other products are elaborated. The elaboration of tortillas begins with nixtamalisation, which is an ancient maize process, developed and applied by indigenous Mesoamerican population. Some studies have shown the effect of nixtamalisation in the inactivation of aflatoxins. The purpose of this research was to record the traditional nixtamalisation process (TNP) and to register the presence of the aflatoxin B1 (AFB1) in tortillas and the exposure to AFB1 in indigenous communities living in the Huasteca Potosina, in central México. To register the nixtamalisation technique, a questionnaire was given to women, to illustrate the process step by step. Digestion, extraction, purification, and identification of the adduct AFB1-lysine (AFB1-Lys) in serum were performed. The TNP was analysed by 51 surveys, 4% of the tortillas was above the maximum permissible levels, according to Mexican guidelines; however, all blood samples showed presence of AFB1. TNP done in indigenous communities in the Huasteca Potosina region is not efficient enough to eliminate aflatoxins present in contaminated maize. It is necessary to improve conditions of places in which the grain is stored and knowledge about the risk of exposure to aflatoxins in rural communities, as key steps for preventing exposure to this type of mycotoxins.
Collapse
Affiliation(s)
- M. Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - J. Solís-Mercado
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - R. Flores-Ramírez
- CONACYT, Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Avenida Sierra Leona No. 550, CP 78210, Colonia Lomas Segunda Sección, San Luis Potosí, México
| | - F. Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - A. Zuki-Orozco
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| | - V.G. Cilia-López
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí. Av. Venustiano Carranza 2405, CP 78210, San Luis Potosí, México
| |
Collapse
|
112
|
Pongpraket M, Poapolathep A, Wongpanit K, Tanhan P, Giorgi M, Zhang Z, Li P, Poapolathep S. Exposure Assessment of Multiple Mycotoxins in Black and White Sesame Seeds Consumed in Thailand. J Food Prot 2020; 83:1198-1207. [PMID: 32577757 DOI: 10.4315/jfp-19-597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/07/2020] [Indexed: 12/13/2022]
Abstract
ABSTRACT This study was conducted to determine the occurrence of 16 well-recognized and emerging mycotoxins in black and white sesame seed samples sold in Thailand and to evaluate possible health risks to consumers. Samples were extracted and cleaned with a modified QuEChERS procedure. Multiple mycotoxins in sesame seed samples were analyzed with a validated liquid chromatography-tandem mass spectrometry method. The risk of mycotoxin exposure via dietary intake of sesame seeds was evaluated based on the hazard quotient, margin of exposure (MOE), and quantitative liver cancer risk established by European Food Safety Authority, the Food and Agriculture Organization of the United Nations, and the World Health Organization. Of the 200 samples, 21.5% were contaminated with mycotoxins, 19.5% were contaminated with a single mycotoxin, and 2% were contaminated with multiple mycotoxins. Although 9% of total samples were contaminated with aflatoxins (AFs), only one black sesame seed sample and one white sesame seed sample were above the regulatory limits for the European Union (2 μg/kg). The MOE values derived from consumption of black and white sesame seeds were generally <10,000, especially in the group consuming the most. The number of liver cancer cases over a lifetime associated with AFB1 exposure based on the upper bound values for the group consuming high level of black and white sesame seeds (97.5 percentile) was estimated at more than 1 case per one million persons. Therefore, a potential risk to consumer health exists through the consumption of black and white sesame seeds and subsequent exposure to AFB1. However, further evaluation with larger sample sizes is necessary for more accurate calculations. Continuous monitoring of mycotoxin contamination in sesame seeds with risk assessments is recommended. HIGHLIGHTS
Collapse
Affiliation(s)
- Maythawe Pongpraket
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Amnart Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Kannika Wongpanit
- Faculty of Natural Resources and Agro-industry, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Sakon Nakhon, Thailand
| | - Phanwimol Tanhan
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Italy
| | - Zhaowei Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, People's Republic of China
| | - Peiwu Li
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, People's Republic of China
| | - Saranya Poapolathep
- Department of Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
113
|
Abdi M, Asadi A, Maleki F, Kouhsari E, Fattahi A, Ohadi E, Lotfali E, Ahmadi A, Ghafouri Z. Microbiological Detoxification of Mycotoxins: Focus on Mechanisms and Advances. Infect Disord Drug Targets 2020; 21:339-357. [PMID: 32543365 DOI: 10.2174/1871526520666200616145150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Some fungal species of the genera Aspergillus, Penicillium, and Fusarium secretes toxic metabolites known as mycotoxins, have become a global concern that is toxic to different species of animals and humans. Biological mycotoxins detoxification has been studied by researchers around the world as a new strategy for mycotoxin removal. Bacteria, fungi, yeast, molds, and protozoa are the main living organisms appropriate for the mycotoxin detoxification. Enzymatic and degradation sorptions are the main mechanisms involved in microbiological detoxification of mycotoxins. Regardless of the method used, proper management tools that consist of before-harvest prevention and after-harvest detoxification are required. Here, in this review, we focus on the microbiological detoxification and mechanisms involved in the decontamination of mycotoxins.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
114
|
In Vitro Assessment of Biocontrol Effects on Fusarium Head Blight and Deoxynivalenol (DON) Accumulation by DON-Degrading Bacteria. Toxins (Basel) 2020; 12:toxins12060399. [PMID: 32560237 PMCID: PMC7354482 DOI: 10.3390/toxins12060399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
Fusarium head blight (FHB) of cereals is a severe disease caused by the Fusarium graminearum species complex. It leads to the accumulation of the mycotoxin deoxynivalenol (DON) in grains and other plant tissues and causes substantial economic losses throughout the world. DON is one of the most troublesome mycotoxins because it is a virulence factor to host plants, including wheat, and exhibits toxicity to plants and animals. To control both FHB and DON accumulation, a biological control approach using DON-degrading bacteria (DDBs) is promising. Here, we performed a disease control assay using an in vitro petri dish test composed of germinated wheat seeds inoculated with F. graminearum (Fg) and DDBs. Determination of both grown leaf lengths and hyphal lesion lengths as a measure of disease severity showed that the inoculation of seeds with the DDBs Devosia sp. strain NKJ1 and Nocardioides spp. strains SS3 or SS4 were protective against the leaf growth inhibition caused by Fg. Furthermore, it was as effective against DON accumulation. The inoculation with strains SS3 or SS4 also reduced the inhibitory effect on leaves treated with 10 µg mL-1 DON solution (without Fg). These results indicate that the DDBs partially suppress the disease by degrading DON.
Collapse
|
115
|
Muhialdin BJ, Saari N, Meor Hussin AS. Review on the Biological Detoxification of Mycotoxins Using Lactic Acid Bacteria to Enhance the Sustainability of Foods Supply. Molecules 2020; 25:E2655. [PMID: 32517380 PMCID: PMC7321335 DOI: 10.3390/molecules25112655] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/19/2022] Open
Abstract
The challenges to fulfill the demand for a safe food supply are dramatically increasing. Mycotoxins produced by certain fungi cause great economic loss and negative impact on the sustainability of food supplies. Moreover, the occurrence of mycotoxins at high levels in foods poses a high health threat for the consumers. Biological detoxification has exhibited a high potential to detoxify foodstuffs on a cost-effective and large scale. Lactic acid bacteria showed a good potential as an alternative strategy for the elimination of mycotoxins. The current review describes the health and economic impacts associated with mycotoxin contamination in foodstuffs. Moreover, this review highlights the biological detoxification of common food mycotoxins by lactic acid bacteria.
Collapse
Affiliation(s)
- Belal J. Muhialdin
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
| | - Anis Shobirin Meor Hussin
- Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia;
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
116
|
Solis-Cruz B, Hernandez-Patlan D, Petrone VM, Pontin KP, Latorre JD, Beyssac E, Hernandez-Velasco X, Merino-Guzman R, Arreguin MA, Hargis BM, Lopez-Arellano R, Tellez-Isaias G. Evaluation of a Bacillus -Based Direct-Fed Microbial on Aflatoxin B1 Toxic Effects, Performance, Immunologic Status, and Serum Biochemical Parameters in Broiler Chickens. Avian Dis 2020; 63:659-669. [PMID: 31865681 DOI: 10.1637/aviandiseases-d-19-00100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/17/2019] [Indexed: 11/05/2022]
Abstract
The aim of the present study was to evaluate the effect of a commercial Bacillus direct-fed microbial (DFM) on aflatoxin B1 toxic effects, performance, and biochemical and immunologic parameters in broiler chickens. Ninety 1-day-old Cobb 500 male broiler chicks were raised in floor pens for a period of 21 days. Chicks were neck-tagged, individually weighed, and randomly allocated to one of three groups: Negative control (basal feed), aflatoxin B1 (basal feed + 2 ppm AFB1), and DFM (basal feed + 2 ppm AFB1 + Bacillus direct-fed microbial). Each group had three replicates of 10 chickens (n = 30/group). Body weight and body weight gain were calculated weekly, while feed intake and feed conversion ratio were determined when broilers were 21 days old. On day 21, all chickens were bled, gastrointestinal samples were collected, and spleen and bursa of Fabricius were weighed. This study confirmed that 2 ppm of AFB1 causes severe detrimental effects on performance, biochemical parameters, and immunologic parameters, generating hepatic lesions in broiler chickens (P < 0.05). However, it was also observed that DFM supplementation provided beneficial effects that might help to improve gut barrier function, anti-inflammatory and antioxidant activities, as well as humoral and cellular immunomodulation. The results of the present study suggest that this Bacillus-DFM added at a concentration of 106 spores/gram of feed can be used to counteract the negative effects that occur when birds consume diets contaminated with AFB1, showing beneficial effects on performance parameters, relative organ weights, hepatic lesions, immune response, and serum biochemical variables. The addition of this Bacillus-DFM might mitigate and decrease aflatoxicosis problems in the poultry industry, improving food security, alleviating public health problems, and providing economic benefits. Future studies are needed to fully elucidate the specific mechanisms by which this Bacillus-DFM counteracts the toxic effects of aflatoxin B1.
Collapse
Affiliation(s)
- Bruno Solis-Cruz
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | - Daniel Hernandez-Patlan
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | - Victor M Petrone
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | - Karine P Pontin
- Departamento de Medicina Veterinária Preventiva, Centro de Diagnóstico e Pesquisa em Patologia Aviária, Universidade Federal do Rio Grande do Sul Porto Ale re RS 97105-900 Brazil
| | - Juan D Latorre
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704
| | - Eric Beyssac
- Laboratoire de Biopharmacie et Technologie Pharmaceutique, UFR de Pharmacie, Faculté de Pharmacie, Université Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ruben Merino-Guzman
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | | | - Billy M Hargis
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72704
| | - Raquel Lopez-Arellano
- Laboratorio 5: LEDEFAR, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlan Izcalli 54714, State of Mexico, Mexico
| | | |
Collapse
|
117
|
Abstract
A relevant trend in winemaking is to reduce the use of chemical compounds in both the vineyard and winery. In organic productions, synthetic chemical fertilizers, pesticides, and genetically modified organisms must be avoided, aiming to achieve the production of a “safer wine”. Safety represents a big threat all over the world, being one of the most important goals to be achieved in both Western society and developing countries. An occurrence in wine safety results in the recovery of a broad variety of harmful compounds for human health such as amines, carbamate, and mycotoxins. The perceived increase in sensory complexity and superiority of successful uninoculated wine fermentations, as well as a thrust from consumers looking for a more “natural” or “organic” wine, produced with fewer additives, and perceived health attributes has led to more investigations into the use of non-Saccharomyces yeasts in winemaking, namely in organic wines. However, the use of copper and sulfur-based molecules as an alternative to chemical pesticides, in organic vineyards, seems to affect the composition of grape microbiota; high copper residues can be present in grape must and wine. This review aims to provide an overview of organic wine safety, when using indigenous and/or non-Saccharomyces yeasts to perform fermentation, with a special focus on some metabolites of microbial origin, namely, ochratoxin A (OTA) and other mycotoxins, biogenic amines (BAs), and ethyl carbamate (EC). These health hazards present an increased awareness of the effects on health and well-being by wine consumers, who also enjoy wines where terroir is perceived and is a characteristic of a given geographical area. In this regard, vineyard yeast biota, namely non-Saccharomyces wine-yeasts, can strongly contribute to the uniqueness of the wines derived from each specific region.
Collapse
|
118
|
Nazhand A, Durazzo A, Lucarini M, Souto EB, Santini A. Characteristics, Occurrence, Detection and Detoxification of Aflatoxins in Foods and Feeds. Foods 2020; 9:E644. [PMID: 32443392 PMCID: PMC7278662 DOI: 10.3390/foods9050644] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin contamination continues to be a food safety concern globally, with the most toxic being aflatoxins. On-farm aflatoxins, during food transit or storage, directly or indirectly result in the contamination of foods, which affects the liver, immune system and reproduction after infiltration into human beings and animals. There are numerous reports on aflatoxins focusing on achieving appropriate methods for quantification, precise detection and control in order to ensure consumer safety. In 2012, the International Agency for Research on Cancer (IARC) classified aflatoxins B1, B2, G1, G2, M1 and M2 as group 1 carcinogenic substances, which are a global human health concern. Consequently, this review article addresses aflatoxin chemical properties and biosynthetic processes; aflatoxin contamination in foods and feeds; health effects in human beings and animals due to aflatoxin exposure, as well as aflatoxin detection and detoxification methods.
Collapse
Affiliation(s)
- Amirhossein Nazhand
- Department of Biotechnology, Sari Agricultural Science and Natural Resource University, 9th km of Farah Abad Road, Mazandaran 48181-68984, Iran;
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Roma, Italy; (A.D.); (M.L.)
| | - Eliana B. Souto
- Faculty of Pharmacy of University of Coimbra, Azinhaga de Santa Comba, Polo III-Saúde, 3000-548 Coimbra, Portugal;
- CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
119
|
Jaderson M, Park JH. Effect of storage temperature and duration on concentrations of 27 fungal secondary metabolites spiked into floor dust from an office building. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2020; 17:220-230. [PMID: 32275482 PMCID: PMC7255075 DOI: 10.1080/15459624.2020.1734205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fungi are ubiquitous in environments and produce secondary metabolites that are usually low-molecular-weight organic compounds during growth processes. Dust samples containing these fungal secondary metabolites collected from study sites are often stored in certain temperature conditions for an extended period until laboratory analysis resources are available. However, there is little information on how stable fungal secondary metabolites are over time at different storage temperatures. We examined the stability of 27 fungal secondary metabolites spiked into floor dust samples collected from a moisture-damaged office building. Ninety-five dust aliquots were made from the spiked dust; five replicates were randomly assigned to a baseline (time = 0) and each of the 18 combinations of three temperatures (room temperature, 4 °C, or -80 °C) and six time points (2, 12, 25, 56, 79, and 105 weeks). At the baseline and each subsequent time point, we extracted and analyzed the fungal secondary metabolites from the spiked dust using ultra-performance liquid chromatograph-tandem mass spectrometer. To estimate change in concentration over storage time at each temperature condition, we applied multiple linear regression models with interaction effect between storage temperature and duration. For 10 of the 27 fungal secondary metabolites, the effect of time was significantly (p-values <0.05) or marginally (p-values <0.1) modified by temperature, but not for the remaining 17 metabolites. Generally, for most fungal secondary metabolites, storage at room temperature was significantly (p-values <0.05) associated with a larger decline in concentration (up to 83% for 3-nitropropionic acid at about 11 months) than storing at 4 °C (up to 55% for emodin) or -80 °C (55% for asperglaucide). We did not observe significant differences between storage at 4 °C, or -80 °C. Storage temperature influenced degradation of fungal secondary metabolites more than storage time. Our study indicates that fungal secondary metabolites, including mycotoxins in floor dust, quickly degrade at room temperature. However, storing dust samples at 4 °C might be adequate given that storing them at -80 °C did not further reduce degradation of fungal secondary metabolites.
Collapse
Affiliation(s)
| | - Ju-Hyeong Park
- Corresponding author: Ju-Hyeong Park, ; mailing address: Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV 26505
| |
Collapse
|
120
|
Abstract
Mycotoxins are secondary metabolites of microscopic fungi, which commonly contaminate cereal grains. Contamination of small-grain cereals and maize with toxic metabolites of fungi, both pathogenic and saprotrophic, is one of the particularly important problems in global agriculture. Fusarium species are among the dangerous cereal pathogens with a high toxicity potential. Secondary metabolites of these fungi, such as deoxynivalenol, zearalenone and fumonisin B1 are among five most important mycotoxins on a European and world scale. The use of various methods to limit the development of Fusarium cereal head diseases and grain contamination with mycotoxins, before and after harvest, is an important element of sustainable agriculture and production of safe food. The applied strategies utilize chemical and non-chemical methods, including agronomic, physical and biological treatments. Biological methods now occupy a special place in plant protection as an element of biocontrol of fungal pathogens by inhibiting their development and reducing mycotoxins in grain. According to the literature, Good Agricultural Practices are the best line of defense for controlling Fusarium toxin contamination of cereal and maize grains. However, fluctuations in weather conditions can significantly reduce the effectiveness of plants protection methods against infection with Fusarium spp. and grain accumulation of mycotoxins.
Collapse
|
121
|
Afshar P, Shokrzadeh M, Raeisi SN, Ghorbani-HasanSaraei A, Nasiraii LR. Aflatoxins biodetoxification strategies based on probiotic bacteria. Toxicon 2020; 178:50-58. [DOI: 10.1016/j.toxicon.2020.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
|
122
|
Li P, Su R, Yin R, Lai D, Wang M, Liu Y, Zhou L. Detoxification of Mycotoxins through Biotransformation. Toxins (Basel) 2020; 12:toxins12020121. [PMID: 32075201 PMCID: PMC7076809 DOI: 10.3390/toxins12020121] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/08/2020] [Accepted: 02/12/2020] [Indexed: 01/18/2023] Open
Abstract
Mycotoxins are toxic fungal secondary metabolites that pose a major threat to the safety of food and feed. Mycotoxins are usually converted into less toxic or non-toxic metabolites through biotransformation that are often made by living organisms as well as the isolated enzymes. The conversions mainly include hydroxylation, oxidation, hydrogenation, de-epoxidation, methylation, glycosylation and glucuronidation, esterification, hydrolysis, sulfation, demethylation and deamination. Biotransformations of some notorious mycotoxins such as alfatoxins, alternariol, citrinin, fomannoxin, ochratoxins, patulin, trichothecenes and zearalenone analogues are reviewed in detail. The recent development and applications of mycotoxins detoxification through biotransformation are also discussed.
Collapse
Affiliation(s)
- Peng Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
| | - Ruixue Su
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
| | - Ruya Yin
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
| | - Mingan Wang
- Department of Applied Chemistry, College of Sciences, China Agricultural University, Beijing 100193, China;
| | - Yang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (P.L.); (R.S.); (R.Y.); (D.L.)
- Correspondence: ; Tel.: +86-10-6273-1199
| |
Collapse
|
123
|
Benkerroum N. Aflatoxins: Producing-Molds, Structure, Health Issues and Incidence in Southeast Asian and Sub-Saharan African Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1215. [PMID: 32070028 PMCID: PMC7068566 DOI: 10.3390/ijerph17041215] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 12/14/2022]
Abstract
This review aims to update the main aspects of aflatoxin production, occurrence and incidence in selected countries, and associated aflatoxicosis outbreaks. Means to reduce aflatoxin incidence in crops were also presented, with an emphasis on the environmentally-friendly technology using atoxigenic strains of Aspergillus flavus. Aflatoxins are unavoidable widespread natural contaminants of foods and feeds with serious impacts on health, agricultural and livestock productivity, and food safety. They are secondary metabolites produced by Aspergillus species distributed on three main sections of the genus (section Flavi, section Ochraceorosei, and section Nidulantes). Poor economic status of a country exacerbates the risk and the extent of crop contamination due to faulty storage conditions that are usually suitable for mold growth and mycotoxin production: temperature of 22 to 29 °C and water activity of 0.90 to 0.99. This situation paralleled the prevalence of high liver cancer and the occasional acute aflatoxicosis episodes that have been associated with these regions. Risk assessment studies revealed that Southeast Asian (SEA) and Sub-Saharan African (SSA) countries remain at high risk and that, apart from the regulatory standards revision to be more restrictive, other actions to prevent or decontaminate crops are to be taken for adequate public health protection. Indeed, a review of publications on the incidence of aflatoxins in selected foods and feeds from countries whose crops are classically known for their highest contamination with aflatoxins, reveals that despite the intensive efforts made to reduce such an incidence, there has been no clear tendency, with the possible exception of South Africa, towards sustained improvements. Nonetheless, a global risk assessment of the new situation regarding crop contamination with aflatoxins by international organizations with the required expertise is suggested to appraise where we stand presently.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Department of Food Science and Agricultural Chemistry, MacDonald Campus, McGill University, 21111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
124
|
Complicated interactions between bio-adsorbents and mycotoxins during mycotoxin adsorption: Current research and future prospects. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
125
|
de Oliveira Garcia S, Sibaja KVM, Nogueira WV, Feltrin ACP, Pinheiro DFA, Cerqueira MBR, Badiale Furlong E, Garda-Buffon J. Peroxidase as a simultaneous degradation agent of ochratoxin A and zearalenone applied to model solution and beer. Food Res Int 2020; 131:109039. [PMID: 32247492 DOI: 10.1016/j.foodres.2020.109039] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the action of the commercial peroxidase (POD) enzyme (Armoracia rusticana) on the simultaneous degradation of ochratoxin A (OTA) and zearalenone (ZEA) in model solution and beer. For this purpose, the reaction parameters for POD action were optimized, POD application in the degradation of mycotoxins in model solution and beer was evaluated and the kinetic parameters of POD were defined (Michaelis-Menten constant - KM and maximal velocity - Vmax). In the reaction conditions (pH 7, ionic strength of 25 mM, incubation at 30 °C, addition of 26 mM H2O2 and 1 mM potassium ion), POD (0.6 U mL-1) presented the maximum activity for simultaneous degradation of OTA and ZEA of 27.0 and 64.9%, respectively, in model solution after 360 min. The application of POD in beer resulted in the simultaneous degradation of OTA and ZEA of 4.8 and 10.9%, respectively. The kinetic parameters KM and Vmax for degradation of OTA and ZEA were 50 and 10,710 nM and 0.168 and 72 nM min-1, respectively. Therefore, POD can be a promising alternative to mitigate the contamination of OTA and ZEA in model solution and beer, minimizing their effects in humans.
Collapse
Affiliation(s)
- Sabrina de Oliveira Garcia
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Karen Vanessa Marimón Sibaja
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Wesclen Vilar Nogueira
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Ana Carla Penteado Feltrin
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Diean Fabiano Alvares Pinheiro
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Maristela Barnes Rodrigues Cerqueira
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Eliana Badiale Furlong
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil.
| | - Jaqueline Garda-Buffon
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil.
| |
Collapse
|
126
|
Aromatization of natural products by a specialized detoxification enzyme. Nat Chem Biol 2020; 16:250-256. [PMID: 31932723 DOI: 10.1038/s41589-019-0446-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 11/09/2022]
Abstract
In plants, lineage-specific metabolites can be created by activities derived from the catalytic promiscuity of ancestral proteins, although examples of recruiting detoxification systems to biosynthetic pathways are scarce. The ubiquitous glyoxalase (GLX) system scavenges the cytotoxic methylglyoxal, in which GLXI isomerizes the α-hydroxy carbonyl in the methylglyoxal-glutathione adduct for subsequent hydrolysis. We show that GLXIs across kingdoms are more promiscuous than recognized previously and can act as aromatases without cofactors. In cotton, a specialized GLXI variant, SPG, has lost its GSH-binding sites and organelle-targeting signal, and evolved to aromatize cyclic sesquiterpenes bearing α-hydroxyketones to synthesize defense compounds in the cytosol. Notably, SPG is able to transform acetylated deoxynivalenol, the prevalent mycotoxin contaminating cereals and foods. We propose that detoxification enzymes are a valuable source of new catalytic functions and SPG, a standalone enzyme catalyzing complex reactions, has potential for toxin degradation, crop engineering and design of novel aromatics.
Collapse
|
127
|
Ren X, Zhang Q, Zhang W, Mao J, Li P. Control of Aflatoxigenic Molds by Antagonistic Microorganisms: Inhibitory Behaviors, Bioactive Compounds, Related Mechanisms, and Influencing Factors. Toxins (Basel) 2020; 12:E24. [PMID: 31906282 PMCID: PMC7020460 DOI: 10.3390/toxins12010024] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/29/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Aflatoxin contamination has been causing great concern worldwide due to the major economic impact on crop production and their toxicological effects to human and animals. Contamination can occur in the field, during transportation, and also in storage. Post-harvest contamination usually derives from the pre-harvest infection of aflatoxigenic molds, especially aflatoxin-producing Aspergilli such as Aspergillusflavus and A. parasiticus. Many strategies preventing aflatoxigenic molds from entering food and feed chains have been reported, among which biological control is becoming one of the most praised strategies. The objective of this article is to review the biocontrol strategy for inhibiting the growth of and aflatoxin production by aflatoxigenic fungi. This review focuses on comparing inhibitory behaviors of different antagonistic microorganisms including various bacteria, fungi and yeasts. We also reviewed the bioactive compounds produced by microorganisms and the mechanisms leading to inhibition. The key factors influencing antifungal activities of antagonists are also discussed in this review.
Collapse
Affiliation(s)
- Xianfeng Ren
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Wen Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Jin Mao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China; (X.R.); (W.Z.); (J.M.)
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Laboratory of Risk Assessment for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
- Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China
| |
Collapse
|
128
|
Taghizadeh SF, Rezaee R, Badiebostan H, Giesy JP, Karimi G. Occurrence of mycotoxins in rice consumed by Iranians: a probabilistic assessment of risk to health. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 37:342-354. [PMID: 31810432 DOI: 10.1080/19440049.2019.1684572] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Risks based on cancer and non-cancer endpoints, to Iranians from exposure to several mycotoxins (aflatoxin B1, ochratoxin, deoxynivalenol and T-2 toxin) following consumption of rice were evaluated. Point estimates of hazard were made for each mycotoxin and a hazard index (HI) and probabilistic estimates were based on results of Monte Carlo Simulations (MCS). All known 17 peer-reviewed studies, published in databases included in Science Direct, PubMed, Scopus and Web of Science, as well as grey literature published in Google Scholar from 2008 to 2017 were considered. The 95th and 50th centiles of Hazard Index (HI) in Iranians due to ingestion of rice were estimated to be 2.5 and 0.5, respectively. The 95th and 50th centiles of people with positive surface antigens for hepatitis B (HBsAg+) risk characterisation for AFB1 in Iranian consumers of rice were 81 and 79.1, respectively. The 95th and 50th centiles for risks of Iranians negative for the surface antigen of hepatitis B HBsAg (HBsAg-) were 4.4 and 2.6, respectively. Based on results of the MCS for risks to cancer effects, the 95th and 50th centiles of margins of exposure (MOE) were 233 and 231, respectively. Therefore, it is recommended to update agricultural approaches and storage methods and implement monitoring and regulations based on risks to health posed by consumption of rice by the Iranian population.
Collapse
Affiliation(s)
- Seyedeh Faezeh Taghizadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Chemical Engineering, Environmental Engineering Laboratory, Aristotle University of Thessaloniki, Thessaloniki, Greece.,HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Thessaloniki, Greece
| | - Hasan Badiebostan
- Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA.,School of Biological Sciences, University of Hong Kong, Hong Kong, SAR, China
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
129
|
García-Díaz M, Patiño B, Vázquez C, Gil-Serna J. A Novel Niosome-Encapsulated Essential Oil Formulation to Prevent Aspergillus flavus Growth and Aflatoxin Contamination of Maize Grains During Storage. Toxins (Basel) 2019; 11:toxins11110646. [PMID: 31698851 PMCID: PMC6891554 DOI: 10.3390/toxins11110646] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/12/2022] Open
Abstract
Aflatoxin (AF) contamination of maize is a major concern for food safety. The use of chemical fungicides is controversial, and it is necessary to develop new effective methods to control Aspergillus flavus growth and, therefore, to avoid the presence of AFs in grains. In this work, we tested in vitro the effect of six essential oils (EOs) extracted from aromatic plants. We selected those from Satureja montana and Origanum virens because they show high levels of antifungal and antitoxigenic activity at low concentrations against A. flavus. EOs are highly volatile compounds and we have developed a new niosome-based encapsulation method to extend their shelf life and activity. These new formulations have been successfully applied to reduce fungal growth and AF accumulation in maize grains in a small-scale test, as well as placing the maize into polypropylene woven bags to simulate common storage conditions. In this latter case, the antifungal properties lasted up to 75 days after the first application.
Collapse
|
130
|
Wang X, Bai Y, Huang H, Tu T, Wang Y, Wang Y, Luo H, Yao B, Su X. Degradation of Aflatoxin B 1 and Zearalenone by Bacterial and Fungal Laccases in Presence of Structurally Defined Chemicals and Complex Natural Mediators. Toxins (Basel) 2019; 11:toxins11100609. [PMID: 31652557 PMCID: PMC6832423 DOI: 10.3390/toxins11100609] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/11/2019] [Accepted: 10/18/2019] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) and zearalenone (ZEN) exert deleterious effects to human and animal health. In this study, the ability of a CotA laccase from Bacillus subtilis (BsCotA) to degrade these two mycotoxins was first investigated. Among the nine structurally defined chemical compounds, methyl syringate was the most efficient mediator assisting BsCotA to degrade AFB1 (98.0%) and ZEN (100.0%). BsCotA could also use plant extracts, including the Epimedium brevicornu, Cucumis sativus L., Lavandula angustifolia, and Schizonepeta tenuifolia extracts to degrade AFB1 and ZEN. Using hydra and BLYES as indicators, it was demonstrated that the degraded products of AFB1 and ZEN using the laccase/mediator systems were detoxified. Finally, a laccase of fungal origin was also able to degrade AFB1 and ZEN in the presence of the discovered mediators. The findings shed light on the possibility of using laccases and a mediator, particularly a natural plant-derived complex mediator, to simultaneously degrade AFB1 and ZEN contaminants in food and feed.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tao Tu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yuan Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
131
|
Enzyme Degradation Reagents Effectively Remove Mycotoxins Deoxynivalenol and Zearalenone from Pig and Poultry Artificial Digestive Juices. Toxins (Basel) 2019; 11:toxins11100599. [PMID: 31618978 PMCID: PMC6832875 DOI: 10.3390/toxins11100599] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/30/2019] [Accepted: 10/12/2019] [Indexed: 12/14/2022] Open
Abstract
Mycotoxin removers include enzymes and adsorbents that may be used in animal feeds to eliminate the toxic effects of mycotoxins. This study aimed to determine the removability of two different types of mycotoxin removers, adsorbents and enzyme degradation reagents (EDRs), in the simulated gastrointestinal conditions of pigs and poultry. Seven commercial mycotoxin removers, including five EDRs and two adsorbents, were tested in vitro. In this study, the supplemented dosages of mycotoxin removers used in pig and poultry feeds were the commercial recommendation ranging from 0.05% to 0.2%. For pigs, the in vitro gastric and small intestinal simulations were performed by immersing the mycotoxin-tainted feed in artificial gastric juice (AGJ) at pH 2.5 for 5 h or in artificial intestinal juice (AIJ) at pH 6.5 for 2 h to mimick in vivo conditions. For poultry, mycotoxin-tainted feeds were immersed in AGJ for 2 h at pH 4.5 and 0.5 h at pH of 2.5, respectively, to simulate crop/glandular stomach and gizzard conditions; the small intestinal simulation was in AIJ for 2 h at pH 6.5. For the pig, EDRs and adsorbents had deoxynivalenol (DON) removability (1 mg/kg) of 56% to 100% and 15% to 19%, respectively. Under the concentration of 0.5 mg/kg, the zearalenone (ZEN) removability by EDRs and adsorbents was 65% to 100% and 0% to 36%, respectively. For the simulation in poultry, the removability of DON by EDRs and adsorbents (5 mg/kg) was 56% to 79% and 1% to 36%, respectively; for the concentration of 0.5 mg/kg, the removability of ZEN by EDRs and adsorbents was 38% to 69% and 7% to 9%, respectively. These results suggest that EDRs are more effective in reducing DON and ZEN contamination compared to the adsorbent methods in the simulated gastrointestinal tracts of pig and poultry. The recoveries of DON and ZEN of pig in vitro gastrointestinal simulations were higher than 86.4% and 84.7%, respectively, with 88.8% and 85.9%, respectively, in poultry. These results demonstrated the stability and accuracy of our mycotoxin extraction process and in vitro simulation efficiency.
Collapse
|
132
|
Shiferaw Terefe N, Augustin MA. Fermentation for tailoring the technological and health related functionality of food products. Crit Rev Food Sci Nutr 2019; 60:2887-2913. [PMID: 31583891 DOI: 10.1080/10408398.2019.1666250] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fermented foods are experiencing a resurgence due to the consumers' growing interest in foods that are natural and health promoting. Microbial fermentation is a biotechnological process which transforms food raw materials into palatable, nutritious and healthy food products. Fermentation imparts unique aroma, flavor and texture to food, improves digestibility, degrades anti-nutritional factors, toxins and allergens, converts phytochemicals such as polyphenols into more bioactive and bioavailable forms, and enriches the nutritional quality of food. Fermentation also modifies the physical functional properties of food materials, rendering them differentiated ingredients for use in formulated foods. The science of fermentation and the technological and health functionality of fermented foods is reviewed considering the growing interest worldwide in fermented foods and beverages and the huge potential of the technology for reducing food loss and improving nutritional food security.
Collapse
|
133
|
Fruhauf S, Novak B, Nagl V, Hackl M, Hartinger D, Rainer V, Labudová S, Adam G, Aleschko M, Moll WD, Thamhesl M, Grenier B. Biotransformation of the Mycotoxin Zearalenone to its Metabolites Hydrolyzed Zearalenone (HZEN) and Decarboxylated Hydrolyzed Zearalenone (DHZEN) Diminishes its Estrogenicity In Vitro and In Vivo. Toxins (Basel) 2019; 11:toxins11080481. [PMID: 31434326 PMCID: PMC6722729 DOI: 10.3390/toxins11080481] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/09/2019] [Accepted: 08/16/2019] [Indexed: 01/10/2023] Open
Abstract
Zearalenone (ZEN)-degrading enzymes are a promising strategy to counteract the negative effects of this mycotoxin in livestock. The reaction products of such enzymes need to be thoroughly characterized before technological application as a feed additive can be envisaged. Here, we evaluated the estrogenic activity of the metabolites hydrolyzed zearalenone (HZEN) and decarboxylated hydrolyzed zearalenone (DHZEN) formed by hydrolysis of ZEN by the zearalenone-lactonase Zhd101p. ZEN, HZEN, and DHZEN were tested in two in vitro models, the MCF-7 cell proliferation assay (0.01–500 nM) and an estrogen-sensitive yeast bioassay (1–10,000 nM). In addition, we compared the impact of dietary ZEN (4.58 mg/kg) and equimolar dietary concentrations of HZEN and DHZEN on reproductive tract morphology as well as uterine mRNA and microRNA expression in female piglets (n = 6, four weeks exposure). While ZEN increased cell proliferation and reporter gene transcription, neither HZEN nor DHZEN elicited an estrogenic response, suggesting that these metabolites are at least 50–10,000 times less estrogenic than ZEN in vitro. In piglets, HZEN and DHZEN did not increase vulva size or uterus weight. Moreover, RNA transcripts altered upon ZEN treatment (EBAG9, miR-135a-5p, miR-187-3p and miR-204-5p) were unaffected by HZEN and DHZEN. Our study shows that both metabolites exhibit markedly reduced estrogenicity in vitro and in vivo, and thus provides an important basis for further evaluation of ZEN-degrading enzymes.
Collapse
Affiliation(s)
| | - Barbara Novak
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria
| | - Veronika Nagl
- BIOMIN Research Center, Technopark 1, 3430 Tulln, Austria.
| | | | | | | | | | - Gerhard Adam
- Institute of Applied Genetics and Cell Biology (IAGZ), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz-Straße 24, 3430 Tulln, Austria
| | | | | | | | | |
Collapse
|
134
|
Yang S, Gong P, Pan J, Wang N, Tong J, Wang M, Long M, Li P, He J. Pediococcus pentosaceus xy46 Can Absorb Zearalenone and Alleviate its Toxicity to the Reproductive Systems of Male Mice. Microorganisms 2019; 7:microorganisms7080266. [PMID: 31426404 PMCID: PMC6722568 DOI: 10.3390/microorganisms7080266] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 01/15/2023] Open
Abstract
Zearalenone (ZEA) contamination is a very serious problem around the world as it can induce reproductive disorders in animals and affect the health of humans. Therefore, reducing the damage it causes to humans and animals is a current focus of research. In this study, we assess the removing capacity of Pediococcus pentosaceus xy46 towards ZEA and investigate the mechanism responsible for its action, thus confirming if it can alleviate ZEA toxicity to the reproductive systems of male mice. Our results show that the rate at which the strain removes ZEA is as high as 89.2% in 48 h when the concentration of ZEA is 4 μg/mL in the liquid medium. Heat and acid treatment significantly enhanced the ability of the bacteria to remove ZEA. The animal experiments results show that the oral administration of xy46 to mice (0.2 mL daily at a concentration of 109 CFU/mL for 28 days) significantly reduces the degree of testicular pathomorphological changes and apoptosis induced by ZEA when the mice are intragastric administration with 40 mg/kg ZEA daily for 28 days. Moreover, oral administration of xy46 enhances the decrease in the testosterone level and improves the oxidative stress injury induced by ZEA. Furthermore, oral administration of xy46 reverts the expression of these genes and proteins in the testicular tissues of the mice involved in the blood-testis barrier and apoptosis (e.g., Vim, caspase 12, Cldn11, N-cad, Bax, and Bcl-2). However, xy46 cannot significantly revert in some of these evaluated parameters, especially in sperm quantity and quality when the mice were given 70 mg/kg ZEA daily for 28 days. In conclusion, our results suggest that the strain Pediococcus pentosaceus xy46 can efficiently remove ZEA from the liquid medium, the mechanism responsible for its action is absorption, and it can alleviate the toxicity of ZEA to the reproductive systems of male mice when the mice are given 40 mg/kg ZEA daily, However, it cannot completely alleviate the reproductive toxicity of higher dosage of zearalenone through its ability to adsorb ZEA.
Collapse
Affiliation(s)
- Shuhua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Gong
- Institute of Animal Husbandry Quality Standards, Xinjiang Academy of Animal Science, Urumqi 830000, China
| | - Jianwen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Jingjing Tong
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingyang Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jianbin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
135
|
Niermans K, Woyzichovski J, Kröncke N, Benning R, Maul R. Feeding study for the mycotoxin zearalenone in yellow mealworm (Tenebrio molitor) larvae-investigation of biological impact and metabolic conversion. Mycotoxin Res 2019; 35:231-242. [PMID: 30864055 PMCID: PMC6611894 DOI: 10.1007/s12550-019-00346-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/18/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022]
Abstract
Edible insects as additional food and/or feed source may represent one important component to solve the problem of food security for a growing human population. Especially for covering the rising demand for protein of animal origin, seven insect species currently allowed as feed constituents in the European Union are gaining more interest. However, before considering insects such as yellow mealworm larvae (Tenebrio molitor) as suitable for, e.g. human consumption, the possible presence and accumulation of contaminants must be elucidated. The present work investigates the effects of the mycotoxin zearalenone (ZEN) and its metabolites on insect larvae. Seven different diets were prepared: toxin-free control, spiked and artificially contaminated (both containing approx.500 μg/kg and approx. 2000 μg/kg of ZEN) as well as two naturally contaminated diets (600 μg/kg and 900 μg/kg ZEN). The diets were used in a multiple-week feeding trial using T. molitor larvae as model insects. The amount of ZEN and its metabolites in the feed, larvae and the residue were measured by HPLC-MS/MS. A significantly enhanced individual larval weight was found for the insects fed on the naturally contaminated diets compared to the other feeding groups after 8 weeks of exposure. No ZEN or ZEN metabolites were detected in the T. molitor larvae after harvest. However, ZEN, α- and β-stereoisomers of zearalenol were found in the residue samples indicating an intense metabolism of ZEN in the larvae. No further ZEN metabolites could be detected in any sample. Thus, ZEN is not retained to any significant amount in T. molitor larvae.
Collapse
Affiliation(s)
- Kelly Niermans
- BfR - German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Jan Woyzichovski
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Nina Kröncke
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Rainer Benning
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Ronald Maul
- BfR - German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
- University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany.
| |
Collapse
|
136
|
Wang N, Wu W, Pan J, Long M. Detoxification Strategies for Zearalenone Using Microorganisms: A Review. Microorganisms 2019; 7:microorganisms7070208. [PMID: 31330922 PMCID: PMC6680894 DOI: 10.3390/microorganisms7070208] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/29/2023] Open
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium fungi that is commonly found in cereal crops. ZEA has an estrogen-like effect which affects the reproductive function of animals. It also damages the liver and kidneys and reduces immune function which leads to cytotoxicity and immunotoxicity. At present, the detoxification of mycotoxins is mainly accomplished using biological methods. Microbial-based methods involve zearalenone conversion or adsorption, but not all transformation products are nontoxic. In this paper, the non-pathogenic microorganisms which have been found to detoxify ZEA in recent years are summarized. Then, two mechanisms by which ZEA can be detoxified (adsorption and biotransformation) are discussed in more detail. The compounds produced by the subsequent degradation of ZEA and the heterogeneous expression of ZEA-degrading enzymes are also analyzed. The development trends in the use of probiotics as a ZEA detoxification strategy are also evaluated. The overall purpose of this paper is to provide a reliable reference strategy for the biological detoxification of ZEA.
Collapse
Affiliation(s)
- Nan Wang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiwei Wu
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi 830000, China
| | - Jiawen Pan
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
137
|
Souto N, Dassi M, Braga A, Rosa E, Fighera M, Royes L, Oliveira M, Furian A. Behavioural and biochemical effects of one-week exposure to aflatoxin B1 and aspartame in male Wistar rats. WORLD MYCOTOXIN J 2019. [DOI: 10.3920/wmj2018.2424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Food products are susceptible to contamination by mycotoxins, and aflatoxin B1 (AFB1) stands as the most toxic among them. AFB1 intoxication results in distinct signs, including widespread systemic toxicity. Aspartame (ASP) is an artificial sweetener used as a sugar substitute in many products, and compelling evidence indicates ASP can be toxic. Interestingly, mechanisms underlying ASP and AFB1 toxicity involve oxidative stress. In this context, concomitant use of ASP and AFB1 in a meal may predispose to currently unidentified behavioural and biochemical changes. Therefore, we evaluated the effect of AFB1 (250 μg/kg, intragastrically (i.g.)) and/or ASP (75 mg/kg, i.g.) exposure for 7 days on behavioural and biochemical markers of oxidative stress in male Wistar rats. AFB1 and/or ASP increased hepatic glutathione S-transferase (GST) activity when compared to controls. In the kidneys, increased GST activity was detected in AFB1 and AFB1+ASP groups. In addition, AFB1 and or ASP elicited behavioural changes in the open field, marble burying and splash tests, however no additive effects were detected. Altogether, present data suggest AFB1 and ASP predispose to anxiety- and obsessive-compulsive-like symptoms, as well as to enzymatic defence system imbalance in liver and kidney of Wistar rats.
Collapse
Affiliation(s)
- N.S. Souto
- Programa de Pós Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Prédio 43, Sala 4217, 97105-900 Santa Maria, RS, Brazil
| | - M. Dassi
- Programa de Pós Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Prédio 43, Sala 4217, 97105-900 Santa Maria, RS, Brazil
| | - A.C.M. Braga
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - E.V.F. Rosa
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - M.R. Fighera
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - L.F.F. Royes
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - M.S. Oliveira
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - A.F. Furian
- Programa de Pós Graduação em Ciência e Tecnologia dos Alimentos, Universidade Federal de Santa Maria, Prédio 43, Sala 4217, 97105-900 Santa Maria, RS, Brazil
- Programa de Pós-Graduação em Farmacologia, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| |
Collapse
|
138
|
Zhang G, Li J, Lv J, Liu L, Li C, Liu L. Decontamination of aflatoxin M1 in yogurt using
Lactobacillus rhamnosus
LC‐4. J Food Saf 2019. [DOI: 10.1111/jfs.12673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Guofang Zhang
- Key Laboratory of Dairy SciencesCollege of Food Sciences, Northeast Agricultural University Harbin China
| | - Jiadong Li
- Heilongjiang Green Food Research Institute Harbin China
| | - Jinmeng Lv
- Key Laboratory of Dairy SciencesCollege of Food Sciences, Northeast Agricultural University Harbin China
| | - Lihua Liu
- Institute of Animal Science of CAAS Beijing China
| | - Chun Li
- Key Laboratory of Dairy SciencesCollege of Food Sciences, Northeast Agricultural University Harbin China
| | - Libo Liu
- Key Laboratory of Dairy SciencesCollege of Food Sciences, Northeast Agricultural University Harbin China
| |
Collapse
|
139
|
Nazarizadeh H, Mohammad Hosseini S, Pourreza J. Effect of plant extracts derived from thyme and chamomile on the growth performance, gut morphology and immune system of broilers fed aflatoxin B1 and ochratoxin A contaminated diets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1615851] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hasan Nazarizadeh
- Department of Animal Sciences, College of Agriculture, University of Birjand, Birjand, Iran
| | | | - Javad Pourreza
- Department of Animal Science, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
140
|
Azam MS, Yu D, Liu N, Wu A. Degrading Ochratoxin A and Zearalenone Mycotoxins Using a Multifunctional Recombinant Enzyme. Toxins (Basel) 2019; 11:toxins11050301. [PMID: 31137857 PMCID: PMC6563298 DOI: 10.3390/toxins11050301] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Zearalenone (ZEA) is an estrogenic and ochratoxin A (OTA) is a hepatotoxic Fusarium mycotoxin commonly seen in cereals and fruits products. No previous investigation has studied on a single platform for the multi degradation mycotoxin. The current study aimed to investigate the bifunctional activity of a novel fusion recombinant. We have generated a recombinant fusion enzyme (ZHDCP) by combining two single genes named zearalenone hydrolase (ZHD) and carboxypeptidase (CP) in frame deletion by crossover polymerase chain reaction (PCR). We identified enzymatic properties and cell cytotoxicity assay of ZHDCP enzyme. Our findings have demonstrated that ZEA was completely degraded to the non-toxic product in 2 h by ZHDCP enzyme at an optimum pH of 7 and a temperature of 35 °C. For the first time, it was found out that ZEA 60% was degraded by CP degrades in 48 h. Fusion ZHDCP and CP enzyme were able to degrade 100% OTA in 30 min at pH 7 and temperature 30 °C. ZEA- and OTA-induced cell death and increased cell apoptosis rate and regulated mRNA expression of Sirt1, Bax, Bcl2, Caspase3, TNFα, and IL6 genes. Our novel findings demonstrated that the fusion enzyme ZHDCP possess bifunctional activity (degrade OTA and ZEA), and it could be used to degrade more mycotoxins.
Collapse
Affiliation(s)
- Md Shofiul Azam
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dianzhen Yu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Na Liu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Aibo Wu
- SIBS-UGENT-SJTU Joint Laboratory of Mycotoxin Research, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
141
|
Colombo EM, Pizzatti C, Kunova A, Gardana C, Saracchi M, Cortesi P, Pasquali M. Evaluation of in-vitro methods to select effective streptomycetes against toxigenic fusaria. PeerJ 2019; 7:e6905. [PMID: 31198624 PMCID: PMC6535041 DOI: 10.7717/peerj.6905] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 04/03/2019] [Indexed: 11/20/2022] Open
Abstract
Biocontrol microorganisms are emerging as an effective alternative to pesticides. Ideally, biocontrol agents (BCAs) for the control of fungal plant pathogens should be selected by an in vitro method that is high-throughput and is predictive of in planta efficacy, possibly considering environmental factors, and the natural diversity of the pathogen. The purpose of our study was (1) to assess the effects of Fusarium strain diversity (N = 5) and culture media (N = 6) on the identification of biological control activity of Streptomyces strains (N = 20) against Fusarium pathogens of wheat in vitro and (2) to verify the ability of our in vitro screening methods to simulate the activity in planta. Our results indicate that culture media, Fusarium strain diversity, and their interactions affect the results of an in vitro selection by dual culture assay. The results obtained on the wheat-based culture media resulted in the highest correlation score (r = 0.5) with the in planta root rot (RR) inhibition, suggesting that this in vitro method was the best predictor of in planta performance of streptomycetes against Fusarium RR of wheat assessed as extension of the necrosis on the root. Contrarily, none of the in vitro plate assays using the media tested could appropriately predict the activity of the streptomycetes against Fusarium foot rot symptoms estimated as the necrosis at the crown level. Considering overall data of correlation, the activity in planta cannot be effectively predicted by dual culture plate studies, therefore improved in vitro methods are needed to better mimic the activity of biocontrol strains in natural conditions. This work contributes to setting up laboratory standards for preliminary screening assays of Streptomyces BCAs against fungal pathogens.
Collapse
Affiliation(s)
- Elena Maria Colombo
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Cristina Pizzatti
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Andrea Kunova
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Claudio Gardana
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Marco Saracchi
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Paolo Cortesi
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| | - Matias Pasquali
- Department of Food, Environmental and Nutritional Science, University of Milan, Milano, Italy
| |
Collapse
|
142
|
Mwakinyali SE, Ming Z, Xie H, Zhang Q, Li P. Investigation and Characterization of Myroides odoratimimus Strain 3J2MO Aflatoxin B 1 Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4595-4602. [PMID: 30907589 DOI: 10.1021/acs.jafc.8b06810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Aflatoxin B1 (AFB1), is a type I carcinogen that is one of the strongest naturally occurring aflatoxins and can be injurious to humans and livestock upon ingestion, inhalation, or skin contact, with carcinogenic and mutagenic effects. It causes significant hazardous effects to the food- and animal-production industries. We found a bacterial strain, 3J2MO, that degraded AFB1 well, and here we tested and characterized its AFB1-degradation ability. The strain degraded about 93.82% of the AFB1 after incubation for 48 h in Luria-Bertani (LB) medium at 37 °C with a final concentration of 100 ppb and an inoculation quantity of 1 × 107 cfu/mL. High-performance liquid chromatography-fluorescence detection (HPLC-FLD) was used to determine AFB1 amounts. The maximum degradation rates were 89.23% at pH 8.5; 55.78% at an inoculation quantity of 1 × 108 cfu/mL; and 71.50 and 71.21% at 34 and 37 °C, respectively. Treatment with sucrose and soluble starch as carbon sources and beef extract and ammonium acetate as nitrogen sources stimulated the degradation rate. Mg2+ and Ca2+ ions were activators for AFB1 degradation; however, Mn2+, Fe3+, Zn2+, and Cu2+ were strong inhibitors. This bacterial strain has potential in bioremediation and the detoxification of aflatoxin contamination for biocontrol strategies in both agricultural products and food-industry matrices.
Collapse
Affiliation(s)
- Silivano E Mwakinyali
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
- National Food Reserve Agency (NFRA) , Ministry of Agriculture , P.O Box 1050, Dodoma 41000 , United Republic of Tanzania
| | - Zhang Ming
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
| | - Huali Xie
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
| | - Qi Zhang
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
| | - Peiwu Li
- Oil Crops Research Institute , Chinese Academy of Agricultural Sciences , Wuhan 430062 , PR China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops , Ministry of Agriculture , Wuhan 430062 , PR China
- Laboratory of Quality & Safety Risk Assessment for Oilseeds Products, Wuhan , Ministry of Agriculture , Wuhan 430062 , PR China
- Key Laboratory of Detection for Mycotoxins , Ministry of Agriculture , Wuhan 430062 , PR China
- Quality Inspection and Test Center for Oilseeds Products , Ministry of Agriculture , Wuhan 430062 , PR China
| |
Collapse
|
143
|
Nolan P, Auer S, Spehar A, Elliott CT, Campbell K. Current trends in rapid tests for mycotoxins. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:800-814. [PMID: 30943116 DOI: 10.1080/19440049.2019.1595171] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
There are an ample number of commercial testing kits available for mycotoxin analysis on the market today, including enzyme-linked immunosorbent assays, membrane-based immunoassays, fluorescence polarisation immunoassays and fluorometric assays. It can be observed from the literature that not only are developments and improvements ongoing for these assays but there are also novel assays being developed using biosensor technology. This review focuses on both the currently available methods and recent innovative methods for mycotoxin testing. Furthermore, it highlights trends that are influencing assay developments such as multiplexing capabilities and rapid on-site analysis, indicating the possible detection methods that will shape the future market.
Collapse
Affiliation(s)
- Philana Nolan
- a Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| | | | | | - Christopher T Elliott
- a Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| | - Katrina Campbell
- a Institute for Global Food Security, School of Biological Sciences , Queen's University Belfast , Belfast , UK
| |
Collapse
|
144
|
Venkatesh N, Keller NP. Mycotoxins in Conversation With Bacteria and Fungi. Front Microbiol 2019; 10:403. [PMID: 30941105 PMCID: PMC6433837 DOI: 10.3389/fmicb.2019.00403] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/15/2019] [Indexed: 12/22/2022] Open
Abstract
An important goal of the mycotoxin research community is to develop comprehensive strategies for mycotoxin control and detoxification. Although significant progress has been made in devising such strategies, yet, there are barriers to overcome and gaps to fill in order to design effective mycotoxin management techniques. This is in part due to a lack of understanding of why fungi produce these toxic metabolites. Here we present cumulative evidence from the literature that indicates an important ecological role for mycotoxins, with particular focus on Fusarium mycotoxins. Further, we suggest that understanding how mycotoxin levels are regulated by microbial encounters can offer novel insights for mycotoxin control in food and feed. Microbial degradation of mycotoxins provides a wealth of chemical information that can be harnessed for large-scale mycotoxin detoxification efforts.
Collapse
Affiliation(s)
- Nandhitha Venkatesh
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI, United States
| | - Nancy P. Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Madison, WI, United States
- Department of Bacteriology, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
145
|
Akar T, Güray T, Yilmazer DT, Tunali Akar S. Biosorptive detoxification of zearalenone biotoxin by surface-modified renewable biomass: process dynamics and application. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1850-1861. [PMID: 30264397 DOI: 10.1002/jsfa.9379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/25/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Contamination of food, feed, beverages and even drinking water with biotoxins is a growing global concern because of their potential health risks. In this work, surface-modified sugar beet pulp waste was used for the biosorptive removal of zearalenone biotoxin from contaminated aquatic media. RESULTS Infrared, Boehm titration, BET (Brunauer-Emmett-Teller) surface area and point of zero charge analysis were employed for surface characterization. Kinetic and equilibrium studies showed that biotoxin biosorption was well predicted by the pseudo-second-order kinetic model and the Langmuir isotherm model. Zearalenone was removed from the solution over a wide pH range (3.0-8.0) and within a short time (15 min). Maximum uptake capacity of modified biomass was recorded as 23.30 ± 0.17 g kg-1 . Highest removal yield in a dynamic flow mode (94.56 ± 0.13%) was achieved at 2 mL min-1 flow rate using 30 mg biosorbent. Regeneration experiments revealed high reusability potential of suggested biosorbent. Moreover, its application potential was tested in spiked samples of malt, beer and canned corn liquid. CONCLUSION Detoxification potential of this renewable biomass was significantly enhanced after modification. Modified biomass could be used as an efficient and low-cost green-type material with good application potential for zearalenone detoxification. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tamer Akar
- Department of Chemistry, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Tufan Güray
- Department of Chemistry, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Dilek Tunc Yilmazer
- Department of Chemistry, Graduate School of Natural and Applied Sciences, Eskişehir Osmangazi University, Eskişehir, Turkey
| | - Sibel Tunali Akar
- Department of Chemistry, Faculty of Arts and Science, Eskişehir Osmangazi University, Eskişehir, Turkey
| |
Collapse
|
146
|
Prapapanpong J, Udomkusonsri P, Mahavorasirikul W, Choochuay S, Tansakul N. In vitro studies on gastrointestinal monogastric and avian models to evaluate the binding efficacy of mycotoxin adsorbents by liquid chromatography-tandem mass spectrometry. J Adv Vet Anim Res 2019; 6:125-132. [PMID: 31453181 PMCID: PMC6702928 DOI: 10.5455/javar.2019.f322] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/03/2019] [Accepted: 01/12/2019] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE The objective of this study is evaluating the efficacies of 11 mycotoxin adsorbent products, marketed in South East Asia. Three prominently occurring mycotoxins; aflatoxin B1 (AFB1), deoxynivalenol (DON), and zearalenone (ZEN) were simultaneously spiked into the samples. MATERIALS AND METHODS Samples were simultaneously tested in vitro in phosphate buffer and simulated at different pH conditions in the gastrointestinal tracts of the porcine and avian model, analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS All mycotoxin adsorbent products had high efficacy at over 90% for AFB1 adsorption in both GI porcine and avian models. AFB1 could be adsorbed more in acidic condition than the basic condition. ZEN adsorption was determined to be more stable at pH 3 than pH 6.5 or 8.4, in which pH condition might influence on ZEN desorption rate. DON was poorly adsorbed by all tested agents. CONCLUSIONS The finding showed that the adsorption rate varied depending on the type of adsorbent. Our results might provide useful information regarding the efficacy of mycotoxin adsorbents commercially marketed in the region.
Collapse
Affiliation(s)
- Jutamas Prapapanpong
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Pareeya Udomkusonsri
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Wiratchanee Mahavorasirikul
- Drug Discovery and Development Center, Office of Advanced Science and Technology,Thammasat University, Pathumthani 12121, Thailand
| | - Sasiprapa Choochuay
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| | - Natthasit Tansakul
- Department of Veterinary Pharmacology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
147
|
Gbashi S, Madala NE, De Saeger S, De Boevre M, Njobeh PB. Numerical optimization of temperature-time degradation of multiple mycotoxins. Food Chem Toxicol 2019; 125:289-304. [DOI: 10.1016/j.fct.2019.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/26/2022]
|
148
|
Khaleghipour B, Khosravinia H, Toghiyani M, Azarfar A. Effects of silymarin on productive performance, liver function and serum biochemical profile in broiler Japanese quail challenged with dietary aflatoxins. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2018.1548310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Behrouz Khaleghipour
- Department of Animal Science, Agriculture Faculty, Lorestan University, khorramabad, Iran
| | | | - Majid Toghiyani
- Department of Animal Science, Agriculture Faculty, Islamic Azad University Khorasgan Branch, Isfahan, Iran
| | - Arash Azarfar
- Department of Animal Science, Agriculture Faculty, Lorestan University, khorramabad, Iran
| |
Collapse
|
149
|
Jiang MP, Zheng SY, Wang H, Zhang SY, Yao DS, Xie CF, Liu DL. Predictive model of aflatoxin contamination risk associated with granary-stored corn with versicolorin A monitoring and logistic regression. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:308-319. [DOI: 10.1080/19440049.2018.1562226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Meng Ping Jiang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
| | - Shao Yan Zheng
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
| | - Hao Wang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
| | - Shu Yao Zhang
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Dong Sheng Yao
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
- National Engineering Research Centre of Genetic Medicine, Jinan University, Guangzhou, China
| | - Chun Fang Xie
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
- National Engineering Research Centre of Genetic Medicine, Jinan University, Guangzhou, China
| | - Da Ling Liu
- Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
- Institute of Microbial Biotechnology, Jinan University, Guangzhou, China
| |
Collapse
|
150
|
González Pereyra ML, Martínez MP, Cavaglieri LR. Presence of aiiA homologue genes encoding for N-Acyl homoserine lactone-degrading enzyme in aflatoxin B 1-decontaminating Bacillus strains with potential use as feed additives. Food Chem Toxicol 2018; 124:316-323. [PMID: 30557671 DOI: 10.1016/j.fct.2018.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 11/26/2018] [Accepted: 12/13/2018] [Indexed: 12/23/2022]
Abstract
Microbial degradation of aflatoxins (AFs) is an alternative to the use of mycotoxin binders. The lactone ring is a possible target for microbial enzymes and its cleavage reduces AFs toxicity. The aim of this study was to isolate and identify Bacillus strains able to degrade AFB1 to less toxic metabolites and to identify aiiA genes encoding for N-acyl-homoserine lactone (AHL) lactonase to possibly correlate detoxification with the production of this enzyme. Eleven soilborne Bacillus strains were isolated and identified by MALDI-TOF MS. Ten cultures and eight cell free culture supernatants (CFCS) were able to significantly (P < 0.05) degrade 27.78-79.78% AFB1. Cell lysates were also able to degrade AFB1 (P < 0.05). Exposure to 70 and 80 °C did not affect enzyme activity. Aflatoxin B1 toxicity towards Artemia salina was reduced after degradation by each of the Bacillus strains. B. subtilis RC1B, B. cereus RC1C and B. mojavensis RC3B, amplified a fragment of 753 pb corresponding to the aiiA gene encoding for AHL lactonase. AFB1 degradation by the strains tested was due to the extracellular and intracellular enzymes. If demonstrated to be safe, these could be used to detoxify AFB1 in contaminated food or feed.
Collapse
Affiliation(s)
- M L González Pereyra
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, (5800) Río Cuarto, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - M P Martínez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, (5800) Río Cuarto, Córdoba, Argentina; Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - L R Cavaglieri
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta N 36 Km 601, (5800) Río Cuarto, Córdoba, Argentina; Member of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|