101
|
Abstract
The sirtuins (SIRTs; of which there are seven in mammals) are NAD(+)-dependent enzymes that regulate a large number of cellular pathways and forestall the progression of ageing and age-associated diseases. In recent years, the role of sirtuins in cancer biology has become increasingly apparent, and growing evidence demonstrates that sirtuins regulate many processes that go awry in cancer cells, such as cellular metabolism, the regulation of chromatin structure and the maintenance of genomic stability. In this article, we review recent advances in our understanding of how sirtuins affect cancer metabolism, DNA repair and the tumour microenvironment and how activating or inhibiting sirtuins may be important in preventing or treating cancer.
Collapse
Affiliation(s)
- Angeliki Chalkiadaki
- Department of Biology, The Paul F. Glenn Center for the Science of Aging, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 68-280 Cambridge, Massachusetts 02139, USA
| | - Leonard Guarente
- Department of Biology, The Paul F. Glenn Center for the Science of Aging, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Bldg 68-280 Cambridge, Massachusetts 02139, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Kendall Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
102
|
Guo W, Zhang J, Li W, Xu M, Liu S. Disruption of iron homeostasis and resultant health effects upon exposure to various environmental pollutants: A critical review. J Environ Sci (China) 2015; 34:155-164. [PMID: 26257358 DOI: 10.1016/j.jes.2015.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Environmental pollution has become one of the greatest problems in the world, and the concerns about environmental pollutants released by human activities from agriculture and industrial production have been continuously increasing. Although intense efforts have been made to understand the health effects of environmental pollutants, most studies have only focused on direct toxic effects and failed to simultaneously evaluate the long-term adaptive, compensatory and secondary impacts on health. Burgeoning evidence suggests that environmental pollutants may directly or indirectly give rise to disordered element homeostasis, such as for iron. It is crucially important to maintain concerted cellular and systemic iron metabolism. Otherwise, disordered iron metabolism would lead to cytotoxicity and increased risk for various diseases, including cancers. Thus, study on the effects of environmental pollutants upon iron homeostasis is urgently needed. In this review, we recapitulate the available findings on the direct or indirect impacts of environmental pollutants, including persistent organic pollutants (POPs), heavy metals and pesticides, on iron homeostasis and associated adverse health problems. In view of the unanswered questions, more efforts are warranted to investigate the disruptive effects of environmental pollutants on iron homeostasis and consequent toxicities.
Collapse
Affiliation(s)
- Wenli Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Wenjun Li
- School of Stomatology, Wuhan University, Wuhan 430072, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
103
|
Renaud S, Corcé V, Cannie I, Ropert M, Lepage S, Loréal O, Deniaud D, Gaboriau F. Quilamine HQ1-44, an iron chelator vectorized toward tumor cells by the polyamine transport system, inhibits HCT116 tumor growth without adverse effect. Biochem Pharmacol 2015; 96:179-89. [DOI: 10.1016/j.bcp.2015.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/01/2015] [Indexed: 11/25/2022]
|
104
|
Kaplánek R, Jakubek M, Rak J, Kejík Z, Havlík M, Dolenský B, Frydrych I, Hajdúch M, Kolář M, Bogdanová K, Králová J, Džubák P, Král V. Caffeine–hydrazones as anticancer agents with pronounced selectivity toward T-lymphoblastic leukaemia cells. Bioorg Chem 2015; 60:19-29. [DOI: 10.1016/j.bioorg.2015.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 03/02/2015] [Accepted: 03/25/2015] [Indexed: 11/26/2022]
|
105
|
Wilks MQ, Normandin MD, Yuan H, Cho H, Guo Y, Herisson F, Ayata C, Wooten DW, El Fakhri G, Josephson L. Imaging PEG-like nanoprobes in tumor, transient ischemia, and inflammatory disease models. Bioconjug Chem 2015; 26:1061-9. [PMID: 25971846 DOI: 10.1021/acs.bioconjchem.5b00213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iron chelator deferoxamine (DFO), approved for the treatment of iron overload, has been examined as a therapeutic in a variety of conditions which iron may exacerbate. To evaluate the potential of DFO-bearing PEG-like nanoprobes (DFO-PNs) as therapeutics, we determined their pharmacokinetics (PK) in normal mice, and imaged their accumulation in a tumor model and in models of transient brain ischemia and inflammation. DFO-PNs consist of a DFO, a Cy5.5, and PEG (5 kDa or 30 kDa) attached to Lys-Cys scaffold. Tumor uptake of a [(89)Zr]:DFO-PN(10) (30 kDa PEG, diameter 10 nm) was imaged by PET, surface fluorescence, and fluorescence microscopy. DFO-PN(10) was internalized by tumor cells (fluorescence microscopy) and by cultured cells (by FACS). [(89)Zr]:DFO-PN(4.3) (5 kDa PEG, diameter 4.3 nm) concentrated at incision generated inflammations but not at sites of transient brain ischemia. DFO-PNs are fluorescent, PK tunable forms of DFO that might be investigated as antitumor or anti-inflammatory agents.
Collapse
Affiliation(s)
| | | | | | - Hoonsung Cho
- ⊥School of Materials Science and Engineering, Chonnam National University, Gwangju, South Korea, 500-757
| | | | | | | | | | | | | |
Collapse
|
106
|
Qian Y, Yin C, Chen Y, Zhang S, Jiang L, Wang F, Zhao M, Liu S. Estrogen contributes to regulating iron metabolism through governing ferroportin signaling via an estrogen response element. Cell Signal 2015; 27:934-42. [PMID: 25660146 DOI: 10.1016/j.cellsig.2015.01.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/31/2015] [Indexed: 12/21/2022]
Abstract
Ferroportin (FPN) is the only known iron exporter in mammalian cells, and is universally expressed in most types of cells. FPN signaling plays a crucial role in maintaining iron homeostasis through governing the level of intracellular iron. Serum iron storage is conversely related with the estrogen level in the female bodies, and women in post-menopause are possibly subjected to iron retention. However, the potential effects of estrogen on iron metabolism are not clearly understood. Here, FPN mRNA transcription in all selected estrogen receptor positive (ER+) cells was significantly reduced upon 17β-estradiol (E2) treatment; and this inhibitory effect could be attenuated by ER antagonist tamoxifen. Likewise, in murine bone marrow-derived macrophages (BMDMs), FPN reduction with elevated intracellular iron (reflected by increased ferritin) was observed in response to E2; however, ferritin level barely responded to E2 in FPN-null BMDMs. The observation of inhibition of FPN mRNA expression was not replicated in ER(-) cells upon E2. A functional estrogen response element (ERE) was identified within the promoter of FPN, and this ERE was responsible for the suppressive effect of E2 on FPN expression. Moreover, ovariectomized (OVX) and sham-operated (SHAM) mice were used to further confirm the in vitro finding. The expression of hepatic FPN was induced in OVX mice, compared to that in the SHAM mice. Taken together, our results demonstrated that estrogen is involved in regulating FPN expression through a functional ERE on its promoter, providing additional insights into a vital role of estrogen in iron metabolism.
Collapse
Affiliation(s)
- Yi Qian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Chunyang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shuping Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Li Jiang
- Department of Nutrition, School of Public Health, Institute of Nutrition and Food Safety, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Fudi Wang
- Department of Nutrition, School of Public Health, Institute of Nutrition and Food Safety, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Meirong Zhao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
107
|
Abstract
Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of the iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer.
Collapse
Affiliation(s)
- Laura M Bystrom
- Department of Pediatrics-Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA.
| | - Stefano Rivella
- Department of Pediatrics-Hematology/Oncology, Weill Cornell Medical College, New York, NY 10021, USA; Department of Cell and Development Biology, Weill Cornell Medical College, New York, NY 10021, USA.
| |
Collapse
|
108
|
Kaplánek R, Havlík M, Dolenský B, Rak J, Džubák P, Konečný P, Hajdúch M, Králová J, Král V. Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger's base skeleton. Bioorg Med Chem 2015; 23:1651-9. [PMID: 25737088 DOI: 10.1016/j.bmc.2015.01.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 01/16/2023]
Abstract
We report the design and synthesis of novel anticancer agents based on bis-hydrazones separated by a rigid Tröger's base skeleton. This novel approach combines a biologically active moiety (hydrazone) with this scaffold (Tröger's base) to construct DNA intercalators. Evaluation of the anticancer activity of these agents using seven cancer cell lines and two healthy cell lines found that several derivatives had potent anticancer activity and excellent selectivity indexes toward cancer cells. The antimicrobial activities were tested on a set of thirteen bacterial stains, but the prepared compounds were not active. Complexation studies using biologically important metal ions demonstrated that these compounds are able to bind Cu(2+), Fe(3+), Co(2+), Ni(2+) and Zn(2+). DNA intercalation studies showed that the compounds themselves do not interact with DNA, but their metallocomplexes do interact, most likely via intercalation into DNA.
Collapse
Affiliation(s)
- Robert Kaplánek
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Martin Havlík
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Bohumil Dolenský
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jakub Rak
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 775 15 Olomouc, Czech Republic
| | - Petr Konečný
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 775 15 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Palacky University and University Hospital in Olomouc, Faculty of Medicine and Dentistry, Hněvotínská 5, 775 15 Olomouc, Czech Republic
| | - Jarmila Králová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20 Prague 4, Czech Republic
| | - Vladimír Král
- Department of Analytical Chemistry, Faculty of Chemical Engineering, University of Chemical Technology, Technická 5, 166 28 Prague 6, Czech Republic.
| |
Collapse
|
109
|
Sidarovich V, Adami V, Gatto P, Greco V, Tebaldi T, Tonini GP, Quattrone A. Translational downregulation of HSP90 expression by iron chelators in neuroblastoma cells. Mol Pharmacol 2015; 87:513-24. [PMID: 25564462 DOI: 10.1124/mol.114.095729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Iron is an essential cellular nutrient, being a critical cofactor of several proteins involved in cell growth and replication. Compared with normal cells, neoplastic cells have been shown to require a greater amount of iron, thus laying the basis for the promising anticancer activity of iron chelators. In this work, we evaluated the effects of molecules with iron chelation activity on neuroblastoma (NB) cell lines. Of the 17 iron chelators tested, six reduced cell viability of two NB cell lines with an inhibition of growth of 50% below 10 µM; four of the six molecules-ciclopirox olamine (CPX), piroctone, 8-hydroxyquinoline, and deferasirox-were also shown to efficiently chelate intracellular iron within minutes after addition. Effects on cell viability of one of the compounds, CPX, were indeed dependent on chelation of intracellular iron and mediated by both G0/G1 cell cycle block and induction of apoptosis. By combined transcriptome and translatome profiling we identified early translational downregulation of several members of the heat shock protein group as a specific effect of CPX treatment. We functionally confirmed iron-dependent depletion of HSP90 and its client proteins at pharmacologically achievable concentrations of CPX, and we extended this effect to piroctone, 8-hydroxyquinoline, and deferasirox. Given the documented sensitivity of NB cells to HSP90 inhibition, we propose CPX and other iron chelators as investigational antitumor agents in NB therapy.
Collapse
Affiliation(s)
- Viktoryia Sidarovich
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Valentina Adami
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Pamela Gatto
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Valentina Greco
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Gian Paolo Tonini
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy (V.S., P.G., V.G., T.T., A.Q.); High-Throughput Screening Core Facility, Centre for Integrative Biology, University of Trento, Trento, Italy (V.A.); and Neuroblastoma Laboratory, Onco/Hematology Laboratory, SDB Department, University of Padua, Pediatric Research Institute, Padua, Italy (G.P.T.)
| |
Collapse
|
110
|
Phatak VM, Muller PAJ. Metal toxicity and the p53 protein: an intimate relationship. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00117f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The relationship between p53, ROS and transition metals.
Collapse
|
111
|
Muhammad F, Qi W, Wang A, Gu J, Du J, Zhu G. Using oxidant susceptibility of thiol stabilized nanoparticles to develop an inflammation triggered drug release system. J Mater Chem B 2015; 3:1597-1604. [DOI: 10.1039/c4tb01709a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ultrasmall thiol passivated ZnS NPs are prepared using a newly developed synthetic protocol. Exposure to hydroxyl radicals results in oxidation of the thiol groups, thus destabilizing the ZnS nanolids to open drug encompassing pores for attaining an inflammation responsive drug delivery system.
Collapse
Affiliation(s)
- Faheem Muhammad
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Wenxiu Qi
- College of Life Science
- Jilin University
- Changchun
- China
| | - Aifei Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| | - Jingkai Gu
- College of Life Science
- Jilin University
- Changchun
- China
| | - Jianshi Du
- China Japan Union Hospital
- Jilin University
- Changchun
- China
| | - Guangshan Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun
- China
| |
Collapse
|
112
|
Fei BL, Xu WS, Gao WL, Zhang J, Zhao Y, Long JY, Anson CE, Powell AK. DNA binding and cytotoxicity activity of a chiral iron(III) triangle complex based on a natural rosin product. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 142:77-85. [DOI: 10.1016/j.jphotobiol.2014.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/22/2014] [Accepted: 11/18/2014] [Indexed: 12/21/2022]
|
113
|
Zhang Y, Lima CF, Rodrigues LR. Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutr Rev 2014; 72:763-73. [PMID: 25406879 DOI: 10.1111/nure.12155] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lactoferrin has been widely studied over the last 70 years, and its role in diverse biological functions is now well known and generally accepted by the scientific community. Usually, alterations of the lactoferrin gene in cells are associated with an increased incidence of cancer. Several studies suggest that exogenous treatment with lactoferrin and its derivatives can efficiently inhibit the growth of tumors and reduce susceptibility to cancer. None of these studies, however, reported a consistent outcome with regard to the mechanisms underlying the anticancer effects of lactoferrin. In this review, the association of lactoferrin with cancer is thoroughly discussed, from lactoferrin gene expression to the potential use of lactoferrin in cancer therapy. Lactoferrin cytotoxicity against several cancers is reported to occur in distinct ways under different conditions, namely by cell membrane disruption, apoptosis induction, cell cycle arrest, and cell immunoreaction. Based on these mechanisms, new strategies to improve the anticancer effects of the lactoferrin protein and/or its derivatives are proposed. The potential for lactoferrin in the field of cancer research (including as a chemotherapeutic agent in cancer therapy) is also discussed.
Collapse
Affiliation(s)
- Yunlei Zhang
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal; College of Life Science, Hunan Provincial Key Laboratory of Microbial Molecular Biology - State Key Laboratory Breeding Base of Microbial Molecular Biology, Hunan Normal University, Changsha, China
| | | | | |
Collapse
|
114
|
Taşdemir D, Karaküçük-İyidoğan A, Ulaşli M, Taşkin-Tok T, Oruç-Emre EE, Bayram H. Synthesis, Molecular Modeling, and Biological Evaluation of Novel Chiral Thiosemicarbazone Derivatives as Potent Anticancer Agents. Chirality 2014; 27:177-88. [DOI: 10.1002/chir.22408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Demet Taşdemir
- Gaziantep University; Faculty of Science and Arts, Department of Chemistry; Gaziantep Turkey
| | | | - Mustafa Ulaşli
- Gaziantep University; Faculty of Medicine, Department of Medical Biology; Sehitkamil Gaziantep Turkey
| | - Tuğba Taşkin-Tok
- Gaziantep University; Faculty of Science and Arts, Department of Chemistry; Gaziantep Turkey
| | - Emİne Elçİn Oruç-Emre
- Gaziantep University; Faculty of Science and Arts, Department of Chemistry; Gaziantep Turkey
| | - Hasan Bayram
- Gaziantep University; Faculty of Medicine, Department of Pulmonary Diseases; Sehitkamil Gaziantep Turkey
| |
Collapse
|
115
|
Structure-activity relationships of novel salicylaldehyde isonicotinoyl hydrazone (SIH) analogs: iron chelation, anti-oxidant and cytotoxic properties. PLoS One 2014; 9:e112059. [PMID: 25393531 PMCID: PMC4231169 DOI: 10.1371/journal.pone.0112059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 10/11/2014] [Indexed: 01/08/2023] Open
Abstract
Salicylaldehyde isonicotinoyl hydrazone (SIH) is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability). Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O), which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects.
Collapse
|
116
|
Chen Y, Zhang S, Wang X, Guo W, Wang L, Zhang D, Yuan L, Zhang Z, Xu Y, Liu S. Disordered signaling governing ferroportin transcription favors breast cancer growth. Cell Signal 2014; 27:168-76. [PMID: 25451081 DOI: 10.1016/j.cellsig.2014.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/23/2014] [Accepted: 11/03/2014] [Indexed: 12/17/2022]
Abstract
Iron is a necessary chemical element needed by all organisms. Iron metabolism is finely tuned in mammals, and the hepcidin-ferroportin (FPN) axis is the central signaling in governing systemic iron homeostasis. Deregulation of this signaling would lead to iron disorders and likely other diseases including cancers. Reduced FPN was previously found to correlate with poor prognosis in breast cancer patients. Nonetheless, the biological effects of abnormal FPN expression in tumor cells remain largely unexplored, and the mechanisms underlying misregulated expression of FPN in cancers keep elusive. In the current study, we scrutinized the effects of abnormal FPN on tumor growth and the molecular mechanisms of diminished tumor FPN. Downregulation of FPN significantly promoted breast cancer growth, whereas FPN upregulation impeded tumor growth. We demonstrated that the transcription factors Nrf2 (nuclear factor erythroid 2-like 2) and MZF-1 (myeloid zinc finger-1) synergistically transactivated FPN expression in breast cancer cells. Moreover, CpG island methylation at the FPN promoter was the reason of attenuated FPN expression. Downregulation of Nrf2 and MZF-1 and hypermethylation of the FPN promoter were concurrently associated with decreased FPN concentration in breast tumors. Taken together, our study highlighted the contribution of disordered iron metabolism to breast cancer growth, and also signified an oncogenic effect of misregulated ferroportin in breast cancers. This work represents a promising starting point to the possibility of restraining breast cancer through targeting FPN or its upstream regulatory factors.
Collapse
Affiliation(s)
- Yue Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Shuping Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaoyan Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenli Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Daoqiang Zhang
- Weifang Medical College, Wendeng Central Hospital, Weihai 264400, China
| | - Lin Yuan
- Weifang Medical College, Wendeng Central Hospital, Weihai 264400, China
| | - Zhihong Zhang
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
| | - Yong Xu
- Department of Urology, the Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
117
|
Gallium maltolate inhibits human cutaneous T-cell lymphoma tumor development in mice. J Invest Dermatol 2014; 135:877-884. [PMID: 25371972 DOI: 10.1038/jid.2014.476] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 09/22/2014] [Accepted: 10/20/2014] [Indexed: 01/07/2023]
Abstract
Cutaneous T-cell lymphomas (CTCLs) represent a heterogeneous group of non-Hodgkin's lymphoma characterized by an accumulation of malignant CD4 T cells in the skin. The group IIIa metal salt, gallium nitrate, is known to have antineoplastic activity against B-cell lymphoma in humans, but its activity in CTCLs has not been elaborated in detail. Herein, we examined the antineoplastic efficacy of a gallium compound, gallium maltolate (GaM), in vitro and in vivo with murine models of CTCLs. GaM inhibited cell growth and induced apoptosis of cultured CTCL cells. In human CTCL xenograft models, peritumoral injection of GaM limited the growth of CTCL cells, shown by fewer tumor formations, smaller tumor sizes, and decreased neovascularization in tumor microenvironment. To identify key signaling pathways that have a role in GaM-mediated reduction of tumor growth, we analyzed inflammatory cytokines, as well as signal transduction pathways in CTCL cells treated by GaM. IFN-γ-induced chemokines and IL-13 were found to be notably increased in GaM-treated CTCL cells. However, immunosuppressive cytokines, such as IL-10, were decreased with GaM treatment. Interestingly, both oxidative stress and p53 pathways were involved in GaM-induced cytotoxicity. These results warrant further investigation of GaM as a therapeutic agent for CTCLs.
Collapse
|
118
|
Herynek V, Wagnerová D, Malucelli A, Vymazal J, Sameš M, Hájek M. Alterations in the basal ganglia in patients with brain tumours may be due to excessive iron deposition. Oncol Lett 2014; 9:43-46. [PMID: 25435931 PMCID: PMC4246608 DOI: 10.3892/ol.2014.2638] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 09/26/2014] [Indexed: 11/06/2022] Open
Abstract
The accumulation of iron in the brain is a common physiological process. However, alterations in the deposition of iron or other paramagnetic substances are associated with various diseases. In the present study, the deposition of paramagnetic substances in patients with brain tumours was evaluated using T2 relaxometry. A total of 23 patients with untreated tumours or with recurrent tumours following treatment, together with a group of 19 age-matched healthy controls, were examined using T2 relaxometry at 3T. The relaxation times in the basal ganglia, thalamus and white matter were evaluated. Significantly lower T2 relaxation times were identified in the basal ganglia and thalamus of the patients with tumours, as compared with those of the controls (P<0.05). No statistically significant difference was identified between patients with untreated or recurrent brain tumours. The reduction in T2 relaxation times in the brain tumour patients was possibly caused by the accumulation of iron, since iron homeostasis is known to be altered in patients with tumours. We propose that increased iron deposition is a consequence of a higher risk of oxidative stress caused by an increased iron concentration in the plasma or cerebrospinal fluid.
Collapse
Affiliation(s)
- Vít Herynek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská, Prague 14021, Czech Republic
| | - Dita Wagnerová
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská, Prague 14021, Czech Republic
| | - Alberto Malucelli
- Department of Neurosurgery, JE Purkyně University and Masaryk Hospital, Sociální péče, Ústí nad Labem 40113, Czech Republic
| | - Josef Vymazal
- Department of Radiology, Na Homolce Hospital, Roentgenova, Prague 15030, Czech Republic
| | - Martin Sameš
- Department of Neurosurgery, JE Purkyně University and Masaryk Hospital, Sociální péče, Ústí nad Labem 40113, Czech Republic
| | - Milan Hájek
- Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Vídeňská, Prague 14021, Czech Republic
| |
Collapse
|
119
|
Chen Y, Zhang Z, Yang K, Du J, Xu Y, Liu S. Myeloid zinc-finger 1 (MZF-1) suppresses prostate tumor growth through enforcing ferroportin-conducted iron egress. Oncogene 2014; 34:3839-47. [PMID: 25284586 DOI: 10.1038/onc.2014.310] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/09/2014] [Accepted: 08/13/2014] [Indexed: 12/24/2022]
Abstract
Although previous studies suggest that myeloid zinc-finger 1 (MZF-1) is a multifaceted transcription factor that may function as either an oncogene or a tumor suppressor, the molecular bases determining its different traits remain elusive. Increasing evidence suggests that disorders in iron metabolism affect tumorigenesis and tumor behaviors, and that excess tumor iron stimulates tumor progression through various mechanisms such as enhancing DNA replication and energy metabolism. Ferroportin (FPN) is the only known iron exporter in mammalian cells, and it determines global iron egress out of cells. FPN reduction leads to decreased iron efflux and increased intracellular iron that consequentially aggravates the oncogenic effects of iron. MZF-1 was recently identified as a transcription factor that regulates FPN expression. Thus far, however, the molecular mechanisms underlying the MZF-1-FPN signaling in cancers are largely unknown. Here, we found a significant reduction of FPN levels in prostate tumors relative to adjacent tissues, and demonstrated a crucial role of FPN in tumor growth through controlling tumor iron concentration. Inhibition of MZF-1 expression led to reduced FPN concentration, coupled with resultant intracellular iron retention, increased iron-related cellular activities and enhanced tumor cell growth. In contrast, increase of MZF-1 expression restrained tumor cell growth by promoting FPN-driven iron egress. Importantly, we demonstrated that AP4 and c-Myb jointly modulated MZF-1 transcription, and that miR-492 was also directly involved in regulating MZF-1 concentration through binding to the 3' untranslated regions of its mRNA. These results correlate with reduced AP4 and c-Myb expression and elevated miR-492 expression found in prostate tumors as compared with adjacent tissues that resulted in diminished MZF-1 and FPN. Moreover, we demonstrated that alterations of AP4, c-Myb and miR-492 levels significantly affected tumor cell growth. Targeting molecules within the MZF-1-FPN signaling thus appears to be a promising approach to restrain prostate cancer.
Collapse
Affiliation(s)
- Y Chen
- 1] Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China [2] State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Z Zhang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - K Yang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - J Du
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Y Xu
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, China
| | - S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
120
|
Yousefpour P, Chilkoti A. Co-opting biology to deliver drugs. Biotechnol Bioeng 2014; 111:1699-716. [PMID: 24916780 PMCID: PMC4251460 DOI: 10.1002/bit.25307] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 05/30/2014] [Accepted: 06/05/2014] [Indexed: 01/17/2023]
Abstract
The goal of drug delivery is to improve the safety and therapeutic efficacy of drugs. This review focuses on delivery platforms that are either derived from endogenous pathways, long-circulating biomolecules and cells or that piggyback onto long-circulating biomolecules and cells. The first class of such platforms is protein-based delivery systems--albumin, transferrin, and fusion to the Fc domain of antibodies--that have a long-circulation half-life and are designed to transport different molecules. The second class is lipid-based delivery systems-lipoproteins and exosomes-that are naturally occurring circulating lipid particles. The third class is cell-based delivery systems--erythrocytes, macrophages, and platelets--that have evolved, for reasons central to their function, to exhibit a long life-time in the body. The last class is small molecule-based delivery systems that include folic acid. This article reviews the biology of these systems, their application in drug delivery, and the promises and limitations of these endogenous systems for drug delivery.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708
| | | |
Collapse
|
121
|
Akam EA, Chang TM, Astashkin AV, Tomat E. Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators. Metallomics 2014; 6:1905-12. [PMID: 25100578 DOI: 10.1039/c4mt00153b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species.
Collapse
Affiliation(s)
- Eman A Akam
- University of Arizona, Department of Chemistry and Biochemistry, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA.
| | | | | | | |
Collapse
|
122
|
Jeong SM, Lee J, Finley LWS, Schmidt PJ, Fleming MD, Haigis MC. SIRT3 regulates cellular iron metabolism and cancer growth by repressing iron regulatory protein 1. Oncogene 2014; 34:2115-24. [PMID: 24909164 PMCID: PMC4747239 DOI: 10.1038/onc.2014.124] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 12/30/2022]
Abstract
Iron metabolism is essential for many cellular processes including oxygen transport, respiration and DNA synthesis, and many cancer cells exhibit dysregulation in iron metabolism. Maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs), which control the expression of iron-related genes by binding iron-responsive elements (IREs) of target mRNAs. Here, we report that mitochondrial SIRT3 regulates cellular iron metabolism by modulating IRP1 activity. SIRT3 loss increases reactive oxygen species production, leading to elevated IRP1 binding to IREs. As a consequence, IRP1 target genes, such as the transferrin receptor (TfR1), a membrane-associated glycoprotein critical for iron uptake and cell proliferation, are controlled by SIRT3. Importantly, SIRT3 deficiency results in a defect in cellular iron homeostasis. SIRT3 null cells contain high levels of iron and lose iron-dependent TfR1 regulation. Moreover, SIRT3 null mice exhibit higher levels of iron and TfR1 expression in the pancreas. We found that the regulation of iron uptake and TfR1 expression contribute to the tumor suppressive activity of SIRT3. Indeed, SIRT3 expression is negatively correlated with TfR1 expression in human pancreatic cancers. SIRT3 overexpression decreases TfR1 expression by inhibiting IRP1 and represses proliferation in pancreatic cancer cells. Our data uncover a novel role of SIRT3 in cellular iron metabolism through IRP1 regulation, and suggest that SIRT3 functions as a tumor suppressor, in part, by modulating cellular iron metabolism.
Collapse
Affiliation(s)
- S M Jeong
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - J Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - L W S Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - P J Schmidt
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - M D Fleming
- Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - M C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
123
|
Yu R, Wang D, Ren X, Zeng L, Liu Y. The growth-inhibitory and apoptosis-inducing effect of deferoxamine combined with arsenic trioxide on HL-60 xenografts in nude mice. Leuk Res 2014; 38:1085-90. [PMID: 24908354 DOI: 10.1016/j.leukres.2014.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/27/2014] [Accepted: 05/03/2014] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the growth-inhibitory and apoptosis-inducing effect of deferoxamine (DFO) combined with arsenic trioxide (ATO) on the human HL-60 xenografts in nude mice and its mechanism. METHOD The highly tumorigenic leukemia cell line HL-60 cells were inoculated subcutaneously into nude mice to establish a human leukemia xenograft model. The HL-60 xenograft nude mice models were randomly divided into four groups: control (Normal saline, NS), 50mg/kg DFO, 3mg/kg ATO, the combined treatment (50mg/kg DFO+1.5mg/kg ATO) once HL-60 cells were inoculated. Tumor sizes, growth curves, inhibitory rates, cell apoptosis, and the expression of apoptosis related markers were measured to evaluate the tumor growth. RESULTS Xenografted tumors were observed in all nude mice since the 5th day of inoculation. The inhibitory rates of tumor weight were 2.67%, 10.69%, and 25.57% in DFO, ATO and combination therapy groups, respectively. The combination of DFO with ATO induces significantly more tumor cell apoptosis than either agent alone (p<0.05). The expression of NF-κBp65 and survivin proteins decreased significantly while the expression of Caspase-3 and Bax increased in the combination therapy group (p<0.05). Double immunofluorescence for Caspase-3 and NFκBp65 demonstrated an inverse relationship between Caspase-3-positive areas and NFκBp65-positive areas, as well as the co-localization of Bax and survivin in xenografted tumor cells. CONCLUSIONS Combination of DFO and ATO has synergistic effects on tumor growth inhibition and apoptosis-inducing in vivo with no significant side effects. The DFO and ATO can up-regulate the expression of Caspase-3 and Bax, and down-regulate the expression of NF-κBp65 and survivin, especially for their combination.
Collapse
Affiliation(s)
- Runhong Yu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Key Discipline Laboratory of Clinical Medicine, Zhengzhou 450052, China
| | - Dao Wang
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Key Discipline Laboratory of Clinical Medicine, Zhengzhou 450052, China
| | - Xiuhua Ren
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Li Zeng
- Department of Laboratory Medicine, Zhengzhou University, Zhengzhou 450052, China
| | - Yufeng Liu
- Department of Pediatrics, First Affiliated Hospital of Zhengzhou University, Key Discipline Laboratory of Clinical Medicine, Zhengzhou 450052, China.
| |
Collapse
|
124
|
Iron homeostasis in breast cancer. Cancer Lett 2014; 347:1-14. [DOI: 10.1016/j.canlet.2014.01.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/16/2013] [Accepted: 01/24/2014] [Indexed: 02/08/2023]
|
125
|
Al-Fatlawi AA, Al-Fatlawi AA, Irshad M, Zafaryab M, Alam Rizvi MM, Ahmad A. Rice Bran Phytic Acid Induced Apoptosis Through Regulation of Bcl-2/Bax and p53 Genes in HepG2 Human Hepatocellular Carcinoma Cells. Asian Pac J Cancer Prev 2014; 15:3731-6. [DOI: 10.7314/apjcp.2014.15.8.3731] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
126
|
Abstract
SIGNIFICANCE In this review, the dual nature of both iron and reactive oxygen species (ROS) will be explored in normal and cancer cell metabolism. Although iron and ROS play important roles in cellular homeostasis, they may also contribute to carcinogenesis. On the other hand, many studies have indicated that abrogation of iron metabolism, elevation of ROS, or modification of redox regulatory mechanisms in cancer cells, should be considered as therapeutic approaches for cancer. RECENT ADVANCES Drugs that target different aspects of iron metabolism may be promising therapeutics for cancer. The ability of iron chelators to cause iron depletion and/or elevate ROS levels indicates that these types of compounds have more potential as antitumor medicines than originally expected. Other natural and synthetic compounds that target pathways involved in ROS homeostasis also have potential value alone or in combination with current chemotherapeutics. CRITICAL ISSUES Although ROS induction and iron depletion may be targets for cancer therapies, the optimal therapeutic strategies have yet to be identified. This review highlights some of the research that strives to identify such therapeutics. FUTURE DIRECTIONS More studies are needed to better understand the role of iron and ROS in carcinogenesis not only as cancer promoters, but also as cytotoxic agents to cancer cells and cancer stem cells (CSCs). Moreover, the structure-activity effects of iron chelators and other compounds that increase ROS and/or disrupt iron metabolism need to be further evaluated to assess the effectiveness and selectivity of these compounds against both cancer and CSCs.
Collapse
Affiliation(s)
- Laura M Bystrom
- 1 Department of Pediatrics-Hematology/Oncology, Weill Cornell Medical College , New York, New York
| | | | | |
Collapse
|
127
|
Liu Z, Velpula KK, Devireddy L. 3-Hydroxybutyrate dehydrogenase-2 and ferritin-H synergistically regulate intracellular iron. FEBS J 2014; 281:2410-21. [DOI: 10.1111/febs.12794] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/12/2014] [Accepted: 03/25/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Zhuoming Liu
- Case Comprehensive Cancer Center and Department of Pathology; Case Western Reserve University; Cleveland OH USA
| | - Kiran K. Velpula
- Case Comprehensive Cancer Center and Department of Pathology; Case Western Reserve University; Cleveland OH USA
| | - Lax Devireddy
- Case Comprehensive Cancer Center and Department of Pathology; Case Western Reserve University; Cleveland OH USA
| |
Collapse
|
128
|
Yip KW, Zhang Z, Sakemura-Nakatsugawa N, Huang JW, Vu NM, Chiang YK, Lin CL, Kwan JYY, Yue S, Jitkova Y, To T, Zahedi P, Pai EF, Schimmer AD, Lovell JF, Sessler JL, Liu FF. A porphodimethene chemical inhibitor of uroporphyrinogen decarboxylase. PLoS One 2014; 9:e89889. [PMID: 24587102 PMCID: PMC3934957 DOI: 10.1371/journal.pone.0089889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/24/2014] [Indexed: 02/04/2023] Open
Abstract
Uroporphyrinogen decarboxylase (UROD) catalyzes the conversion of uroporphyrinogen to coproporphyrinogen during heme biosynthesis. This enzyme was recently identified as a potential anticancer target; its inhibition leads to an increase in reactive oxygen species, likely mediated by the Fenton reaction, thereby decreasing cancer cell viability and working in cooperation with radiation and/or cisplatin. Because there is no known chemical UROD inhibitor suitable for use in translational studies, we aimed to design, synthesize, and characterize such a compound. Initial in silico-based design and docking analyses identified a potential porphyrin analogue that was subsequently synthesized. This species, a porphodimethene (named PI-16), was found to inhibit UROD in an enzymatic assay (IC50 = 9.9 µM), but did not affect porphobilinogen deaminase (at 62.5 µM), thereby exhibiting specificity. In cellular assays, PI-16 reduced the viability of FaDu and ME-180 cancer cells with half maximal effective concentrations of 22.7 µM and 26.9 µM, respectively, and only minimally affected normal oral epithelial (NOE) cells. PI-16 also combined effectively with radiation and cisplatin, with potent synergy being observed in the case of cisplatin in FaDu cells (Chou-Talalay combination index <1). This work presents the first known synthetic UROD inhibitor, and sets the foundation for the design, synthesis, and characterization of higher affinity and more effective UROD inhibitors.
Collapse
Affiliation(s)
- Kenneth W. Yip
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Zhan Zhang
- Department of Chemistry, Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, Texas, United States of America
| | - Noriko Sakemura-Nakatsugawa
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Jui-Wen Huang
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsin-chu, Taiwan
| | - Nhu Mai Vu
- Department of Chemistry, Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, Texas, United States of America
| | - Yi-Kun Chiang
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsin-chu, Taiwan
| | - Chih-Lung Lin
- Biomedical Technology and Device Research Labs, Industrial Technology Research Institute, Hsin-chu, Taiwan
| | - Jennifer Y. Y. Kwan
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Shijun Yue
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Yulia Jitkova
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Terence To
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Payam Zahedi
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
| | - Emil F. Pai
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Ontario, Canada
- Department of Molecular Genetics; University of Toronto, Ontario, Canada
| | - Aaron D. Schimmer
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, United States of America
| | - Jonathan L. Sessler
- Department of Chemistry, Institute for Cellular and Molecular Biology, the University of Texas at Austin, Austin, Texas, United States of America
| | - Fei-Fei Liu
- Ontario Cancer Institute/Campbell Family Cancer Research Institute, University Health Network (UHN), Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Princess Margaret Cancer Centre, UHN, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
129
|
Ellis S, Kalinowski DS, Leotta L, Huang MLH, Jelfs P, Sintchenko V, Richardson DR, Triccas JA. Potent antimycobacterial activity of the pyridoxal isonicotinoyl hydrazone analog 2-pyridylcarboxaldehyde isonicotinoyl hydrazone: a lipophilic transport vehicle for isonicotinic acid hydrazide. Mol Pharmacol 2014; 85:269-78. [PMID: 24243647 PMCID: PMC6067633 DOI: 10.1124/mol.113.090357] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Accepted: 11/15/2013] [Indexed: 11/22/2022] Open
Abstract
The rise in drug-resistant strains of Mycobacterium tuberculosis is a major threat to human health and highlights the need for new therapeutic strategies. In this study, we have assessed whether high-affinity iron chelators of the pyridoxal isonicotinoyl hydrazone (PIH) class can restrict the growth of clinically significant mycobacteria. Screening a library of PIH derivatives revealed that one compound, namely, 2-pyridylcarboxaldehyde isonicotinoyl hydrazone (PCIH), exhibited nanomolar in vitro activity against Mycobacterium bovis bacille Calmette-Guérin and virulent M. tuberculosis. Interestingly, PCIH is derived from the condensation of 2-pyridylcarboxaldehyde with the first-line antituberculosis drug isoniazid [i.e., isonicotinic acid hydrazide (INH)]. PCIH displayed minimal host cell toxicity and was effective at inhibiting growth of M. tuberculosis within cultured macrophages and also in vivo in mice. Further, PCIH restricted mycobacterial growth at high bacterial loads in culture, a property not observed with INH, which shares the isonicotinoyl hydrazide moiety with PCIH. When tested against Mycobacterium avium, PCIH was more effective than INH at inhibiting bacterial growth in broth culture and in macrophages, and also reduced bacterial loads in vivo. Complexation of PCIH with iron decreased its effectiveness, suggesting that iron chelation may play some role in its antimycobacterial efficacy. However, this could not totally account for its potent efficacy, and structure-activity relationship studies suggest that PCIH acts as a lipophilic vehicle for the transport of its intact INH moiety into the mammalian cell and the mycobacterium. These results demonstrate that iron-chelating agents such as PCIH may be of benefit in the treatment and control of mycobacterial infection.
Collapse
Affiliation(s)
- Samantha Ellis
- Microbial Immunity and Pathogenesis Group, Department of Infectious Diseases and Immunology (S.E., L.L., J.A.T.), and Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute (D.S.K., M.L.H.H., D.R.R.), University of Sydney, Sydney, New South Wales, Australia; and Centre for Infectious Diseases and Microbiology, Institute of Clinical Pathology and Medical Research-Pathology West, Westmead Hospital, Sydney, New South Wales, Australia (P.J., V.S.)
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Lane DJR, Mills TM, Shafie NH, Merlot AM, Saleh Moussa R, Kalinowski DS, Kovacevic Z, Richardson DR. Expanding horizons in iron chelation and the treatment of cancer: role of iron in the regulation of ER stress and the epithelial-mesenchymal transition. Biochim Biophys Acta Rev Cancer 2014; 1845:166-81. [PMID: 24472573 DOI: 10.1016/j.bbcan.2014.01.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/14/2014] [Indexed: 12/19/2022]
Abstract
Cancer is a major public health issue and, despite recent advances, effective clinical management remains elusive due to intra-tumoural heterogeneity and therapeutic resistance. Iron is a trace element integral to a multitude of metabolic processes, including DNA synthesis and energy transduction. Due to their generally heightened proliferative potential, cancer cells have a greater metabolic demand for iron than normal cells. As such, iron metabolism represents an important "Achilles' heel" for cancer that can be targeted by ligands that bind and sequester intracellular iron. Indeed, novel thiosemicarbazone chelators that act by a "double punch" mechanism to both bind intracellular iron and promote redox cycling reactions demonstrate marked potency and selectivity in vitro and in vivo against a range of tumours. The general mechanisms by which iron chelators selectively target tumour cells through the sequestration of intracellular iron fall into the following categories: (1) inhibition of cellular iron uptake/promotion of iron mobilisation; (2) inhibition of ribonucleotide reductase, the rate-limiting, iron-containing enzyme for DNA synthesis; (3) induction of cell cycle arrest; (4) promotion of localised and cytotoxic reactive oxygen species production by copper and iron complexes of thiosemicarbazones (e.g., Triapine(®) and Dp44mT); and (5) induction of metastasis and tumour suppressors (e.g., NDRG1 and p53, respectively). Emerging evidence indicates that chelators can further undermine the cancer phenotype via inhibiting the epithelial-mesenchymal transition that is critical for metastasis and by modulating ER stress. This review explores the "expanding horizons" for iron chelators in selectively targeting cancer cells.
Collapse
Affiliation(s)
- Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Thomas M Mills
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Nurul H Shafie
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Angelica M Merlot
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rayan Saleh Moussa
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
131
|
Gaál A, Orgován G, Polgári Z, Réti A, Mihucz VG, Bősze S, Szoboszlai N, Streli C. Complex forming competition and in-vitro toxicity studies on the applicability of di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) as a metal chelator. J Inorg Biochem 2014; 130:52-8. [DOI: 10.1016/j.jinorgbio.2013.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 12/30/2022]
|
132
|
Emirdağ-Öztürk S, Babahan İ, Özmen A. Synthesis, characterization and in vitro anti-neoplastic activity of gypsogenin derivatives. Bioorg Chem 2013; 53:15-23. [PMID: 24463219 DOI: 10.1016/j.bioorg.2013.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/30/2013] [Accepted: 12/03/2013] [Indexed: 01/01/2023]
Abstract
Gypsogenin (L(1); 3-hydroxy-23-oxoolean-12-en-28-oic acid), a natural saponin, was isolated from the boiling water extract of Gypsophila arrostii roots. In addition, the derivatives gypsogenin thiosemicarbazone (L(2); 23-[(aminocarbonothioyl)hydrazono]-3-hydroxolean-12-en-28-oic acid) and gypsogenin thiosemicarbazone glyoxime (L(3)H2; (3β)-3-hydroxy-23-[({[(1Z,2E)-N-hydroxy-2-(hydroxyimino)ethanimidoyl]amino}carbonothioyl)hydrazono] olean-12-en-28-oic acid) as well as the Cu(II) and Co(II) complexes of L(3)H2 were prepared. The structures were established on NMR analysis ((1)H, (13)C NMR, HMBC, HMQC, and NOESY), FT-IR and completed by analysis of LC/MS. Furthermore, the antiproliferative effects of the Co(II) and Cu(II) complexes of the gypsogenin derivatives were assayed in human promyelocytic leukemia (HL 60) cells. These complexes were found to be potent anticancer agents with concentrations that inhibited 50% of proliferation (IpC50) between 5μM and 40μM. Cell death was distinguished by HO/PI double staining. The Co(II) complex of L(3)H2 has shown approximately %50 apoptotic effect at 10μM concentration. Paclitaxel has been used as positive control.
Collapse
Affiliation(s)
- Safiye Emirdağ-Öztürk
- Chemistry Department, Faculty of Science, Ege University, Bornova, İzmir 35100, Turkey
| | - İlknur Babahan
- Chemistry Department, Adnan Menderes University, Aydin 09010, Turkey.
| | - Ali Özmen
- Biology Department, Adnan Menderes University, Aydin 09010, Turkey
| |
Collapse
|
133
|
Wang L, Zhang S, Lin R, Li L, Zhang D, Li X, Liu S. PCB-77 disturbs iron homeostasis through regulating hepcidin gene expression. Gene 2013; 532:146-51. [DOI: 10.1016/j.gene.2013.09.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 08/31/2013] [Accepted: 09/05/2013] [Indexed: 01/23/2023]
|
134
|
Beguin Y, Aapro M, Ludwig H, Mizzen L, Osterborg A. Epidemiological and nonclinical studies investigating effects of iron in carcinogenesis--a critical review. Crit Rev Oncol Hematol 2013; 89:1-15. [PMID: 24275533 DOI: 10.1016/j.critrevonc.2013.10.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/17/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022] Open
Abstract
The efficacy and tolerability of intravenous (i.v.) iron in managing cancer-related anemia and iron deficiency has been clinically evaluated and reviewed recently. However, long-term data in cancer patients are not available; yet, long-term i.v. iron treatment in hemodialysis patients is not associated with increased cancer risk. This review summarizes epidemiological and nonclinical data on the role of iron in carcinogenesis. In humans, epidemiological data suggest correlations between certain cancers and increased iron exposure or iron overload. Nonclinical models that investigated whether iron can enhance carcinogenesis provide only limited evidence relevant for cancer patients since they were typically based on high iron doses as well as injection routes and iron formulations which are not used in the clinical setting. Nevertheless, in the absence of long-term outcome data from prospectively defined trials in i.v. iron-treated cancer patients, iron supplementation should be limited to periods of concomitant anti-tumor treatment.
Collapse
Affiliation(s)
| | | | - Heinz Ludwig
- Center for Oncology and Haematology, Wilhelminenspital, Vienna, Austria
| | | | - Anders Osterborg
- Karolinska Institutet and Karolinska Hospital, Stockholm, Sweden
| |
Collapse
|
135
|
Congiu C, Onnis V. Synthesis and biological evaluation of novel acylhydrazone derivatives as potential antitumor agents. Bioorg Med Chem 2013; 21:6592-9. [DOI: 10.1016/j.bmc.2013.08.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 12/31/2022]
|
136
|
Carlsson MC, Bengtson P, Cucak H, Leffler H. Galectin-3 guides intracellular trafficking of some human serotransferrin glycoforms. J Biol Chem 2013; 288:28398-408. [PMID: 23926108 PMCID: PMC3784757 DOI: 10.1074/jbc.m113.487793] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/06/2013] [Indexed: 11/06/2022] Open
Abstract
Transferrin internalization via clathrin-mediated endocytosis and subsequent recycling after iron delivery has been extensively studied. Here we demonstrate a previously unrecognized parameter regulating this recycling, the binding of galectin-3 to particular glycoforms of transferrin. Two fractions of transferrin, separated by affinity chromatography based on their binding or not to galectin-3, are targeted to kinetically different endocytic pathways in HFL-1 cells expressing galectin-3 but not in SKBR3 cells lacking galectin-3; the SKBR3 cells, however, can acquire the ability to target these transferrin glycoforms differently after preloading with exogenously added galectin-3. In all, this study provides the first evidence of a functional role for transferrin glycans, in intracellular trafficking after uptake. Moreover, the galectin-3-bound glycoform increased in cancer, suggesting a pathophysiological regulation. These are novel aspects of transferrin cell biology, which has previously considered only a degree of iron loading, but not other forms of heterogeneity.
Collapse
Affiliation(s)
- Michael C. Carlsson
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine and
| | - Per Bengtson
- the Division of Clinical Chemistry and Pharmacology, 221 00 Lund University, Lund, Sweden
| | - Helena Cucak
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine and
| | - Hakon Leffler
- From the Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine and
| |
Collapse
|
137
|
Åstrand OAH, Aziz G, Ali SF, Paulsen RE, Hansen TV, Rongved P. Synthesis and initial in vitro biological evaluation of two new zinc-chelating compounds: Comparison with TPEN and PAC-1. Bioorg Med Chem 2013; 21:5175-81. [DOI: 10.1016/j.bmc.2013.06.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/12/2013] [Accepted: 06/14/2013] [Indexed: 12/19/2022]
|
138
|
Schulze CJ, Bray WM, Woerhmann MH, Stuart J, Lokey RS, Linington RG. "Function-first" lead discovery: mode of action profiling of natural product libraries using image-based screening. ACTA ACUST UNITED AC 2013; 20:285-95. [PMID: 23438757 DOI: 10.1016/j.chembiol.2012.12.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/27/2012] [Accepted: 12/13/2012] [Indexed: 12/15/2022]
Abstract
Cytological profiling is a high-content image-based screening technology that provides insight into the mode of action (MOA) for test compounds by directly measuring hundreds of phenotypic cellular features. We have extended this recently reported technology to the mechanistic characterization of unknown natural products libraries for the direct prediction of compound MOAs at the primary screening stage. By analyzing a training set of commercial compounds of known mechanism and comparing these profiles to those obtained from natural product library members, we have successfully annotated extracts based on MOA, dereplicated known compounds based on biological similarity to the training set, and identified and predicted the MOA of a unique family of iron siderophores. Coupled with traditional analytical techniques, cytological profiling provides an avenue for the creation of "function-first" approaches to natural products discovery.
Collapse
Affiliation(s)
- Christopher J Schulze
- Department of Chemistry and Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
139
|
Ford SJ, Obeidy P, Lovejoy DB, Bedford M, Nichols L, Chadwick C, Tucker O, Lui GYL, Kalinowski DS, Jansson PJ, Iqbal TH, Alderson D, Richardson DR, Tselepis C. Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo. Br J Pharmacol 2013; 168:1316-28. [PMID: 23126308 DOI: 10.1111/bph.12045] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/09/2012] [Accepted: 10/15/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Growing evidence implicates iron in the aetiology of gastrointestinal cancer. Furthermore, studies demonstrate that iron chelators possess potent anti-tumour activity, although whether iron chelators show activity against oesophageal cancer is not known. EXPERIMENTAL APPROACH The effect of the iron chelators, deferoxamine (DFO) and deferasirox, on cellular iron metabolism, viability and proliferation was assessed in two oesophageal adenocarcinoma cell lines, OE33 and OE19, and the squamous oesophageal cell line, OE21. A murine xenograft model was employed to assess the effect of deferasirox on oesophageal tumour burden. The ability of chelators to overcome chemoresistance and to enhance the efficacy of standard chemotherapeutic agents (cisplatin, fluorouracil and epirubicin) was also assessed. KEY RESULTS Deferasirox and DFO effectively inhibited cellular iron acquisition and promoted intracellular iron mobilization. The resulting reduction in cellular iron levels was reflected by increased transferrin receptor 1 expression and reduced cellular viability and proliferation. Treating oesophageal tumour cell lines with an iron chelator in addition to a standard chemotherapeutic agent resulted in a reduction in cellular viability and proliferation compared with the chemotherapeutic agent alone. Both DFO and deferasirox were able to overcome cisplatin resistance. Furthermore, in human xenograft models, deferasirox was able to significantly suppress tumour growth, which was associated with decreased tumour iron levels. CONCLUSIONS AND IMPLICATIONS The clinically established iron chelators, DFO and deferasirox, effectively deplete iron from oesophageal tumour cells, resulting in growth suppression. These data provide a platform for assessing the utility of these chelators in the treatment of oesophageal cancer patients.
Collapse
Affiliation(s)
- S J Ford
- School of Cancer Sciences, Department of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Cançado RD, Muñoz M. Intravenous iron therapy: how far have we come? Rev Bras Hematol Hemoter 2013; 33:461-9. [PMID: 23049364 PMCID: PMC3459360 DOI: 10.5581/1516-8484.20110123] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 09/29/2011] [Indexed: 01/29/2023] Open
Abstract
Oral iron supplementation is usually the first choice for the treatment of iron deficiency anemia (IDA) because of its effectiveness and low cost. But unfortunately in many iron deficient conditions, oral iron is a less than the ideal treatment mainly because of adverse events related to the gastrointestinal tract as well as the long course required to treat anemia and replenish body iron stores. The first iron product for intravenous use was high-molecular-weight iron dextran. However, dextran-containing intravenous iron preparations are associated with an elevated risk of anaphylactic reactions, which made physicians reluctant to prescribe intravenous iron in the treatment of iron deficiency anemia for many years. In 1999 and 2001, two new intravenous iron preparations (ferric gluconate and iron sucrose) were introduced into the market as safer alternatives to iron dextran. Over the last five years, three new intravenous iron dextran-free preparations have been developed and have better safety profiles than the more traditional intravenous compounds, as none require test doses and all these products are promising in respect to a more rapid replacement of body iron stores (15-60 minutes/infusion) as they can be given at higher doses (from 500 mg to more than 1000 mg/infusion). The purpose of this review is to discuss some pertinent issues in relation to the history, pharmacology, administration, efficacy, safety profile and toxicity of intravenous iron for the treatment of iron deficiency anemia.
Collapse
Affiliation(s)
- Rodolfo Delfini Cançado
- Hematology-Oncology Department, Faculdade de Ciências Médicas da Santa Casa de São Paulo - FCMSCSP, São Paulo, SP, Brazil
| | | |
Collapse
|
141
|
ZHAO FEI, WANG HAN, KUNDA PATRICILIA, CHEN XUEMEI, LIU QIULING, LIU TAO. Artesunate exerts specific cytotoxicity in retinoblastoma cells via CD71. Oncol Rep 2013; 30:1473-82. [DOI: 10.3892/or.2013.2574] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 05/15/2013] [Indexed: 11/06/2022] Open
|
142
|
Lawen A, Lane DJR. Mammalian iron homeostasis in health and disease: uptake, storage, transport, and molecular mechanisms of action. Antioxid Redox Signal 2013. [PMID: 23199217 DOI: 10.1089/ars.2011.4271] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Iron is a crucial factor for life. However, it also has the potential to cause the formation of noxious free radicals. These double-edged sword characteristics demand a tight regulation of cellular iron metabolism. In this review, we discuss the various pathways of cellular iron uptake, cellular iron storage, and transport. Recent advances in understanding the reduction and uptake of non-transferrin-bound iron are discussed. We also discuss the recent progress in the understanding of transcriptional and translational regulation by iron. Furthermore, we discuss recent advances in the understanding of the regulation of cellular and systemic iron homeostasis and several key diseases resulting from iron deficiency and overload. We also discuss the knockout mice available for studying iron metabolism and the related human conditions.
Collapse
Affiliation(s)
- Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| | | |
Collapse
|
143
|
Mascitelli L, Goldstein MR. Explaining sex difference in cancer risk: might it be related to excess iron? Int J Cancer 2013; 133:2261-2. [PMID: 23649717 DOI: 10.1002/ijc.28240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 04/18/2013] [Accepted: 04/23/2013] [Indexed: 02/06/2023]
|
144
|
Bakir M, McDermot C, Johnson T. Spectroscopic, and electrochemical studies of [MCl2(η2-N,N-dpksc)] (M=Zn, Cd, Hg and dpksc=di-2-pyridylketone semicarbazone). J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.02.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
145
|
Chang TM, Tomat E. Disulfide/thiol switches in thiosemicarbazone ligands for redox-directed iron chelation. Dalton Trans 2013; 42:7846-9. [PMID: 23591852 DOI: 10.1039/c3dt50824b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A disulfide bond is incorporated in the scaffold of thiosemicarbazone iron chelators as a reduction/activation switch. Following reduction, thiol-containing ligands stabilize iron ions in their trivalent oxidation state. The antiproliferative activity of the new chelating systems is assessed in human cancer cell lines and in normal tissue.
Collapse
Affiliation(s)
- Tsuhen M Chang
- University of Arizona, Department of Chemistry and Biochemistry, 1306 E. University Blvd., Tucson, AZ 85721-0041, USA
| | | |
Collapse
|
146
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
147
|
Abstract
SIGNIFICANCE Lysosomes are acidic organelles containing more than fifty hydrolases that provide for the degradation of intracellular and endocytosed materials by autophagy and heterophagy, respectively. They digest a variety of macromolecules, as well as all organelles, and their integrity is crucial. As a result of the degradation of iron-containing macromolecules (e.g., ferritin and mitochondrial components) or endocytosed erythrocytes (by macrophages), lysosomes can accumulate large amounts of iron. This iron occurs often as Fe(II) due to the acidic and reducing lysosomal environment. Fe(II) is known to catalyze Fenton reactions, yielding extremely reactive hydroxyl radicals that may jeopardize lysosomal membrane integrity during oxidative stress. This results in the release of hydrolases and redox-active iron into the cytosol with ensuing damage or cell death. Lysosomes play key roles not only in apoptosis and necrosis but also in neurodegeneration, aging, and atherosclerosis. RECENT ADVANCES The damaging effect of intralysosomal iron can be hampered by endogenous or exogenous iron chelators that enter the lysosomal compartment by membrane permeation, endocytosis, or autophagy. CRITICAL ISSUES Cellular sensitivity to oxidative stress is enhanced by lysosomal redox-active iron or by lysosomal-targeted copper chelators binding copper (from degradation of copper-containing macromolecules) in redox-active complexes. Probably due to higher copper levels, lysosomes of malignant cells may be specifically sensitized by such chelators. FUTURE DIRECTIONS By increasing lysosomal redox-active iron or exposing cells to lysosomal-targeted copper chelators, it should be possible to enhance the sensitivity of cancer cells to radiation-induced oxidative stress or treatment with cytostatics that induce such stress.
Collapse
Affiliation(s)
- Alexei Terman
- Department of Clinical Pathology and Cytology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | | |
Collapse
|
148
|
Li X, Zhang Z, Yu Z, Magnusson J, Yu JX. Novel molecular platform integrated iron chelation therapy for 1H-MRI detection of β-galactosidase activity. Mol Pharm 2013; 10:1360-7. [PMID: 23391334 DOI: 10.1021/mp300627t] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Targeting the increased Fe(3+) content in tumors, we propose a novel molecular platform integrated cancer iron chelation therapy for (1)H-magnetic resonance imaging (MRI) detection of β-galactosidase (β-gal) activity. Following this idea, we have designed, synthesized, and characterized a series of β-d-galactosides conjugated with various chelators and demonstrated the feasibility of this concept for assessing β-gal activity in solution by (1)H-MRI T1 and T2 relaxation mapping.
Collapse
Affiliation(s)
- Xiaojin Li
- Xinjiang Institute of Medicinal Development, Chinese Academy of Medical Sciences, 9 Xinming Road, Urumqi, Xinjiang 830002, China
| | | | | | | | | |
Collapse
|
149
|
Synthesis and biological evaluation of substituted 2-benzoylpyridine thiosemicarbazones: Novel structure–activity relationships underpinning their anti-proliferative and chelation efficacy. Bioorg Med Chem Lett 2013; 23:967-74. [DOI: 10.1016/j.bmcl.2012.12.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/13/2012] [Indexed: 01/17/2023]
|
150
|
Li R, Fan H, Lu R, Gu Y, Si D, Liu C. DETERMINATION OF SCICINIB, A PROMISING THIOSEMICARBAZONE ANTICANCER CANDIDATE IN RAT PLASMA BY LC-MS/MS AND ITS APPLICATION TO A PRECLINICAL PHARMACOKINETICS STUDY. J LIQ CHROMATOGR R T 2013. [DOI: 10.1080/10826076.2012.657734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Rongshan Li
- a Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics) , School of Pharmacy, Tianjin Medical University , Tianjin , China
| | - Huirong Fan
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| | - Rong Lu
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| | - Yuan Gu
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| | - Duanyun Si
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| | - Changxiao Liu
- b State Key laboratory of Drug Delivery Technology and Pharmacokinetics , Tianjin Institute of Pharmaceutical Research , Tianjin , China
| |
Collapse
|