101
|
Zhang GF, Wang J, Han JF, Guo J, Xie ZM, Pan W, Yang JJ, Sun KJ. Acute single dose of ketamine relieves mechanical allodynia and consequent depression-like behaviors in a rat model. Neurosci Lett 2016; 631:7-12. [DOI: 10.1016/j.neulet.2016.08.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/09/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022]
|
102
|
Kato T, Ide S, Minami M. Pain relief induces dopamine release in the rat nucleus accumbens during the early but not late phase of neuropathic pain. Neurosci Lett 2016; 629:73-78. [DOI: 10.1016/j.neulet.2016.06.060] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
103
|
Fiore NT, Austin PJ. Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav Immun 2016; 56:397-411. [PMID: 27118632 DOI: 10.1016/j.bbi.2016.04.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/11/2016] [Accepted: 04/22/2016] [Indexed: 12/28/2022] Open
Abstract
Neuro-immune interactions contribute to the pathogenesis of neuropathic pain due to peripheral nerve injury. A large body of preclinical evidence supports the idea that the immune system acts to modulate the sensory symptoms of neuropathy at both peripheral and central nervous system sites. The potential involvement of neuro-immune interactions in the highly debilitating affective disturbances of neuropathic pain, such as depression, anhedonia, impaired cognition and reduced motivation has received little attention. This is surprising given the widely accepted view that sickness behaviour, depression, cognitive impairment and other neuropsychiatric conditions can arise from inflammatory mechanisms. Moreover, there is a set of well-described immune-to-brain transmission mechanisms that explain how peripheral inflammation can lead to supraspinal neuroinflammation. In the last 5years increasing evidence has emerged that peripheral nerve injury induces supraspinal changes in cytokine or chemokine expression and alters glial cell activity. In this systematic review, based on strong preclinical evidence, we advance the argument that the emergence of affective disturbances in neuropathic pain states are contingent on pro-inflammatory mediators in the interconnected hippocampal-medial prefrontal circuitry that subserve affective behaviours. We explore how dysregulation of inflammatory mediators in these networks may result in affective disturbances through a wide variety of neuromodulatory mechanisms. There are also promising results from clinical trials showing that anti-inflammatory agents have efficacy in the treatment of a variety of neuropsychiatric conditions including depression and appear suited to sub-groups of patients with elevated pro-inflammatory profiles. Thus, although further research is required, aggressively targeting supraspinal pro-inflammatory mediators at critical time-points in appropriate clinical populations is likely to be a novel avenue to treat debilitating affective disturbances in neuropathic conditions.
Collapse
Affiliation(s)
- Nathan T Fiore
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paul J Austin
- Discipline of Anatomy & Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
104
|
Ang ST, Ariffin MZ, Khanna S. The forebrain medial septal region and nociception. Neurobiol Learn Mem 2016; 138:238-251. [PMID: 27444843 DOI: 10.1016/j.nlm.2016.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
The forebrain medial septum, which is an integral part of the septo-hippocampal network, is implicated in sensorimotor integration, fear and anxiety, and spatial learning and memory. A body of evidence also suggests that the septal region affects experimental pain. Indeed, some explorations in humans have raised the possibility that the region may modulate clinical pain as well. This review explores the evidence that implicates the medial septum in nociception and suggests that non-overlapping circuits in the region facilitate acute nociceptive behaviors and defensive behaviors that reflect affect and cognitive appraisal, especially in relation to persistent nociception. In line with a role in nociception, the region modulates nociceptive responses in the neuraxis, including the hippocampus and the anterior cingulate cortex. The aforementioned forebrain regions have also been implicated in persistent/long-lasting nociception. The review also weighs the effects of the medial septum on nociception vis-à-vis the known roles of the region and emphasizes the fact that the region is a part of network of forebrain structures which have been long associated with reward, cognition and affect-motivation and are now implicated in persistent/long-lasting nociception.
Collapse
Affiliation(s)
- Seok Ting Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Program, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
105
|
Gui WS, Wei X, Mai CL, Murugan M, Wu LJ, Xin WJ, Zhou LJ, Liu XG. Interleukin-1β overproduction is a common cause for neuropathic pain, memory deficit, and depression following peripheral nerve injury in rodents. Mol Pain 2016; 12:12/0/1744806916646784. [PMID: 27175012 PMCID: PMC4956151 DOI: 10.1177/1744806916646784] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 04/04/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic pain is often accompanied by short-term memory deficit and depression. Currently, it is believed that short-term memory deficit and depression are consequences of chronic pain. Here, we test the hypothesis that the symptoms might be caused by overproduction of interleukin-1beta (IL-1β) in the injured nerve independent of neuropathic pain following spared nerve injury in rats and mice. RESULTS Mechanical allodynia, a behavioral sign of neuropathic pain, was not correlated with short-term memory deficit and depressive behavior in spared nerve injury rats. Spared nerve injury upregulated IL-1β in the injured sciatic nerve, plasma, and the regions in central nervous system closely associated with pain, memory and emotion, including spinal dorsal horn, hippocampus, prefrontal cortex, nucleus accumbens, and amygdala. Importantly, the spared nerve injury-induced memory deficits, depressive, and pain behaviors were substantially prevented by peri-sciatic administration of IL-1β neutralizing antibody in rats or deletion of IL-1 receptor type 1 in mice. Furthermore, the behavioral abnormalities induced by spared nerve injury were mimicked in naïve rats by repetitive intravenous injection of re combinant rat IL-1β (rrIL-1β) at a pathological concentration as determined from spared nerve injury rats. In addition, microglia were activated by both spared nerve injury and intravenous injection of rrIL-1β and the effect of spared nerve injury was substantially reversed by peri-sciatic administration of anti-IL-1β. CONCLUSIONS Neuropathic pain was not necessary for the development of cognitive and emotional disorders, while the overproduction of IL-1β in the injured sciatic nerve following peripheral nerve injury may be a common mechanism underlying the generation of neuropathic pain, memory deficit, and depression.
Collapse
Affiliation(s)
- Wen-Shan Gui
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Xiao Wei
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Chun-Lin Mai
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Wen-Jun Xin
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| | - Li-Jun Zhou
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, USA
| | - Xian-Guo Liu
- Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China Guangdong Province Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
106
|
Li S, Han J, Wang DS, Feng B, Deng YT, Wang XS, Yang Q, Zhao MG. Echinocystic acid reduces reserpine-induced pain/depression dyad in mice. Metab Brain Dis 2016; 31:455-63. [PMID: 26729203 DOI: 10.1007/s11011-015-9786-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023]
Abstract
Chronic pain has consistently been correlated with depression. Echinocystic acid (EA), a natural triterpone enriched in various herbs and used for medicinal purpose in many Asian countries, exhibits anti-inflammatory and analgesic activities. However, little is known the effects of EA on the depression. In present study, we investigated the anti-depression activities in the mouse model of reserpine-induced pain-depression dyad. Reserpine (1 mg/kg subcutaneously daily for 3 days) caused significant depression-like behaviors and pain sensation. Subsequent treatment of EA (5 mg/kg intragastrically daily for 5 days) attenuated the reserpine-induced pain/depression dyad as shown by the increase of pain threshold and the behaviors in forced swimming test, tail suspension test, and open field test. Furthermore, treatment of EA reversed the decrease of biogenic amines (norepinephrine, dopamine, and serotonin) in the brain region of hippocampus, a structure involved in the formation of emotional disorders. Levels of serotonin receptor 5-HT1A were decreased and levels of 5-HT2A were increased in the reserpine-injected mice. Treatment of EA could restore the alterations of serotonin receptors. At the same time, the increase in GluN2B-containing NMDA receptors, p-GluA1-Ser831, PSD-95 and CaMKII were integrated with the increase in caspase-3 and iNOS levels in the hippocampus of the reserpine-injected mice. EA significantly reversed the changes of above proteins. However, EA did not affect the levels of GluN2A-containing NMDA receptors and the total levels of GluA1 and p-GluA1-Ser845. Our study provides strong evidence that EA attenuates reserpine-induced pain/depression dyad partially through regulating the biogenic amines levels and GluN2B receptors in the hippocampus.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Han
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Dong-Sheng Wang
- Department of Orthopedics, Jinling Hospital, Clinical School of Nanjing, Second Military Medical University, Nanjing, 210002, China
| | - Bin Feng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ya-Ting Deng
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xin-Shang Wang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Qi Yang
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China
| | - Ming-Gao Zhao
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
107
|
The role of N-Glycan modification of TNFR1 in inflammatory microglia activation. Glycoconj J 2015; 32:685-93. [DOI: 10.1007/s10719-015-9619-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 08/24/2015] [Indexed: 01/09/2023]
|
108
|
Fitzgibbon M, Finn DP, Roche M. High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity. Int J Neuropsychopharmacol 2015; 19:pyv095. [PMID: 26342110 PMCID: PMC4815466 DOI: 10.1093/ijnp/pyv095] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/17/2015] [Indexed: 01/06/2023] Open
Abstract
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction.
Collapse
Affiliation(s)
| | | | - Michelle Roche
- Physiology (Ms Fitzgibbon and Dr Roche), and Pharmacology and Therapeutics (Dr Finn), School of Medicine, Galway Neuroscience Centre and Centre for Pain Research (Ms Fitzgibbon, Dr Finn, and Dr Roche), National Centre for Biomedical Engineering Science, National University of Ireland Galway, Ireland.
| |
Collapse
|
109
|
Nascimento FP, Macedo-Júnior SJ, Borges FRM, Cremonese RP, da Silva MD, Luiz-Cerutti M, Martins DF, Rodrigues ALS, Santos ARS. Thalidomide reduces mechanical hyperalgesia and depressive-like behavior induced by peripheral nerve crush in mice. Neuroscience 2015; 303:51-8. [PMID: 26126925 DOI: 10.1016/j.neuroscience.2015.06.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND It has been shown that chronic pain is able to induce depressive disorders in humans, in part, due to peripheral inflammation that reaches the central nervous system. However, the mechanisms involved remain to be established. The purpose of this study was to investigate whether sciatic nerve crush could produce depression-like behaviors, in addition to pain-related behaviors, in mice. Once confirmed, this model was used to investigate tumor necrosis factor-α (TNF-α) as a key mediator involved in the pathophysiology of both pain and depression. EXPERIMENTAL APPROACH Male Swiss mice were divided into three groups, naïve, sham and operated. In the operated group, the sciatic nerve was crushed. Following surgery, animals from the operated group were treated daily by oral gavage (p.o.) with saline (10 ml/kg), fluoxetine (20 mg/kg) or thalidomide (10 mg/kg) for 15 days. Mechanical hyperalgesia was evaluated every 3 days by von Frey filaments and depressive-like behavior was assessed at the end of day 15, using the tail suspension test (TST) and the forced swimming test (FST). Then, samples from the prefrontal cortex, hippocampus and sciatic nerve were processed to measure TNF-α levels by enzyme-linked immunosorbent assay (ELISA). RESULTS Crush caused significant mechanical hyperalgesia and depressive-like behaviors and increased TNF-α levels in the sciatic nerve, prefrontal cortex and hippocampus of operated animals. Treatment with fluoxetine or thalidomide reversed crush-induced mechanical hyperalgesia, depressive-like behaviors and the increased TNF-α levels in the sciatic nerve, prefrontal cortex and hippocampus. CONCLUSIONS The sciatic nerve crush model represents a good model to study to mechanisms underlying both pain and depressive-like behaviors. Furthermore, inhibitors of TNF-α synthesis, like thalidomide, have a potential to treat depressive disorders associated with neuropathic pain.
Collapse
Affiliation(s)
- F P Nascimento
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| | - S J Macedo-Júnior
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - F R M Borges
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - R P Cremonese
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - M D da Silva
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Department of Physiotherapy, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - M Luiz-Cerutti
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - D F Martins
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Laboratory of Experimental Neurosciences, Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina (UNISUL), Palhoça, SC, Brazil
| | - A L S Rodrigues
- Department of Biochemistry, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - A R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil; Department of Pharmacology, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
110
|
Fasick V, Spengler RN, Samankan S, Nader ND, Ignatowski TA. The hippocampus and TNF: Common links between chronic pain and depression. Neurosci Biobehav Rev 2015; 53:139-59. [PMID: 25857253 DOI: 10.1016/j.neubiorev.2015.03.014] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 02/02/2015] [Accepted: 03/28/2015] [Indexed: 02/07/2023]
Abstract
Major depression and chronic pain are significant health problems that seriously impact the quality of life of affected individuals. These diseases that individually are difficult to treat often co-exist, thereby compounding the patient's disability and impairment as well as the challenge of successful treatment. The development of efficacious treatments for these comorbid disorders requires a more comprehensive understanding of their linked associations through common neuromodulators, such as tumor necrosis factor-α (TNFα), and various neurotransmitters, as well as common neuroanatomical pathways and structures, including the hippocampal brain region. This review discusses the interaction between depression and chronic pain, emphasizing the fundamental role of the hippocampus in the development and maintenance of both disorders. The focus of this review addresses the hypothesis that hippocampal expressed TNFα serves as a therapeutic target for management of chronic pain and major depressive disorder (MDD).
Collapse
Affiliation(s)
- Victoria Fasick
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | | | - Shabnam Samankan
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Nader D Nader
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; Department of Anesthesiology, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States
| | - Tracey A Ignatowski
- Department of Pathology and Anatomical Sciences, School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States; NanoAxis, LLC, Clarence, NY 14031, United States; Program for Neuroscience, School of Medicine and Biomedical Science, University at Buffalo, The State University of New York, Buffalo, NY 14214, United States.
| |
Collapse
|
111
|
Lyons DN, Kniffin TC, Zhang LP, Danaher RJ, Miller CS, Bocanegra JL, Carlson CR, Westlund KN. Trigeminal Inflammatory Compression (TIC) injury induces chronic facial pain and susceptibility to anxiety-related behaviors. Neuroscience 2015; 295:126-38. [PMID: 25818051 DOI: 10.1016/j.neuroscience.2015.03.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/19/2015] [Accepted: 03/20/2015] [Indexed: 11/26/2022]
Abstract
Our laboratory previously developed a novel neuropathic and inflammatory facial pain model for mice referred to as the Trigeminal Inflammatory Compression (TIC) model. Rather than inducing whole nerve ischemia and neuronal loss, this injury induces only slight peripheral nerve demyelination triggering long-term mechanical allodynia and cold hypersensitivity on the ipsilateral whisker pad. The aim of the present study is to further characterize the phenotype of the TIC injury model using specific behavioral assays (i.e. light-dark box, open field exploratory activity, and elevated plus maze) to explore pain- and anxiety-like behaviors associated with this model. Our findings determined that the TIC injury produces hypersensitivity 100% of the time after surgery that persists at least 21 weeks post injury (until the animals are euthanized). Three receptive field sensitivity pattern variations in mice with TIC injury are specified. Animals with TIC injury begin displaying anxiety-like behavior in the light-dark box preference and open field exploratory tests at week eight post injury as compared to sham and naïve animals. Panic anxiety-like behavior was shown in the elevated plus maze in mice with TIC injury if the test was preceded with acoustic startle. Thus, in addition to mechanical and cold hypersensitivity, the present study identified significant anxiety-like behaviors in mice with TIC injury resembling the clinical symptomatology and psychosocial impairments of patients with chronic facial pain. Overall, the TIC injury model's chronicity, reproducibility, and reliability in producing pain- and anxiety-like behaviors demonstrate its usefulness as a chronic neuropathic facial pain model.
Collapse
Affiliation(s)
- D N Lyons
- Department of Physiology, University of Kentucky, United States
| | - T C Kniffin
- Department of Psychology, University of Kentucky, United States
| | - L P Zhang
- Department of Physiology, University of Kentucky, United States
| | - R J Danaher
- Departmentof Oral Health Practice, University of Kentucky, United States
| | - C S Miller
- Departmentof Oral Health Practice, University of Kentucky, United States
| | - J L Bocanegra
- Departmentof Oral Health Practice, University of Kentucky, United States
| | - C R Carlson
- Department of Psychology, University of Kentucky, United States
| | - K N Westlund
- Department of Physiology, University of Kentucky, United States.
| |
Collapse
|
112
|
Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:610813. [PMID: 25834699 PMCID: PMC4365363 DOI: 10.1155/2015/610813] [Citation(s) in RCA: 462] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/18/2015] [Indexed: 12/22/2022]
Abstract
Neuroinflammation and mitochondrial dysfunction are common features of chronic neurodegenerative diseases of the central nervous system. Both conditions can lead to increased oxidative stress by excessive release of harmful reactive oxygen and nitrogen species (ROS and RNS), which further promote neuronal damage and subsequent inflammation resulting in a feed-forward loop of neurodegeneration. The cytokine tumor necrosis factor (TNF), a master regulator of the immune system, plays an important role in the propagation of inflammation due to the activation and recruitment of immune cells via its receptor TNF receptor 1 (TNFR1). Moreover, TNFR1 can directly induce oxidative stress by the activation of ROS and RNS producing enzymes. Both TNF-induced oxidative stress and inflammation interact and cooperate to promote neurodegeneration. However, TNF plays a dual role in neurodegenerative disease, since stimulation via its second receptor, TNFR2, is neuroprotective and promotes tissue regeneration. Here we review the interrelation of oxidative stress and inflammation in the two major chronic neurodegenerative diseases, Alzheimer's and Parkinson's disease, and discuss the dual role of TNF in promoting neurodegeneration and tissue regeneration via its two receptors.
Collapse
|