101
|
Wacker DW, Engelmann M, Tobin VA, Meddle SL, Ludwig M. Vasopressin and social odor processing in the olfactory bulb and anterior olfactory nucleus. Ann N Y Acad Sci 2011; 1220:106-16. [PMID: 21388408 DOI: 10.1111/j.1749-6632.2010.05885.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Central vasopressin facilitates social recognition and modulates numerous complex social behaviors in mammals, including parental behavior, aggression, affiliation, and pair-bonding. In rodents, social interactions are primarily mediated by the exchange of olfactory information, and there is evidence that vasopressin signaling is important in brain areas where olfactory information is processed. We recently discovered populations of vasopressin neurons in the main and accessory olfactory bulbs and anterior olfactory nucleus that are involved in the processing of social odor cues. In this review, we propose a model of how vasopressin release in these regions, potentially from the dendrites, may act to filter social odor information to facilitate odor-based social recognition. Finally, we discuss recent human research linked to vasopressin signaling and suggest that our model of priming-facilitated vasopressin signaling would be a rewarding target for further studies, as a failure of priming may underlie pathological changes in complex behaviors.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | |
Collapse
|
102
|
Veyrac A, Wang G, Baum MJ, Bakker J. The main and accessory olfactory systems of female mice are activated differentially by dominant versus subordinate male urinary odors. Brain Res 2011; 1402:20-9. [PMID: 21683943 DOI: 10.1016/j.brainres.2011.05.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/27/2011] [Accepted: 05/14/2011] [Indexed: 11/17/2022]
Abstract
Previous studies have shown that female preferences for male pheromones depend on the female's reproductive condition and the dominance status of the male. However, it is unknown which olfactory system detects the odors that result in a preference for a dominant male. Therefore, in the present study, we asked whether dominant versus subordinate male urinary odors differentially activate the main and accessory olfactory systems in female (C57Bl/6j) mice by monitoring the induction of the immediate early gene, c-fos. A more robust induction of Fos was observed in female mice which had direct nasal contact with dominant male urinary odors in four specific segments of the accessory olfactory system, i.e., the posteroventral part of the medial amygdala, the bed nucleus of the stria terminalis, the medial part of the preoptic nucleus and the ventrolateral part of the ventromedial hypothalamus, compared to females that were exposed to subordinate male urine. This greater activation of the accessory olfactory pathway by dominant male urine suggests that there are differences in the nonvolatile components of dominant versus subordinate male urine that are detected by the vomeronasal organ. By contrast, subordinate male urinary odors induced a greater activation in the piriform cortex which is part of the main olfactory system, suggesting that female mice discriminate between dominant and subordinate male urine using their main olfactory system as well.
Collapse
|
103
|
Nunez-Parra A, Pugh V, Araneda RC. Regulation of adult neurogenesis by behavior and age in the accessory olfactory bulb. Mol Cell Neurosci 2011; 47:274-85. [PMID: 21600286 DOI: 10.1016/j.mcn.2011.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 04/16/2011] [Accepted: 05/03/2011] [Indexed: 01/16/2023] Open
Abstract
The vomeronasal system (VNS) participates in the detection and processing of pheromonal information related to social and sexual behaviors. Within the VNS, two different populations of sensory neurons, with a distinct pattern of distribution, line the epithelium of the vomeronasal organ (VNO) and give rise to segregated sensory projections to the accessory olfactory bulb (AOB). Apical sensory neurons in the VNO project to the anterior AOB (aAOB), while basal neurons project to the posterior AOB (pAOB). In the AOB, the largest population of neurons are inhibitory, the granule and periglomerular cells (GCs and PGs) and remarkably, these neurons are continuously born and functionally integrated in the adult brain, underscoring their role on olfactory function. Here we show that behaviors mediated by the VNS differentially regulate adult neurogenesis across the anterior-posterior axis of the AOB. We used immunohistochemical labeling of newly born cells under different behavioral conditions in mice. Using a resident-intruder aggression paradigm, we found that subordinate mice exhibited increased neurogenesis in the aAOB. In addition, in sexually naive adult females exposed to soiled bedding odorized by adult males, the number of newly born cells was significantly increased in the pAOB; however, neurogenesis was not affected in females exposed to female odors. In addition, we found that at two months of age adult neurogenesis was sexually dimorphic, with male mice exhibiting higher levels of newly born cells than females. Interestingly, adult neurogenesis was greatly reduced with age and this decrease correlated with a decrease in progenitor cells proliferation but not with an increase in cell death in the AOB. These results indicate that the physiological regulation of adult neurogenesis in the AOB by behaviors is both sex and age dependent and suggests an important role of newly born neurons in sex dependent behaviors mediated by the VNS.
Collapse
Affiliation(s)
- Alexia Nunez-Parra
- Department of Biology and Neuroscience and Cognitive Sciences Program, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
104
|
Abstract
Although chemosensory signals generated by mouse pups may trigger maternal behavior of females, the mechanism for detection of these signals has not been fully defined. As some odorant receptors are coupled to the type 3 adenylyl cyclase (AC3), we evaluated the role of AC3 for maternal behavior using AC3(-/-) female mice. Here, we report that maternal behavior is impaired in virgin and postpartum AC3(-/-) mice. Female AC3(-/-) mice failed the pup retrieval assay, did not construct well-defined nests, and did not exhibit maternal aggression. Furthermore, AC3(-/-) females could not detect odorants or pup urine in the odorant habituation test and were unable to detect pups by chemoreception. In contrast to wild-type mice, AC activity in main olfactory epithelium (MOE) preparations from AC3(-/-) female mice was not stimulated by odorants or pheromones. Moreover, odorants and pheromones did not evoke electro-olfactogram (EOG) responses in the MOE of AC3(-/-) female mice. We hypothesize that the detection of chemical signals that trigger maternal behavior in female mice depends upon AC3 in the MOE.
Collapse
|
105
|
Swaney WT. Genomic imprinting and mammalian reproduction. Horm Behav 2011; 59:369-74. [PMID: 20594966 DOI: 10.1016/j.yhbeh.2010.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/15/2022]
Abstract
Among animals, genomic imprinting is a uniquely mammalian phenomenon in which certain genes are monoallelically expressed according to their parent of origin. This silencing of certain alleles often involves differential methylation at regulatory regions associated with imprinted genes and must be recapitulated at every generation with the erasure and reapplication of these epigenetic marks in the germline. Imprinted genes encode regulatory proteins that play key roles in fetal growth and development, but they also exert wider effects on mammalian reproduction. Genetic knockout experiments have shown that certain paternally expressed imprinted genes regulate post-natal behavior in offspring as well as reproductive behaviors in males and females. These deficits involve changes in hypothalamic function affecting multiple areas and different neurochemical pathways. Paternally expressed genes are highly expressed in the hypothalamus which regulates growth, metabolism and reproduction and so are well placed to influence all aspects of reproduction from adults to the resultant offspring. Coadaptation between offspring and mother appears to have played an important role in the evolution of some paternally expressed genes, but the influence of these genes on male reproductive behavior also suggests that they have evolved to regulate their own transmission to successive generations via the male germline.
Collapse
Affiliation(s)
- William T Swaney
- Behavioural Biology and Helmholtz Institute, Utrecht University, 3508 TB Utrecht, The Netherlands.
| |
Collapse
|
106
|
DEHNHARD M. Mammal semiochemicals: understanding pheromones and signature mixtures for better zoo-animal husbandry and conservation. ACTA ACUST UNITED AC 2011. [DOI: 10.1111/j.1748-1090.2010.00131.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
107
|
Brock O, Bakker J. Potential contribution of prenatal estrogens to the sexual differentiation of mate preferences in mice. Horm Behav 2011; 59:83-9. [PMID: 21029737 PMCID: PMC3022080 DOI: 10.1016/j.yhbeh.2010.10.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/14/2010] [Accepted: 10/18/2010] [Indexed: 02/07/2023]
Abstract
The neural mechanisms controlling sexual behavior are sexually differentiated by perinatal actions of gonadal hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estrogens, that exposure to prenatal estrogens completely defeminized their potential to show lordosis behavior in adulthood. Therefore, we determined here whether mate preferences were also affected in female AFP-KO mice. We observed a robust preference for an estrous female over an intact male in female AFP-KO mice, which were ovariectomized in adulthood and subsequently treated with estradiol and progesterone, whereas similarly treated WT females preferred the intact male over the estrous female. Gonadally intact WT males preferred the estrous female over the male, but only when visual cues were blocked by placing stimulus animals behind opaque partitions. Furthermore, when given the choice between an intact male and a castrated male, WT females preferred the intact male, whereas AFP-KO females showed no preference. Finally when given the choice between an estrous female and an ovariectomized female, WT males preferred the estrous female whereas AFP-KO females preferred the ovariectomized female or showed no preference depending on whether they could see the stimulus animals or not. Taken together, when AFP-KO females are tested under estrous conditions, they do not show any male-directed preferences, indicating a reduced sexual motivation to seek out the male in these females. However, they do not completely resemble males in their mate preferences suggesting that the male-typical pattern of mate preferences is not solely organized by prenatal estrogens.
Collapse
Affiliation(s)
- Olivier Brock
- GIGA-Neurosciences, University of Liege, Avenue de l'Hôpital 1 (B36), 4000 Liege, Belgium
| | | |
Collapse
|
108
|
Veyrac A, Bakker J. Postnatal and adult exposure to estradiol differentially influences adult neurogenesis in the main and accessory olfactory bulb of female mice. FASEB J 2010; 25:1048-57. [PMID: 21148416 DOI: 10.1096/fj.10-172635] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neurons incorporated into the adult main olfactory bulb (MOB) and accessory olfactory bulb (AOB) derive from the subventricular zone (SVZ). Despite some recent studies on the role of olfactory neurogenesis in sociosexual behaviors mediated by hormones, data on the implication of estrogens are still lacking. Taking advantage of female aromatase-knockout (ArKO) mice, which are unable to produce estradiol across their life span, we investigated the role of estradiol exposure during early postnatal and adult periods on adult neurogenesis in the MOB and AOB. We found that proliferation of progenitor cells in the adult female SVZ was not influenced by estradiol. However, whereas adult exposure to estradiol influences the turnover of MOB newborn neurons, the survival of those in the AOB depends on exposure to estradiol during the early postnatal period. Finally, based on their expression of Zif268, we showed that newborn neurons in the MOB responded to sociosexual odors, albeit to a lesser extent in ArKO females, suggesting a contribution of estradiol during the early postnatal period to this response. Together, these results suggest that the survival and functional integration of newborn neurons in the adult female MOB and AOB are differentially influenced by estrogens from the early postnatal period to adulthood.
Collapse
Affiliation(s)
- Alexandra Veyrac
- Groupe Interdisciplinaire de Génoprotéomique Appliquée Neurosciences, University of Liège, Ave. de l'hopital 1, B36, 4000 Liège, Belgium
| | | |
Collapse
|
109
|
Zhang YH, Zhang JX. Urine-Derived Key Volatiles May Signal Genetic Relatedness in Male Rats. Chem Senses 2010; 36:125-35. [DOI: 10.1093/chemse/bjq103] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
110
|
Pereno GL, Balaszczuk V, Beltramino CA. Detection of conspecific pheromones elicits fos expression in GABA and calcium-binding cells of the rat vomeronasal system-medial extended amygdala. J Physiol Biochem 2010; 67:71-85. [PMID: 20938761 DOI: 10.1007/s13105-010-0051-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 09/28/2010] [Indexed: 11/26/2022]
Abstract
The olfactory accessory system is specialized in the detection of pheromones, being an afferent to medial extended amygdala. In spite of the fact that numerous phenotypes are found in these structures, in the current literature, there are no detailed descriptions about the phenotype of neurons in the vomeronasal system-medial extended amygdala after their activation by pheromonal stimuli. Using immunohistochemistry for fos and dual immunohistochemistry for fos and phenotypes, here we show that females have a greater number of activated neurons by the pheromonal stimulus. Likewise, a great colocalization of fos with GABA, calretinin, and calbindin was observed in the vomeronasal system-medial extended amygdala. These data suggest that in amygdaloid areas, neuronal excitability is controlled by GABAergic neurons that contain different calcium-binding proteins, indicating the important role of inhibitory control on the incoming sensory pheromonal and olfactory inputs controlled and processed by the vomeronasal system.
Collapse
Affiliation(s)
- German Leandro Pereno
- Cátedra de Neurofisiología y Psicofisiología, Facultad de Psicología, Universidad Nacional de Córdoba, Enfermera Gordillo esquina Enrique Barros, Ciudad Universitaria, 5000 Córdoba, Argentina.
| | | | | |
Collapse
|
111
|
Wacker DW, Tobin VA, Noack J, Bishop VR, Duszkiewicz AJ, Engelmann M, Meddle SL, Ludwig M. Expression of early growth response protein 1 in vasopressin neurones of the rat anterior olfactory nucleus following social odour exposure. J Physiol 2010; 588:4705-17. [PMID: 20921194 DOI: 10.1113/jphysiol.2010.196139] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The anterior olfactory nucleus (AON), a component of the main olfactory system, is a cortical region that processes olfactory information and acts as a relay between the main olfactory bulbs and higher brain regions such as the piriform cortex. Utilizing a transgenic rat in which an enhanced green fluorescent protein reporter gene is expressed in vasopressin neurones (eGFP-vasopressin), we have discovered a population of vasopressin neurones in the AON. These vasopressin neurones co-express vasopressin V1 receptors. They also co-express GABA and calbinin-D28k indicating that they are neurochemically different from the newly described vasopressin neurons in the main olfactory bulb. We utilized the immediate early gene product, early growth response protein 1 (Egr-1), to examine the functional role of these vasopressin neurons in processing social and non-social odours in the AON. Exposure of adult rats to a conspecific juvenile or a heterospecific predator odour leads to increases in Egr-1 expression in the AON in a subregion specific manner. However, only exposure to a juvenile increases Egr-1 expression in AON vasopressin neurons. These data suggest that vasopressin neurones in the AON may be selectively involved in the coding of social odour information.
Collapse
Affiliation(s)
- Douglas W Wacker
- Centre for Integrative Physiology, University of Edinburgh, Hugh Robson Bldg, George Square, Edinburgh EH8 9XD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
112
|
A candidate subspecies discrimination system involving a vomeronasal receptor gene with different alleles fixed in M. m. domesticus and M. m. musculus. PLoS One 2010; 5. [PMID: 20844586 PMCID: PMC2936562 DOI: 10.1371/journal.pone.0012638] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 08/08/2010] [Indexed: 11/19/2022] Open
Abstract
Assortative mating, a potentially efficient prezygotic reproductive barrier, may prevent loss of genetic potential by avoiding the production of unfit hybrids (i.e., because of hybrid infertility or hybrid breakdown) that occur at regions of secondary contact between incipient species. In the case of the mouse hybrid zone, where two subspecies of Mus musculus (M. m. domesticus and M. m. musculus) meet and exchange genes to a limited extent, assortative mating requires a means of subspecies recognition. We based the work reported here on the hypothesis that, if there is a pheromone sufficiently diverged between M. m. domesticus and M. m. musculus to mediate subspecies recognition, then that process must also require a specific receptor(s), also sufficiently diverged between the subspecies, to receive the signal and elicit an assortative mating response. We studied the mouse V1R genes, which encode a large family of receptors in the vomeronasal organ (VNO), by screening Perlegen SNP data and identified one, Vmn1r67, with 24 fixed SNP differences most of which (15/24) are nonsynonymous nucleotide substitutions between M. m. domesticus and M. m. musculus. We observed substantial linkage disequilibrium (LD) between Vmn1r67 and Abpa27, a mouse salivary androgen-binding protein gene that encodes a proteinaceous pheromone (ABP) capable of mediating assortative mating, perhaps in conjunction with its bound small lipophilic ligand. The LD we observed is likely a case of association rather than residual physical linkage from a very recent selective sweep, because an intervening gene, Vmn1r71, shows significant intra(sub)specific polymorphism but no inter(sub)specific divergence in its nucleotide sequence. We discuss alternative explanations of these observations, for example that Abpa27 and Vmn1r67 are coevolving as signal and receptor to reinforce subspecies hybridization barriers or that the unusually divergent Vmn1r67 allele was not a product of fast positive selection, but was derived from an introgressed allele, possibly from Mus spretus.
Collapse
|
113
|
Been LE, Petrulis A. The role of the medial preoptic area in appetitive and consummatory reproductive behaviors depends on sexual experience and odor volatility in male Syrian hamsters. Neuroscience 2010; 170:1120-32. [PMID: 20732389 DOI: 10.1016/j.neuroscience.2010.08.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 10/19/2022]
Abstract
In Syrian hamsters (Mesocricetus auratus), the expression of reproductive behavior requires the perception and discrimination of sexual odors. The behavioral response to these odors is mediated by a network of ventral forebrain nuclei, including the medial preoptic area (MPOA). The role of MPOA in male copulatory behavior has been well-studied, but less is known about the role of MPOA in appetitive aspects of male reproductive behavior. Furthermore, many previous studies that examined the role of MPOA in reproductive behavior have used large lesions that damaged other nuclei near MPOA or fibers of passage within MPOA, making it difficult to attribute post-lesion deficits in reproductive behavior to MPOA specifically. Thus, the current study used discrete, excitotoxic lesions of MPOA to test the role of this nucleus in opposite-sex odor preference and copulatory behavior in both sexually-naïve and sexually-experienced males. Lesions of MPOA eliminated preference for volatile, opposite-sex odors in sexually-naïve, but not sexually-experienced, males. When males were allowed to contact the sexual odors, however, preference for female odors remained intact. Surprisingly, lesions of MPOA caused severe copulatory deficits only in sexually-naïve males, suggesting previous reports of copulatory deficits following MPOA lesions in sexually-experienced males were not due to damage to MPOA itself. Together, these results demonstrate that the role of MPOA in appetitive and consummatory aspects of reproductive behavior varies with the volatility of the sexual odors and the sexual experience of the male.
Collapse
Affiliation(s)
- L E Been
- Georgia State University, Neuroscience Institute, 100 Piedmont Avenue, Atlanta, GA 30303, USA.
| | | |
Collapse
|
114
|
Wyatt TD. Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:685-700. [PMID: 20680632 DOI: 10.1007/s00359-010-0564-y] [Citation(s) in RCA: 220] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 07/10/2010] [Accepted: 07/20/2010] [Indexed: 02/07/2023]
Abstract
Pheromones have been found in species in almost every part of the animal kingdom, including mammals. Pheromones (a molecule or defined combination of molecules) are species-wide signals which elicit innate responses (though responses can be conditional on development as well as context, experience, and internal state). In contrast, signature mixtures, in invertebrates and vertebrates, are variable subsets of molecules of an animal's chemical profile which are learnt by other animals, allowing them to distinguish individuals or colonies. All signature mixtures, and almost all pheromones, whatever the size of molecules, are detected by olfaction (as defined by receptor families and glomerular processing), in mammals by the main olfactory system or vomeronasal system or both. There is convergence on a glomerular organization of olfaction. The processing of all signature mixtures, and most pheromones, is combinatorial across a number of glomeruli, even for some sex pheromones which appear to have 'labeled lines'. Narrowly specific pheromone receptors are found, but are not a prerequisite for a molecule to be a pheromone. A small minority of pheromones act directly on target tissues (allohormone pheromones) or are detected by non-glomerular chemoreceptors, such as taste. The proposed definitions for pheromone and signature mixture are based on the heuristic value of separating these kinds of chemical information. In contrast to a species-wide pheromone, there is no single signature mixture to find, as signature mixtures are a 'receiver-side' phenomenon and it is the differences in signature mixtures which allow animals to distinguish each other.
Collapse
|
115
|
Bell MR, Meerts SH, Sisk CL. Male Syrian hamsters demonstrate a conditioned place preference for sexual behavior and female chemosensory stimuli. Horm Behav 2010; 58:410-4. [PMID: 20515693 PMCID: PMC2919302 DOI: 10.1016/j.yhbeh.2010.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/24/2010] [Accepted: 05/26/2010] [Indexed: 10/19/2022]
Abstract
Sexual behavior is a natural reward for many rodent species, and it often includes chemosensory-directed components. Chemosensory stimuli themselves may also be rewarding. Conditioned place preference (CPP) is one paradigm frequently used to test the rewarding properties of a range of stimuli. Males and females of several rodent species show a CPP for sexual behavior; however, it is currently unknown whether sexual behavior can induce a CPP in male Syrian hamsters. As male Syrian hamsters are an animal model commonly used for investigation of the neurobiology of sexual behavior, understanding the rewarding components of sexual stimuli will better direct future research on brain regions and neurotransmitters involved in these behaviors. Experiment 1 tested the prediction that male hamsters show a CPP for sexual behavior. Female chemosensory stimuli are essential for the display of sexual behavior in male hamsters; however, the rewarding properties of female chemosensory stimuli contained in vaginal secretions (VS) are uncertain. Therefore, experiment 2 tested the prediction that male hamsters show a CPP for VS. This study is the first demonstration that both sexual behavior and VS induce a CPP in male hamsters. Thus, female chemosensory stimuli are a natural reward in a species that is dependent on these stimuli for reproductive fitness.
Collapse
Affiliation(s)
- Margaret R Bell
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
116
|
Mucignat-Caretta C. The rodent accessory olfactory system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:767-77. [PMID: 20607541 DOI: 10.1007/s00359-010-0555-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 06/10/2010] [Accepted: 06/19/2010] [Indexed: 11/24/2022]
Abstract
The accessory olfactory system contributes to the perception of chemical stimuli in the environment. This review summarizes the structure of the accessory olfactory system, the stimuli that activate it, and the responses elicited in the receptor cells and in the brain. The accessory olfactory system consists of a sensory organ, the vomeronasal organ, and its central projection areas: the accessory olfactory bulb, which is connected to the amygdala and hypothalamus, and also to the cortex. In the vomeronasal organ, several receptors-in contrast to the main olfactory receptors-are sensitive to volatile or nonvolatile molecules. In a similar manner to the main olfactory epithelium, the vomeronasal organ is sensitive to common odorants and pheromones. Each accessory olfactory bulb receives input from the ipsilateral vomeronasal organ, but its activity is modulated by centrifugal projections arising from other brain areas. The processing of vomeronasal stimuli in the amygdala involves contributions from the main olfactory system, and results in long-lasting responses that may be related to the activation of the hypothalamic-hypophyseal axis over a prolonged timeframe. Different brain areas receive inputs from both the main and the accessory olfactory systems, possibly merging the stimulation of the two sensory organs to originate a more complex and integrated chemosensory perception.
Collapse
|
117
|
Been LE, Petrulis A. Lesions of the posterior bed nucleus of the stria terminalis eliminate opposite-sex odor preference and delay copulation in male Syrian hamsters: role of odor volatility and sexual experience. Eur J Neurosci 2010; 32:483-93. [PMID: 20597978 DOI: 10.1111/j.1460-9568.2010.07277.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Syrian hamsters (Mesocricetus auratus), the expression of reproductive behavior requires the perception of social odors. The behavioral response to these odors is mediated by a network of ventral forebrain nuclei, including the posterior bed nucleus of the stria terminalis (pBNST). Previous studies have tested the role of the pBNST in reproductive behavior, but the use of large, fiber-damaging lesions in these studies make it difficult to attribute post-lesion deficits to the pBNST specifically. Thus, the current study used discrete, excitotoxic lesions of the pBNST to test the role of the pBNST in opposite-sex odor preference and copulatory behavior in both sexually-naive and sexually-experienced males. Lesions of the pBNST decreased sexually-naive males' investigation of volatile female odors, resulting in an elimination of opposite-sex odor preference. This elimination of preference was not due to a sensory deficit, as males with pBNST lesions were able to discriminate between odors. When, however, subjects were given sexual experience prior to pBNST lesions, their preference for volatile opposite-sex odors remained intact post-lesion. Similarly, when sexually-naive or sexually-experienced subjects were allowed to contact the social odors during the preference test, lesions of the pBNST decreased males' investigation of female odors but did not eliminate preference for opposite-sex odors, regardless of sexual experience. Finally, lesions of the pBNST delayed the copulatory sequence in sexually-naive, but not sexually-experienced, males such that they took longer to mount, intromit, ejaculate and display long intromissions. Together, these results demonstrate that the pBNST plays a unique and critical role in both appetitive and consummatory aspects of male reproductive behaviors.
Collapse
Affiliation(s)
- Laura E Been
- Neuroscience Institute, Georgia State University, Atlanta, GA 30302-5030, USA.
| | | |
Collapse
|
118
|
Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL. Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male's odour. BMC Biol 2010; 8:75. [PMID: 20525243 PMCID: PMC2890510 DOI: 10.1186/1741-7007-8-75] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 06/03/2010] [Indexed: 11/23/2022] Open
Abstract
Background Among invertebrates, specific pheromones elicit inherent (fixed) behavioural responses to coordinate social behaviours such as sexual recognition and attraction. By contrast, the much more complex social odours of mammals provide a broad range of information about the individual owner and stimulate individual-specific responses that are modulated by learning. How do mammals use such odours to coordinate important social interactions such as sexual attraction while allowing for individual-specific choice? We hypothesized that male mouse urine contains a specific pheromonal component that invokes inherent sexual attraction to the scent and which also stimulates female memory and conditions sexual attraction to the airborne odours of an individual scent owner associated with this pheromone. Results Using wild-stock house mice to ensure natural responses that generalize across individual genomes, we identify a single atypical male-specific major urinary protein (MUP) of mass 18893Da that invokes a female's inherent sexual attraction to male compared to female urinary scent. Attraction to this protein pheromone, which we named darcin, was as strong as the attraction to intact male urine. Importantly, contact with darcin also stimulated a strong learned attraction to the associated airborne urinary odour of an individual male, such that, subsequently, females were attracted to the airborne scent of that specific individual but not to that of other males. Conclusions This involatile protein is a mammalian male sex pheromone that stimulates a flexible response to individual-specific odours through associative learning and memory, allowing female sexual attraction to be inherent but selective towards particular males. This 'darcin effect' offers a new system to investigate the neural basis of individual-specific memories in the brain and give new insights into the regulation of behaviour in complex social mammals. See associated Commentary http://www.biomedcentral.com/1741-7007/8/71
Collapse
Affiliation(s)
- Sarah A Roberts
- Mammalian Behaviour & Evolution Group, University of Liverpool, Neston CH64 7TE, UK
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Representation and transformation of sensory information in the mouse accessory olfactory system. Nat Neurosci 2010; 13:723-30. [PMID: 20453853 PMCID: PMC2930753 DOI: 10.1038/nn.2546] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Accepted: 04/08/2010] [Indexed: 11/20/2022]
Abstract
In mice, nonvolatile social cues are detected and analyzed by the accessory olfactory system (AOS). Here we provide a first view of information processing in the AOS with respect to individual chemical cues. 12 sulfated steroids, recently-discovered mouse AOS ligands, caused widespread activity among vomeronasal sensory neurons (VSNs), yet VSN responses clustered into a small number of repeated functional patterns or processing streams. Downstream neurons in the accessory olfactory bulb (AOB) responded to these ligands with enhanced signal/noise compared to VSNs. Whereas the dendritic connectivity of AOB mitral cells suggests the capacity for broad integration, most sulfated steroid responses were well-modeled by linear excitatory drive from just one VSN processing stream. However, a significant minority demonstrated multi-stream integration. Most VSN excitation patterns were also observed in the AOB, but excitation by estradiol sulfate processing streams was rare, suggesting AOB circuit organization is specific to the biological relevance of sensed cues.
Collapse
|
120
|
Keller M, Pawluski JL, Brock O, Douhard Q, Bakker J. The alpha-fetoprotein knock-out mouse model suggests that parental behavior is sexually differentiated under the influence of prenatal estradiol. Horm Behav 2010; 57:434-40. [PMID: 20109458 PMCID: PMC4298041 DOI: 10.1016/j.yhbeh.2010.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/28/2022]
Abstract
In rodent species, sexual differentiation of the brain for many reproductive processes depends largely on estradiol. This was recently confirmed again by using the alpha-fetoprotein knockout (AFP-KO) mouse model, which lacks the protective actions of alpha-fetoprotein against maternal estradiol and as a result represents a good model to determine the contribution of prenatal estradiol to the sexual differentiation of the brain and behavior. Female AFP-KO mice were defeminized and masculinized with regard to their neuroendocrine responses as well as sexual behavior. Since parental behavior is also strongly sexually differentiated in mice, we used the AFP-KO mouse model here to ask whether parental responses are differentiated prenatally under the influence of estradiol. It was found that AFP-KO females showed longer latencies to retrieve pups to the nest and also exhibited lower levels of crouching over the pups in the nest in comparison to WT females. In fact, they resembled males (WT and AFP-KO). Other measures of maternal behavior, for example the incidence of infanticide, tended to be higher in AFP-KO females than in WT females but this increase failed to reach statistical significance. The deficits observed in parental behavior of AFP-KO females could not be explained by any changes in olfactory function, novelty recognition or anxiety. Thus our results suggest that prenatal estradiol defeminizes the parental brain in mice.
Collapse
Affiliation(s)
- Matthieu Keller
- INRA, UMR85 Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
121
|
|
122
|
Chanvallon A, Fabre-Nys C. In sexually naive anestrous ewes, male odour is unable to induce a complete activation of olfactory systems. Behav Brain Res 2009; 205:272-9. [DOI: 10.1016/j.bbr.2009.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 08/10/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
|
123
|
Lesions that functionally disconnect the anterior and posterodorsal sub-regions of the medial amygdala eliminate opposite-sex odor preference in male Syrian hamsters (Mesocricetus auratus). Neuroscience 2009; 165:1052-62. [PMID: 19931356 DOI: 10.1016/j.neuroscience.2009.11.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 11/23/2022]
Abstract
In many rodent species, such as Syrian hamsters, reproductive behavior requires neural integration of chemosensory information and steroid hormone cues. The medial amygdala (MA) processes both of these signals through anatomically distinct sub-regions; the anterior region (MeA) receives substantial chemosensory input, but contains few steroid receptor-labeled neurons, whereas the posterodorsal region (MePD) receives less chemosensory input, but contains a dense population of steroid receptors. Importantly, these sub-regions have considerable reciprocal connections, and the goal of this experiment was therefore to determine whether interactions between MeA and MePD are required for male hamsters' preference to investigate female over male odors. To functionally disconnect MeA and MePD, males received unilateral lesions of MeA and MePD within opposite brain hemispheres. Control males received either unilateral lesions of MeA and MePD within the same hemisphere or sham surgery. Odor preferences were measured using a 3-choice apparatus, which simultaneously presented female, male and clean odor stimuli; all tests were done under conditions that either prevented or allowed contact with the odor sources. Under non-contact conditions, males with asymmetrical lesions investigated female and male odors equally, whereas males in both control groups preferred to investigate female odors. Under contact conditions, all groups investigated female odors longer than male odors, although males with asymmetrical lesions displayed decreased investigation of female odors compared to sham males. These data suggest that MeA-MePD interactions are critical for processing primarily the volatile components of social odors and highlight the importance of input from the main olfactory system (MOS) to these nuclei in the regulation of reproductive behavior. More broadly, these results support the role of the MA in integrating chemosensory and hormone information, a process that may underlie social odor processing in a variety of behavioral contexts.
Collapse
|
124
|
Role of nitric oxide in pheromone-mediated intraspecific communication in mice. Physiol Behav 2009; 98:608-13. [PMID: 19799918 DOI: 10.1016/j.physbeh.2009.09.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/14/2009] [Accepted: 09/18/2009] [Indexed: 11/20/2022]
Abstract
Nitric oxide is known to take part in the control of sexual and agonistic behaviours. This is usually attributed to its role in neural transmission in the hypothalamus and other structures of the limbic system. However, socio-sexual behaviours in rodents are mainly directed by chemical signals detected by the vomeronasal system, and nitric oxide is abundant in key structures along the vomeronasal pathway. Thus, here we check whether pharmacological treatments interfering with nitrergic transmission could affect socio-sexual behaviour by impairing the processing of chemical signals. Treatment with an inhibitor of nitric oxide synthesis (Nomega-Nitro-l-arginine methyl ester hydrochloride, L-NAME, 100mg/kg) blocks the innate preference displayed by female mice for sexual pheromones contained in male-soiled bedding, with a lower dose of the drug (50mg/kg) having no effect. Animals treated with the high dose of L-NAME show no reduction of olfactory discrimination of male urine in a habituation-dishabituation test, thus suggesting that the effect of the drug on the preference for male pheromones is not due to an inability to detect male urine. Alternatively, it may result from an alteration in processing the reinforcing value of pheromones as sexual signals. These results add a new piece of evidence to our understanding of the neurochemistry of intraspecific chemical communication in rodents, and suggest that the role of nitric oxide in socio-sexual behaviours should be re-evaluated taking into account the involvement of this neuromodulator in the processing of chemical signals.
Collapse
|
125
|
Heiming RS, Jansen F, Lewejohann L, Kaiser S, Schmitt A, Lesch KP, Sachser N. Living in a dangerous world: the shaping of behavioral profile by early environment and 5-HTT genotype. Front Behav Neurosci 2009; 3:26. [PMID: 19826611 PMCID: PMC2759357 DOI: 10.3389/neuro.08.026.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/19/2009] [Indexed: 11/20/2022] Open
Abstract
Anxiety and anxiety disorders are influenced by both, environmental and genetic factors. One genetic factor under scrutiny for anxiety disorders is the genetically encoded variation of the serotonin transporter (5-HTT). The aim of this study was to elucidate the effects of a threatening environment during early phases of life on anxiety-like (ANX) and exploratory behavior (EXP) in adult mice, varying in serotonin transporter (5-HTT) genotype. For this purpose, pregnant and lactating 5-HTT +/− dams were repeatedly exposed to olfactory cues of unfamiliar adult males by introducing small amounts of soiled bedding to their home cage. These stimuli signal the danger of infanticide and simulate a threatening environment. Control females were treated with neutral bedding. The offspring (5-HTT +/+, +/−, −/−) were examined for their ANX and EXP. The main results were: (1) a main effect of genotype existed, with 5-HTT −/− showing higher levels of ANX and lower levels of EXP than 5-HTT +/− and wildtypes. (2) When mothers had lived in a threatening environment, their offspring showed increased ANX and reduced EXP compared to controls. (3) These effects were most pronounced in 5-HTT −/− mice. By applying a new ecologically relevant paradigm we conclude: If 5-HTT +/− mothers live in a threatening environment during pregnancy and lactation, their offspring behavioral profile will, in principle, be shaped in an adaptive way preparing the young for an adverse environment. This process is, however, modulated by 5-HTT genotype, bearing the risk that individuals with impaired serotonergic neurotransmission (5-HTT −/−) will develop an exaggerated, potentially pathological level of anxiety from gene × environment interactions.
Collapse
Affiliation(s)
- Rebecca S Heiming
- Department of Behavioural Biology, University of Muenster Muenster, Germany
| | | | | | | | | | | | | |
Collapse
|