101
|
Advances in research on ACE2 as a receptor for 2019-nCoV. Cell Mol Life Sci 2020; 78:531-544. [PMID: 32780149 PMCID: PMC7417784 DOI: 10.1007/s00018-020-03611-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 01/08/2023]
Abstract
Currently, a novel coronavirus (SARS-CoV-2, also called 2019-nCoV) has triggered pandemic Coronavirus Disease 2019 (COVID-19), an acute infectious respiratory disease that first became epidemic in Wuhan (China) and is now spreading worldwide. Although 2019-nCoV and SARS-CoV are very similar viruses genomically and structurally, the huge number of severe cases and deaths now being caused by 2019-nCoV infections has understandably prompted intense research on the receptor used by it to enter human cells. Angiotensin converting enzyme 2 (ACE2), a functional receptor for SARS-CoV, now appears likely to mediate 2019-nCoV entry into human cells. In this review, we describe the roles performed by ACE2 as an enzymatic catalyst and as a receptor for this novel coronavirus. We also summarize the latest research pertaining to the changes noted in ACE2 expression after viral binding, and the relationships relating to virus transmission and population susceptibility to it. Lastly, we speculate on the pathogenesis of COVID-19 and provide a useful reference for drug development against this aggressive virus.
Collapse
|
102
|
Dehury B, Raina V, Misra N, Suar M. Effect of mutation on structure, function and dynamics of receptor binding domain of human SARS-CoV-2 with host cell receptor ACE2: a molecular dynamics simulations study. J Biomol Struct Dyn 2020; 39:7231-7245. [PMID: 32762417 PMCID: PMC7484587 DOI: 10.1080/07391102.2020.1802348] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent studies have pointed the role of angiotensin-converting enzyme-II (ACE2) in mediating the entry of SARS-CoV-2 to the host cell by binding to the receptor-binding domain (RBD) of viral spike protein, and successive priming by cellular proteases initiates the infection. SARS-CoV replication rate and disease severity is controlled by the binding affinity of RBD with ACE2. To understand, how mutations in the conserved residues of RBD affect the molecular interaction with ACE2, we generated five alanine mutants i.e. Y449A, N487A, Y489A, N501A and Y505A in the receptor binding motif (RBM) of the ACE2-RBD SARS-CoV-2 complex (PDB: 6M0J). Computational site directed mutagenesis induced dynamics in wild-type and mutant complexes were extensively studied through all-atoms molecular dynamics (MD) simulations of 150 ns. In silico mutational analysis revealed loss of important intermolecular hydrogen bonds and other non-bonded contacts, critical for molecular recognition of SARS-CoV-2 RBD to ACE2, which is well supported by saturation mutagenesis study of binding interface residues. MD simulations results showed that RBM motif is flexible, where mutant residues are relatively more mobile than corresponding wild-type residues. Global motion analysis through principal component studies revealed that RBD exhibits protuberant in-ward motion towards the human ACE2 binding interface which may be crucial for molecular interaction. Conclusively, the present finding are in congruence with previous experimental reports and provides detailed information on the structural basis of receptor binding by human SARS-CoV-2, which will crucial for the development of novel inhibitors or drugs to combat against SARS-CoV-2. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Budheswar Dehury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India.,KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar, India
| |
Collapse
|
103
|
Manhas S, Anjali A, Mansoor S, Sharma V, Ahmad A, Rehman MU, Ahmad P. Covid-19 Pandemic and Current Medical Interventions. Arch Med Res 2020; 51:473-481. [PMID: 32499154 PMCID: PMC7237921 DOI: 10.1016/j.arcmed.2020.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
First humanoid coronavirus was discovered in the middle of 1960s, the class of viruses are considered to be a huge threat. The first onset of human coronavirus, SARS (SARS-CoV) appeared in 2003 which spanned five continents having lethal effects on human population accompanied by The Middle East Respiratory Syndrome Coronavirus in 2012 with a death rate of 35%. The viruses remain a threat till date and are of serious concern since no vaccine or specified drug therapy has been approbated for treating human coronaviruses. The viruses became a pandemic worldwide with the emergence of Wuhan coronavirus (2019-nCoV). SARS-CoV2 viral manifestation poses a serious human life risk by causing acute lung injury and various respiratory outcomes and has become a global concern. High pathogenicity and transmission rate of the viral strain has become the spotlight of research community throughout the world. With the ongoing studies on viral structure and host interactions, the intricacy of the viral proteome structure and replication cycle proposes a need to explore our understanding of host factors playing role in viral multiplication cycle. This review provides insight into our prevalent perception of coronavirus-host interactions, structure of SARS-CoV2, receptor mediated entry of virus inside the human cells, ongoing clinical trials, drug therapies and treatments that are being used to combat COVID-19 targeting viral fusion, replication and its multiplication.
Collapse
Affiliation(s)
- Sweeta Manhas
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu, J and K, India
| | - Anjali Anjali
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu, J and K, India
| | - Sheikh Mansoor
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu, J and K, India
| | - Vikas Sharma
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Main Campus Chatha, Jammu, J and K, India
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
104
|
SARS-CoV-2: An Update on Potential Antivirals in Light of SARS-CoV Antiviral Drug Discoveries. Vaccines (Basel) 2020; 8:vaccines8020335. [PMID: 32585913 PMCID: PMC7350231 DOI: 10.3390/vaccines8020335] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Coronaviruses (CoVs) are a group of RNA viruses that are associated with different diseases in animals, birds, and humans. Human CoVs (HCoVs) have long been known to be the causative agents of mild respiratory illnesses. However, two HCoVs associated with severe respiratory diseases are Severe Acute Respiratory Syndrome-CoV (SARS-CoV) and Middle East Respiratory Syndrome-CoV (MERS-CoV). Both viruses resulted in hundreds of deaths after spreading to several countries. Most recently, SARS-CoV-2 has emerged as the third HCoV causing severe respiratory distress syndrome and viral pneumonia (known as COVID-19) in patients from Wuhan, China, in December 2019. Soon after its discovery, SARS-CoV-2 spread to all countries, resulting in millions of cases and thousands of deaths. Since the emergence of SARS-CoV, many research groups have dedicated their resources to discovering effective antivirals that can treat such life-threatening infections. The rapid spread and high fatality rate of SARS-CoV-2 necessitate the quick discovery of effective antivirals to control this outbreak. Since SARS-CoV-2 shares 79% sequence identity with SARS-CoV, several anti-SARS-CoV drugs have shown promise in limiting SARS-CoV-2 replication in vitro and in vivo. In this review, we discuss antivirals described for SARS-CoV and provide an update on therapeutic strategies and antivirals against SARS-CoV-2. The control of the current outbreak will strongly depend on the discovery of effective and safe anti-SARS-CoV-2 drugs.
Collapse
|
105
|
Poochi SP, Easwaran M, Balasubramanian B, Anbuselvam M, Meyyazhagan A, Park S, Bhotla HK, Anbuselvam J, Arumugam VA, Keshavarao S, Kanniyappan GV, Pappusamy M, Kaul T. Employing bioactive compounds derived from Ipomoea obscura (L.) to evaluate potential inhibitor for SARS-CoV-2 main protease and ACE2 protein. FOOD FRONTIERS 2020; 1:168-179. [PMID: 32838301 PMCID: PMC7361879 DOI: 10.1002/fft2.29] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/13/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) and main protease (MPro) are significant target proteins, mainly involved in the attachment of viral genome to host cells and aid in replication of severe acute respiratory syndrome-coronaviruses or SARS-CoV genome. In the present study, we identified 11 potent bioactive compounds from ethanolic leaf extract of Ipomoea obscura (L.) by using GC-MS analysis. These potential bioactive compounds were considered for molecular docking studies against ACE2 and MPro target proteins to determine the antiviral effects against SARS-COV. Results exhibits that among 11 compounds from I. obscura (L.), urso-deoxycholic acid, demeclocycline, tetracycline, chlorotetracycline, and ethyl iso-allocholate had potential viral inhibitory activity. Hence, the present findings suggested that chemical constitution present in I. obscura (L.) will address inhibition of corona viral replication in host cells.
Collapse
Affiliation(s)
- Saravana Prabha Poochi
- Department of Biochemistry and BioinformaticsKarpagam Academy of Higher EducationCoimbatore641021India
| | - Murugesh Easwaran
- Nutritional Improvement of CropsInternational Centre for Genetic Engineering and BiotechnologyNew Delhi110067India
| | | | - Mohan Anbuselvam
- Department of BiotechnologySelvamm College of Arts and ScienceNamakkal637003India
| | - Arun Meyyazhagan
- Euroespes Biomedical Research CentreInternational Centre of Neuroscience and Genomic MedicineCorunna15165Spain
- Department of Life SciencesChrist (Deemed to be University)Bangalore560029India
| | - Sungkwon Park
- Department of Food Science and BiotechnologyCollege of Life ScienceSejong UniversitySeoul05006Republic of Korea
| | - Haripriya Kuchi Bhotla
- Department of MedicineSection of Internal and Cardiovascular MedicineUniversity of PerugiaPerugiaItaly
| | - Jeeva Anbuselvam
- Department of Animal ScienceBharathidasan UniversityTiruchirappalli620024India
| | - Vijaya Anand Arumugam
- Medical Genetics and Epigenetics LaboratoryDepartment of Human Genetics and Molecular BiologyBharathiar UniversityCoimbatoreTamil NaduIndia
| | - Sasikala Keshavarao
- Professor and Emeritus (Rtd.)Human Genetics LaboratoryDepartment of ZoologySchool of Life SciencesBharathiar UniversityCoimbatoreTamil Nadu46India
| | | | | | - Tanushri Kaul
- Nutritional Improvement of CropsInternational Centre for Genetic Engineering and BiotechnologyNew Delhi110067India
| |
Collapse
|
106
|
Abstract
On March 11, 2020, the WHO declared that coronavirus disease 2019 (COVID-19) can be characterized as a pandemic based on the alarming levels of spread and severity and on the alarming levels of inaction. COVID-19 has received worldwide attention as emergency, endangering international public health and economic development. There is a growing body of literatures regarding severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as COVID-19. This review will focus on the latest advance of epidemiology, pathogenesis, and clinical characteristics about COVID-19. Meanwhile, tuberculosis (TB) remains the leading representative respiratory tract communicable disease threatening public health. There are limited data on the risk of severe disease or outcomes in patients with concurrence of TB and COVID-19. Nevertheless, co-infection of some virus would aggravate TB, such as measles. And tuberculosis and influenza co-infection compared with tuberculosis single infection was associated with increased risk of death in individuals. This review will also introduce the characteristics about the concurrence of TB and emerging infectious diseases to provide a hint to manage current epidemic.
Collapse
Affiliation(s)
- Heng Yang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shuihua Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
107
|
Kalathiya U, Padariya M, Mayordomo M, Lisowska M, Nicholson J, Singh A, Baginski M, Fahraeus R, Carragher N, Ball K, Haas J, Daniels A, Hupp TR, Alfaro JA. Highly Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel Binding Site. J Clin Med 2020; 9:E1473. [PMID: 32422996 PMCID: PMC7290299 DOI: 10.3390/jcm9051473] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
An important stage in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) life cycle is the binding of the spike (S) protein to the angiotensin converting enzyme-2 (ACE2) host cell receptor. Therefore, to explore conserved features in spike protein dynamics and to identify potentially novel regions for drugging, we measured spike protein variability derived from 791 viral genomes and studied its properties by molecular dynamics (MD) simulation. The findings indicated that S2 subunit (heptad-repeat 1 (HR1), central helix (CH), and connector domain (CD) domains) showed low variability, low fluctuations in MD, and displayed a trimer cavity. By contrast, the receptor binding domain (RBD) domain, which is typically targeted in drug discovery programs, exhibits more sequence variability and flexibility. Interpretations from MD simulations suggest that the monomer form of spike protein is in constant motion showing transitions between an "up" and "down" state. In addition, the trimer cavity may function as a "bouncing spring" that may facilitate the homotrimer spike protein interactions with the ACE2 receptor. The feasibility of the trimer cavity as a potential drug target was examined by structure based virtual screening. Several hits were identified that have already been validated or suggested to inhibit the SARS-CoV-2 virus in published cell models. In particular, the data suggest an action mechanism for molecules including Chitosan and macrolides such as the mTOR (mammalian target of Rapamycin) pathway inhibitor Rapamycin. These findings identify a novel small molecule binding-site formed by the spike protein oligomer, that might assist in future drug discovery programs aimed at targeting the coronavirus (CoV) family of viruses.
Collapse
Affiliation(s)
- Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Monikaben Padariya
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Marcos Mayordomo
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Małgorzata Lisowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Judith Nicholson
- Sharp Life Science (EU) Limited, Oxford Science Park, Edmund Halley Rd, Oxford OX4 4GB, UK;
| | - Ashita Singh
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland;
| | - Robin Fahraeus
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
| | - Neil Carragher
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK; (N.C.); (K.B.)
| | - Kathryn Ball
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK; (N.C.); (K.B.)
| | - Juergen Haas
- Department of Infectious Disease, Edinburgh, Scotland EH4 2XR, UK; (J.H.); (A.D.)
| | - Alison Daniels
- Department of Infectious Disease, Edinburgh, Scotland EH4 2XR, UK; (J.H.); (A.D.)
| | - Ted R. Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK; (N.C.); (K.B.)
| | - Javier Antonio Alfaro
- International Centre for Cancer Vaccine Science, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland; (M.P.); (M.M.); (M.L.); (A.S.); (R.F.)
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland EH4 2XR, UK; (N.C.); (K.B.)
| |
Collapse
|
108
|
Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli KP, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA. Broad Host Range of SARS-CoV-2 Predicted by Comparative and Structural Analysis of ACE2 in Vertebrates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.16.045302. [PMID: 32511356 PMCID: PMC7263403 DOI: 10.1101/2020.04.16.045302] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The novel coronavirus SARS-CoV-2 is the cause of Coronavirus Disease-2019 (COVID-19). The main receptor of SARS-CoV-2, angiotensin I converting enzyme 2 (ACE2), is now undergoing extensive scrutiny to understand the routes of transmission and sensitivity in different species. Here, we utilized a unique dataset of 410 vertebrates, including 252 mammals, to study cross-species conservation of ACE2 and its likelihood to function as a SARS-CoV-2 receptor. We designed a five-category ranking score based on the conservation properties of 25 amino acids important for the binding between receptor and virus, classifying all species from very high to very low. Only mammals fell into the medium to very high categories, and only catarrhine primates in the very high category, suggesting that they are at high risk for SARS-CoV-2 infection. We employed a protein structural analysis to qualitatively assess whether amino acid changes at variable residues would be likely to disrupt ACE2/SARS-CoV-2 binding, and found the number of predicted unfavorable changes significantly correlated with the binding score. Extending this analysis to human population data, we found only rare (<0.1%) variants in 10/25 binding sites. In addition, we observed evidence of positive selection in ACE2 in multiple species, including bats. Utilized appropriately, our results may lead to the identification of intermediate host species for SARS-CoV-2, justify the selection of animal models of COVID-19, and assist the conservation of animals both in native habitats and in human care.
Collapse
Affiliation(s)
- Joana Damas
- The Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Kathleen C. Keough
- University of California San Francisco, San Francisco, CA 94117, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
| | - Corrie A. Painter
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicole S. Persky
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Genetic Perturbation Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marco Corbo
- The Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Klaus-Peter Koepfli
- Smithsonian Conservation Biology Institute, Center for Species Survival, National Zoological Park, Front Royal, VA 22630, Washington, DC 20008 USA
| | - Andreas R. Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Huabin Zhao
- Department of Ecology and Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Katherine S. Pollard
- University of California San Francisco, San Francisco, CA 94117, USA
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Oliver A. Ryder
- San Diego Zoo Institute for Conservation Research, Escondido, CA 92027, USA
- Department of Evolution, Behavior, and Ecology, Division of Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin T. Nweeia
- Harvard School of Dental Medicine, Boston, MA 02115, USA
- Case Western Reserve University School of Dental Medicine, Cleveland, OH 44106, USA
- Marine Mammal Program, Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, 751 23, Sweden
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Harris A. Lewin
- The Genome Center, University of California Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
- John Muir Institute for the Environment, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|