101
|
Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 2020; 22:61. [PMID: 32517735 PMCID: PMC7285581 DOI: 10.1186/s13058-020-01296-5] [Citation(s) in RCA: 1100] [Impact Index Per Article: 275.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC), a specific subtype of breast cancer that does not express estrogen receptor (ER), progesterone receptor (PR), or human epidermal growth factor receptor 2 (HER-2), has clinical features that include high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Because TNBC tumors lack ER, PR, and HER2 expression, they are not sensitive to endocrine therapy or HER2 treatment, and standardized TNBC treatment regimens are still lacking. Therefore, development of new TNBC treatment strategies has become an urgent clinical need. By summarizing existing treatment regimens, therapeutic drugs, and their efficacy for different TNBC subtypes and reviewing some new preclinical studies and targeted treatment regimens for TNBC, this paper aims to provide new ideas for TNBC treatment.
Collapse
Affiliation(s)
- Li Yin
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing, 400038, China
| | - Jiang-Jie Duan
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing, 400038, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China.,Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing, 400038, China
| | - Shi-Cang Yu
- Department of Stem Cell and Regenerative Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China. .,Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), ChongQing, 400038, China. .,Key Laboratory of Cancer Immunopathology, Ministry of Education, ChongQing, 400038, China.
| |
Collapse
|
102
|
Peyraud F, Italiano A. Combined PARP Inhibition and Immune Checkpoint Therapy in Solid Tumors. Cancers (Basel) 2020; 12:E1502. [PMID: 32526888 PMCID: PMC7352466 DOI: 10.3390/cancers12061502] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/07/2020] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is a hallmark of cancer related to DNA damage response (DDR) deficiencies, offering vulnerabilities for targeted treatment. Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) interfere with the efficient repair of DNA damage, particularly in tumors with existing defects in DNA repair, and induce synthetic lethality. PARPi are active across a range of tumor types harboring BRCA mutations and also BRCA-negative cancers, such as ovarian, breast or prostate cancers with homologous recombination deficiencies (HRD). Depending on immune contexture, immune checkpoint inhibitors (ICIs), such as anti-PD1/PD-L1 and anti-CTLA-4, elicit potent antitumor effects and have been approved in various cancers types. Although major breakthroughs have been performed with either PARPi or ICIs alone in multiple cancers, primary or acquired resistance often leads to tumor escape. PARPi-mediated unrepaired DNA damages modulate the tumor immune microenvironment by a range of molecular and cellular mechanisms, such as increasing genomic instability, immune pathway activation, and PD-L1 expression on cancer cells, which might promote responsiveness to ICIs. In this context, PARPi and ICIs represent a rational combination. In this review, we summarize the basic and translational biology supporting the combined strategy. We also detail preclinical results and early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. Moreover, we discuss the limitations and the future direction of the combination.
Collapse
Affiliation(s)
- Florent Peyraud
- Department of Medical Oncology, Institut Bergonié, 33000 Bordeaux, France;
- University of Bordeaux, 33076 Bordeaux, France
| | - Antoine Italiano
- Department of Medical Oncology, Institut Bergonié, 33000 Bordeaux, France;
- University of Bordeaux, 33076 Bordeaux, France
- Early Phase Trials and Sarcoma Unit, Institut Bergonié, 33000 Bordeaux, France
| |
Collapse
|
103
|
Habieb MSED, Younis FE, Safan M, Allam HK. PARP1-DNMT1-CTCF complex and the apoptotic-induced factor mRNA expressions in workers occupationally exposed to benzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22648-22657. [PMID: 32319058 DOI: 10.1007/s11356-020-08614-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Exposure to benzene is a common occupational hazard as well as a hematopoietic system intoxicant, but the entire picture of its molecular pathogenesis is still hazy. Its leukemogenic effect could be attributed to DNA damage, decreased repair capacity, altered methylation patterns, and defective apoptosis. Poly ADP-ribose polymerase1, DNA methyltransferase1, and CCCTC-binding factor (PARP1-DNMT1-CTCF) complex play an essential role in methylation maintenance and DNA damage repair response. This study aimed to assess the expression of PARP1, PAR glycohydrolases (PARG), DNMT1, CTCF, and apoptosis-inducing factor (AIF) in subjects occupationally exposed to benzene. A total of 200 subjects were enrolled in this study: 100 workers occupationally exposed to benzene (painters and decorators) and 100 unexposed office workers. Occupational exposure data were obtained. The biochemical and hematological evaluations were done. Quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to assess mRNA expression of PARP1, PARG, DNMT1, CTCF, and AIF. Both biochemical and hematological parameters were within normal limits; workplace benzene air concentration was significantly higher in exposed workers than the levels among controls (P < 0.001). Significant decrease in mRNA levels of PARP1, DNMT1, CTCF, and AIF was noticed among the exposed group (P = 0.01, P < 0.001, P = 0.004, P < 0.001, respectively) in comparison with the control group, while PARG showed non-significant difference (P = 0.16). There was a significant negative correlation between workplace benzene air concentration and expression levels of PARP1, DNMT1, and AIF. The reduced expression of PARP1, DNMT1, CTCF, and AIF observed in exposed workers may represent one of the first benzene-induced changes that might threaten erythropoiesis.
Collapse
Affiliation(s)
- Mona Salah El-Din Habieb
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | - Faten Ezzelarab Younis
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | - Manal Safan
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt
| | - Heba Khodary Allam
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebin Al-Kom, Menoufia, Egypt.
| |
Collapse
|
104
|
Gambini A, Stein P, Savy V, Grow EJ, Papas BN, Zhang Y, Kenan AC, Padilla-Banks E, Cairns BR, Williams CJ. Developmentally Programmed Tankyrase Activity Upregulates β-Catenin and Licenses Progression of Embryonic Genome Activation. Dev Cell 2020; 53:545-560.e7. [PMID: 32442396 DOI: 10.1016/j.devcel.2020.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/16/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Abstract
Embryonic genome activation (EGA) is orchestrated by an intrinsic developmental program initiated during oocyte maturation with translation of stored maternal mRNAs. Here, we show that tankyrase, a poly(ADP-ribosyl) polymerase that regulates β-catenin levels, undergoes programmed translation during oocyte maturation and serves an essential role in mouse EGA. Newly translated TNKS triggers proteasomal degradation of axin, reducing targeted destruction of β-catenin and promoting β-catenin-mediated transcription of target genes, including Myc. MYC mediates ribosomal RNA transcription in 2-cell embryos, supporting global protein synthesis. Suppression of tankyrase activity using knockdown or chemical inhibition causes loss of nuclear β-catenin and global reductions in transcription and histone H3 acetylation. Chromatin and transcriptional profiling indicate that development arrests prior to the mid-2-cell stage, mediated in part by reductions in β-catenin and MYC. These findings indicate that post-transcriptional regulation of tankyrase serves as a ligand-independent developmental mechanism for post-translational β-catenin activation and is required to complete EGA.
Collapse
Affiliation(s)
- Andrés Gambini
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Edward J Grow
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Brian N Papas
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yingpei Zhang
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Anna C Kenan
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Bradley R Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute and Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
105
|
Vikas P, Borcherding N, Chennamadhavuni A, Garje R. Therapeutic Potential of Combining PARP Inhibitor and Immunotherapy in Solid Tumors. Front Oncol 2020; 10:570. [PMID: 32457830 PMCID: PMC7228136 DOI: 10.3389/fonc.2020.00570] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of both hematological malignancies and solid tumors. The use of immunotherapy has improved outcome for patients with cancer across multiple tumor types, including lung, melanoma, ovarian, genitourinary, and more recently breast cancer with durable responses seen even in patients with widespread metastatic disease. Despite the promising results, immunotherapy still helps only a subset of patients due to overall low response rates. Moreover, the response to immunotherapy is highly cancer specific and results have not been as promising in cancers that are considered less immunogenic. The strategies to improve immunotherapy responses have focused on biomarker selection, like PD-L1 status, and usage of combinatorial agents, such as chemotherapy, targeted therapy, and radiotherapy. Of particular interest, DNA-damaging agents have the potential to enhance the response to immunotherapy by promoting neoantigen release, increasing tumor mutational burden, and enhancing PD-L1 expression. Poly-ADP-ribose polymerase (PARP) inhibitors are one such class of drugs that has shown synergy with immunotherapy in preclinical and early clinical studies. PARP-based therapies work through the inhibition of single-strand DNA repair leading to DNA damage, increased tumor mutational burden, making the tumor a more attractive target for immunotherapy. Of the solid tumors reviewed, breast, ovarian, and prostate cancers have demonstrated efficacy in the combination of PARP inhibition and immunotherapy, predominately in BRCA-mutated tumors. However, initial investigations into wildtype BRCA and gastrointestinal tumors have shown moderate overall response or disease control rates, dependent on the tumor type. In contrast, although a number of clinical trials underway, there is a paucity of published results for the use of the combination in lung or urothelial cancers. Overall this article focuses on the promise of combinatorial PARP inhibition and immunotherapy to improve patient outcomes in solid tumors, summarizing both early results and looking toward ongoing trials.
Collapse
Affiliation(s)
- Praveen Vikas
- Department of Internal Medicine, College of Medicine, University of Iowa, Iowa, IA, United States
- Holden Comprehensive Cancer Center, Iowa city, IA, United States
| | - Nicholas Borcherding
- Holden Comprehensive Cancer Center, Iowa city, IA, United States
- Department of Pathology, College of Medicine, University of Iowa, Iowa, IA, United States
- Cancer Biology Graduate Program, College of Medicine, University of Iowa, Iowa, IA, United States
- Medical Scientist Training Program, College of Medicine, University of Iowa, Iowa, IA, United States
| | - Adithya Chennamadhavuni
- Department of Internal Medicine, College of Medicine, University of Iowa, Iowa, IA, United States
- Holden Comprehensive Cancer Center, Iowa city, IA, United States
| | - Rohan Garje
- Department of Internal Medicine, College of Medicine, University of Iowa, Iowa, IA, United States
- Holden Comprehensive Cancer Center, Iowa city, IA, United States
| |
Collapse
|
106
|
Jewett BE, Miller MN, Ligon LA, Carter Z, Mohammad I, Ordway GA. Rapid and temporary improvement of depression and anxiety observed following niraparib administration: a case report. BMC Psychiatry 2020; 20:171. [PMID: 32295563 PMCID: PMC7161116 DOI: 10.1186/s12888-020-02590-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/07/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Cancer patients are disproportionately affected by generalized anxiety and major depression. For many, current treatments for these conditions are ineffective. In this case report, we present a serendipitous case of anxiety and depression improvement following administration of the poly (ADP-ribose) polymerase (PARP) inhibitor niraparib. CASE PRESENTATION A 61-year old woman with a 20-year history of mild depression developed recurrent ovarian carcinoma and was placed on niraparib for maintenance chemotherapy. With the original onset of ovarian cancer, she experienced an episode of major depression that was resolved with sertraline. After recurrence of ovarian cancer, she experienced a recurrence of major depression and a new onset of generalized anxiety that failed to completely respond to multiple medications. After beginning niraparib therapy the patient noticed a rapid resolution of the symptoms of her anxiety and depression, an effect that was limited to 10-14 days. Due to bone marrow suppression, the patient was taken off and restarted on niraparib several times. Each discontinuation of niraparib resulted in return of her depression and anxiety, while each recontinuation of niraparib resulted in an improvement in her mood and anxiety. CONCLUSIONS This case demonstrates rapid and temporary improvement of anxiety and depression following niraparib administration. There is ample preclinical data that PARP signaling may play a role in psychiatric illness. A small amount of indirect data from clinical trials also shows that niraparib may have psychiatric benefits. Further research on PARP inhibition and its potential psychoactive effects is sorely needed.
Collapse
Affiliation(s)
- Benjamin E. Jewett
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA
| | - Merry N. Miller
- grid.255381.80000 0001 2180 1673Department of Psychiatry and Behavioral Sciences, East Tennessee State University, 187 Maple Avenue, Johnson City, TN 37684 USA
| | - Libby A. Ligon
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA
| | - Zachary Carter
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA
| | - Ibrahim Mohammad
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA
| | - Gregory A. Ordway
- Department of Biomedical Sciences, PO Box 70577, Johnson City, 37614 USA ,grid.255381.80000 0001 2180 1673Department of Psychiatry and Behavioral Sciences, East Tennessee State University, 187 Maple Avenue, Johnson City, TN 37684 USA
| |
Collapse
|
107
|
Vagia E, Mahalingam D, Cristofanilli M. The Landscape of Targeted Therapies in TNBC. Cancers (Basel) 2020; 12:E916. [PMID: 32276534 PMCID: PMC7226210 DOI: 10.3390/cancers12040916] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Triple negative breast cancer (TNBC) constitutes the most aggressive molecular subtype among breast tumors. Despite progress on the underlying tumor biology, clinical outcomes for TNBC unfortunately remain poor. The median overall survival for patients with metastatic TNBC is approximately eighteen months. Chemotherapy is the mainstay of treatment while there is a growing body of evidence that targeted therapies may be on the horizon with poly-ADP-ribose polymerase (PARP) and immune check-point inhibitors already established in the treatment paradigm of TNBC. A large number of novel therapeutic agents are being evaluated for their efficacy in TNBC. As novel therapeutics are now incorporated into clinical practice, it is clear that tumor heterogeneity and clonal evolution can result to de novo or acquired treatment resistance. As precision medicine and next generation sequencing is part of cancer diagnostics, tailored treatment approaches based on the expression of molecular markers are currently being implemented in clinical practice and clinical trial design. The scope of this review is to highlight the most relevant current knowledge regarding underlying molecular profile of TNBC and its potential application in clinical practice.
Collapse
Affiliation(s)
- Elena Vagia
- Division of Hematology Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (D.M.); (M.C.)
| | | | | |
Collapse
|
108
|
Griguolo G, Dieci MV, Miglietta F, Guarneri V, Conte P. Olaparib for advanced breast cancer. Future Oncol 2020; 16:717-732. [PMID: 32249603 DOI: 10.2217/fon-2019-0689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Olaparib, an oral PARP-inhibitor, has shown clinical benefit for HER2-negative advanced breast cancer patients carrying a germinal BRCA1/2 mutation. In a randomized Phase III trial, olaparib significantly prolonged progression-free survival as compared with chemotherapy of physician choice. Moreover, in the same trial, a prespecified subgroup analysis reported an overall survival benefit for patients not previously pretreated with chemotherapy for metastatic disease. This review focuses on available preclinical, pharmacokinetic and pharmacodynamic data regarding olaparib and clinical evidence of its antitumor efficacy (both as monotherapy and in combination) and tolerability in breast cancer patients. Open questions, such as use of appropriate biomarkers for patient selection and combination/sequencing with other anticancer drugs, are also addressed.
Collapse
Affiliation(s)
- Gaia Griguolo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Maria Vittoria Dieci
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Federica Miglietta
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Valentina Guarneri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - PierFranco Conte
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Division of Oncology 2, Istituto Oncologico Veneto IRCCS, Padova, Italy
| |
Collapse
|
109
|
|
110
|
Triple-Negative Breast Cancer: A Review of Conventional and Advanced Therapeutic Strategies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17062078. [PMID: 32245065 PMCID: PMC7143295 DOI: 10.3390/ijerph17062078] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Triple-negative breast cancer (TNBC) cells are deficient in estrogen, progesterone and ERBB2 receptor expression, presenting a particularly challenging therapeutic target due to their highly invasive nature and relatively low response to therapeutics. There is an absence of specific treatment strategies for this tumor subgroup, and hence TNBC is managed with conventional therapeutics, often leading to systemic relapse. In terms of histology and transcription profile these cancers have similarities to BRCA-1-linked breast cancers, and it is hypothesized that BRCA1 pathway is non-functional in this type of breast cancer. In this review article, we discuss the different receptors expressed by TNBC as well as the diversity of different signaling pathways targeted by TNBC therapeutics, for example, Notch, Hedgehog, Wnt/b-Catenin as well as TGF-beta signaling pathways. Additionally, many epidermal growth factor receptor (EGFR), poly (ADP-ribose) polymerase (PARP) and mammalian target of rapamycin (mTOR) inhibitors effectively inhibit the TNBCs, but they face challenges of either resistance to drugs or relapse. The resistance of TNBC to conventional therapeutic agents has helped in the advancement of advanced TNBC therapeutic approaches including hyperthermia, photodynamic therapy, as well as nanomedicine-based targeted therapeutics of drugs, miRNA, siRNA, and aptamers, which will also be discussed. Artificial intelligence is another tool that is presented to enhance the diagnosis of TNBC.
Collapse
|
111
|
Lavin MF, Yeo AJ. Clinical potential of ATM inhibitors. Mutat Res 2020; 821:111695. [PMID: 32304909 DOI: 10.1016/j.mrfmmm.2020.111695] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 01/04/2023]
Abstract
The protein defective in the human genetic disorder ataxia-telangiectasia, ATM, plays a central role in responding to DNA double strand breaks and other lesions to protect the genome against DNA damage and in this way minimize the risk of mutations that can lead to abnormal cellular behaviour. Its function in normal cells is to protect the cell against genotoxic stress but inadvertently it can assist cancer cells by providing resistance against chemotherapeutic agents and thus favouring tumour growth and survival. However, it is now evident that ATM also functions in a DNA damage-independent fashion to protect the cell against other forms of stress such as oxidative and nutrient stress and this non-canonical mechanism may also be relevant to cancer susceptibility in individuals who lack a functional ATM gene. Thus the use of ATM inhibitors to combat resistance in tumours may extend beyond a role for this protein in the DNA damage response. Here, we provide some background on ATM and its activation and investigate the efficacy of ATM inhibitors in treating cancer.
Collapse
Affiliation(s)
- Martin F Lavin
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia.
| | - Abrey J Yeo
- University of Queensland Centre for Clinical Research, University of Queensland, Brisbane, Australia
| |
Collapse
|
112
|
Hypothalamic NAD +-Sirtuin Axis: Function and Regulation. Biomolecules 2020; 10:biom10030396. [PMID: 32143417 PMCID: PMC7175325 DOI: 10.3390/biom10030396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
The rapidly expanding elderly population and obesity endemic have become part of continuing global health care problems. The hypothalamus is a critical center for the homeostatic regulation of energy and glucose metabolism, circadian rhythm, and aging-related physiology. Nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase sirtuins are referred to as master metabolic regulators that link the cellular energy status to adaptive transcriptional responses. Mounting evidence now indicates that hypothalamic sirtuins are essential for adequate hypothalamic neuronal functions. Owing to the NAD+-dependence of sirtuin activity, adequate hypothalamic NAD+ contents are pivotal for maintaining energy homeostasis and circadian physiology. Here, we comprehensively review the regulatory roles of the hypothalamic neuronal NAD+-sirtuin axis in a normal physiological context and their changes in obesity and the aging process. We also discuss the therapeutic potential of NAD+ biology-targeting drugs in aging/obesity-related metabolic and circadian disorders.
Collapse
|
113
|
Bae W, Park JH, Lee MH, Park HW, Koo HS. Hypersensitivity to DNA double-strand breaks associated with PARG deficiency is suppressed by exo-1 and polq-1 mutations in Caenorhabditis elegans. FEBS J 2020; 287:1101-1115. [PMID: 31593615 DOI: 10.1111/febs.15082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Deficiency of either of the two homologs of poly(ADP-ribose) glycohydrolase (PARG), PARG-1 and PARG-2, in Caenorhabditis elegans leads to hypersensitivity to ionizing radiation (IR). In the germ cells of parg-2 mutant worms, the dissipation of recombinase RAD-51 foci was slower than in wild-type (WT) cells, suggesting defects in DNA double-strand break (DSB) repair via homologous recombination (HR). Nevertheless, RPA-1, the large subunit of replication protein A, accumulated faster in parg-2 worms and disappeared earlier than in WT worms. This accelerated RPA-1 accumulation may result from the enhanced expression of exonuclease-1 (EXO-1) after IR treatment. Accordingly, an exo-1 mutation reduced IR sensitivity and accumulation of RPA-1 in parg-2 worms. A mutation of polq-1, encoding for a key factor in the alternative end-joining (Alt-EJ) pathway, suppressed the IR hypersensitivity phenotype of parg-2 worms and normalized the kinetics of RAD-51 dissipation. This indicates that error-prone Alt-EJ may mediate DSB repair in parg-2 worms, causing hypersensitivity to IR. In summary, PARG-2 deficiency in C. elegans causes hyperactive DSB end resection likely through EXO-1 overproduction. DSBs with long single-stranded DNA ends in parg-2 worms are thought to be repaired by Alt-EJ instead of HR, causing genomic instability.
Collapse
Affiliation(s)
- Woori Bae
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Myon-Hee Lee
- Department of Medicine, Hematology/Oncology Division, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| |
Collapse
|
114
|
Avitabile M, Lasorsa VA, Cantalupo S, Cardinale A, Cimmino F, Montella A, Capasso D, Haupt R, Amoroso L, Garaventa A, Quattrone A, Corrias MV, Iolascon A, Capasso M. Association of PARP1 polymorphisms with response to chemotherapy in patients with high-risk neuroblastoma. J Cell Mol Med 2020; 24:4072-4081. [PMID: 32103589 PMCID: PMC7171401 DOI: 10.1111/jcmm.15058] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/17/2020] [Accepted: 01/27/2020] [Indexed: 12/25/2022] Open
Abstract
The genetic aetiology and the molecular mechanisms that characterize high‐risk neuroblastoma are still little understood. The majority of high‐risk neuroblastoma patients do not take advantage of current induction therapy. So far, one of the main reasons liable for cancer therapeutic failure is the acquisition of resistance to cytotoxic anticancer drugs, because of the DNA repair system of tumour cells. PARP1 is one of the main DNA damage sensors involved in the DNA repair system and genomic stability. We observed that high PARP1 mRNA level is associated with unfavourable prognosis in 3 public gene expression NB patients’ datasets and in 20 neuroblastomas analysed by qRT‐PCR. Among 4983 SNPs in PARP1, we selected two potential functional SNPs. We investigated the association of rs907187, in PARP1 promoter, and rs2048426 in non‐coding region with response chemotherapy in 121 Italian patients with high‐risk NB. Results showed that minor G allele of rs907187 associated with induction response of patients (P = .02) and with decrease PARP1 mRNA levels in NB cell line (P = .003). Furthermore, rs907187 was predicted to alter the binding site of E2F1 transcription factor. Specifically, allele G had low binding affinity with E2F1 whose expression positively correlates with PARP1 expression and associated with poor prognosis of patients with NB. By contrast, we did not find genetic association for the SNP rs2048426. These data reveal rs907187 as a novel potential risk variant associated with the failure of induction therapy for high‐risk NB.
Collapse
Affiliation(s)
- Marianna Avitabile
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Vito Alessandro Lasorsa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | | | | | | | - Dalila Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Riccardo Haupt
- UOS Epidemiology, Biostatistics and Committees, Genova, Italy
| | - Loredana Amoroso
- Department of Pediatric Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alberto Garaventa
- Department of Pediatric Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Maria Valeria Corrias
- Laboratory of Experimental Therapy in Oncology, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|
115
|
Morosi L, Matteo C, Ceruti T, Giordano S, Ponzo M, Frapolli R, Zucchetti M, Davoli E, D'Incalci M, Ubezio P. Quantitative determination of niraparib and olaparib tumor distribution by mass spectrometry imaging. Int J Biol Sci 2020; 16:1363-1375. [PMID: 32210725 PMCID: PMC7085221 DOI: 10.7150/ijbs.41395] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/18/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Optimal intratumor distribution of an anticancer drug is fundamental to reach an active concentration in neoplastic cells, ensuring the therapeutic effect. Determination of drug concentration in tumor homogenates by LC-MS/MS gives important information about this issue but the spatial information gets lost. Targeted mass spectrometry imaging (MSI) has great potential to visualize drug distribution in the different areas of tumor sections, with good spatial resolution and superior specificity. MSI is rapidly evolving as a quantitative technique to measure the absolute drug concentration in each single pixel. Methods: Different inorganic nanoparticles were tested as matrices to visualize the PARP inhibitors (PARPi) niraparib and olaparib. Normalization by deuterated internal standard and a custom preprocessing pipeline were applied to achieve a reliable single pixel quantification of the two drugs in human ovarian tumors from treated mice. Results: A quantitative method to visualize niraparib and olaparib in tumor tissue of treated mice was set up and validated regarding precision, accuracy, linearity, repeatability and limit of detection. The different tumor penetration of the two drugs was visualized by MSI and confirmed by LC-MS/MS, indicating the homogeneous distribution and higher tumor exposure reached by niraparib compared to olaparib. On the other hand, niraparib distribution was heterogeneous in an ovarian tumor model overexpressing the multidrug resistance protein P-gp, a possible cause of resistance to PARPi. Conclusions: The current work highlights for the first time quantitative distribution of PAPRi in tumor tissue. The different tumor distribution of niraparib and olaparib could have important clinical implications. These data confirm the validity of MSI for spatial quantitative measurement of drug distribution providing fundamental information for pharmacokinetic studies, drug discovery and the study of resistance mechanisms.
Collapse
Affiliation(s)
- Lavinia Morosi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Cristina Matteo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Tommaso Ceruti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Silvia Giordano
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Mass Spectrometry
| | - Marianna Ponzo
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Roberta Frapolli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Massimo Zucchetti
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Enrico Davoli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Laboratory of Mass Spectrometry
| | - Maurizio D'Incalci
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| | - Paolo Ubezio
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Department of Oncology
| |
Collapse
|
116
|
The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev 2020; 34:321-340. [PMID: 32029456 PMCID: PMC7050491 DOI: 10.1101/gad.334284.119] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, Szanto et al. summarize the metabolic regulatory roles of PARP enzymes and their associated pathologies. Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.
Collapse
|
117
|
Design, synthesis and biological evaluation of novel phthalazinone acridine derivatives as dual PARP and Topo inhibitors for potential anticancer agents. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
118
|
Barghouth PG, Karabinis P, Venegas A, Oviedo NJ. Poly(ADP-Ribose) Polymerase-3 Regulates Regeneration in Planarians. Int J Mol Sci 2020; 21:E875. [PMID: 32013251 PMCID: PMC7038108 DOI: 10.3390/ijms21030875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/27/2020] [Indexed: 11/20/2022] Open
Abstract
Protein ADP-ribosylation is a reversible post-translational modification (PTM) process that plays fundamental roles in cell signaling. The covalent attachment of ADP ribose polymers is executed by PAR polymerases (PARP) and it is essential for chromatin organization, DNA repair, cell cycle, transcription, and replication, among other critical cellular events. The process of PARylation or polyADP-ribosylation is dynamic and takes place across many tissues undergoing renewal and repair, but the molecular mechanisms regulating this PTM remain mostly unknown. Here, we introduce the use of the planarian Schmidtea mediterranea as a tractable model to study PARylation in the complexity of the adult body that is under constant renewal and is capable of regenerating damaged tissues. We identified the evolutionary conservation of PARP signaling that is expressed in planarian stem cells and differentiated tissues. We also demonstrate that Smed-PARP-3 homolog is required for proper regeneration of tissues in the anterior region of the animal. Furthermore, our results demonstrate, Smed-PARP-3(RNAi) disrupts the timely location of injury-induced cell death near the anterior facing wounds and also affects the regeneration of the central nervous system. Our work reveals novel roles for PARylation in large-scale regeneration and provides a simplified platform to investigate PARP signaling in the complexity of the adult body.
Collapse
Affiliation(s)
- Paul G. Barghouth
- Department of Molecular and Cell Biology, University of California, Merced, CA 95340, USA; (P.G.B.); (P.K.); (A.V.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95340, USA
| | - Peter Karabinis
- Department of Molecular and Cell Biology, University of California, Merced, CA 95340, USA; (P.G.B.); (P.K.); (A.V.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95340, USA
| | - Andie Venegas
- Department of Molecular and Cell Biology, University of California, Merced, CA 95340, USA; (P.G.B.); (P.K.); (A.V.)
| | - Néstor J. Oviedo
- Department of Molecular and Cell Biology, University of California, Merced, CA 95340, USA; (P.G.B.); (P.K.); (A.V.)
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95340, USA
- Health Sciences Research Institute, University of California, Merced, CA 95340, USA
| |
Collapse
|
119
|
Abstract
Poly(ADP-ribosyl)ation (PARylation) mediated by poly ADP-ribose polymerases (PARPs) plays a key role in DNA damage repair. Suppression of PARylation by PARP inhibitors impairs DNA damage repair and induces apoptosis of tumor cells with repair defects. Thus, PARP inhibitors have been approved by the US FDA for various types of cancer treatment. However, recent studies suggest that dePARylation also plays a key role in DNA damage repair. Instead of antagonizing PARylation, dePARylation acts as a downstream step of PARylation in DNA damage repair. Moreover, several types of dePARylation inhibitors have been developed and examined in the preclinical studies for cancer treatment. In this review, we will discuss the recent progress on the role of dePARylation in DNA damage repair and cancer suppression. We expect that targeting dePARylation could be a promising approach for cancer chemotherapy in the future.
Collapse
Affiliation(s)
- Muzaffer Ahmad Kassab
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| | - Lily L. Yu
- Westridge School, 324 Madeline Dr., Pasadena, CA 91105 USA
| | - Xiaochun Yu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010 USA
| |
Collapse
|
120
|
Hjortkjær M, Malik Aagaard Jørgensen M, Waldstrøm M, Ørnskov D, Søgaard-Andersen E, Jakobsen A, Dahl-Steffensen K. The clinical importance of BRCAness in a population-based cohort of Danish epithelial ovarian cancer. Int J Gynecol Cancer 2020; 29:166-173. [PMID: 30640700 DOI: 10.1136/ijgc-2018-000017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Germline mutations in BRCA1/2 genes predict improved survival and sensitivity to treatment with poly(adenosine-diphosphate-ribose) polymerase inhibitors in epithelial ovarian carcinoma. The prognostic importance of other genetic alterations leading to homologous recombination deficiency, collectively BRCAness phenotype, is unresolved. The aim was to analyze the distribution of homologous recombination deficiency in epithelial ovarian carcinoma caused by mutations in a panel of homologous recombination genes (including BRCA1/2) or epigenetic alterations. A further aim was to investigate the prognostic importance of homologous recombination deficiency, the BRCAness phenotype. METHODS We assessed 380 patient specimens from a Danish population-based epithelial ovarian carcinoma cohort for germline and somatic mutations in 18 different homologous recombination genes, including BRCA1 and BRCA2, using next generation sequencing. Epigenetic alteration due to BRCA1 hypermethylation was assessed by pyrosequencing and BRCA1 protein expression was evaluated by immunohistochemistry. RESULTS Seventeen percent of patients with epithelial ovarian carcinoma carried a germline (9.8%) and/or somatic (6.3%) mutation in 12 (BRCA1, BRCA2, CHEK2, ATM, RAD51D, EMSY, PALB2, BRIP1, ERCC1, RAD50, ATR, RAD51C) of 18 sequenced homologous recombination genes. The homologous recombination mutation rate was similar among the different histologic subtypes, however the type of mutation (BRCA1/2 and other homologous recombination mutations) differed, p=4×10-4. BRCA1 hypermethylation was present in 7.4% of patient specimens for a total BRCAness phenotype of 23.9%. The BRCAness phenotype was associated with improved overall survival in the high-grade serous carcinoma subgroup with a median overall survival of 4.4 years (95% CI 3.0 to 5.3) versus 2.2 years (95% CI 1.9 to 2.4) in BRCAness wildtype, p=0.0002. Multivariate analysis confirmed an independent prognostic value of the BRCAness phenotype among the high-grade serous carcinoma subgroup, hazard ratio 0.65 (95% CI 0.47 to 0.92), p=0.014. CONCLUSIONS The BRCAness phenotype is present in almost one-fourth of epithelial ovarian carcinoma and holds important prognostic information. The implications of our findings in relation to poly(adenosine-diphosphate-ribose) polymerase inhibitor treatment call for further investigation.
Collapse
Affiliation(s)
- Mette Hjortkjær
- Department of Oncology, Vejle Hospital, Vejle, Denmark .,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Gynecology and Obstetrics, Aalborg University Hospital, Aalborg, Denmark
| | | | - Marianne Waldstrøm
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Pathology, Vejle Hospital, Vejle, Denmark
| | | | - Erik Søgaard-Andersen
- Department of Gynecology and Obstetrics, Aalborg University Hospital, Aalborg, Denmark
| | - Anders Jakobsen
- Department of Oncology, Vejle Hospital, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Karina Dahl-Steffensen
- Department of Oncology, Vejle Hospital, Vejle, Denmark.,Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
121
|
Koliadenko V, Wilanowski T. Additional functions of selected proteins involved in DNA repair. Free Radic Biol Med 2020; 146:1-15. [PMID: 31639437 DOI: 10.1016/j.freeradbiomed.2019.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022]
Abstract
Protein moonlighting is a phenomenon in which a single polypeptide chain can perform a number of different unrelated functions. Here we present our analysis of moonlighting in the case of selected DNA repair proteins which include G:T mismatch-specific thymine DNA glycosylase (TDG), methyl-CpG-binding domain protein 4 (MBD4), apurinic/apyrimidinic endonuclease 1 (APE1), AlkB homologs, poly (ADP-ribose) polymerase 1 (PARP-1) and single-strand selective monofunctional uracil DNA glycosylase 1 (SMUG1). Most of their additional functions are not accidental and clear patterns are emerging. Participation in RNA metabolism is not surprising as bases occurring in RNA are the same or very similar to those in DNA. Other common additional function involves regulation of transcription. This is not unexpected as these proteins bind to specific DNA regions for DNA repair, hence they can also be recruited to regulate transcription. Participation in demethylation and replication of DNA appears logical as well. Some of the multifunctional DNA repair proteins play major roles in many diseases, including cancer. However, their moonlighting might prove a major difficulty in the development of new therapies because it will not be trivial to target a single protein function without affecting its other functions that are not related to the disease.
Collapse
Affiliation(s)
- Vlada Koliadenko
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Ilji Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
122
|
Bolderson E, Burgess JT, Li J, Gandhi NS, Boucher D, Croft LV, Beard S, Plowman JJ, Suraweera A, Adams MN, Naqi A, Zhang SD, Sinclair DA, O'Byrne KJ, Richard DJ. Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. Nat Commun 2019; 10:5501. [PMID: 31796734 PMCID: PMC6890647 DOI: 10.1038/s41467-019-13167-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/22/2019] [Indexed: 01/19/2023] Open
Abstract
The DNA repair capacity of human cells declines with age, in a process that is not clearly understood. Mutation of the nuclear envelope protein barrier-to-autointegration factor 1 (Banf1) has previously been shown to cause a human progeroid disorder, Néstor–Guillermo progeria syndrome (NGPS). The underlying links between Banf1, DNA repair and the ageing process are unknown. Here, we report that Banf1 controls the DNA damage response to oxidative stress via regulation of poly [ADP-ribose] polymerase 1 (PARP1). Specifically, oxidative lesions promote direct binding of Banf1 to PARP1, a critical NAD+-dependent DNA repair protein, leading to inhibition of PARP1 auto-ADP-ribosylation and defective repair of oxidative lesions, in cells with increased Banf1. Consistent with this, cells from patients with NGPS have defective PARP1 activity and impaired repair of oxidative lesions. These data support a model whereby Banf1 is crucial to reset oxidative-stress-induced PARP1 activity. Together, these data offer insight into Banf1-regulated, PARP1-directed repair of oxidative lesions. Mutation of the nuclear envelope protein, barrier-to-autointegration factor 1 (Banf1), has previously been associated with the development of ageing associated diseases in a human progeria syndrome. Here, the authors reveal the functional link between Banf1-regulated, PARP1-directed repair of oxidative lesions.
Collapse
Affiliation(s)
- Emma Bolderson
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia. .,Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Queensland, 4102, Australia.
| | - Joshua T Burgess
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Jun Li
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 02115, USA.,National Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Neha S Gandhi
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, 4000, Queensland, Australia
| | - Didier Boucher
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Laura V Croft
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Samuel Beard
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Jennifer J Plowman
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Amila Suraweera
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Mark N Adams
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - Ali Naqi
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, University of Ulster, Londonderry, UK
| | - David A Sinclair
- Department of Genetics, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, 02115, USA.,The Department of Pharmacology, School of Medical Sciences, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia.,Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Derek J Richard
- Cancer & Ageing Research Program, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, Queensland, Australia. .,Princess Alexandra Hospital, Ipswich Road, Woolloongabba, Brisbane, Queensland, 4102, Australia.
| |
Collapse
|
123
|
Costantini F, Di Leo F, Di Sano C, Fiore T, Pellerito C, Barbieri G. Dibutyltin(IV) and Tributyltin(IV) Derivatives of meso-Tetra(4-sulfonatophenyl)porphine Inhibit the Growth and the Migration of Human Melanoma Cells. Cells 2019; 8:E1547. [PMID: 31801187 PMCID: PMC6952936 DOI: 10.3390/cells8121547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, which is largely due to its propensity to metastasize. Therefore, with the aim to inhibit the growth and the metastatic dissemination of melanoma cells and to provide a novel treatment option, we studied the effects of the melanoma treatment with two organotin(IV) complexes of the meso-tetra(4-sulfonato-phenyl)porphine, namely (Bu2Sn)2TPPS and (Bu3Sn)4TPPS. In particular, we showed that nanomolar concentrations of (Bu2Sn)2TPPS and (Bu3Sn)4TPPS are sufficient to inhibit melanoma cell growth, to increase the expression of the full-length poly (ADP-ribose) polymerase (PARP-1), to induce the cell cycle arrest respectively at G2/M and G0/G1 through the inhibition of the Cyclin D1 expression and to inhibit cell colony formation. Nanomolar concentrations of (Bu2Sn)2TPPS and (Bu3Sn)4TPPS are also sufficient to inhibit the melanoma cell migration and the expression of some adhesion receptors. Moreover, we report that (Bu2Sn)2TPPS and (Bu3Sn)4TPPS act downstream of BRAF, mainly bypassing its functions, but targeting the STAT3 signalling protein. Finally, these results suggest that (Bu2Sn)2TPPS and (Bu3Sn)4TPPS may be effective therapeutic strategies for their role in the inhibition of melanoma growth and migration.
Collapse
Affiliation(s)
- Francesca Costantini
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy; (F.C.); (F.D.L.); (C.D.S.)
| | - Fabiana Di Leo
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy; (F.C.); (F.D.L.); (C.D.S.)
| | - Caterina Di Sano
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy; (F.C.); (F.D.L.); (C.D.S.)
| | - Tiziana Fiore
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, 90128 Palermo, Italy; (T.F.); (C.P.)
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.), 1-70121 Bari, Italy
| | - Claudia Pellerito
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, 90128 Palermo, Italy; (T.F.); (C.P.)
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (C.I.R.C.M.S.B.), 1-70121 Bari, Italy
| | - Giovanna Barbieri
- Istituto per la Ricerca e l’Innovazione Biomedica (IRIB), Consiglio Nazionale delle Ricerche (CNR), 90146 Palermo, Italy; (F.C.); (F.D.L.); (C.D.S.)
| |
Collapse
|
124
|
Martín-Guerrero SM, Casado P, Muñoz-Gámez JA, Carrasco MC, Navascués J, Cuadros MA, López-Giménez JF, Cutillas PR, Martín-Oliva D. Poly(ADP-Ribose) Polymerase-1 inhibition potentiates cell death and phosphorylation of DNA damage response proteins in oxidative stressed retinal cells. Exp Eye Res 2019; 188:107790. [DOI: 10.1016/j.exer.2019.107790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/24/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
125
|
Veliparib in ovarian cancer: a new synthetically lethal therapeutic approach. Invest New Drugs 2019; 38:181-193. [PMID: 31650446 DOI: 10.1007/s10637-019-00867-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022]
Abstract
Epithelial ovarian cancer (EOC) accounts for nearly 90% of all ovarian malignancies. The standard therapeutic strategy includes cytoreductive surgery and neo (adjuvant) platinum-based chemotherapy. Relapse of advanced high grade serous ovarian cancer (HGSOC) is related to the development of drug resistance. A defective DNA damage response is a defining hallmark of HGSOC. Poly (ADP-ribose) polymerase (PARP) inhibitors exploit this deficiency through synthetic lethality and have emerged as promising anticancer therapies, especially in breast cancer gene (BRCA1 or BRCA2) mutation carriers. Apart from inducing synthetic lethality, PARP inhibitors have also been shown to trap PARP1 and PARP2 on DNA, leading to PARP-DNA complexes. This "PARP trapping" potentiates synergism between PARP inhibition and both alkylating agents and platinum-based chemotherapy. However, there are remarkable differences in the ability of PARP inhibitors to trap PARP, based on the size and structure of each separate molecule. Since monotherapy with PARP inhibitors is unlikely to induce cancer cell death in BRCA-proficient tumors, the efficacy of PARP inhibitors could be potentially optimized when combined with DNA-damaging agents, or with molecular targeted agents that also impair mechanisms of DNA repair. Olaparib, rucaparib, and niraparib have all obtained US Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) approval in ovarian cancer in different settings. Veliparib does not yet have an approved label; nevertheless, there are currently promising results available in preclinical and early clinical settings. This comprehensive review summarizes the mechanism of action of veliparib and provides an overview of its early and ongoing clinical investigations.
Collapse
|
126
|
Mak JP, Ma HT, Poon RY. Synergism between ATM and PARP1 Inhibition Involves DNA Damage and Abrogating the G2 DNA Damage Checkpoint. Mol Cancer Ther 2019; 19:123-134. [DOI: 10.1158/1535-7163.mct-19-0474] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/25/2019] [Accepted: 10/02/2019] [Indexed: 11/16/2022]
|
127
|
Abstract
While the outcomes for patients diagnosed with hormone receptor positive (HR+) and/or human epidermal growth factor receptor 2-positive (HER2+) breast cancers have continued to improve with the development of targeted therapies, the same cannot be said yet for those affected with triple-negative breast cancer (TNBC). Currently, the mainstay of treatment for the 10-15% of patients diagnosed with TNBC remains cytotoxic chemotherapy, but it is hoped that through an enhanced characterization of TNBC biology, this disease will be molecularly delineated into subgroups with targetable oncogenic drivers. This review will focus on recent therapeutic innovations for TNBC, including poly-ADP-ribosyl polymerase (PARP) inhibitors, phosphoinositide 3-kinase (PI3K) pathway inhibitors, immune checkpoint inhibitors, and cyclin-dependent kinase (CDK) inhibitors.
Collapse
Affiliation(s)
- Kelly E McCann
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 2336 Santa Monica, Suite 304, Santa Monica, Los Angeles, CA, 90404, USA.
| | - Sara A Hurvitz
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 2336 Santa Monica, Suite 304, Santa Monica, Los Angeles, CA, 90404, USA
| | - Nicholas McAndrew
- Division of Hematology/Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 2336 Santa Monica, Suite 304, Santa Monica, Los Angeles, CA, 90404, USA
| |
Collapse
|
128
|
Li A, Yi M, Qin S, Chu Q, Luo S, Wu K. Prospects for combining immune checkpoint blockade with PARP inhibition. J Hematol Oncol 2019; 12:98. [PMID: 31521196 PMCID: PMC6744711 DOI: 10.1186/s13045-019-0784-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022] Open
Abstract
The immunogenicity of a cancer cell is derived from accumulated somatic mutations. However, on the contrary to increased immunogenicity, anti-cancer immune response tends to be feeble. This impaired anti-cancer immunity could be attributed to multiple factors including loss of immunodominant epitopes, downregulation of major histocompatibility complex, and immunosuppressive microenvironment, as well as aberrant negative co-stimulatory signals. Immune checkpoint inhibitors block negative co-stimulatory signals such as programmed cell death-1 and cytotoxic T-lymphocyte-associated protein 4, ultimately reactivating anti-cancer immunity. Immune checkpoint inhibitors elicit potent anti-cancer effect and have been approved for multiple cancers. Nevertheless, there still are significant potential improvements for the applications of checkpoint inhibitor, especially considering frequent resistance. Recent studies demonstrated that additional PARP inhibition could alleviate resistance and enhance efficacy of immune checkpoint blockade therapy via promoting cross-presentation and modifying immune microenvironment. We proposed that PARP inhibitors could enhance the priming and tumor-killing activities of T cell, boost the whole cancer-immunity cycle, and thereby improve the response to immune checkpoint blockade. In this review, we focused the latest understanding of the effect of PARP inhibitors on anti-cancer immunity and PARP inhibitors combining immune checkpoint blockade therapy. Moreover, we summarized the preclinical and clinical evidence and discussed the feasibility of this combination therapy in future clinical practice.
Collapse
Affiliation(s)
- Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Kongming Wu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
129
|
Tropitzsch A, Müller M, Paquet-Durand F, Mayer F, Kopp HG, Schrattenholz A, Müller A, Löwenheim H. Poly (ADP-Ribose) Polymerase-1 (PARP1) Deficiency and Pharmacological Inhibition by Pirenzepine Protects From Cisplatin-Induced Ototoxicity Without Affecting Antitumor Efficacy. Front Cell Neurosci 2019; 13:406. [PMID: 31551715 PMCID: PMC6746891 DOI: 10.3389/fncel.2019.00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Cisplatin remains an indispensable drug for the systemic treatment of many solid tumors. However, a major dose-limiting side-effect is ototoxicity. In some scenarios, such as treatment of germ cell tumors or adjuvant therapy of non-small cell lung cancer, cisplatin cannot be replaced without undue loss of efficacy. Inhibition of polyadenosine diphosphate-ribose polymerase-1 (PARP1), is presently being evaluated as a novel anti-neoplastic principle. Of note, cisplatin-induced PARP1 activation has been related to inner ear cell death. Thus, PARP1 inhibition may exert a protective effect on the inner ear without compromising the antitumor activity of cisplatin. Here, we evaluated PARP1 deficiency and PARP1 pharmacological inhibition as a means to protect the auditory hair cells from cisplatin-mediated ototoxicity. We demonstrate that cisplatin-induced loss of sensory hair cells in the organ of Corti is attenuated in PARP1-deficient cochleae. The PARP inhibitor pirenzepine and its metabolite LS-75 mimicked the protective effect observed in PARP1-deficient cochleae. Moreover, the cytotoxic potential of cisplatin was unchanged by PARP inhibition in two different cancer cell lines. Taken together, the results from our study suggest that the negative side-effects of cisplatin anti-cancer treatment could be alleviated by a PARP inhibition adjunctive therapy.
Collapse
Affiliation(s)
- Anke Tropitzsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Marcus Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Lab, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Frank Mayer
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | | | - Andrea Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| |
Collapse
|
130
|
Lu P, Hogan-Cann AD, Kamboj A, Roy Chowdhury SK, Aghanoori MR, Fernyhough P, Anderson CM. Poly(ADP-ribose) polymerase-1 inhibits mitochondrial respiration by suppressing PGC-1α activity in neurons. Neuropharmacology 2019; 160:107755. [PMID: 31487495 DOI: 10.1016/j.neuropharm.2019.107755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP1) is a ubiquitous nuclear enzyme that regulates DNA repair and genomic stability. In oxidative genotoxic conditions, PARP1 activity is enhanced significantly, leading to excessive depletion of nicotinamide adenine dinucleotide (NAD+) and mitochondrial dysfunction. We hypothesized that PARP1-induced NAD+ depletion inhibits NAD+-dependent sirtuin deacetylase activity, thereby interfering with the mitochondrial regulator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). The DNA alkylator, N'-Nitro-N-nitroso-N-methylguanidine (MNNG), induced NAD+ depletion, inhibited sirtuin deacetylase activity and enhanced acetylation of PGC-1α. This was associated with reduced interaction between PGC-1α and nuclear respiratory factor 1 (NRF-1), which is a nuclear transcription factor that drives mitochondrial replication by regulating mitochondrial transcription factor A (TFAM). MNNG also reduced binding of NRF-1 to the tfam upstream promoter region and reduced TFAM mRNA, mitochondrial DNA copy number and respiratory function. MNNG effects were mitigated by PARP1 inhibition and genetic loss of function, by enhancing intracellular NAD+ levels, and with sirtuin (SIRT1) gain of function, supporting a mechanism dependent on PARP1 activity, NAD+-depletion and SIRT1 inhibition. This and other work from our group supports a destructive sequelae of events related to PARP1-induced sirtuin inhibition and sirtuin-mediated regulation of transcription.
Collapse
Affiliation(s)
- Ping Lu
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, R3E 0Z3, Canada; Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3E 0W3, Canada
| | - Adam D Hogan-Cann
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, R3E 0Z3, Canada; Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3E 0W3, Canada
| | - Amit Kamboj
- Division of Neurodegenerative Disorders, St. Boniface Albrechtsen Research Centre, Winnipeg, R2H 2A6, Canada
| | - Subir K Roy Chowdhury
- Division of Neurodegenerative Disorders, St. Boniface Albrechtsen Research Centre, Winnipeg, R2H 2A6, Canada
| | - Mohamad-Reza Aghanoori
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3E 0W3, Canada; Division of Neurodegenerative Disorders, St. Boniface Albrechtsen Research Centre, Winnipeg, R2H 2A6, Canada
| | - Paul Fernyhough
- Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3E 0W3, Canada; Division of Neurodegenerative Disorders, St. Boniface Albrechtsen Research Centre, Winnipeg, R2H 2A6, Canada
| | - Christopher M Anderson
- Neuroscience Research Program, Kleysen Institute for Advanced Medicine, Winnipeg Health Sciences Centre, Winnipeg, R3E 0Z3, Canada; Department of Pharmacology and Therapeutics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, R3E 0W3, Canada.
| |
Collapse
|
131
|
Abstract
Mitosis ensures accurate segregation of duplicated DNA through tight regulation of chromosome condensation, bipolar spindle assembly, chromosome alignment in the metaphase plate, chromosome segregation and cytokinesis. Poly(ADP-ribose) polymerases (PARPs), in particular PARP1, PARP2, PARP3, PARP5a (TNKS1), as well as poly(ADP-ribose) glycohydrolase (PARG), regulate different mitotic functions, including centrosome function, mitotic spindle assembly, mitotic checkpoints, telomere length and telomere cohesion. PARP depletion or inhibition give rise to various mitotic defects such as centrosome amplification, multipolar spindles, chromosome misalignment, premature loss of cohesion, metaphase arrest, anaphase DNA bridges, lagging chromosomes, and micronuclei. As the mechanisms of PARP1/2 inhibitor-mediated cell death are being progressively elucidated, it is becoming clear that mitotic defects caused by PARP1/2 inhibition arise due to replication stress and DNA damage in S phase. As it stands, entrapment of inactive PARP1/2 on DNA phenocopies replication stress through accumulation of unresolved replication intermediates, double-stranded DNA breaks (DSBs) and incorrectly repaired DSBs, which can be transmitted from S phase to mitosis and instigate various mitotic defects, giving rise to both numerical and structural chromosomal aberrations. Cancer cells have increased levels of replication stress, which makes them particularly susceptible to a combination of agents that compromise replication fork stability. Indeed, combining PARP1/2 inhibitors with genetic deficiencies in DNA repair pathways, DNA-damaging agents, ATR and other cell cycle checkpoint inhibitors has yielded synergistic effects in killing cancer cells. Here I provide a comprehensive overview of the mitotic functions of PARPs and PARG, mitotic phenotypes induced by their depletion or inhibition, as well as the therapeutic relevance of targeting mitotic cells by directly interfering with mitotic functions or indirectly through replication stress.
Collapse
Affiliation(s)
- Dea Slade
- Department of Biochemistry, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter (VBC), Dr. Bohr-gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
132
|
Tutt A. Inhibited, trapped or adducted: the optimal selective synthetic lethal mix for BRCAness. Ann Oncol 2019; 29:18-21. [PMID: 29300815 PMCID: PMC5834033 DOI: 10.1093/annonc/mdx775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- A Tutt
- Breast Cancer Now Research Centre, Institute of Cancer Research, London, UK.,Research Oncology, Kings College London, London, UK
| |
Collapse
|
133
|
Sargazi S, Saravani R, Zavar Reza J, Jaliani HZ, Mirinejad S, Rezaei Z, Zarei S. Induction of apoptosis and modulation of homologous recombination DNA repair pathway in prostate cancer cells by the combination of AZD2461 and valproic acid. EXCLI JOURNAL 2019; 18:485-498. [PMID: 31423128 PMCID: PMC6694702 DOI: 10.17179/excli2019-1098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/01/2019] [Indexed: 01/01/2023]
Abstract
Cancer therapies using defects in homologous recombination (HR) DNA repair pathway of tumor cells are not yet approved to be applicable in patients with malignancies other than BRCA1/2-mutated tumors. This study was designed to determine the efficacy of combination therapy of a histone deacetylase inhibitor, valproic acid (VPA) and a novel PARP inhibitor AZD2461 in both PC-3 (PTEN-mutated) and DU145 (PTEN-unmutated) prostate cancer cell lines. The Trypan blue dye exclusion assay and the tetrazolium-based colorimetric (MTT) assay were performed to measure the cytotoxicity while combination effects were assessed based on Chou-Talalay's principles. Flow-cytometric assay determined the type of cell death. The real-time PCR analysis was used to evaluate the alterations in mRNA levels of HR-related genes while their protein levels were measured using the ELISA method. γ-H2AX levels were determined as a marker of DNA damage. We observed a synergistic relationship between VPA and AZD2461 in all affected fractions of PC-3 cells (CI<0.9), but not in DU145 cells (CI>1.1). Annexin-V staining analysis revealed a significant induction of apoptosis when PC-3 cells were treated with VPA+AZD2461 (p<0.05). Both mRNA and protein levels of Rad51 and Mre11 were significantly decreased in PC-3 cells co-treated with VPA+AZD2461 while enhanced H2AX phosphorylation was found in PC-3 cells after 12 and 24 hours of co-treatment (p<0.05). Our findings established a preclinical rationale for selective targeting of HR repair pathways by a combination of VPA and AZD2461 as a mechanism for reducing the HR pathway sufficiency in PTEN-mutated prostate cancer cells.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Javad Zavar Reza
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Zarei Jaliani
- Protein Engineering Laboratory, Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zohreh Rezaei
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Sadegh Zarei
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
134
|
Sharma N, Anurag. 7-Azaindole Analogues as Bioactive Agents and Recent Results. Mini Rev Med Chem 2019; 19:727-736. [PMID: 30264679 DOI: 10.2174/1389557518666180928154004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 04/18/2018] [Accepted: 05/27/2018] [Indexed: 12/15/2022]
Abstract
Azaindoles have been accepted as important structures having various biological activities in medicinal chemistry in novel drug discovery. Various azaindole derivatives have been used commercially and newer analogues are synthesized continuously. As in literature, azaindole is a very potent moiety, its derivatives displayed a number of biological activities such as kinase inhibitors, cytotoxic agents, anti-angiogenic activity, CRTh2 receptor antagonists, melanin agonists, nicotine agonists, effectiveness in alzheimer disease, cytokinin analogs, Orai inhibitors in asthma and chemokine receptor- 2 (CCR2) antagonists. This review consists of biological activities of various azaindole analogs, reported so far, and their structure activity relations, along with future perspectives in this field.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, NH-58, Near Baghpat Crossing, Bypass Road, Meerut-250005, India
| | - Anurag
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, NH-58, Near Baghpat Crossing, Bypass Road, Meerut-250005, India
| |
Collapse
|
135
|
Toma M, Skorski T, Sliwinski T. DNA Double Strand Break Repair - Related Synthetic Lethality. Curr Med Chem 2019; 26:1446-1482. [PMID: 29421999 DOI: 10.2174/0929867325666180201114306] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022]
Abstract
Cancer is a heterogeneous disease with a high degree of diversity between and within tumors. Our limited knowledge of their biology results in ineffective treatment. However, personalized approach may represent a milestone in the field of anticancer therapy. It can increase specificity of treatment against tumor initiating cancer stem cells (CSCs) and cancer progenitor cells (CPCs) with minimal effect on normal cells and tissues. Cancerous cells carry multiple genetic and epigenetic aberrations which may disrupt pathways essential for cell survival. Discovery of synthetic lethality has led a new hope of creating effective and personalized antitumor treatment. Synthetic lethality occurs when simultaneous inactivation of two genes or their products causes cell death whereas individual inactivation of either gene is not lethal. The effectiveness of numerous anti-tumor therapies depends on induction of DNA damage therefore tumor cells expressing abnormalities in genes whose products are crucial for DNA repair pathways are promising targets for synthetic lethality. Here, we discuss mechanistic aspects of synthetic lethality in the context of deficiencies in DNA double strand break repair pathways. In addition, we review clinical trials utilizing synthetic lethality interactions and discuss the mechanisms of resistance.
Collapse
Affiliation(s)
- Monika Toma
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Tomasz Skorski
- Department of Microbiology and Immunology, 3400 North Broad Street, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Tomasz Sliwinski
- Laboratory of Medical Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
136
|
Abstract
ADP-ribosylation (ADPr) is an ancient reversible modification of cellular macromolecules controlling major biological processes as diverse as DNA damage repair, transcriptional regulation, intracellular transport, immune and stress responses, cell survival and proliferation. Furthermore, enzymatic reactions of ADPr are central in the pathogenesis of many human diseases, including infectious conditions. By providing a review of ADPr signalling in bacterial systems, we highlight the relevance of this chemical modification in the pathogenesis of human diseases depending on host-pathogen interactions. The post-antibiotic era has raised the need to find alternative approaches to antibiotic administration, as major pathogens becoming resistant to antibiotics. An in-depth understanding of ADPr reactions provides the rationale for designing novel antimicrobial strategies for treatment of infectious diseases. In addition, the understanding of mechanisms of ADPr by bacterial virulence factors offers important hints to improve our knowledge on cellular processes regulated by eukaryotic homologous enzymes, which are often involved in the pathogenesis of human diseases.
Collapse
|
137
|
Abstract
In this issue of The FEBS Journal, Munnur and Ahel describe the reversible mono-ADP-ribosylation of DNA by PARP3, a member of the poly-ADP-ribose-polymerase family known to modify proteins. They demonstrate a selective ADP-ribosylation of the 5'-phosphate group on DNA ends and show that the modification can be reversed by several known ADP-ribosylhydrolases including PARG.
Collapse
Affiliation(s)
- Christian Dölle
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | | |
Collapse
|
138
|
Sukhanova MV, Hamon L, Kutuzov MM, Joshi V, Abrakhi S, Dobra I, Curmi PA, Pastre D, Lavrik OI. A Single-Molecule Atomic Force Microscopy Study of PARP1 and PARP2 Recognition of Base Excision Repair DNA Intermediates. J Mol Biol 2019; 431:2655-2673. [PMID: 31129062 DOI: 10.1016/j.jmb.2019.05.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/15/2019] [Accepted: 05/16/2019] [Indexed: 01/07/2023]
Abstract
Nuclear poly(ADP-ribose) polymerases 1 and 2 (PARP1 and PARP2) catalyze the synthesis of poly(ADP-ribose) (PAR) and use NAD+ as a substrate for the polymer synthesis. Both PARP1 and PARP2 are involved in DNA damage response pathways and function as sensors of DNA breaks, including temporary single-strand breaks formed during DNA repair. Consistently, with a role in DNA repair, PARP activation requires its binding to a damaged DNA site, which initiates PAR synthesis. Here we use atomic force microscopy to characterize at the single-molecule level the interaction of PARP1 and PARP2 with long DNA substrates containing a single damage site and representing intermediates of the short-patch base excision repair (BER) pathway. We demonstrated that PARP1 has higher affinity for early intermediates of BER than PARP2, whereas both PARPs efficiently interact with the nick and may contribute to regulation of the final ligation step. The binding of a DNA repair intermediate by PARPs involved a PARP monomer or dimer depending on the type of DNA damage. PARP dimerization influences the affinity of these proteins to DNA and affects their enzymatic activity: the dimeric form is more effective in PAR synthesis in the case of PARP2 but is less effective in the case of PARP1. PARP2 suppresses PAR synthesis catalyzed by PARP1 after single-strand breaks formation. Our study suggests that the functions of PARP1 and PARP2 overlap in BER after a site cleavage and provides evidence for a role of PARP2 in the regulation of PARP1 activity.
Collapse
Affiliation(s)
- Maria V Sukhanova
- Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Loic Hamon
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Mikhail M Kutuzov
- Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Vandana Joshi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Sanae Abrakhi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Ioana Dobra
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Patrick A Curmi
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - David Pastre
- SABNP, Univ Evry, INSERM U1204, Université Paris-Saclay, 91025 Evry, France
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine (ICBFM) SB RAS, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia.
| |
Collapse
|
139
|
Vignier N, Chatzifrangkeskou M, Morales Rodriguez B, Mericskay M, Mougenot N, Wahbi K, Bonne G, Muchir A. Rescue of biosynthesis of nicotinamide adenine dinucleotide protects the heart in cardiomyopathy caused by lamin A/C gene mutation. Hum Mol Genet 2019; 27:3870-3880. [PMID: 30053027 DOI: 10.1093/hmg/ddy278] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cardiomyopathy caused by lamin A/C gene (LMNA) mutations (hereafter referred as LMNA cardiomyopathy) is an anatomic and pathologic condition associated with muscle and electrical dysfunction of the heart, often leading to heart failure-related disability. There is currently no specific therapy available for patients that target the molecular pathophysiology of LMNA cardiomyopathy. Recent studies suggested that nicotinamide adenine dinucleotide (NAD+) cellular content could be a critical determinant for heart function. Biosynthesis of NAD+ from vitamin B3 (known as salvage pathways) is the primary source of NAD+. We showed here that NAD+ salvage pathway was altered in the heart of mouse and human carrying LMNA mutation, leading to an alteration of one of NAD+ co-substrate enzymes, PARP-1. Oral administration of nicotinamide riboside, a natural NAD+ precursor and a pyridine-nucleoside form of vitamin B3, leads to a marked improvement of the NAD+ cellular content, an increase of PARylation of cardiac proteins and an improvement of left ventricular structure and function in a model of LMNA cardiomyopathy. Collectively, our results provide mechanistic and therapeutic insights into dilated cardiomyopathy caused by LMNA mutations.
Collapse
Affiliation(s)
- Nicolas Vignier
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Maria Chatzifrangkeskou
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Blanca Morales Rodriguez
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Mathias Mericskay
- INSERM UMR-S 1180 - LabEx LERMIT - DHU TORINO, Institut Paris-Saclay d'Innovation Therapeutique (IPSIT-US31-UMS3679), Faculty of Pharmacy, Univ Paris-Sud, Université Paris-Saclay, Chatenay-Malabry, France
| | - Nathalie Mougenot
- Sorbonne Université, UPMC Paris 06, INSERM UMS28 Phénotypage du petit animal, Faculté de Médecine Pierre et Marie Curie, Paris, France
| | - Karim Wahbi
- Cardiology Department, Cochin Hospital, Filière Neuromusculaire, Paris-Descartes University, Sorbonne Paris Cité University, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Gisèle Bonne
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| | - Antoine Muchir
- Sorbonne Université, UPMC Paris 06, INSERM UMRS974, Center of Research in Myology, Institut de Myologie, Paris, France
| |
Collapse
|
140
|
Mahadevan J, Rudolph J, Jha A, Tay JW, Dragavon J, Grumstrup EM, Luger K. Q-FADD: A Mechanistic Approach for Modeling the Accumulation of Proteins at Sites of DNA Damage. Biophys J 2019; 116:2224-2233. [PMID: 31109734 DOI: 10.1016/j.bpj.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/29/2022] Open
Abstract
The repair of DNA damage requires the ordered recruitment of many different proteins that are responsible for signaling and subsequent repair. A powerful and widely used tool for studying the orchestrated accumulation of these proteins at damage sites is laser microirradiation in live cells, followed by monitoring the accumulation of the fluorescently labeled protein in question. Despite the widespread use of this approach, there exists no rigorous method for characterizing the recruitment process quantitatively. Here, we introduce a diffusion model that explicitly accounts for the unique sizes and shapes of individual nuclei and uses two variables: Deff, the effective coefficient of diffusion, and F, the fraction of mobile protein that accumulates at sites of DNA damage. Our model quantitatively describes the accumulation of three test proteins, poly-ADP-ribose polymerases 1 and 2 (PARP1/2) and histone PARylation factor 1. Deff for PARP1, as derived by our approach, is 6× greater than for PARP2 and in agreement with previous literature reports using fluorescence correlation spectroscopy and fluorescence recovery after photobleaching. Our data indicate that histone PARylation factor 1 arrives at sites of DNA damage independently of either PARP. Importantly, our model, which can be applied to existing data, allows for the direct comparison of the coefficient of diffusion for any DNA repair protein between different cell types, obtained in different laboratories and by different methods, and also allows for the interrogation of cell-to-cell variability.
Collapse
Affiliation(s)
| | | | | | - Jian Wei Tay
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Joseph Dragavon
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Erik M Grumstrup
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana
| | - Karolin Luger
- Department of Biochemistry; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado.
| |
Collapse
|
141
|
McCann KE. Advances in the use of PARP inhibitors for BRCA1/2-associated breast cancer: talazoparib. Future Oncol 2019; 15:1707-1715. [DOI: 10.2217/fon-2018-0751] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Poly-ADP-ribosyl polymerase (PARP) enzymes PARP-1 and PARP-2 recognize DNA damage and set off a cascade of cellular mechanisms required for multiple types of DNA damage repair. PARP inhibitors are small molecule mimetics of nicotinamide which bind to PARP’s catalytic domain to inhibit poly-ADP-ribosylation (PARylation) of target proteins, including PARP-1 itself. PARP inhibitors olaparib, veliparib, talazoparib, niraparib and rucaparib have predominantly been studied in women with breast or ovarian cancers associated with deleterious germline mutations in BRCA1 and BRCA2 (gBRCA1/2+). The BRCA1 and BRCA2 proteins are involved in DNA repair by homologous recombination. This review will focus on talazoparib, a PARP inhibitor approved by the US FDA for the treatment of metastatic gBRCA1/2+ breast cancers in October 2018.
Collapse
Affiliation(s)
- Kelly E McCann
- Division of Hematology and Oncology, Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
142
|
Folk WP, Kumari A, Iwasaki T, Pyndiah S, Johnson JC, Cassimere EK, Abdulovic-Cui AL, Sakamuro D. Loss of the tumor suppressor BIN1 enables ATM Ser/Thr kinase activation by the nuclear protein E2F1 and renders cancer cells resistant to cisplatin. J Biol Chem 2019; 294:5700-5719. [PMID: 30733337 PMCID: PMC6462522 DOI: 10.1074/jbc.ra118.005699] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/14/2019] [Indexed: 11/06/2022] Open
Abstract
The tumor suppressor bridging integrator 1 (BIN1) is a corepressor of the transcription factor E2F1 and inhibits cell-cycle progression. BIN1 also curbs cellular poly(ADP-ribosyl)ation (PARylation) and increases sensitivity of cancer cells to DNA-damaging therapeutic agents such as cisplatin. However, how BIN1 deficiency, a hallmark of advanced cancer cells, increases cisplatin resistance remains elusive. Here, we report that BIN1 inactivates ataxia telangiectasia-mutated (ATM) serine/threonine kinase, particularly when BIN1 binds E2F1. BIN1 + 12A (a cancer-associated BIN1 splicing variant) also inhibited cellular PARylation, but only BIN1 increased cisplatin sensitivity. BIN1 prevented E2F1 from transcriptionally activating the human ATM promoter, whereas BIN1 + 12A did not physically interact with E2F1. Conversely, BIN1 loss significantly increased E2F1-dependent formation of MRE11A/RAD50/NBS1 DNA end-binding protein complex and efficiently promoted ATM autophosphorylation. Even in the absence of dsDNA breaks (DSBs), BIN1 loss promoted ATM-dependent phosphorylation of histone H2A family member X (forming γH2AX, a DSB biomarker) and mediator of DNA damage checkpoint 1 (MDC1, a γH2AX-binding adaptor protein for DSB repair). Of note, even in the presence of transcriptionally active (i.e. proapoptotic) TP53 tumor suppressor, BIN1 loss generally increased cisplatin resistance, which was conversely alleviated by ATM inactivation or E2F1 reduction. However, E2F2 or E2F3 depletion did not recapitulate the cisplatin sensitivity elicited by E2F1 elimination. Our study unveils an E2F1-specific signaling circuit that constitutively activates ATM and provokes cisplatin resistance in BIN1-deficient cancer cells and further reveals that γH2AX emergence may not always reflect DSBs if BIN1 is absent.
Collapse
Affiliation(s)
- Watson P Folk
- From the Biochemistry and Cancer Biology Graduate Program, Augusta University, Augusta, Georgia 30912
- the Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- the Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
| | - Alpana Kumari
- the Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- the Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
| | - Tetsushi Iwasaki
- the Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- the Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
- the Division of Signal Pathways, Biosignal Research Center, Kobe University, Kobe 657, Japan
| | - Slovénie Pyndiah
- the Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
| | - Joanna C Johnson
- the Medicinal Chemistry and Molecular Pharmacology Graduate Program, Purdue University, West Lafayette, Indiana 47907, and
| | - Erica K Cassimere
- the Molecular Signaling Program, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana 70112
- the Medicinal Chemistry and Molecular Pharmacology Graduate Program, Purdue University, West Lafayette, Indiana 47907, and
| | - Amy L Abdulovic-Cui
- the Department of Biological Sciences, College of Science and Mathematics, Augusta University, Augusta, Georgia 30904
| | - Daitoku Sakamuro
- From the Biochemistry and Cancer Biology Graduate Program, Augusta University, Augusta, Georgia 30912,
- the Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
- the Tumor Signaling and Angiogenesis Program, Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
| |
Collapse
|
143
|
Dellomo AJ, Baer MR, Rassool FV. Partnering with PARP inhibitors in acute myeloid leukemia with FLT3-ITD. Cancer Lett 2019; 454:171-178. [PMID: 30953707 DOI: 10.1016/j.canlet.2019.03.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/26/2019] [Accepted: 03/28/2019] [Indexed: 02/01/2023]
Abstract
Internal tandem duplications within the juxtamembrane domain of fms-like tyrosine kinase 3 (FLT3-ITD) occur in acute myeloid leukemia (AML) cells of 20-25% of patients and are associated with poor treatment outcomes. FLT3 inhibitors have been developed, but have had limited clinical efficacy due to development of resistance, highlighting the need for better understanding of the function of FLT3-ITD and how to target it more effectively using novel combination strategies. Poly (ADP-ribose) polymerase (PARP) inhibitors have shown efficacy in cancers with impaired homologous recombination (HR) due to BRCA mutations, but PARP inhibitor efficacy has not been fully explored in BRCA-proficient cancers, including AML. Recent research has connected inhibition of FLT3-ITD signaling to downregulation of numerous DNA repair proteins, including those involved in HR, and the novel combination with PARP inhibitors induces synthetic lethality in AML. Additionally, PARP inhibitor therapy may also target the highly error-prone alternative non-homologous end-joining (ALT NHEJ) DNA repair pathway in which PARP participates, thereby decreasing genomic instability and development of therapy resistance. Therefore, PARP inhibitors may be attractive therapeutic agents in combination with FLT3 inhibitors in FLT3-ITD AML.
Collapse
Affiliation(s)
- Anna J Dellomo
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA
| | - Maria R Baer
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA; Veterans Affairs Medical Center, Baltimore, MD, 20201, USA
| | - Feyruz V Rassool
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, 21201, USA.
| |
Collapse
|
144
|
Poly(ADP-ribose) Polymerase (PARP) and PARP Inhibitors: Mechanisms of Action and Role in Cardiovascular Disorders. Cardiovasc Toxicol 2019; 18:493-506. [PMID: 29968072 DOI: 10.1007/s12012-018-9462-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Poly(ADP-ribosyl)ation is an immediate cellular repair response to DNA damage and is catalyzed primarily by poly(ADP-ribose)polymerase-1 (PARP1), which is the most abundant of the 18 different PARP isoforms and accounts for more than 90% of the catalytic activity of PARP in the cell nucleus. Upon detection of a DNA strand break, PARP1 binds to the DNA, cleaves nicotinamide adenine dinucleotide between nicotinamide and ribose and then modifies the DNA nuclear acceptor proteins by formation of a bond between the protein and the ADP-ribose residue. This generates ribosyl-ribosyl linkages that act as a signal for other DNA-repairing enzymes and DNA base repair. Extensive DNA breakage in cells results in excessive activation of PARP with resultant depletion of the cellular stores of nicotinamide adenine dinucleotide (NAD+) which slows the rate of glycolysis, mitochondrial electron transport, and ultimately ATP formation in these cells. This paper focuses on PARP in DNA repair in atherosclerosis, acute myocardial infarction/reperfusion injury, and congestive heart failure and the role of PARP inhibitors in combating the effects of excessive PARP activation in these diseases. Free oxygen radicals and nitrogen radicals in arteries contribute to disruption of the vascular endothelial glycocalyx, which increase the permeability of the endothelium to inflammatory cells and also low-density lipoproteins and the accumulation of lipid in the vascular intima. Mild inflammation and DNA damage within vascular cells promote PARP1 activation and DNA repair. Moderate DNA damage induces caspase-dependent PARP cleavage and vascular cell apoptosis. Severe DNA damage due to vascular inflammation causes excessive activation of PARP1. This causes endothelial cell depletion of NAD+ and ATP, downregulation of atheroprotective SIRT1, necrotic cell death, and ultimately atherosclerotic plaque disruption. Inhibition of PARP decreases vascular endothelial cell adhesion P-selectin and ICAM-1 molecules, inflammatory cells, pro-death caspase-3, and c-Jun N-terminal kinase (JNK) activation and upregulates prosurvival extracellular signal-regulated kinases and AKT, which decrease vascular cell apoptosis and necrosis and limit atherosclerosis and plaque disruption. In myocardial infarction with coronary occlusion then reperfusion, which occurs with coronary angioplasty or thrombolytic therapy, reperfusion injury occurs in as many as 31% of patients and is caused by inflammatory cells, free oxygen and nitrogen radicals, the rapid transcriptional activation of inflammatory cytokines, and the activation of PARP1. Inhibition of PARP attenuates neutrophil infiltration and inflammatory cytokine expression in the reperfused myocardium and preserves myocardial NAD+ and ATP. In addition, PARP inhibition increases the activation of myocyte survival enzymes protein kinase B (Akt) and protein kinase C epsilon (PKCε), and decreases the activity of myocardial ventricular remodeling enzymes PKCα/β, PKCζ/λ, and PKCδ. As a consequence, cardiomyocyte and vascular endothelial cell necrosis is decreased and myocardial contractility is preserved. In heart failure and circulatory shock in animal models, PARP inhibition significantly attenuates decreases in left ventricular systolic pressure, ventricular contractility and relaxation, stroke volume, and increases survival by limiting or preventing upregulation of adhesion molecules, proinflammatory cytokines, myocardial mononuclear cell infiltration, and PKCα/β and PKC λ/ζ. In this manner, PARP inhibition partially restores the myocardial concentrations of NAD+, limits ventricular remodeling and fibrosis, and prevents significant decreases in myocardial contractility. Based primarily on investigations in preclinical models of atherosclerosis, myocardial infarction, and heart failure, PARP inhibition appears to be beneficial in limiting or inhibiting cardiovascular dysfunction. These studies indicate that investigations of acute and chronic PARP inhibition are warranted in patients with atherosclerotic coronary artery disease.
Collapse
|
145
|
Shao N, Shi Y, Yu L, Ye R, Shan Z, Zhang Z, Zhang Y, Lin Y. Prospect for Application of PARP Inhibitor in Patients with HER2 Negative Breast Cancer. Int J Biol Sci 2019; 15:962-972. [PMID: 31182917 PMCID: PMC6535782 DOI: 10.7150/ijbs.30721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/13/2018] [Indexed: 12/25/2022] Open
Abstract
Human epidermal growth factor receptor (HER2) negative metastatic breast cancer (BC) accounts for 73% of BC. The molecular analysis of this disease is essential for potential options for targeted therapy. Several promising clinical strategies are being evaluated which includes endocrine therapy, modified chemotherapy, angiogenesis inhibitors, immune checkpoint inhibitors, and anti-androgens. New therapeutic approaches are being developed that target BC patients with germline mutations in either BRCA1, BRCA2 as well as BRCAness, a condition in which tumors have molecular similarity to BRCA-mutated tumors. Poly (ADP-ribose) polymerase inhibitors (PARPi) which are effective therapy in germline BRCA1 and BRCA2 mutations, are also observed to be effective in somatic mutations. Germline mutations in the homologous recombination pathway genes could also contribute to PARPi sensitivity. PARPi act as chemo- and radio-sensitizers by limiting the DNA-damage response and potentiating the activity of chemo- and radio-therapy when used alone or in combination with chemotherapy. Apart from PARPi as monotherapy, additional researches are ongoing in combination with cytotoxic chemotherapeutics and targeted agents in HER2 negative BC. This review aims at the most recent developments in the targeted therapy, summarizes the recent clinical trials outcomes, along with the overview of ongoing clinical trials in HER2 negative patients with BRCA1/2 mutations and sporadic tumors with BRCAness.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Lin
- Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58, ZhongShan Er Lu, Guangzhou, Guangdong, 510080, P.R. China
| |
Collapse
|
146
|
Criscuolo D, Morra F, Giannella R, Visconti R, Cerrato A, Celetti A. New combinatorial strategies to improve the PARP inhibitors efficacy in the urothelial bladder Cancer treatment. J Exp Clin Cancer Res 2019; 38:91. [PMID: 30791940 PMCID: PMC6385418 DOI: 10.1186/s13046-019-1089-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/06/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Novel therapeutic strategies are urgently needed for the treatment of metastatic Urothelial Bladder Cancer. DNA damaging repair (DDR) targeting has been introduced in cinical trials for bladder cancer patients that carry alterations in homologous DNA repair genes, letting to envisage susceptibility to the Poly (adenosine diphosphate [ADP]) ribose polymerase (PARP) inhibitors. MAIN BODY PARP inhibition, by amplifying the DNA damage, augments the mutational burden and promotes the immune priming of the tumor by increasing the neoantigen exposure and determining upregulation of programmed death ligand 1 (PD-L1) expression. Thus, the combination of PARP-inhibition and the PD/PD-L1 targeting may represent a compelling strategy to treat bladder cancer and has been introduced in recent clinical trials. The targeting of DDR has been also used in combination with epigenetic drugs able to modulate the expression of genes involved in DDR, and also able to act as immunomodulator agents suggesting their use in combination with immune-checkpoint inhibitors. CONCLUSION In conclusion, it may be envisaged the combination of three classes of drugs to treat bladder cancer, by targeting the DDR process in a tumor context of DDR defect, together with epigenetic agents and immune-checkpoint inhibitors, whose association may amplify the effects and reduce the doses and the toxicity of each single drug.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Francesco Morra
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | | | - Roberta Visconti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Aniello Cerrato
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| | - Angela Celetti
- Institute for the Experimental Endocrinology and Oncology, Research National Council, CNR, Naples, Italy
| |
Collapse
|
147
|
NADP + is an endogenous PARP inhibitor in DNA damage response and tumor suppression. Nat Commun 2019; 10:693. [PMID: 30741937 PMCID: PMC6370829 DOI: 10.1038/s41467-019-08530-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 12/05/2018] [Accepted: 12/30/2018] [Indexed: 11/15/2022] Open
Abstract
ADP-ribosylation is a unique posttranslational modification catalyzed by poly(ADP-ribose) polymerases (PARPs) using NAD+ as ADP-ribose donor. PARPs play an indispensable role in DNA damage repair and small molecule PARP inhibitors have emerged as potent anticancer drugs. However, to date, PARP inhibitor treatment has been restricted to patients with BRCA1/2 mutation-associated breast and ovarian cancer. One of the major challenges to extend the therapeutic potential of PARP inhibitors to other cancer types is the absence of predictive biomarkers. Here, we show that ovarian cancer cells with higher level of NADP+, an NAD+ derivative, are more sensitive to PARP inhibitors. We demonstrate that NADP+ acts as a negative regulator and suppresses ADP-ribosylation both in vitro and in vivo. NADP+ impairs ADP-ribosylation-dependent DNA damage repair and sensitizes tumor cell to chemically synthesized PARP inhibitors. Taken together, our study identifies NADP+ as an endogenous PARP inhibitor that may have implications in cancer treatment. Cancer cells respond differently to inhibitors of Poly (ADP-ribose) polymerase. Here the authors reveal that ovarian cancer cells with higher cellular NADP+ levels are more sensitive to clinically relevant PARP1 inhibitors and show that NADP+ act as an endogenous inhibitor of PARP enzymes.
Collapse
|
148
|
Automodified Poly(ADP-Ribose) Polymerase Analysisto Monitor DNA Damagein Peripheral Lymphocytes of Floriculturists Occupationally Exposed to Pesticides. Cells 2019; 8:cells8020137. [PMID: 30744056 PMCID: PMC6407306 DOI: 10.3390/cells8020137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 01/18/2023] Open
Abstract
Increased DNA damage and the propension to cancer development, depend on the modulation of the mechanisms to control and maintain genomic integrity. Poly(ADP-Ribose)Polymerase activation and automodification are early responses to genotoxic stress. Upon binding to DNA strand breaks, the enzyme, a molecular DNA nick sensor, is hyperactivated: this is the first step in a series of events leading to either DNA repair or apoptosis. Enzyme hyperactivation and automodification can be easily measured and are widely used to look at DNA damage extent in the cell. We investigated whether these two markers (increased catalytic activity and auto modification), could help to monitor DNA damage in lymphocytes of flower growers from Southern Italy, occupationally exposed to pesticides. Peripheral lymphocyte lysates were analyzed for Poly(ADP-Ribose)Polymerase activity, and by SDS-PAGE and anti-Poly(ADP-Ribose)Polymerase 1-antibodyto measure automodified Poly(ADP-Ribose)Polymerase levels bydensitometry. Poly(ADP-Ribose)Polymerase activity and PARP automodification followed the same trend. Growers daily exposed to pesticides, showed both biomarkers very high, either in the presence or in the absence of pathologies. PARP activity and auto-modification in peripheral blood lymphocytes are possible, non-invasive, androutinartools to monitor the healthy conditions of floricoltorists.
Collapse
|
149
|
ADP-ribosylation and intracellular traffic: an emerging role for PARP enzymes. Biochem Soc Trans 2019; 47:357-370. [DOI: 10.1042/bst20180416] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
AbstractADP-ribosylation is an ancient and reversible post-translational modification (PTM) of proteins, in which the ADP-ribose moiety is transferred from NAD+ to target proteins by members of poly-ADP-ribosyl polymerase (PARP) family. The 17 members of this family have been involved in a variety of cellular functions, where their regulatory roles are exerted through the modification of specific substrates, whose identification is crucial to fully define the contribution of this PTM. Evidence of the role of the PARPs is now available both in the context of physiological processes and of cell responses to stress or starvation. An emerging role of the PARPs is their control of intracellular transport, as it is the case for tankyrases/PARP5 and PARP12. Here, we discuss the evidence pointing at this novel aspect of PARPs-dependent cell regulation.
Collapse
|
150
|
Poly-ADP-ribosyl-polymerase inhibitor resistance mechanisms and their therapeutic implications. Curr Opin Obstet Gynecol 2019; 31:12-17. [DOI: 10.1097/gco.0000000000000517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|