101
|
Hishiki K, Akiyama M, Kanegae Y, Ozaki K, Ohta M, Tsuchitani E, Kaito K, Yamada H. NF-κB signaling activation via increases in BRD2 and BRD4 confers resistance to the bromodomain inhibitor I-BET151 in U937 cells. Leuk Res 2018; 74:57-63. [DOI: 10.1016/j.leukres.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/18/2022]
|
102
|
García P, Alonso VL, Serra E, Escalante AM, Furlan RLE. Discovery of a Biologically Active Bromodomain Inhibitor by Target-Directed Dynamic Combinatorial Chemistry. ACS Med Chem Lett 2018; 9:1002-1006. [PMID: 30344907 DOI: 10.1021/acsmedchemlett.8b00247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/11/2018] [Indexed: 12/24/2022] Open
Abstract
Target-directed dynamic combinatorial chemistry (DCC) has emerged as a strategy for the identification of inhibitors of relevant therapeutic targets. In this contribution, we use this strategy for the identification of a high-affinity binder of a parasite target, the Trypanosoma cruzi bromodomain-containing protein TcBDF3. This protein is essential for viability of T. cruzi, the protozoan parasite that causes Chagas disease. A small dynamic library of acylhydrazones was prepared from aldehydes and acylhydrazides at neutral pH in the presence of aniline. The most amplified library member shows (a) high affinity for the template, (b) interesting antiparasitic activity against different parasite forms, and (c) low toxicity against Vero cells. In addition, parasites are rescued from the compound toxicity by TcBDF3 overexpression, suggesting that the toxicity of this compound is due to the TcBDF3 inhibition, i.e., the binding event that initially drives the molecular amplification is reproduced in the parasite, leading to selective toxicity.
Collapse
Affiliation(s)
- Paula García
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Victoria L. Alonso
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario, CONICET, Ocampo y Esmeralda, 2000 Rosario, Argentina
| | - Esteban Serra
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR), Universidad Nacional de Rosario, CONICET, Ocampo y Esmeralda, 2000 Rosario, Argentina
| | - Andrea M. Escalante
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Ricardo L. E. Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| |
Collapse
|
103
|
Zhang J, Dang F, Ren J, Wei W. Biochemical Aspects of PD-L1 Regulation in Cancer Immunotherapy. Trends Biochem Sci 2018; 43:1014-1032. [PMID: 30287140 DOI: 10.1016/j.tibs.2018.09.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/04/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Abstract
PD-L1, frequently expressed in human cancers, engages with PD-1 on immune cells and contributes to cancer immune evasion. As such, antibodies blocking the PD-1/PD-L1 interaction reactivate cytotoxic T cells to eradicate cancer cells. However, a majority of cancer patients fail to respond to PD-1/PD-L1 blockade with unclear underlying mechanism(s). Recent studies revealed that PD-L1 expression levels on tumor cells might affect the clinical response to anti-PD-1/PD-L1 therapies. Hence, understanding molecular mechanisms for controlling PD-L1 expression will be important to improve the clinical response rate and efficacy of PD-1/PD-L1 blockade. In this review, we primarily focus on summarizing PD-L1 regulation and its potential roles in regulating antitumor immune response, with purpose to optimize anti-PD-1/PD-L1 therapies, benefiting a wider cancer patient population.
Collapse
Affiliation(s)
- Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; These authors contributed equally to this work
| | - Fabin Dang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; These authors contributed equally to this work
| | - Junming Ren
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
104
|
Tan Y, Wang L, Du Y, Liu X, Chen Z, Weng X, Guo J, Chen H, Wang M, Wang X. Inhibition of BRD4 suppresses tumor growth in prostate cancer via the enhancement of FOXO1 expression. Int J Oncol 2018; 53:2503-2517. [PMID: 30272279 PMCID: PMC6203153 DOI: 10.3892/ijo.2018.4577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is a malignant tumor with a high incidence in males. Localized tumors can be treated via surgery or radiation; however, it remains difficult to prevent disease progression. Bromodomain-containing protein 4 (BRD4) is an epigenetic reader protein that binds to acetylated lysine on histones and has been reported to serve critical roles in numerous types of cancers. In the present study, it was demonstrated that BRD4 expression levels were significantly increased in cancerous prostate tissue specimens and cells, which were associated with clinical stage and metastasis. In addition, the present study reported that inhibition of BRD4 via short hairpin RNA or JQ1 (a bromo-domain inhibitor) decreased PCa cell proliferation, induced G0/G1 cell cycle arrest and apoptosis, mitigated cell invasion and migration in vitro, and impaired tumor growth in vivo. Mechanistically, BRD4 inhibition-induced suppression of cell cycle progression was associated with the upregulation of p21 and cyclin D1. c-Myc and B-cell lymphoma-2 (Bcl-2), important genes responsible for cell cycle regulation and anti-apoptotic functions, were downregulated in response to BRD4 inhibition. Furthermore, the present study revealed that c-Myc expression was negatively regulated by p21, and that the induction of p21 via BRD4 inhibition was mediated by forkhead box protein O1 (FOXO1), rather than p53. In summary, the results of the present study suggested that the aberrant expression of BRD4 in PCa may induce carcinogenesis. In addition, a mechanism by which BRD4 inhibition suppresses cell proliferation via the regulation of FOXO1-p21-Myc signaling was proposed in the present study, which may contribute to the development of novel therapeutic approaches in the management of PCa.
Collapse
Affiliation(s)
- Yifan Tan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lei Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yang Du
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiaodong Weng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Jia Guo
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Hui Chen
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Min Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
105
|
Sun L, Liu J, Yuan Y, Zhang X, Dong Z. Protective effect of the BET protein inhibitor JQ1 in cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 2018; 315:F469-F478. [PMID: 29767555 PMCID: PMC6172575 DOI: 10.1152/ajprenal.00527.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 11/22/2022] Open
Abstract
As a potent chemotherapy drug, cisplatin is also notorious for its side-effects including nephrotoxicity in kidneys, presenting a pressing need to identify renoprotective agents. Cisplatin nephrotoxicity involves epigenetic regulations, including changes in histone acetylation. Bromodomain and extraterminal (BET) proteins are "readers" of the epigenetic code of histone acetylation. Here, we investigated the potential renoprotective effects of JQ1, a small molecule inhibitor of BET proteins. We show that JQ1 significantly ameliorated cisplatin-induced nephrotoxicity in mice as indicated by the measurements of kidney function, histopathology, and renal tubular apoptosis. JQ1 also partially prevented the body weight loss during cisplatin treatment in mice. Consistently, JQ1 inhibited cisplatin-induced apoptosis in renal proximal tubular cells. Mechanistically, JQ1 suppressed cisplatin-induced phosphorylation or activation of p53 and Chk2, key events in DNA damage response. JQ1 also attenuated cisplatin-induced MAP kinase (p38, ERK1/2, and JNK) activation. In addition, JQ1 enhanced the expression of antioxidant genes including nuclear factor erythroid 2-related factor 2 and heme oxygenase-1, while diminishing the expression of the nitrosative protein inducible nitric oxide synthase. JQ1 did not suppress cisplatin-induced apoptosis in A549 nonsmall cell lung cancer cells and AGS gastric cancer cells. These results suggest that JQ1 may protect against cisplatin nephrotoxicity by suppressing DNA damage response, p53, MAP kinases, and oxidative/nitrosative stress pathways.
Collapse
Affiliation(s)
- Liping Sun
- Key Renal Laboratory of Shenzhen, Department of Nephrology, The Second Clinical Medical College of Jinan University , Shenzhen , China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| | - Jing Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
- Department of Nephrology, The Second Xiangya Hospital, Central South University , Changsha, Hunan , China
| | - Yanggang Yuan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
- Department of Nephrology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province People's Hospital , Nanjing , China
| | - Xinzhou Zhang
- Key Renal Laboratory of Shenzhen, Department of Nephrology, The Second Clinical Medical College of Jinan University , Shenzhen , China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
- Department of Nephrology, The Second Xiangya Hospital, Central South University , Changsha, Hunan , China
| |
Collapse
|
106
|
Yang SM, Urban DJ, Yoshioka M, Strovel JW, Fletcher S, Wang AQ, Xu X, Shah P, Hu X, Hall MD, Jadhav A, Maloney DJ. Discovery and lead identification of quinazoline-based BRD4 inhibitors. Bioorg Med Chem Lett 2018; 28:3483-3488. [PMID: 30268702 DOI: 10.1016/j.bmcl.2018.08.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
A new series of quinazoline-based analogs as potent bromodomain-containing protein 4 (BRD4) inhibitors is described. The structure-activity relationships on 2- and 4-position of quinazoline ring, and the substitution at 6-position that mimic the acetylated lysine are discussed. A co-crystallized structure of 48 (CN750) with BRD4 (BD1) including key inhibitor-protein interactions is also highlighted. Together with preliminary rodent pharmacokinetic results, a new lead (65, CN427) is identified which is suitable for further lead optimization.
Collapse
Affiliation(s)
- Shyh-Ming Yang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States.
| | - Daniel J Urban
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Makoto Yoshioka
- ConverGene LLC., 3093 Beverly Lane, Unit C, Cambridge, MD 21613, United States
| | - Jeffrey W Strovel
- ConverGene LLC., 3093 Beverly Lane, Unit C, Cambridge, MD 21613, United States
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 North Pine Street, Baltimore, MD 21201, United States
| | - Amy Q Wang
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Xin Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Pranav Shah
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States
| | - David J Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, United States.
| |
Collapse
|
107
|
Adenovirus E1A Activation Domain Regulates H3 Acetylation Affecting Varied Steps in Transcription at Different Viral Promoters. J Virol 2018; 92:JVI.00805-18. [PMID: 29976669 PMCID: PMC6146688 DOI: 10.1128/jvi.00805-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023] Open
Abstract
Despite a wealth of data associating promoter and enhancer region histone N-terminal tail lysine acetylation with transcriptional activity, there are relatively few examples of studies that establish causation between these histone posttranslational modifications and transcription. While hypoacetylation of histone H3 lysines 18 and 27 is associated with repression, the step(s) in the overall process of transcription that is blocked at a hypoacetylated promoter is not clearly established in most instances. Studies presented here confirm that the adenovirus 2 large E1A protein activation domain interacts with p300, as reported previously (P. Pelka, J. N. G. Ablack, J. Torchia, A. S. Turnell, R. J. A. Grand, J. S. Mymryk, Nucleic Acids Res 37:1095–1106, 2009, https://doi.org/10.1093/nar/gkn1057), and that the resulting acetylation of H3K18/27 affects varied steps in transcription at different viral promoters. How histone acetylation promotes transcription is not clearly understood. Here, we confirm an interaction between p300 and the adenovirus 2 large E1A activation domain (AD) and map the interacting regions in E1A by observing colocalization at an integrated lacO array of fusions of LacI-mCherry to E1A fragments with YFP-p300. Viruses with mutations in E1A subdomains were constructed and analyzed for kinetics of early viral RNA expression and association of acetylated H3K9, K18, K27, TBP, and RNA polymerase II (Pol II) across the viral genome. The results indicate that this E1A interaction with p300 is required for H3K18 and H3K27 acetylation at the E2early, E3, and E4 promoters and is required for TBP and Pol II association with the E2early promoter. In contrast, H3K18/27 acetylation was not required for TBP and Pol II association with the E3 and E4 promoters but was required for E4 transcription at a step subsequent to Pol II preinitiation complex assembly. IMPORTANCE Despite a wealth of data associating promoter and enhancer region histone N-terminal tail lysine acetylation with transcriptional activity, there are relatively few examples of studies that establish causation between these histone posttranslational modifications and transcription. While hypoacetylation of histone H3 lysines 18 and 27 is associated with repression, the step(s) in the overall process of transcription that is blocked at a hypoacetylated promoter is not clearly established in most instances. Studies presented here confirm that the adenovirus 2 large E1A protein activation domain interacts with p300, as reported previously (P. Pelka, J. N. G. Ablack, J. Torchia, A. S. Turnell, R. J. A. Grand, J. S. Mymryk, Nucleic Acids Res 37:1095–1106, 2009, https://doi.org/10.1093/nar/gkn1057), and that the resulting acetylation of H3K18/27 affects varied steps in transcription at different viral promoters.
Collapse
|
108
|
Giblin KA, Hughes SJ, Boyd H, Hansson P, Bender A. Prospectively Validated Proteochemometric Models for the Prediction of Small-Molecule Binding to Bromodomain Proteins. J Chem Inf Model 2018; 58:1870-1888. [DOI: 10.1021/acs.jcim.8b00400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kathryn A. Giblin
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Samantha J. Hughes
- Computational Chemistry, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge CB10 1XL, U.K
| | - Helen Boyd
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 431 50 SE, Sweden
| | - Pia Hansson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg 431 50 SE, Sweden
| | - Andreas Bender
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
109
|
Flavonoids as Putative Epi-Modulators: Insight into Their Binding Mode with BRD4 Bromodomains Using Molecular Docking and Dynamics. Biomolecules 2018; 8:biom8030061. [PMID: 30041464 PMCID: PMC6164663 DOI: 10.3390/biom8030061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are widely recognized as natural polydrugs, given their anti-inflammatory, antioxidant, sedative, and antineoplastic activities. Recently, different studies showed that flavonoids have the potential to inhibit bromodomain and extraterminal (BET) bromodomains. Previous reports suggested that flavonoids bind between the Z and A loops of the bromodomain (ZA channel) due to their orientation and interactions with P86, V87, L92, L94, and N140. Herein, a comprehensive characterization of the binding modes of fisetin and the biflavonoid, amentoflavone, is discussed. To this end, both compounds were docked with BET bromodomain 4 (BRD4) using four docking programs. The results were post-processed with protein–ligand interaction fingerprints. To gain further insight into the binding mode of the two natural products, the docking results were further analyzed with molecular dynamics simulations. The results showed that amentoflavone makes numerous contacts in the ZA channel, as previously described for flavonoids and kinase inhibitors. It was also found that amentoflavone can potentially make contacts with non-canonical residues for BET inhibition. Most of these contacts were not observed with fisetin. Based on these results, amentoflavone was experimentally tested for BRD4 inhibition, showing activity in the micromolar range. This work may serve as the basis for scaffold optimization and the further characterization of flavonoids as BET inhibitors.
Collapse
|
110
|
Celano M, Mio C, Sponziello M, Verrienti A, Bulotta S, Durante C, Damante G, Russo D. Targeting post-translational histone modifications for the treatment of non-medullary thyroid cancer. Mol Cell Endocrinol 2018; 469:38-47. [PMID: 28579118 DOI: 10.1016/j.mce.2017.05.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/25/2017] [Accepted: 05/30/2017] [Indexed: 02/07/2023]
Abstract
Genomic and epigenetic alterations are now being exploited as molecular targets in cancer treatment. Abnormalities involving the post-translational modification of histones have been demonstrated in thyroid cancer, and they are regarded as promising molecular targets for novel drug treatment of tumors that are resistant to conventional therapies. After a brief overview of the histone modifications most commonly associated with human malignancies, we will review recently published preclinical and clinical findings regarding the use of histone-activity modulators in thyroid cancers. Particular attention will be focused on their use as re-differentiating or anti-proliferating agents, the differential effects observed when they are used alone and in combination with other targeted drugs, and current prospects for their use in the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Marilena Celano
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Catia Mio
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Marialuisa Sponziello
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Antonella Verrienti
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Stefania Bulotta
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy
| | - Cosimo Durante
- Department of Internal Medicine and Medical Specialties, "Sapienza" University of Rome, 00161 Rome, Italy
| | - Giuseppe Damante
- Department of Medical Area, University of Udine, 33100 Udine, Italy
| | - Diego Russo
- Department of Health Sciences, "Magna Graecia" University of Catanzaro, 88100 Catanzaro, Italy.
| |
Collapse
|
111
|
Mao F, Li J, Luo Q, Wang R, Kong Y, Carlock C, Liu Z, Elzey BD, Liu X. Plk1 Inhibition Enhances the Efficacy of BET Epigenetic Reader Blockade in Castration-Resistant Prostate Cancer. Mol Cancer Ther 2018; 17:1554-1565. [PMID: 29716963 PMCID: PMC6030429 DOI: 10.1158/1535-7163.mct-17-0945] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/07/2018] [Accepted: 04/25/2018] [Indexed: 01/30/2023]
Abstract
Polo-like kinase 1 (Plk1), a crucial regulator of cell-cycle progression, is overexpressed in multiple types of cancers and has been proven to be a potent and promising target for cancer treatment. In case of prostate cancer, we once showed that antineoplastic activity of Plk1 inhibitor is largely due to inhibition of androgen receptor (AR) signaling. However, we also discovered that Plk1 inhibition causes activation of the β-catenin pathway and increased expression of c-MYC, eventually resulting in resistance to Plk1 inhibition. JQ1, a selective small-molecule inhibitor targeting the amino-terminal bromodomains of BRD4, has been shown to dramatically inhibit c-MYC expression and AR signaling, exhibiting antiproliferative effects in a range of cancers. Because c-MYC and AR signaling are essential for prostate cancer initiation and progression, we aim to test whether targeting Plk1 and BRD4 at the same time is an effective approach to treat prostate cancer. Herein, we show that a combination of Plk1 inhibitor GSK461364A and BRD4 inhibitor JQ1 had a strong synergistic effect on castration-resistant prostate cancer (CRPC) cell lines, as well as in CRPC xenograft tumors. Mechanistically, the synergistic effect is likely due to two reasons: (i) Plk1 inhibition results in the accumulation of β-catenin in the nucleus, thus elevation of c-MYC expression, whereas JQ1 treatment directly suppresses c-MYC transcription; (ii) Plk1 and BRD4 dual inhibition acts synergistically in inhibition of AR signaling. Mol Cancer Ther; 17(7); 1554-65. ©2018 AACR.
Collapse
Affiliation(s)
- Fengyi Mao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Jie Li
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Qian Luo
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Ruixin Wang
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Yifan Kong
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana
| | - Colin Carlock
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Zian Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - Bennet D Elzey
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana
| | - Xiaoqi Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana.
- Center for Cancer Research, Purdue University, West Lafayette, Indiana
| |
Collapse
|
112
|
Hupe MC, Hoda MR, Zengerling F, Perner S, Merseburger AS, Cronauer MV. The BET-inhibitor PFI-1 diminishes AR/AR-V7 signaling in prostate cancer cells. World J Urol 2018; 37:343-349. [PMID: 29934670 DOI: 10.1007/s00345-018-2382-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE The bromodomain and extra-terminal (BET) family of proteins provides a scaffolding platform for the recruitment and tethering of transcription factors to acetylated chromatin, thereby modulating gene expression. In this study, we evaluated the efficacy of the BET-inhibitor PFI-1 to diminish AR/AR-V7 signaling and proliferation in castration-resistant prostate cancer cells. METHODS Prostate-specific antigen and androgen receptor (AR) protein were quantified by means of two commercial ELISAs. Transactivation of the AR, AR-V7 and Q641X was determined by reporter gene assays. Cell proliferation was measured using a colorimetric MTT-assay. RESULTS PFI-1 dose-dependently inhibited transactivation of full-length AR (non- mutated, i.e., wild-type or point-mutated/promiscuous forms) without affecting their cellular protein levels. Moreover, PFI-1 was active against C-terminally truncated constitutively active ARs like AR-V7 and Q641X. Prostate cancer cells exhibiting a transcriptionally active AR-signaling complex (LNCaP, 22Rv1) were more susceptible to the growth-inhibitory effects than the AR-negative PC-3 cells. CONCLUSION The quinazolinone PFI-1 is a highly efficient inhibitor of AR-signaling-competent prostate cancer cells in vitro. PFI-1 could serve as a lead compound for the development of new therapeutics able to block AR/AR-V7 signaling in advanced prostate cancer.
Collapse
Affiliation(s)
- Marie C Hupe
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - M Raschid Hoda
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | | | - Sven Perner
- Pathology of the University Hospital Schleswig-Holstein, Campus Lübeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Marcus V Cronauer
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
113
|
Abramson HN. The Multiple Myeloma Drug Pipeline-2018: A Review of Small Molecules and Their Therapeutic Targets. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2018; 18:611-627. [PMID: 30001985 DOI: 10.1016/j.clml.2018.06.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/21/2022]
Abstract
Treatment of multiple myeloma (MM), a neoplasm of plasma cells, formerly dependent on alkylating drugs, corticosteroids, and autologous stem cell transplantation, has changed dramatically in the past 20 years because 3 new classes of small molecule drugs (arbitrarily defined as having a molecular weight of < 900 kDa)-immunomodulators, proteasome inhibitors, and histone deacetylase blockers-have been introduced for the disease. Therapeutic options for MM expanded further in 2015 when 2 new monoclonal antibodies (daratumumab and elotuzumab) were approved by the Food and Drug Administration for MM. Although MM remains incurable, the cumulative effect of these advances has resulted in a near-doubling of the 5-year survival rate since the late 1980s. Despite these advances, therapy for MM continues to pose substantial challenges because resistance to therapy frequently develops, and relapse and recurrence are all too common. The present review focused on the pipeline for new small molecules in various stages of development and their associated cellular targets. In addition to newer versions of alkylators, immunomodulators, proteasome inhibitors, and histone deacetylase inhibitors, the present review considered the prospects for adding new classes of small molecules to the MM armamentarium, which offer the potential for oral efficacy, relative simplicity of preparation, and prospects for improvement in the cost-to-benefit ratio. Included are agents that affect myeloma epigenetics and the ubiquitination-proteasome system and the unfolded protein response, apoptotic mechanisms, chromosomal abnormalities, nuclear protein transport, and various kinases involved in cellular signaling pathways.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI.
| |
Collapse
|
114
|
Fidanze SD, Liu D, Mantei RA, Hasvold LA, Pratt JK, Sheppard GS, Wang L, Holms JH, Dai Y, Aguirre A, Bogdan A, Dietrich JD, Marjanovic J, Park CH, Hutchins CW, Lin X, Bui MH, Huang X, Wilcox D, Li L, Wang R, Kovar P, Magoc TJ, Rajaraman G, Albert DH, Shen Y, Kati WM, McDaniel KF. Discovery and optimization of novel constrained pyrrolopyridone BET family inhibitors. Bioorg Med Chem Lett 2018; 28:1804-1810. [DOI: 10.1016/j.bmcl.2018.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
|
115
|
Hitting two oncogenic machineries in cancer cells: cooperative effects of the multi-kinase inhibitor ponatinib and the BET bromodomain blockers JQ1 or dBET1 on human carcinoma cells. Oncotarget 2018; 9:26491-26506. [PMID: 29899872 PMCID: PMC5995173 DOI: 10.18632/oncotarget.25474] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
In recent years, numerous new targeted drugs, including multi-kinase inhibitors and epigenetic modulators have been developed for cancer treatment. Ponatinib blocks a variety of tyrosine kinases including ABL and fibroblast growth factor receptor (FGFR), and the BET bromodomain (BRD) antagonists JQ1 and dBET1 impede MYC oncogene expression. Both drugs have demonstrated substantial anti-cancer efficacy against several hematological malignancies. Solid tumors, on the other hand, although frequently driven by FGFR and/or MYC, are often unresponsive to these drugs. This is due, at least in part, to compensatory feedback-loops in the kinome and transcription network of these tumors, which are activated in response to drug exposure. Therefore, we hypothesized that the combination of the multi-kinase inhibitor ponatinib with transcription modulators such as JQ1 or dBET1 might overcome this therapeutic recalcitrance. Using 3H-thymidine uptake, cell cycle analysis, and caspase-3 or Annexin V labeling, we demonstrate that single drugs induce moderate dose-dependent growth-inhibition and/or apoptosis in colon (HCT116, HT29), breast (MCF-7, SKBR3) and ovarian (A2780, SKOV3) cancer cells. Ponatinib elicited primarily apoptosis, while JQ1 and dBET1 caused G0/G1 cell cycle arrest and very mild cell death. Phospho-FGFR and MYC, major targets of ponatinib and BET inhibitors, were downregulated after treatment with single drugs. Remarkably, ponatinib was found to sensitize cells to BET antagonists by enhancing apoptotic cell death, and this effect was associated with downregulation of MYC. In summary, our data shows that ponatinib sensitizes colon, breast, and ovarian cancer cells to BET bromodomain inhibitors. Further studies are warranted to determine the clinical value of this phenomenon.
Collapse
|
116
|
Mitra S, Dash R. Structural dynamics and quantum mechanical aspects of shikonin derivatives as CREBBP bromodomain inhibitors. J Mol Graph Model 2018; 83:42-52. [PMID: 29758466 DOI: 10.1016/j.jmgm.2018.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/16/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The Proteins involved in the chemical modification of lysine residues in histone, is currently being excessively focused as the therapeutic target for the treatment of cell related diseases like cancer. Among these proteins, the epigenetic reader, CREB-binding protein (CREBBP) bromodomain is one of the most prominent targets for effective anticancer drug design, which is responsible for the reorganization of acetylated histone lysine residues. Therefore, this study employed an integrative approach of structure based drug design, in combination with Molecular Dynamics (MD) and QM/MM study to identify as well as to describe the binding mechanism of two shikonin derivatives, acetylshikonin and propionylshikonin as inhibitors of CREBBP bromodomain. Here induced fit docking strategy was employed to explore the important intrinsic interactions of ligands with CREBBP bromodomain, consistently molecular dynamics simulation with two different methods and binding energy calculations by MM-GBSA and MM-PBSA were adopted to determine the stability of intermolecular interactions between protein and ligands. The results showed that both these derivatives made direct contacts with the important conserved residues of the active site, where propionylshikonin demonstrated stronger binding and stability than acetylshikonin, according to molecular dynamics simulation and binding free energy calculations. Further, QM/MM energy calculation was employed to study the chemical reactivity of the propionylshikonin and also to describe the mechanism of non bonded interactions between the propionylshikonin and CREBBP bromodomain. Though this study demands in vitro and in vivo experiments to evaluate the efficiency of the compound, these insights would assist to design more potent CREBBP bromodomain inhibitor, guiding the site of modification of propionylshikonin moiety for designing selective inhibitors.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Pharmacy, University of Chittagong, Chittagong, 4331, Bangladesh
| | - Raju Dash
- Molecular Modeling & Drug Design Laboratory (MMDDL), Pharmacology Research Division, Bangladesh Council of Scientific & Industrial Research (BCSIR), Chittagong, 4220, Bangladesh; Department of Biochemistry and Biotechnology, University of Science & Technology Chittagong, Chittagong, 4202, Bangladesh.
| |
Collapse
|
117
|
Xue X, Zhang Y, Wang C, Zhang M, Xiang Q, Wang J, Wang A, Li C, Zhang C, Zou L, Wang R, Wu S, Lu Y, Chen H, Ding K, Li G, Xu Y. Benzoxazinone-containing 3,5-dimethylisoxazole derivatives as BET bromodomain inhibitors for treatment of castration-resistant prostate cancer. Eur J Med Chem 2018; 152:542-559. [PMID: 29758518 DOI: 10.1016/j.ejmech.2018.04.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/04/2018] [Accepted: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The bromodomain and extra-terminal proteins (BET) have emerged as promising therapeutic targets for the treatment of castration-resistant prostate cancer (CRPC). We report the design, synthesis and evaluation of a new series of benzoxazinone-containing 3,5-dimethylisoxazole derivatives as selective BET inhibitors. One of the new compounds, (R)-12 (Y02234), binds to BRD4(1) with a Kd value of 110 nM and blocks bromodomain and acetyl lysine interactions with an IC50 value of 100 nM. It also exhibits selectivity for BET over non-BET bromodomain proteins and demonstrates reasonable anti-proliferation and colony formation inhibition effect in prostate cancer cell lines such as 22Rv1 and C4-2B. The BRD4 inhibitor (R)-12 also significantly suppresses the expression of ERG, Myc and AR target gene PSA at the mRNA level in prostate cancer cells. Treatment with (R)-12 significantly suppresses the tumor growth of prostate cancer (TGI = 70%) in a 22Rv1-derived xenograft model. These data suggest that compound (R)-12 is a promising lead compound for the development of a new class of therapeutics for the treatment of CRPC.
Collapse
Affiliation(s)
- Xiaoqian Xue
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Yan Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Chao Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Maofeng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Qiuping Xiang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Junjian Wang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Anhui Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116023, China; Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Chenchang Li
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Cheng Zhang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Lingjiao Zou
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Rui Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Shuang Wu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China; School of Pharmaceutical Sciences, Jilin University, No. 1266 Fujin Road, Chaoyang District, Changchun, Jilin 130021, China
| | - Yongzhi Lu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China
| | - Hongwu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Xu
- Guangdong Provincial Key Laboratory of Biocomputing, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, Guangzhou Medical University, Guangzhou 511436 China.
| |
Collapse
|
118
|
Sedding DG, Boyle EC, Demandt JAF, Sluimer JC, Dutzmann J, Haverich A, Bauersachs J. Vasa Vasorum Angiogenesis: Key Player in the Initiation and Progression of Atherosclerosis and Potential Target for the Treatment of Cardiovascular Disease. Front Immunol 2018; 9:706. [PMID: 29719532 PMCID: PMC5913371 DOI: 10.3389/fimmu.2018.00706] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/22/2018] [Indexed: 01/08/2023] Open
Abstract
Plaque microvascularization and increased endothelial permeability are key players in the development of atherosclerosis, from the initial stages of plaque formation to the occurrence of acute cardiovascular events. First, endothelial dysfunction and increased permeability facilitate the entry of diverse inflammation-triggering molecules and particles such as low-density lipoproteins into the artery wall from the arterial lumen and vasa vasorum (VV). Recognition of entering particles by resident phagocytes in the vessel wall triggers a maladaptive inflammatory response that initiates the process of local plaque formation. The recruitment and accumulation of inflammatory cells and the subsequent release of several cytokines, especially from resident macrophages, stimulate the expansion of existing VV and the formation of new highly permeable microvessels. This, in turn, exacerbates the deposition of pro-inflammatory particles and results in the recruitment of even more inflammatory cells. The progressive accumulation of leukocytes in the intima, which trigger proliferation of smooth muscle cells in the media, results in vessel wall thickening and hypoxia, which further stimulates neoangiogenesis of VV. Ultimately, this highly inflammatory environment damages the fragile plaque microvasculature leading to intraplaque hemorrhage, plaque instability, and eventually, acute cardiovascular events. This review will focus on the pivotal roles of endothelial permeability, neoangiogenesis, and plaque microvascularization by VV during plaque initiation, progression, and rupture. Special emphasis will be given to the underlying molecular mechanisms and potential therapeutic strategies to selectively target these processes.
Collapse
Affiliation(s)
- Daniel G Sedding
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Erin C Boyle
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Jasper A F Demandt
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Judith C Sluimer
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands.,BHF Centre for Cardiovascular Science, Edinburgh University, Edinburgh, United Kingdom
| | - Jochen Dutzmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
119
|
Peedicayil J, Kumar A. Epigenetic Drugs for Mood Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 157:151-174. [PMID: 29933949 DOI: 10.1016/bs.pmbts.2018.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There is increasing evidence that changes in epigenetic mechanisms of gene expression are involved in the pathogenesis of mood disorders. Such evidence stems from studies conducted on postmortem brain tissues and peripheral cells or tissues of patients with mood disorders. This article describes and discusses the epigenetic changes in the mood disorders (major depressive disorder and bipolar disorder) found to date. The article also describes and discusses preclinical drug trials of epigenetic drugs for treating mood disorders. In addition, nonrandomized and randomized controlled trials of nutritional drugs with effects on epigenetic mechanisms of gene expression in patients with major depressive disorder and bipolar disorder are discussed. Trials of epigenetic drugs and nutritional drugs with epigenetic effects are showing promising results for the treatment of mood disorders. Thus, epigenetic drugs and nutritional drugs with epigenetic effects could be useful in the treatment of patients with these disorders.
Collapse
|
120
|
Morse MA, Balogh KK, Brendle SA, Campbell CA, Chen MX, Furze RC, Harada IL, Holyer ID, Kumar U, Lee K, Prinjha RK, Rüdiger M, Seal JT, Taylor S, Witherington J, Christensen ND. BET bromodomain inhibitors show anti-papillomavirus activity in vitro and block CRPV wart growth in vivo. Antiviral Res 2018; 154:158-165. [PMID: 29653131 DOI: 10.1016/j.antiviral.2018.03.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 12/19/2022]
Abstract
The DNA papillomaviruses infect squamous epithelium and can cause persistent, benign and sometimes malignant hyperproliferative lesions. Effective antiviral drugs to treat human papillomavirus (HPV) infection are lacking and here we investigate the anti-papillomavirus activity of novel epigenetic targeting drugs, BET bromodomain inhibitors. Bromodomain and Extra-Terminal domain (BET) proteins are host proteins which regulate gene transcription, they bind acetylated lysine residues in histones and non-histone proteins via bromodomains, functioning as scaffold proteins in the formation of transcriptional complexes at gene regulatory regions. The BET protein BRD4 has been shown to be involved in the papillomavirus life cycle, as a co-factor for viral E2 and also mediating viral partitioning in some virus types. We set out to study the activity of small molecule BET bromodomain inhibitors in models of papillomavirus infection. Several BET inhibitors reduced HPV11 E1ˆE4 mRNA expression in vitro and topical therapeutic administration of an exemplar compound I-BET762, abrogated CRPV cutaneous wart growth in rabbits, demonstrating translation of anti-viral effects to efficacy in vivo. Additionally I-BET762 markedly reduced viability of HPV16 infected W12 cells compared to non-infected C33A cells. The molecular mechanism for the cytotoxicity to W12 cells is unknown but may be through blocking viral-dependent cell-survival factors. We conclude that these effects, across multiple papillomavirus types and in vivo, highlight the potential to target BET bromodomains to treat HPV infection.
Collapse
Affiliation(s)
- Mary A Morse
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK.
| | - Karla K Balogh
- The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Sarah A Brendle
- The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| | - Colin A Campbell
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Mao X Chen
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rebecca C Furze
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Isobel L Harada
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Ian D Holyer
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Umesh Kumar
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Kevin Lee
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Rab K Prinjha
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Martin Rüdiger
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jonathan T Seal
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Simon Taylor
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Jason Witherington
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - Neil D Christensen
- The Jake Gittlen Cancer Research Foundation, H069, Department of Pathology, C7800, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033-0850, USA
| |
Collapse
|
121
|
Bennett MJ, Wu Y, Boloor A, Matuszkiewicz J, O'Connell SM, Shi L, Stansfield RK, Del Rosario JR, Veal JM, Hosfield DJ, Xu J, Kaldor SW, Stafford JA, Betancort JM. Design, synthesis and biological evaluation of novel 4-phenylisoquinolinone BET bromodomain inhibitors. Bioorg Med Chem Lett 2018; 28:1811-1816. [PMID: 29657099 DOI: 10.1016/j.bmcl.2018.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/18/2022]
Abstract
The bromodomain and extra-terminal (BET) family of epigenetic proteins has attracted considerable attention in drug discovery given its involvement in regulating gene transcription. Screening a focused small molecule library based on the bromodomain pharmacophore resulted in the identification of 2-methylisoquinoline-1-one as a novel BET bromodomain-binding motif. Structure guided SAR exploration resulted in >10,000-fold potency improvement for the BRD4-BD1 bromodomain. Lead compounds exhibited excellent potencies in both biochemical and cellular assays in MYC-dependent cell lines. Compound 36 demonstrated good physicochemical properties and promising exposure levels in exploratory PK studies.
Collapse
Affiliation(s)
- Michael J Bennett
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Yiqin Wu
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Amogh Boloor
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Jennifer Matuszkiewicz
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Shawn M O'Connell
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Lihong Shi
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Ryan K Stansfield
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Joselyn R Del Rosario
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - James M Veal
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - David J Hosfield
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States
| | - Jiangchun Xu
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Stephen W Kaldor
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Jeffrey A Stafford
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States
| | - Juan M Betancort
- Celgene Quanticel Research, 10300 Campus Point Drive, Suite 100, San Diego, CA 92121, United States.
| |
Collapse
|
122
|
Chua MJ, Robaa D, Skinner-Adams TS, Sippl W, Andrews KT. Activity of bromodomain protein inhibitors/binders against asexual-stage Plasmodium falciparum parasites. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:189-193. [PMID: 29631126 PMCID: PMC6039313 DOI: 10.1016/j.ijpddr.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/06/2018] [Accepted: 03/08/2018] [Indexed: 01/16/2023]
Abstract
Bromodomain-containing proteins (BDPs) are involved in the regulation of eukaryotic gene expression. Compounds that bind and/or inhibit BDPs are of interest as tools to better understand epigenetic regulation, and as possible drug leads for different diseases, including malaria. In this study, we assessed the activity of 42 compounds demonstrated or predicted (using virtual screening of a pharmacophore model) to bind/inhibit eukaryotic BDPs for activity against Plasmodium falciparum malaria parasites. In silico docking studies indicated that all compounds are predicted to participate in a typical hydrogen bond interaction with the conserved asparagine (Asn1436) of the P. falciparum histone acetyltransferase (PfGCN5) bromodomain and a conserved water molecule. Only one compound (the dimethylisoxazole SGC-CBP30; a selective inhibitor of CREBBP (CBP) and EP300 bromodomains) is also predicted to have a salt-bridge between the morpholine nitrogen and Glu1389. When tested for in vitro activity against asynchronous asexual stage P. falciparum Dd2 parasites, all compounds displayed 50% growth inhibitory concentrations (IC50) >10 μM. Further testing of the three most potent compounds using synchronous parasites for 72 h showed that SGC-CBP30 was the most active (IC50 3.2 μM). In vitro cytotoxicity assays showed that SGC-CBP30 has ∼7-fold better selectivity for the parasites versus a human cell line (HEK 293). Together these data provide a possible starting point for future investigation of these, or related compounds, as tools to understand epigenetic regulation or as potential new drug leads. 42 demonstrated or predicted BDP binders/inhibitors investigated. In silico docking predicts all have hydrogen bond interaction with conserved Asn1436 of PfGCN5 bromodomain. Pan-bromodomain inhibitor SGC-CBP30 also has predicted salt-bridge between morpholine nitrogen and Glu1389. SGC-CBP30 has most potent in vitro activity against asexual-stage P. falciparum (IC50 3.2 μM). SGC-CBP30 has ∼7-fold better selectivity for P. falciparum versus HEK 293 cell.
Collapse
Affiliation(s)
- Ming Jang Chua
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Tina S Skinner-Adams
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia.
| |
Collapse
|
123
|
Sahni JM, Keri RA. Targeting bromodomain and extraterminal proteins in breast cancer. Pharmacol Res 2018; 129:156-176. [PMID: 29154989 PMCID: PMC5828951 DOI: 10.1016/j.phrs.2017.11.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 12/13/2022]
Abstract
Breast cancer is a collection of distinct tumor subtypes that are driven by unique gene expression profiles. These transcriptomes are controlled by various epigenetic marks that dictate which genes are expressed and suppressed. During carcinogenesis, extensive restructuring of the epigenome occurs, including aberrant acetylation, alteration of methylation patterns, and accumulation of epigenetic readers at oncogenes. As epigenetic alterations are reversible, epigenome-modulating drugs could provide a mechanism to silence numerous oncogenes simultaneously. Here, we review the impact of inhibitors of the Bromodomain and Extraterminal (BET) family of epigenetic readers in breast cancer. These agents, including the prototypical BET inhibitor JQ1, have been shown to suppress a variety of oncogenic pathways while inducing minimal, if any, toxicity in models of several subtypes of breast cancer. BET inhibitors also synergize with multiple approved anti-cancer drugs, providing a greater response in breast cancer cell lines and mouse models than either single agent. The combined findings of the studies discussed here provide an excellent rationale for the continued investigation of the utility of BET inhibitors in breast cancer.
Collapse
Affiliation(s)
- Jennifer M Sahni
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106, United States; Department of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
124
|
Abstract
Several oncogenic factors have been involved in prostate cancer progression. However, therapeutic approaches still focus on suppression of androgen receptor (AR) signaling. In fact, whereas the full-length AR incorporates a ligand-binding domain, which has become a drug target for competitive inhibitors, other transcription factors often do not have tractable binding pockets that aid drug development. Consequently drug development efforts have turned to transcription co-regulators, often chromatin-modifying enzymes or factors that bind to epigenetic modifications to chromatin. Bromodomain (BRD)-containing proteins fall into the latter category and significant progress has been made in developing small molecule inhibitors that target a particular subgroup of BRD-containing proteins known as the Bromodomain and extra-terminal (BET) family proteins. These inhibitors have proven particularly effective in inactivating c-Myc in lymphoma but more recently members of the BET family have also been identified as AR-interacting proteins raising the prospect of using these inhibitors as an alternative strategy for targeting AR-driven cancers. In this review we will provide an overview of BRD-containing proteins and the potential for exploiting them as biomarkers and drug targets in prostate cancer.
Collapse
Affiliation(s)
- Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo, Forskningsparken, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo, Forskningsparken, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell Biology, Queen's University of Belfast, BT9 7AE Belfast, UK
| |
Collapse
|
125
|
Tontsch-Grunt U, Rudolph D, Waizenegger I, Baum A, Gerlach D, Engelhardt H, Wurm M, Savarese F, Schweifer N, Kraut N. Synergistic activity of BET inhibitor BI 894999 with PLK inhibitor volasertib in AML in vitro and in vivo. Cancer Lett 2018; 421:112-120. [PMID: 29454094 DOI: 10.1016/j.canlet.2018.02.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/29/2018] [Accepted: 02/11/2018] [Indexed: 12/11/2022]
Abstract
Interactions between a new potent Bromodomain and extraterminal domain (BET) inhibitor BI 894999 and the polo-like kinase (PLK) inhibitor volasertib were studied in acute myeloid leukemia cell lines in vitro and in vivo. We provide data for the distinct mechanisms of action of these two compounds with a potential utility in AML based on gene expression, cell cycle profile and modulation of PD biomarkers such as MYC and HEXIM1. In contrast to BI 894999, volasertib treatment neither affects MYC nor HEXIM1 expression, but augments and prolongs the decrease of MYC expression caused by BI 894999 treatment. In vitro combination of both compounds leads to a decrease in S-Phase and to increased apoptosis. In vitro scheduling experiments guided in vivo experiments in disseminated AML mouse models. Co-administration of BI 894999 and volasertib dramatically reduces tumor burden accompanied by long-term survival of tumor-bearing mice and eradication of AML cells in mouse bone marrow. Together, these preclinical findings provide evidence for the strong synergistic effect of BI 894999 and volasertib, warranting future clinical studies in patients with AML to investigate this paradigm.
Collapse
Affiliation(s)
| | | | | | - Anke Baum
- Boehringer Ingelheim RCV GmbH & Co KG, A-1120 Vienna, Austria
| | - Daniel Gerlach
- Boehringer Ingelheim RCV GmbH & Co KG, A-1120 Vienna, Austria
| | | | - Melanie Wurm
- Boehringer Ingelheim RCV GmbH & Co KG, A-1120 Vienna, Austria
| | - Fabio Savarese
- Boehringer Ingelheim RCV GmbH & Co KG, A-1120 Vienna, Austria
| | | | - Norbert Kraut
- Boehringer Ingelheim RCV GmbH & Co KG, A-1120 Vienna, Austria
| |
Collapse
|
126
|
Gendarme M, Baumann J, Ignashkova TI, Lindemann RK, Reiling JH. Image-based drug screen identifies HDAC inhibitors as novel Golgi disruptors synergizing with JQ1. Mol Biol Cell 2017; 28:3756-3772. [PMID: 29074567 PMCID: PMC5739293 DOI: 10.1091/mbc.e17-03-0176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 10/17/2017] [Accepted: 10/17/2017] [Indexed: 12/12/2022] Open
Abstract
The Golgi apparatus is increasingly recognized as a major hub for cellular signaling and is involved in numerous pathologies, including neurodegenerative diseases and cancer. The study of Golgi stress-induced signaling pathways relies on the selectivity of the available tool compounds of which currently only a few are known. To discover novel Golgi-fragmenting agents, transcriptomic profiles of cells treated with brefeldin A, golgicide A, or monensin were generated and compared with a database of gene expression profiles from cells treated with other bioactive small molecules. In parallel, a phenotypic screen was performed for compounds that alter normal Golgi structure. Histone deacetylase (HDAC) inhibitors and DNA-damaging agents were identified as novel Golgi disruptors. Further analysis identified HDAC1/HDAC9 as well as BRD8 and DNA-PK as important regulators of Golgi breakdown mediated by HDAC inhibition. We provide evidence that combinatorial HDACi/(+)-JQ1 treatment spurs synergistic Golgi dispersal in several cancer cell lines, pinpointing a possible link between drug-induced toxicity and Golgi morphology alterations.
Collapse
Affiliation(s)
| | - Jan Baumann
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| |
Collapse
|
127
|
Sepehri B, Ghavami R. The identification of new ATAD2 bromodomain inhibitors: the application of combined ligand and structure-based virtual screening. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:957-971. [PMID: 29191061 DOI: 10.1080/1062936x.2017.1385532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 09/25/2017] [Indexed: 06/07/2023]
Abstract
Ligand-based virtual screening (LBVS) and structure-based virtual screening (SBVS) approaches were used to identify new inhibitors for ATAD2 bromodomain. The LBVS approach was used to search 23,129,083 clean compounds to identify compounds similar to an active compound with reported pIC50 equal to 7.2. Based on LBVS results, 19 compounds were selected. To perform SBVS, by applying nine filters on 23,129,083 clean compounds, 1,057,060 compounds were selected. After performing SBVS on these selected compounds with idock software, 16 compounds with the lowest binding energies were selected. More accurate molecular docking analysis was performed on these 35 selected compounds by using iGEMDOCK software and six of them with the lowest binding energies were selected as hit compounds. These compounds were zinc36647229, zinc77969074, zinc13637358, zinc77971540, zinc12991296 and zinc19374204.
Collapse
Affiliation(s)
- B Sepehri
- a Department of Chemistry, Faculty of Science , University of Kurdistan , Sanandaj , Iran
| | - R Ghavami
- a Department of Chemistry, Faculty of Science , University of Kurdistan , Sanandaj , Iran
| |
Collapse
|
128
|
Protein-protein and protein-chromatin interactions of LEDGF/p75 as novel drug targets. DRUG DISCOVERY TODAY. TECHNOLOGIES 2017; 24:25-31. [PMID: 29233296 DOI: 10.1016/j.ddtec.2017.11.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 11/02/2017] [Accepted: 11/09/2017] [Indexed: 11/21/2022]
Abstract
Lens epithelium-derived growth factor p75 (LEDGF/p75), a transcriptional co-activator, plays an important role in tethering protein complexes to the chromatin. Through this tethering function LEDGF/p75 is implicated in a diverse set of human diseases including HIV infection and mixed lineage leukemia, an aggressive form of cancer with poor prognosis. Here we provide an overview of recent progress in resolving protein-protein and protein-chromatin interaction mechanisms of LEDGF/p75. This review will focus on two well-characterized domains, the PWWP domain and the integrase binding domain (IBD). The PWWP domain interacts with methylated lysine 36 in histone H3, a marker of actively transcribed genes. The IBD interacts with the IBD binding motif, available in cellular binding partners of LEDGF/p75. Each domain forms an interesting new target for drug discovery.
Collapse
|
129
|
W Young D. Using Fragment Based Drug Discovery to Target Epigenetic Regulators in Cancer. ACTA ACUST UNITED AC 2017. [DOI: 10.15406/mojbb.2017.04.00062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
130
|
Hamdan FH, Johnsen SA. Super enhancers - new analyses and perspectives on the low hanging fruit. Transcription 2017; 9:123-130. [PMID: 28980882 DOI: 10.1080/21541264.2017.1372044] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Significant attention has recently been given to a class of enhancers termed "super enhancers", while implying that "typical enhancers" are less important. In this report, we examine criteria for identification of super enhancers and address the need to evaluate the differences between BRD4-occupied "typical" and "super" enhancers.
Collapse
Affiliation(s)
- Feda H Hamdan
- a Department of General, Visceral and Pediatric Surgery , University Medical Center Göttingen , Göttingen , Germany
| | - Steven A Johnsen
- a Department of General, Visceral and Pediatric Surgery , University Medical Center Göttingen , Göttingen , Germany
| |
Collapse
|
131
|
Temporal regulation of chromatin during myoblast differentiation. Semin Cell Dev Biol 2017; 72:77-86. [PMID: 29079444 DOI: 10.1016/j.semcdb.2017.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/06/2017] [Accepted: 10/22/2017] [Indexed: 11/23/2022]
Abstract
The commitment to and execution of differentiation programmes involves a significant change in gene expression in the precursor cell to facilitate development of the mature cell type. In addition to being regulated by lineage-determining and auxiliary transcription factors that drive these changes, the structural status of the chromatin has a considerable impact on the transcriptional competence of differentiation-specific genes, which is clearly demonstrated by the large number of cofactors and the extraordinary complex mechanisms by which these genes become activated. The terminal differentiation of myoblasts to myotubes and mature skeletal muscle is an excellent system to illustrate these points. The MyoD family of closely related, lineage-determining transcription factors directs, largely through targeting to chromatin, a cascade of cooperating transcription factors and enzymes that incorporate or remove variant histones, post-translationally modify histones, and alter nucleosome structure and positioning via energy released by ATP hydrolysis. The coordinated action of these transcription factors and enzymes prevents expression of differentiation-specific genes in myoblasts and facilitates the transition of these genes from transcriptionally repressed to activated during the differentiation process. Regulation is achieved in both a temporal as well as spatial manner, as at least some of these factors and enzymes affect local chromatin structure at myogenic gene regulatory sequences as well as higher-order genome organization. Here we discuss the transition of genes that promote myoblast differentiation from the silenced to the activated state with an emphasis on the changes that occur to individual histones and the chromatin structure present at these loci.
Collapse
|
132
|
The BET-Bromodomain Inhibitor JQ1 synergized ABT-263 against colorectal cancer cells through suppressing c-Myc-induced miR-1271-5p expression. Biomed Pharmacother 2017; 95:1574-1579. [PMID: 28950657 DOI: 10.1016/j.biopha.2017.09.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) cells undergo apoptosis in the presence of the small-molecule inhibitor ABT-263 by up-regulating antiapoptotic Bcl-2 family members. However, the resistance to ABT-263 gradually developed in most solid tumors due to its low affinity to Mcl-1. Here, we found the BET-Bromodomain inhibitor JQ1, when combined with ABT-263, synergistically reduced Mcl-1 protein level, induced apoptosis, and decreased cell viability in the CRC HCT-15, HT-29 and SW620 cells. The subsequent mechanism study revealed that a pathway of c-Myc/miR-1271-5p/Noxa/Mcl-1 underlies the synergistic effect of such combination treatment. We discovered that miR-1271-5p, the key mediator for the synergistic effect, is transcriptionally activated by c-Myc, and binds to the 3'-UTR of noxa to inhibit its protein production. The combination treatment of JQ1 and ABT-263 inhibited c-Myc protein level and also c-Myc-driven expression of miR-1271-5p, subsequently increased the protein level of Noxa, and finally promotes the degradation of Mcl-1. Our findings provide an alternative strategy to resolve the resistance during treatment of CRC by JQ1, and also discovered a novel miR-1271-5p-dependent regulatory mechanism for gene expression of noxa.
Collapse
|
133
|
Chabert C, Khochbin S, Rousseaux S, Furze R, Smithers N, Prinjha R, Schlattner U, Pison C, Dubouchaud H. Muscle hypertrophy in hypoxia with inflammation is controlled by bromodomain and extra-terminal domain proteins. Sci Rep 2017; 7:12133. [PMID: 28935884 PMCID: PMC5608715 DOI: 10.1038/s41598-017-12112-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/30/2017] [Indexed: 11/09/2022] Open
Abstract
Some of the Chronic Obstructive Pulmonary Disease (COPD) patients engaged in exercise-based muscle rehabilitation programs are unresponsive. To unravel the respective role of chronic hypoxia and pulmonary inflammation on soleus muscle hypertrophic capacities, we challenged male Wistar rats to repeated lipopolysaccharide instillations, associated or not with a chronic hypoxia exposure. Muscle hypertrophy was initiated by bilateral ablation of soleus agonists 1 week before sacrifice. To understand the role played by the histone acetylation, we also treated our animals with an inhibitor of bromodomains and extra terminal proteins (I-BET) during the week after surgery. Pulmonary inflammation totally inhibited this hypertrophy response under both normoxic and hypoxic conditions (26% lower than control surgery, p < 0.05), consistent with the S6K1 and myogenin measurements. Changes in histone acetylation and class IIa histone deacetylases expression, following pulmonary inflammation, suggested a putative role for histone acetylation signaling in the altered hypertrophy response. The I-BET drug restored the hypertrophy response suggesting that the non-response of muscle to a hypertrophic stimulus could be modulated by epigenetic mechanisms, including histone-acetylation dependant pathways. Drugs targeting such epigenetic mechanisms may open therapeutic perspectives for COPD patients with systemic inflammation who are unresponsive to rehabilitation.
Collapse
Affiliation(s)
- Clovis Chabert
- Univ. Grenoble Alpes, Inserm, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France
| | - Saadi Khochbin
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, 38000, France
| | - Sophie Rousseaux
- Univ. Grenoble Alpes, Inserm, CNRS, Institute for Advanced Biosciences (IAB), Grenoble, 38000, France
| | - Rebecca Furze
- Epigenetics DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, SG1 2NY, England, UK
| | - Nicholas Smithers
- Epigenetics DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, SG1 2NY, England, UK
| | - Rab Prinjha
- Epigenetics DPU, Immuno-Inflammation Therapy Area, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage, SG1 2NY, England, UK
| | - Uwe Schlattner
- Univ. Grenoble Alpes, Inserm, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France
| | - Christophe Pison
- Univ. Grenoble Alpes, Inserm, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France.,Univ. Grenoble Alpes, Inserm, CHU des Alpes, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France
| | - Hervé Dubouchaud
- Univ. Grenoble Alpes, Inserm, Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), Grenoble, 38000, France.
| |
Collapse
|
134
|
Ali I, Lee J, Go A, Choi G, Lee K. Discovery of novel [1,2,4]triazolo[4,3-a]quinoxaline aminophenyl derivatives as BET inhibitors for cancer treatment. Bioorg Med Chem Lett 2017; 27:4606-4613. [PMID: 28939121 DOI: 10.1016/j.bmcl.2017.09.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 11/28/2022]
Abstract
Bromodomain and extra-terminal (BET) proteins, a class of epigenetic reader domains has emerged as a promising new target class for small molecule drug discovery for the treatment of cancer, inflammatory, and autoimmune diseases. Starting from in silico screening campaign, herein we report the discovery of novel BET inhibitors based on [1,2,4]triazolo[4,3-a]quinoxaline scaffold and their biological evaluation. The hit compound was optimized using the medicinal chemistry approach to the lead compound with excellent inhibitory activities against BRD4 in the binding assay. The substantial antiproliferative activities in human cancer cell lines, promising drug-like properties, and the selectivity for the BET family make the lead compound (13) as a novel BRD4 inhibitor motif for anti-cancer drug discovery.
Collapse
Affiliation(s)
- Imran Ali
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Jooyun Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea
| | - Areum Go
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Gildon Choi
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea.
| | - Kwangho Lee
- Bio-Organic Science Division, Korea Research Institute of Chemical Technology, PO Box 107, Daejeon 34114, Republic of Korea; Medicinal Chemistry & Pharmacology, Korea University of Science & Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
135
|
Boyle EC, Sedding DG, Haverich A. Targeting vasa vasorum dysfunction to prevent atherosclerosis. Vascul Pharmacol 2017; 96-98:5-10. [DOI: 10.1016/j.vph.2017.08.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/15/2017] [Indexed: 01/19/2023]
|
136
|
Millan DS, Kayser-Bricker KJ, Martin MW, Talbot AC, Schiller SER, Herbertz T, Williams GL, Luke GP, Hubbs S, Alvarez Morales MA, Cardillo D, Troccolo P, Mendes RL, McKinnon C. Design and Optimization of Benzopiperazines as Potent Inhibitors of BET Bromodomains. ACS Med Chem Lett 2017; 8:847-852. [PMID: 28835800 DOI: 10.1021/acsmedchemlett.7b00191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022] Open
Abstract
A protein structure-guided drug design approach was employed to develop small molecule inhibitors of the BET family of bromodomains that were distinct from the known (+)-JQ1 scaffold class. These efforts led to the identification of a series of substituted benzopiperazines with structural features that enable interactions with many of the affinity-driving regions of the bromodomain binding site. Lipophilic efficiency was a guiding principle in improving binding affinity alongside drug-like physicochemical properties that are commensurate with oral bioavailability. Derived from this series was tool compound FT001, which displayed potent biochemical and cellular activity, translating to excellent in vivo activity in a mouse xenograft model (MV-4-11).
Collapse
Affiliation(s)
- David S. Millan
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | | | - Matthew W. Martin
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Adam C. Talbot
- FORMA Therapeutics Inc., 35 Northeast Industrial Road, Branford, Connecticut 06405, United States
| | - Shawn E. R. Schiller
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Torsten Herbertz
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Grace L. Williams
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - George P. Luke
- FORMA Therapeutics Inc., 35 Northeast Industrial Road, Branford, Connecticut 06405, United States
| | - Stephen Hubbs
- FORMA Therapeutics Inc., 35 Northeast Industrial Road, Branford, Connecticut 06405, United States
| | - Monica A. Alvarez Morales
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Daniel Cardillo
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Paul Troccolo
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Rachel L. Mendes
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| | - Crystal McKinnon
- FORMA Therapeutics Inc., 500 Arsenal Street, Suite 100, Watertown, Massachusetts 02472, United States
| |
Collapse
|
137
|
Wu VM, Mickens J, Uskoković V. Bisphosphonate-Functionalized Hydroxyapatite Nanoparticles for the Delivery of the Bromodomain Inhibitor JQ1 in the Treatment of Osteosarcoma. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25887-25904. [PMID: 28731328 PMCID: PMC5794714 DOI: 10.1021/acsami.7b08108] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Osteosarcoma (OS) is one of the most common neoplasia among children, and its survival statistics have been stagnating since the combinatorial anticancer therapy triad was first introduced. Here, we report on the assessment of the effect of hydroxyapatite (HAp) nanoparticles loaded with medronate, the simplest bisphosphonate, as a bone-targeting agent and JQ1, a small-molecule bromodomain inhibitor, as a chemotherapeutic in different 2D and 3D K7M2 OS in vitro models. Both additives decreased the crystallinity of HAp, but the effect was more intense for medronate because of its higher affinity for HAp. As the result of PO43--NH+ binding, JQ1 shielded the surface phosphates of HAp and pushed its surface charge to more positive values, exhibiting the opposite effect from calcium-blocking medronate. In contrast to the faster and more exponential release of JQ1 from monetite, its release from HAp nanoparticles followed a zero-order kinetics, but 98% of the payload was released after 48 h. The apoptotic effect of HAp nanoparticles loaded with JQ1, with medronate and with both JQ1 and medronate, was selective in 2D culture: pronounced against the OS cells and nonexistent against the healthy fibroblasts. While OS cell invasion was significantly inhibited by all of the JQ1-containing HAp formulations, that is, with and without medronate, all of the combinations of the targeting compound, medronate, and the chemotherapeutic, JQ1, delivered using HAp, but not HAp alone, inhibited OS cell migration from the tumor spheroids. JQ1 delivered using HAp had an effect on tumor migration, invasion, and apoptosis even at extremely low, subnanomolar concentrations, at which no effect of JQ1 per se was observed, meaning that this form of delivery could help achieve a multifold increase of this drug's efficacy. More than 80% of OS cells internalized JQ1-loaded HAp nanoparticles after 24 h of coincubation, suggesting that this augmentation of the activity of JQ1 may be due to the intracellular delivery and sustained release of the drug enabled by HAp. In addition to the reduction of the OS cell viability, the reduction of the migration and invasion radii was observed in OS tumor spheroids challenged with even JQ1-free medronate-functionalized HAp nanoparticles, demonstrating a definite anticancer activity of medronate alone when combined with HAp. The effect of medronate-functionalized JQ1-loaded HAp nanoparticles was most noticeable against OS cells differentiated into an osteoblastic lineage, in which case they surpassed in effect pure JQ1 and medronate-free compositions. The activity of JQ1 was mediated through increased Ezrin expression and decreased RUNX2 expression and was MYC and FOSL1 independent, but these patterns of gene expression changed in cells challenged with the nanoparticulate form of delivery, having been accompanied by the upregulation of RUNX2 and downregulation of Ezrin in OS cells treated with medronate-functionalized JQ1-loaded HAp nanoparticles.
Collapse
Affiliation(s)
- Victoria M. Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
| | - Jarrett Mickens
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
| | - Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, California 92618-1908, United States
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052, United States
- Corresponding Author:
| |
Collapse
|
138
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
139
|
Chemical modulators for epigenome reader domains as emerging epigenetic therapies for cancer and inflammation. Curr Opin Chem Biol 2017; 39:116-125. [PMID: 28689146 DOI: 10.1016/j.cbpa.2017.06.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 05/30/2017] [Accepted: 06/03/2017] [Indexed: 12/12/2022]
Abstract
Site-specific lysine acetylation and methylation on histones are critical post-translational modifications (PTMs) that govern ordered gene transcription in chromatin. Mis-regulation of these histone PTM-mediated processes has been shown to be associated with human diseases. Since the 2010 landmark reports of small molecules (+)-JQ1 and I-BET762 that target the acetyl-lysine 'reader' Bromodomain and Extra Terminal domain (BET) proteins, there have been relentless efforts to develop epigenetic therapy with small molecules to modulate molecular interactions of epigenome reader domain proteins with PTMs. In addition to BET, the other emerging targets include non-BET acetyl-lysine and methyl-lysine reader domains. This review covers the key chemical modulators of the aforementioned epigenome reader proteins.
Collapse
|
140
|
Bromodomain Histone Readers and Cancer. J Mol Biol 2017; 429:2003-2010. [DOI: 10.1016/j.jmb.2016.11.020] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 11/15/2016] [Accepted: 11/19/2016] [Indexed: 12/29/2022]
|
141
|
Spiliotopoulos D, Zhu J, Wamhoff EC, Deerain N, Marchand JR, Aretz J, Rademacher C, Caflisch A. Virtual screen to NMR (VS2NMR): Discovery of fragment hits for the CBP bromodomain. Bioorg Med Chem Lett 2017; 27:2472-2478. [DOI: 10.1016/j.bmcl.2017.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/31/2017] [Accepted: 04/01/2017] [Indexed: 01/07/2023]
|
142
|
Selective BET bromodomain inhibition as an antifungal therapeutic strategy. Nat Commun 2017; 8:15482. [PMID: 28516956 PMCID: PMC5454392 DOI: 10.1038/ncomms15482] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/31/2017] [Indexed: 12/14/2022] Open
Abstract
Invasive fungal infections cause significant morbidity and mortality among immunocompromised individuals, posing an urgent need for new antifungal therapeutic strategies. Here we investigate a chromatin-interacting module, the bromodomain (BD) from the BET family of proteins, as a potential antifungal target in Candida albicans, a major human fungal pathogen. We show that the BET protein Bdf1 is essential in C. albicans and that mutations inactivating its two BDs result in a loss of viability in vitro and decreased virulence in mice. We report small-molecule compounds that inhibit C. albicans Bdf1 with high selectivity over human BDs. Crystal structures of the Bdf1 BDs reveal binding modes for these inhibitors that are sterically incompatible with the human BET-binding pockets. Furthermore, we report a dibenzothiazepinone compound that phenocopies the effects of a Bdf1 BD-inactivating mutation on C. albicans viability. These findings establish BET inhibition as a promising antifungal therapeutic strategy and identify Bdf1 as an antifungal drug target that can be selectively inhibited without antagonizing human BET function. BET proteins bind chromatin through their bromodomains (BDs) to regulate transcription and chromatin remodelling. Here, the authors show that the BET protein Bdf1 is essential for the fungal pathogen Candida albicans, and report compounds that inhibit the Bdf1 BDs with high selectivity over human BDs.
Collapse
|
143
|
Ackloo S, Brown PJ, Müller S. Chemical probes targeting epigenetic proteins: Applications beyond oncology. Epigenetics 2017; 12:378-400. [PMID: 28080202 PMCID: PMC5453191 DOI: 10.1080/15592294.2017.1279371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/23/2016] [Accepted: 01/02/2017] [Indexed: 12/15/2022] Open
Abstract
Epigenetic chemical probes are potent, cell-active, small molecule inhibitors or antagonists of specific domains in a protein; they have been indispensable for studying bromodomains and protein methyltransferases. The Structural Genomics Consortium (SGC), comprising scientists from academic and pharmaceutical laboratories, has generated most of the current epigenetic chemical probes. Moreover, the SGC has shared about 4 thousand aliquots of these probes, which have been used primarily for phenotypic profiling or to validate targets in cell lines or primary patient samples cultured in vitro. Epigenetic chemical probes have been critical tools in oncology research and have uncovered mechanistic insights into well-established targets, as well as identify new therapeutic starting points. Indeed, the literature primarily links epigenetic proteins to oncology, but applications in inflammation, viral, metabolic and neurodegenerative diseases are now being reported. We summarize the literature of these emerging applications and provide examples where existing probes might be used.
Collapse
Affiliation(s)
- Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, ON, Canada
| | - Susanne Müller
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Straβe 15, Frankfurt am Main, Germany
| |
Collapse
|
144
|
Bouché L, Christ CD, Siegel S, Fernández-Montalván AE, Holton SJ, Fedorov O, Ter Laak A, Sugawara T, Stöckigt D, Tallant C, Bennett J, Monteiro O, Díaz-Sáez L, Siejka P, Meier J, Pütter V, Weiske J, Müller S, Huber KVM, Hartung IV, Haendler B. Benzoisoquinolinediones as Potent and Selective Inhibitors of BRPF2 and TAF1/TAF1L Bromodomains. J Med Chem 2017; 60:4002-4022. [PMID: 28402630 PMCID: PMC5443610 DOI: 10.1021/acs.jmedchem.7b00306] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Bromodomains
(BD) are readers of lysine acetylation marks present
in numerous proteins associated with chromatin. Here we describe a
dual inhibitor of the bromodomain and PHD finger (BRPF) family member
BRPF2 and the TATA box binding protein-associated factors TAF1 and
TAF1L. These proteins are found in large chromatin complexes and play
important roles in transcription regulation. The substituted benzoisoquinolinedione
series was identified by high-throughput screening, and subsequent
structure–activity relationship optimization allowed generation
of low nanomolar BRPF2 BD inhibitors with strong selectivity against
BRPF1 and BRPF3 BDs. In addition, a strong inhibition of TAF1/TAF1L
BD2 was measured for most derivatives. The best compound of the series
was BAY-299, which is a very potent, dual inhibitor with an IC50 of 67 nM for BRPF2 BD, 8 nM for TAF1 BD2, and 106 nM for
TAF1L BD2. Importantly, no activity was measured for BRD4 BDs. Furthermore,
cellular activity was evidenced using a BRPF2– or TAF1–histone
H3.3 or H4 interaction assay.
Collapse
Affiliation(s)
- Léa Bouché
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| | - Clara D Christ
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| | - Stephan Siegel
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| | | | - Simon J Holton
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| | - Oleg Fedorov
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, U.K
| | | | - Tatsuo Sugawara
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| | - Detlef Stöckigt
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| | - Cynthia Tallant
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - James Bennett
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Octovia Monteiro
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Laura Díaz-Sáez
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Paulina Siejka
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Julia Meier
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, U.K
| | - Vera Pütter
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| | - Jörg Weiske
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| | - Susanne Müller
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Kilian V M Huber
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7DQ, U.K.,Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford , Roosevelt Drive, Oxford OX3 7FZ, U.K
| | - Ingo V Hartung
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| | - Bernard Haendler
- Drug Discovery, Bayer AG , Müllerstrasse 178, 13353 Berlin, Germany
| |
Collapse
|
145
|
Evan GI, Hah N, Littlewood TD, Sodir NM, Campos T, Downes M, Evans RM. Re-engineering the Pancreas Tumor Microenvironment: A "Regenerative Program" Hacked. Clin Cancer Res 2017; 23:1647-1655. [PMID: 28373363 PMCID: PMC5381729 DOI: 10.1158/1078-0432.ccr-16-3275] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 01/26/2017] [Accepted: 01/30/2017] [Indexed: 12/20/2022]
Abstract
The "hallmarks" of pancreatic ductal adenocarcinoma (PDAC) include proliferative, invasive, and metastatic tumor cells and an associated dense desmoplasia comprised of fibroblasts, pancreatic stellate cells, extracellular matrix, and immune cells. The oncogenically activated pancreatic epithelium and its associated stroma are obligatorily interdependent, with the resulting inflammatory and immunosuppressive microenvironment contributing greatly to the evolution and maintenance of PDAC. The peculiar pancreas-specific tumor phenotype is a consequence of oncogenes hacking the resident pancreas regenerative program, a tissue-specific repair mechanism regulated by discrete super enhancer networks. Defined as genomic regions containing clusters of multiple enhancers, super enhancers play pivotal roles in cell/tissue specification, identity, and maintenance. Hence, interfering with such super enhancer-driven repair networks should exert a disproportionately disruptive effect on tumor versus normal pancreatic tissue. Novel drugs that directly or indirectly inhibit processes regulating epigenetic status and integrity, including those driven by histone deacetylases, histone methyltransferase and hydroxylases, DNA methyltransferases, various metabolic enzymes, and bromodomain and extraterminal motif proteins, have shown the feasibility of disrupting super enhancer-dependent transcription in treating multiple tumor types, including PDAC. The idea that pancreatic adenocarcinomas rely on embedded super enhancer transcriptional mechanisms suggests a vulnerability that can be potentially targeted as novel therapies for this intractable disease. Clin Cancer Res; 23(7); 1647-55. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Gerard I Evan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
| | - Nasun Hah
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Trevor D Littlewood
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nicole M Sodir
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Tania Campos
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Michael Downes
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Ronald M Evans
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California
| |
Collapse
|
146
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
147
|
Abstract
INTRODUCTION Epigenetic regulators including writers, erasers, and readers of chromatin marks have been implicated in numerous diseases and are therefore subject of intense academic and pharmaceutical research. While several small-molecule inhibitors targeting writers or erasers are either approved drugs or are currently being evaluated in clinical trials, the targeting of epigenetic readers has lagged behind. Proof-of-principle that epigenetic readers are also relevant drug targets was provided by landmark discoveries of selective inhibitors targeting the BET family of acetyl-lysine readers. More recently, high affinity chemical probes for non-BET acetyl- and methyl-lysine reader domains have also been developed. Areas covered: This article covers recent advances with the identification and validation of inhibitors and chemical probes targeting epigenetic reader domains. Issues related to epigenetic reader druggability, quality requirements for chemical probes, interpretation of cellular action, unexpected cross-talk, and future challenges are also discussed. Expert opinion: Chemical probes provide a powerful means to unravel biological functions of epigenetic readers and evaluate their potential as drug targets. To yield meaningful results, potency, selectivity, and cellular target engagement of chemical probes need to be stringently validated. Future chemical probes will probably need to fulfil additional criteria such as strict target specificity or the targeting of readers within protein complexes.
Collapse
Affiliation(s)
- Holger Greschik
- a Urologische Klinik und Zentrale Klinische Forschung , Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg , Freiburg , Germany
| | - Roland Schüle
- a Urologische Klinik und Zentrale Klinische Forschung , Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg , Freiburg , Germany.,b Deutsches Konsortium für Translationale Krebsforschung, Standort Freiburg , Freiburg , Germany.,c BIOSS Centre of Biological Signalling Studies , Albert-Ludwigs-University Freiburg , Freiburg , Germany
| | - Thomas Günther
- a Urologische Klinik und Zentrale Klinische Forschung , Universitätsklinikum Freiburg, Medizinische Fakultät, Albert-Ludwigs-Universität Freiburg , Freiburg , Germany
| |
Collapse
|
148
|
Khyzha N, Alizada A, Wilson MD, Fish JE. Epigenetics of Atherosclerosis: Emerging Mechanisms and Methods. Trends Mol Med 2017; 23:332-347. [PMID: 28291707 DOI: 10.1016/j.molmed.2017.02.004] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/26/2022]
Abstract
Atherosclerosis is a vascular pathology characterized by inflammation and plaque build-up within arterial vessel walls. Vessel occlusion, often occurring after plaque rupture, can result in myocardial and cerebral infarction. Epigenetic changes are increasingly being associated with atherosclerosis and are of interest from both therapeutic and biomarker perspectives. Emerging genomic approaches that profile DNA methylation, chromatin accessibility, post-translational histone modifications, transcription factor binding, and RNA expression in low or single cell populations are poised to enhance our spatiotemporal understanding of atherogenesis. Here, we review recent therapeutically relevant epigenetic discoveries and emerging technologies that may generate new opportunities for atherosclerosis research.
Collapse
Affiliation(s)
- Nadiya Khyzha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada
| | - Azad Alizada
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada; Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael D Wilson
- Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada; Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Canada.
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Heart & Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, Canada.
| |
Collapse
|
149
|
Zhu X, Enomoto K, Zhao L, Zhu YJ, Willingham MC, Meltzer P, Qi J, Cheng SY. Bromodomain and Extraterminal Protein Inhibitor JQ1 Suppresses Thyroid Tumor Growth in a Mouse Model. Clin Cancer Res 2017; 23:430-440. [PMID: 27440272 PMCID: PMC5241246 DOI: 10.1158/1078-0432.ccr-16-0914] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE New therapeutic approaches are needed for patients with thyroid cancer refractory to radioiodine treatment. An inhibitor of bromodomain and extraterminal domain (BET) proteins, JQ1, shows potent antitumor effects in hematological cancers and solid tumors. To evaluate whether JQ1 is effective against thyroid cancer, we examined antitumor efficacy of JQ1 using the ThrbPV/PVKrasG12D mouse, a model of anaplastic thyroid cancer. EXPERIMENTAL DESIGN We treated ThrbPV/PVKrasG12D mice with vehicle or JQ1 at a dose of 50 mg/kg body weight/day starting at the age of 8 weeks for a 10-week period and monitored thyroid tumor progression. RESULTS JQ1 markedly inhibited thyroid tumor growth and prolonged survival of these mice. Global differential gene expression analysis showed that JQ1 suppressed the cMyc (hereafter referred to as Myc) transcription program by inhibiting mRNA expression of Myc, ccnd1, and other related genes. JQ1-suppressed Myc expression was accompanied by chromatin remodeling as evidenced by increased expression of histones and hexamethylene bis-acetamide inducible 1, a suppressor of RNA polymerase II transcription elongation. Analyses showed that JQ1 decreased MYC abundance in thyroid tumors and attenuated the cyclin D1-CDK4-Rb-E2F3 signaling to decrease tumor growth. Further analysis indicated that JQ1 inhibited the recruitment of BDR4 to the promoter complex of the Myc and Ccnd1 genes in rat thyroid follicular PCCL3 cells, resulting in decreased MYC expression at the mRNA and protein levels to inhibit tumor cell proliferation. CONCLUSIONS These preclinical findings suggest that BET inhibitors may be an effective agent to reduce thyroid tumor burden for the treatment of refractory thyroid cancer. Clin Cancer Res; 23(2); 430-40. ©2016 AACR.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Keisuke Enomoto
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Li Zhao
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yuelin J Zhu
- Laboratory Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mark C Willingham
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland
| | - Paul Meltzer
- Laboratory Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Jun Qi
- Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, Maryland.
| |
Collapse
|
150
|
Bromodomains in Protozoan Parasites: Evolution, Function, and Opportunities for Drug Development. Microbiol Mol Biol Rev 2017; 81:81/1/e00047-16. [PMID: 28077462 DOI: 10.1128/mmbr.00047-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Parasitic infections remain one of the most pressing global health concerns of our day, affecting billions of people and producing unsustainable economic burdens. The rise of drug-resistant parasites has created an urgent need to study their biology in hopes of uncovering new potential drug targets. It has been established that disrupting gene expression by interfering with lysine acetylation is detrimental to survival of apicomplexan (Toxoplasma gondii and Plasmodium spp.) and kinetoplastid (Leishmania spp. and Trypanosoma spp.) parasites. As "readers" of lysine acetylation, bromodomain proteins have emerged as key gene expression regulators and a promising new class of drug target. Here we review recent studies that demonstrate the essential roles played by bromodomain-containing proteins in parasite viability, invasion, and stage switching and present work showing the efficacy of bromodomain inhibitors as novel antiparasitic agents. In addition, we performed a phylogenetic analysis of bromodomain proteins in representative pathogens, some of which possess unique features that may be specific to parasite processes and useful in future drug development.
Collapse
|