101
|
Aregueta-Robles UA, Woolley AJ, Poole-Warren LA, Lovell NH, Green RA. Organic electrode coatings for next-generation neural interfaces. FRONTIERS IN NEUROENGINEERING 2014; 7:15. [PMID: 24904405 PMCID: PMC4034607 DOI: 10.3389/fneng.2014.00015] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 05/06/2014] [Indexed: 01/05/2023]
Abstract
Traditional neuronal interfaces utilize metallic electrodes which in recent years have reached a plateau in terms of the ability to provide safe stimulation at high resolution or rather with high densities of microelectrodes with improved spatial selectivity. To achieve higher resolution it has become clear that reducing the size of electrodes is required to enable higher electrode counts from the implant device. The limitations of interfacing electrodes including low charge injection limits, mechanical mismatch and foreign body response can be addressed through the use of organic electrode coatings which typically provide a softer, more roughened surface to enable both improved charge transfer and lower mechanical mismatch with neural tissue. Coating electrodes with conductive polymers or carbon nanotubes offers a substantial increase in charge transfer area compared to conventional platinum electrodes. These organic conductors provide safe electrical stimulation of tissue while avoiding undesirable chemical reactions and cell damage. However, the mechanical properties of conductive polymers are not ideal, as they are quite brittle. Hydrogel polymers present a versatile coating option for electrodes as they can be chemically modified to provide a soft and conductive scaffold. However, the in vivo chronic inflammatory response of these conductive hydrogels remains unknown. A more recent approach proposes tissue engineering the electrode interface through the use of encapsulated neurons within hydrogel coatings. This approach may provide a method for activating tissue at the cellular scale, however, several technological challenges must be addressed to demonstrate feasibility of this innovative idea. The review focuses on the various organic coatings which have been investigated to improve neural interface electrodes.
Collapse
Affiliation(s)
| | - Andrew J. Woolley
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
- School of Medicine, University of Western SydneySydney, NSW, Australia
| | - Laura A. Poole-Warren
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| | - Nigel H. Lovell
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| | - Rylie A. Green
- Graduate School of Biomedical Engineering, University of New South WalesSydney, NSW, Australia
| |
Collapse
|
102
|
Tavakol S, Aligholi H, Gorji A, Eshaghabadi A, Hoveizi E, Tavakol B, Rezayat SM, Ai J. Thermogel nanofiber induces human endometrial-derived stromal cells to neural differentiation: In vitro and in vivo studies in rat. J Biomed Mater Res A 2014; 102:4590-7. [PMID: 24532561 DOI: 10.1002/jbm.a.35117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/21/2014] [Accepted: 02/11/2014] [Indexed: 11/09/2022]
Abstract
Spinal cord injury (SCI) in humans remains a devastating and incurable disorder. The use of Matrigel, a hydrogel-mimicking extracellular matrix, has been suggested as a scaffold for spinal cord regeneration. Human endometrial-derived stromal cells (hEnSCs) are abundant and available in adult stem cells with low immunological incompatibility, which could be considered for cell replacement therapy. The purpose of this study was to investigate the role of Matrigel in neural differentiation of hEnSCs in vitro and assess the supportive effects of this hydrogel in an animal model of SCI. hEnSCs were isolated and encapsulated into nanofibrous thermogel and cell viability and cell membrane damage were assessed. Encapsulated hEnSCs into Matrigel were treated with neural differentiation medium for 21 days, and then neural genes and protein markers were analyzed using real time-PCR and immunocytochemistry. Matrigel was implanted into rats with SCI and followed for 42 days using a behavioral test. Our study revealed a higher cell viability and neural differentiation in the level of genes and proteins as well as lower cell membrane damage. Substantial recoveries of motor function were observed in animals receiving the Matrigel treatment. The treatment with Matrigel, nanofibrous scaffold, produced beneficial effects on functional recovery following SCI in rats, possibly via assimilation to cytoskeleton fiber, high surface/volume ratio, spatial interconnectivity and containing some adhesive molecules and growth factors, enhancement of anti-inflammation, anti-astrogliosis, neuronal extension, and neuronal regeneration effects.
Collapse
Affiliation(s)
- Shima Tavakol
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Wang Q, Zhang C, Zhang L, Guo W, Feng G, Zhou S, Zhang Y, Tian T, Li Z, Huang F. The preparation and comparison of decellularized nerve scaffold of tissue engineering. J Biomed Mater Res A 2014; 102:4301-8. [PMID: 24497414 DOI: 10.1002/jbm.a.35103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 01/13/2014] [Accepted: 01/30/2014] [Indexed: 12/27/2022]
Abstract
To integrate tissue engineering concepts into strategies to repair spinal cord injury (SCI) has been a hotspot in recent years, and the choice of scaffolding material is crucial to tissue engineering. Recently, decellularized nerve scaffold becomes a central concern due to its peculiar superiority. In this study, the decellularized nerve scaffold was prepared with three different methods and a comparison was made to acquire an ideal scaffold materials. All sciatic nerves from Sprague-Dawley (SD) rats were randomly divided into four groups: A: normal control group, B: TritonX-100 with sodium deoxycholate group, C: TritonX-100 with enzyme group and D: freezing-thawing with enzyme group. Histology and transmission electron microscope were exploited to evaluate the effect of removing cells and immunological histological chemistry was exploited to evaluate immunogenicity. Meanwhile the mechanical properties were evaluated by mechanics index. Hematoxylin and eosin (HE) staining and electron microscopic examinations reveal that the cell components and myelin sheaths are the least in the freezing-thawing with enzyme group. Immunohistochemistry shows that the immunogenicity is lower in group B, C, and D than the control group, and the group D has the lowest immunogenicity. Mechanical testing shows that there is no significant difference after acellular processing. Sciatic nerve, cell-extracted by freezing-thawing with enzyme, could obtain the ideal scaffold materials which has no cells and myelin sheaths. In addition, the decellularized nerve scaffold has no immunogenicity and the mechanical property of normal sciatic nerve is preserved.
Collapse
Affiliation(s)
- Qingbo Wang
- Department of Neurosurgery, Affiliated Hospital of Binzhou Medical University, Binzhou, 256603, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
McKay CA, Pomrenke R, McLane JS, Schaub NJ, DeSimone EK, Ligon LA, Gilbert RJ. An injectable, calcium responsive composite hydrogel for the treatment of acute spinal cord injury. ACS APPLIED MATERIALS & INTERFACES 2014; 6:1424-38. [PMID: 24397537 PMCID: PMC3982972 DOI: 10.1021/am4027423] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/03/2014] [Indexed: 05/09/2023]
Abstract
Immediately following spinal cord injury, further injury can occur through several secondary injury cascades. As a consequence of cell lysis, an increase in extracellular Ca(2+) results in additional neuronal loss by inducing apoptosis. Thus, hydrogels that reduce extracellular Ca(2+) concentration may reduce secondary injury severity. The goal of this study was to develop composite hydrogels consisting of alginate, chitosan, and genipin that interact with extracellular Ca(2+) to enable in situ gelation while maintaining an elastic modulus similar to native spinal cord (∼1000 Pa). It was hypothesized that incorporation of genipin and chitosan would regulate hydrogel electrostatic characteristics and influence hydrogel porosity, degradation, and astrocyte behavior. Hydrogel composition was varied to create hydrogels with statistically similar mechanical properties (∼1000 Pa) that demonstrated tunable charge characteristics (6-fold range in free amine concentration) and degradation rate (complete degradation between 7 and 28 days; some blends persist after 28 days). Hydrogels demonstrate high sensitivity to Ca(2+) concentration, as a 1 mM change during fabrication induced a significant change in elastic modulus. Additionally, hydrogels incubated in a Ca(2+)-containing solution exhibited an increased linear viscoelastic limit (LVE) and an increased elastic modulus above the LVE limit in a time dependent manner. An extension of the LVE limit implies a change in hydrogel cross-linking structure. Attachment assays demonstrated that addition of chitosan/genipin to alginate hydrogels induced up to a 4-fold increase in the number of attached astrocytes and facilitated astrocyte clustering on the hydrogel surface in a composition dependent manner. Furthermore, Western blots demonstrated tunable glial fibrillary acid protein (GFAP) expression in astrocytes cultured on hydrogel blends, with some hydrogel compositions demonstrating no significant increase in GFAP expression compared to astrocytes cultured on glass. Thus, alginate/chitosan/genipin hydrogel composites show promise as scaffolds that regulate astrocyte behavior and for the prevention of Ca(2+)-related secondary neuron damage during acute SCI.
Collapse
Affiliation(s)
- Christopher A. McKay
- Center for Biotechnology and Interdisciplinary
Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590 United States
| | - Rebecca
D. Pomrenke
- Center for Biotechnology and Interdisciplinary
Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590 United States
| | - Joshua S. McLane
- Center for Biotechnology and Interdisciplinary
Studies, Department of Biology, Rensselaer
Polytechnic Institute, Troy, New York, 12180-3590 United States
| | - Nicholas J. Schaub
- Center for Biotechnology and Interdisciplinary
Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590 United States
| | - Elise K. DeSimone
- Center for Biotechnology and Interdisciplinary
Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590 United States
| | - Lee A. Ligon
- Center for Biotechnology and Interdisciplinary
Studies, Department of Biology, Rensselaer
Polytechnic Institute, Troy, New York, 12180-3590 United States
| | - Ryan J. Gilbert
- Center for Biotechnology and Interdisciplinary
Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, 12180-3590 United States
| |
Collapse
|
105
|
Kumar P, Choonara YE, Modi G, Naidoo D, Pillay V. Nanoparticulate strategies for the five R’s of traumatic spinal cord injury intervention: restriction, repair, regeneration, restoration and reorganization. Nanomedicine (Lond) 2014; 9:331-48. [DOI: 10.2217/nnm.13.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanomedicinal approaches for spinal cord injury (SCI) intervention encompasses the use of nanoscale materials and devices that prevent primary to secondary injury transition and improvement in the anatomical, physiological and functional outcomes of SCI. This review provides an incursion into the advances in nanoparticle-based neurotherapeutics for SCI and focuses on neuroactive-loaded nanoparticles for localized delivery of therapeutic factors to the severed spinal cord, targeted or nontargeted systemic drug delivery and nanoenclatherated neuroscaffolds. Special emphasis has been placed on the use of metal nanoparticles and functionalized structures as ‘drug-free’ interventions in SCI. Despite the immense advancements in nanoscience, nanointerventions still pose key challenges that need to be resolved in SCI. Several combinatorial strategies are proposed for the reconstruction of spinal architecture via restriction of the secondary injury cascade, reparation of the tethered neural architecture, regeneration of axons, restoration of biochemical functions and reorganization of the topographical and cortical networks of the spinal cord.
Collapse
Affiliation(s)
- Pradeep Kumar
- University of the Witwatersrand, Faculty of Health Sciences, Department of Pharmacy & Pharmacology, 7 York Road, Parktown, 2193, Johannesburg, Gauteng, South Africa
| | - Yahya E Choonara
- University of the Witwatersrand, Faculty of Health Sciences, Department of Pharmacy & Pharmacology, 7 York Road, Parktown, 2193, Johannesburg, Gauteng, South Africa
| | - Girish Modi
- University of the Witwatersrand, Faculty of Health Sciences, Department of Neurology, Division of Neurosciences, 7 York Road, Parktown, 2193, Johannesburg, Gauteng, South Africa
| | - Dinesh Naidoo
- University of the Witwatersrand, Faculty of Health Sciences, Department of Neurosurgery, Division of Neurosciences, 7 York Road, Parktown, 2193, Johannesburg, Gauteng, South Africa
| | - Viness Pillay
- University of the Witwatersrand, Faculty of Health Sciences, Department of Pharmacy & Pharmacology, 7 York Road, Parktown, 2193, Johannesburg, Gauteng, South Africa
| |
Collapse
|
106
|
Demirbilek M, Sakar M, Karahaliloğlu Z, Erdal E, Yalçın E, Bozkurt G, Korkusuz P, Bilgiç E, Temuçin ÇM, Denkbaş EB. Aligned bacterial PHBV nanofibrous conduit for peripheral nerve regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:243-51. [PMID: 24450753 DOI: 10.3109/21691401.2013.875033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The conventional method of peripheral nerve gap treatment is autografting. This method is limited. In this study, an aligned nanofibrous graft was formed using microbial polyester, Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The regenerative effect of the graft was compared with that of autografting in vivo. To determine the regenerative effect, rats were assessed with sciatic nerve functional index, electromyographic evaluation, and histological evaluation. Results found in this study include PHBV grafts stimulated progressive nerve regeneration, although regeneration was not comparable with that of autografting. We conclude that the study results were promising for aligned bacterial polymeric grafts for peripheral nerve regeneration.
Collapse
|
107
|
Abstract
The consequence of numerous neurological disorders is the significant loss of neural cells, which further results in multilevel dysfunction or severe functional deficits. The extracellular matrix (ECM) is of tremendous importance for neural regeneration mediating ambivalent functions: ECM serves as a growth-promoting substrate for neurons but, on the other hand, is a major constituent of the inhibitory scar, which results from traumatic injuries of the central nervous system. Therefore, cell and tissue replacement strategies on the basis of ECM mimetics are very promising therapeutic interventions. Numerous synthetic and natural materials have proven effective both in vitro and in vivo. The closer a material's physicochemical and molecular properties are to the original extracellular matrix, the more promising its effectiveness may be. Relevant factors that need to be taken into account when designing such materials for neural repair relate to receptor-mediated cell-matrix interactions, which are dependent on chemical and mechanical sensing. This chapter outlines important characteristics of natural and synthetic ECM materials (scaffolds) and provides an overview of recent advances in design and application of ECM materials for neural regeneration, both in therapeutic applications and in basic biological research.
Collapse
Affiliation(s)
- Veronica Estrada
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany
| | - Ayse Tekinay
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| | - Hans Werner Müller
- Molecular Neurobiology Laboratory, Department of Neurology, Heinrich-Heine-University Medical Center Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
108
|
Tam RY, Fuehrmann T, Mitrousis N, Shoichet MS. Regenerative therapies for central nervous system diseases: a biomaterials approach. Neuropsychopharmacology 2014; 39:169-88. [PMID: 24002187 PMCID: PMC3857664 DOI: 10.1038/npp.2013.237] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/09/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023]
Abstract
The central nervous system (CNS) has a limited capacity to spontaneously regenerate following traumatic injury or disease, requiring innovative strategies to promote tissue and functional repair. Tissue regeneration strategies, such as cell and/or drug delivery, have demonstrated promising results in experimental animal models, but have been difficult to translate clinically. The efficacy of cell therapy, which involves stem cell transplantation into the CNS to replace damaged tissue, has been limited due to low cell survival and integration upon transplantation, while delivery of therapeutic molecules to the CNS using conventional methods, such as oral and intravenous administration, have been limited by diffusion across the blood-brain/spinal cord-barrier. The use of biomaterials to promote graft survival and integration as well as localized and sustained delivery of biologics to CNS injury sites is actively being pursued. This review will highlight recent advances using biomaterials as cell- and drug-delivery vehicles for CNS repair.
Collapse
Affiliation(s)
- Roger Y Tam
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada,Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada
| | - Tobias Fuehrmann
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada,Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada
| | - Nikolaos Mitrousis
- Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada
| | - Molly S Shoichet
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada,Institute of Biomaterials and Biomedical Engineering, Toronto, ON, Canada,Department of Chemistry, University of Toronto, Toronto, ON, Canada,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, 160 College Street, Room 514, Toronto, ON, Canada, Tel: +416 978 1460, Fax: +416 978 4317, E-mail:
| |
Collapse
|
109
|
Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair. Biomaterials 2013; 35:1543-51. [PMID: 24290440 DOI: 10.1016/j.biomaterials.2013.11.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/07/2013] [Indexed: 12/22/2022]
Abstract
Nervous tissue lesions are an important social concern due to their increasing prevalence and their high sanitary costs. Their treatment still remains a challenge because of the reduced ability of nervous tissue to regenerate, its intrinsic structural and functional complexity and the rapid formation of fibroglial scars inhibiting neural repair. Herein, we show that 3D porous scaffolds made of chondroitin sulphate (CS), a major regulatory component of the nervous tissue, and multi-walled carbon nanotubes (MWCNTs) are selective substrates for the formation of a viable and neuron-enriched network with a transitory low glial content. Scaffolds have been fabricated by using the ice segregation-induced self-assembly technique and cultured with embryonic neural progenitor cells. Cell adhesion, morphology, viability, neuron/glial differentiation, calcium signaling dynamics, and mitochondrial activity have been studied over time on the scaffolds and compared to appropriate 2D control substrates. Our results indicate the formation of viable cultures enriched in neuron cells for up to 20 days, with ability to display calcium transients and active mitochondria, even in the absence of poly-D-lysine coating. A synergistic neural-permissive signaling from both the scaffold structure and its components (i.e., MWCNTs and CS) is suggested as the major responsible factor for these findings. We anticipate that these scaffolds may serve nerve regeneration if implanted in the acute phase after injury, as it is during the first stages of graft implantation when the most critical sequence of phenomena takes place to drive either nervous regeneration or fibroglial scar formation. The temporary glial inhibition found may be, indeed, beneficial for promoting the formation of neuron-enriched circuits at early phases while guaranteeing posterior glial integration to support longer-term neuron survival and activity.
Collapse
|
110
|
Binan L, Ajji A, De Crescenzo G, Jolicoeur M. Approaches for Neural Tissue Regeneration. Stem Cell Rev Rep 2013; 10:44-59. [DOI: 10.1007/s12015-013-9474-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
111
|
Cizkova D, Slovinska L, Grulova I, Salzet M, Cikos S, Kryukov O, Cohen S. The influence of sustained dual-factor presentation on the expansion and differentiation of neural progenitors in affinity-binding alginate scaffolds. J Tissue Eng Regen Med 2013; 9:918-29. [DOI: 10.1002/term.1797] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/28/2013] [Accepted: 06/25/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Dasa Cizkova
- Institute of Neurobiology, Slovak Academy of Sciences; Centre of Excellence for Brain Research; Kosice Slovakia
| | - Lucia Slovinska
- Institute of Neurobiology, Slovak Academy of Sciences; Centre of Excellence for Brain Research; Kosice Slovakia
| | - Ivana Grulova
- Institute of Neurobiology, Slovak Academy of Sciences; Centre of Excellence for Brain Research; Kosice Slovakia
| | - Michel Salzet
- Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée; Université de Lille 1; France
| | - Stefan Cikos
- Institute of Animal Physiology; Slovak Academy of Sciences; Kosice Slovakia
| | - Olga Kryukov
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering; Ben-Gurion University of the Negev; Beer Sheva Israel
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering; Ben-Gurion University of the Negev; Beer Sheva Israel
| |
Collapse
|
112
|
Sakiyama-Elbert S, Johnson PJ, Hodgetts SI, Plant GW, Harvey AR. Scaffolds to promote spinal cord regeneration. HANDBOOK OF CLINICAL NEUROLOGY 2013; 109:575-94. [PMID: 23098738 DOI: 10.1016/b978-0-444-52137-8.00036-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Substantial research effort in the spinal cord injury (SCI) field is directed towards reduction of secondary injury changes and enhancement of tissue sparing. However, pathway repair after complete transections, large lesions, or after chronic injury may require the implantation of some form of oriented bridging structure to restore tissue continuity across a trauma zone. These matrices or scaffolds should be biocompatible and create an environment that facilitates tissue growth and vascularization, and allow axons to regenerate through and beyond the implant in order to reconnect with "normal" tissue distal to the injury. The myelination of regrown axons is another important requirement. In this chapter, we describe recent advances in biomaterial technology designed to provide a terrain for regenerating axons to grow across the site of injury and/or create an environment for endogenous repair. Many different types of scaffold are under investigation; they can be biodegradable or nondegradable, natural or synthetic. Scaffolds can be designed to incorporate immobilized signaling molecules and/or used as devices for controlled release of therapeutic agents, including growth factors. These bridging structures can also be infiltrated with specific cell types deemed suitable for spinal cord repair.
Collapse
Affiliation(s)
- S Sakiyama-Elbert
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | | | | | | |
Collapse
|
113
|
Li HY, Führmann T, Zhou Y, Dalton PD. Host reaction to poly(2-hydroxyethyl methacrylate) scaffolds in a small spinal cord injury model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2001-2011. [PMID: 23702616 DOI: 10.1007/s10856-013-4956-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Tissue engineered scaffolds and matrices have been investigated over the past decade for their potential in spinal cord repair. They provide a 3-D substrate that can be permissive for nerve regeneration yet have other roles including neuroprotection, altering the inflammatory cascade and mechanically stabilizing spinal cord tissue after injury. In this study we investigated very small lesions (approx. 0.25 μL in volume) of the dorsal column into which a phase-separated poly(2-hydroxyethyl methacrylate) hydrogel scaffold is implanted. Using fluorescent immunohistochemistry to quantify glial scarring, the poly(2-hydroxyethyl methacrylate) scaffold group showed reduced intensity compared to lesion controls for GFAP and the chondroitin sulfate proteoglycan neurocan after 6 days. However, the scaffold and tissue was also pushed dorsally after 6 days while the scaffold was not integrated into the spinal cord after 28 days. Overall, this small-lesion spinal cord injury model provided information on the host tissue reaction of a TE scaffold while reducing animal discomfort and care.
Collapse
Affiliation(s)
- Hong Ying Li
- Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Rd, Shanghai, 200030, China
| | | | | | | |
Collapse
|
114
|
Biomaterials for spinal cord repair. Neurosci Bull 2013; 29:445-59. [PMID: 23864367 DOI: 10.1007/s12264-013-1362-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 06/14/2013] [Indexed: 01/11/2023] Open
Abstract
Spinal cord injury (SCI) results in permanent loss of function leading to often devastating personal, economic and social problems. A contributing factor to the permanence of SCI is that damaged axons do not regenerate, which prevents the re-establishment of axonal circuits involved in function. Many groups are working to develop treatments that address the lack of axon regeneration after SCI. The emergence of biomaterials for regeneration and increased collaboration between engineers, basic and translational scientists, and clinicians hold promise for the development of effective therapies for SCI. A plethora of biomaterials is available and has been tested in various models of SCI. Considering the clinical relevance of contusion injuries, we primarily focus on polymers that meet the specific criteria for addressing this type of injury. Biomaterials may provide structural support and/or serve as a delivery vehicle for factors to arrest growth inhibition and promote axonal growth. Designing materials to address the specific needs of the damaged central nervous system is crucial and possible with current technology. Here, we review the most prominent materials, their optimal characteristics, and their potential roles in repairing and regenerating damaged axons following SCi.
Collapse
|
115
|
Jin N, Morin EA, Henn DM, Cao Y, Woodcock JW, Tang S, He W, Zhao B. Agarose hydrogels embedded with pH-responsive diblock copolymer micelles for triggered release of substances. Biomacromolecules 2013; 14:2713-23. [PMID: 23815070 DOI: 10.1021/bm4005639] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hybrid agarose hydrogels embedded with pH-responsive diblock copolymers micelles were developed to achieve functional hydrogels capable of stimulus-triggered drug release. Specifically, a well-defined poly(ethylene oxide) (PEO)-based diblock copolymer, PEO-b-poly(2-(N,N-diisopropylamino)ethyl methacrylate) (PEO(113)-b-PDPAEMA(31), where the subscripts represent the degrees of polymerization of two blocks), was synthesized by atom transfer radical polymerization. PDPAEMA is a pH-responsive polymer with a pKa value of 6.3. The PEO(113)-b-PDPAEMA(31) micelles were formed by a solvent-switching method, and their pH-dependent dissociation behavior was investigated by dynamic light scattering and fluorescence spectroscopy. Both studies indicated that the micelles were completely disassembled at pH = 6.40. The biocompatibility of PEO(113)-b-PDPAEMA(31) micelles was demonstrated by in vitro primary cortical neural culture. Hybrid agarose hydrogels were made by cooling 1.0 wt % agarose solutions that contained various amounts of PEO(113)-b-PDPAEMA(31) micelles at either 2 or 4 °C. Rheological measurements showed that the mechanical properties of gels were not significantly adversely affected by the incorporation of diblock copolymer micelles with a concentration as high as 5.0 mg/g. Using Nile Red as a model hydrophobic drug, its incorporation into the core of diblock copolymer micelles was demonstrated. Characterized by fluorescent spectroscopy, the release of Nile Red from the hybrid hydrogel was shown to be controllable by pH due to the responsiveness of the block copolymer micelles. Based on the prominent use of agarose gels as scaffolds for cell transplantation for neural repair, the hybrid hydrogels embedded with stimuli-responsive block copolymer micelles could allow the controlled delivery of hydrophobic neuroprotective agents to improve survival of transplanted cells in tune with signals from the surrounding pathological environment.
Collapse
Affiliation(s)
- Naixiong Jin
- Department of Chemistry, University of Tennessee, Knoxville, 37996, USA
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Astrocyte infiltration into injectable collagen-based hydrogels containing FGF-2 to treat spinal cord injury. Biomaterials 2013; 34:3591-602. [DOI: 10.1016/j.biomaterials.2012.12.050] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 12/29/2012] [Indexed: 11/23/2022]
|
117
|
Qu J, Wang D, Wang H, Dong Y, Zhang F, Zuo B, Zhang H. Electrospun silk fibroin nanofibers in different diameters support neurite outgrowth and promote astrocyte migration. J Biomed Mater Res A 2013; 101:2667-78. [PMID: 23427060 DOI: 10.1002/jbm.a.34551] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 11/11/2012] [Accepted: 12/03/2012] [Indexed: 12/17/2022]
Abstract
Nerve tissue engineering has been one of the promising strategies for regenerative treatment in patients suffering from neural tissue loss, but considerable challenges remain before it is able to progress toward clinical application. It has been demonstrated that transplantation of cells in combination with physically or chemically modified biomaterials provides better environments for neurite outgrowth and further promotes axonal regeneration in animal models of spinal cord injury. In this study, neurons and astrocytes were incorporated into 400-nm, 800-nm, and 1200-nm electrospun Bombyx mori silk fibroin (SF) materials to investigate the effects of scaffold-diameter in regulating and directing cell behaviors. β-III-tubulin immunofluorescence analyses reveal that SF nanofibers with smaller diameters are more favorable to the development and maturation of subventricular zone-derived neurons than 1200-nm SF scaffolds. In addition, astrocytes exhibited well-arranged glial fibrillary acidic protein (GFAP) expression on SF scaffolds, and a significant increase in cell-spreading area was observed on 400-nm but not 1200-nm SF scaffolds. Moreover, a significantly enhanced migration efficiency of astrocytes grown on SF scaffolds was verified, which highlights the guiding roles of SF nanofibers to the migratory cells. Overall, our results may provide valuable information to develop effective tissue remodeling substrates and to optimize existing biomaterials for neural tissue engineering applications.
Collapse
Affiliation(s)
- Jing Qu
- Department of Cell Biology, Jiangsu Key Laboratory of Stem Cell Research, Medical College of Soochow University, Suzhou Industrial Park, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
118
|
Géral C, Angelova A, Lesieur S. From molecular to nanotechnology strategies for delivery of neurotrophins: emphasis on brain-derived neurotrophic factor (BDNF). Pharmaceutics 2013; 5:127-67. [PMID: 24300402 PMCID: PMC3834942 DOI: 10.3390/pharmaceutics5010127] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/30/2013] [Accepted: 02/05/2013] [Indexed: 01/01/2023] Open
Abstract
Neurodegenerative diseases represent a major public health problem, but beneficial clinical treatment with neurotrophic factors has not been established yet. The therapeutic use of neurotrophins has been restrained by their instability and rapid degradation in biological medium. A variety of strategies has been proposed for the administration of these leading therapeutic candidates, which are essential for the development, survival and function of human neurons. In this review, we describe the existing approaches for delivery of brain-derived neurotrophic factor (BDNF), which is the most abundant neurotrophin in the mammalian central nervous system (CNS). Biomimetic peptides of BDNF have emerged as a promising therapy against neurodegenerative disorders. Polymer-based carriers have provided sustained neurotrophin delivery, whereas lipid-based particles have contributed also to potentiation of the BDNF action. Nanotechnology offers new possibilities for the design of vehicles for neuroprotection and neuroregeneration. Recent developments in nanoscale carriers for encapsulation and transport of BDNF are highlighted.
Collapse
Affiliation(s)
- Claire Géral
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France; E-Mails: (C.G.); (S.L.)
- Univ Paris Sud 11, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| | - Angelina Angelova
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France; E-Mails: (C.G.); (S.L.)
- Univ Paris Sud 11, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| | - Sylviane Lesieur
- CNRS UMR8612 Institut Galien Paris-Sud, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France; E-Mails: (C.G.); (S.L.)
- Univ Paris Sud 11, 5 rue J.-B. Clément, F-92296 Châtenay-Malabry, France
| |
Collapse
|
119
|
Mohtaram NK, Montgomery A, Willerth SM. Biomaterial-based drug delivery systems for the controlled release of neurotrophic factors. Biomed Mater 2013; 8:022001. [DOI: 10.1088/1748-6041/8/2/022001] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
120
|
Rossi F, Perale G, Papa S, Forloni G, Veglianese P. Current options for drug delivery to the spinal cord. Expert Opin Drug Deliv 2013; 10:385-96. [DOI: 10.1517/17425247.2013.751372] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
121
|
Macroporous Composite Cryogels with Embedded Polystyrene Divinylbenzene Microparticles for the Adsorption of Toxic Metabolites from Blood. J CHEM-NY 2013. [DOI: 10.1155/2013/348412] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Composite monolithic adsorbents were prepared by the incorporation of neutral polystyrene divinylbenzene (PS-DVB) microparticles into macroporous polymer structures produced by cryogelation of agarose or poly(vinyl alcohol). The composite materials exhibited excellent flow-through properties. Scanning electron microscopy of the composite cryogels revealed that the microparticles were covered by thin films of poly(vinyl alcohol) or agarose and thus were withheld in the monolith structure. Plain PS-DVB microparticles showed efficient adsorption of albumin-bound toxins related to liver failure (bilirubin and cholic acid) and of cytokines (tumor necrosis factor-alpha and interleukin-6). The rates of adsorption and the amount of adsorbed factors were lower for the embedded microparticles as compared to the parent PS-DVB microparticles, indicating the importance of the accessibility of the adsorbent pores. Still, the macroporous composite materials showed efficient adsorption of albumin-bound toxins related to liver failure as well as efficient binding of cytokines, combined with good blood compatibility. Thus, the incorporation of microparticles into macroporous polymer structures may provide an option for the development of adsorption modules for extracorporeal blood purification.
Collapse
|
122
|
|
123
|
|
124
|
Newland B, Dowd E, Pandit A. Biomaterial approaches to gene therapies for neurodegenerative disorders of the CNS. Biomater Sci 2013; 1:556-576. [DOI: 10.1039/c3bm60030k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
125
|
Pêgo AP, Kubinova S, Cizkova D, Vanicky I, Mar FM, Sousa MM, Sykova E. Regenerative medicine for the treatment of spinal cord injury: more than just promises? J Cell Mol Med 2012; 16:2564-82. [PMID: 22805417 PMCID: PMC4118226 DOI: 10.1111/j.1582-4934.2012.01603.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 07/09/2012] [Indexed: 01/01/2023] Open
Abstract
Spinal cord injury triggers a complex set of events that lead to tissue healing without the restoration of normal function due to the poor regenerative capacity of the spinal cord. Nevertheless, current knowledge about the intrinsic regenerative ability of central nervous system axons, when in a supportive environment, has made the prospect of treating spinal cord injury a reality. Among the range of strategies under investigation, cell-based therapies offer the most promising results, due to the multifactorial roles that these cells can fulfil. However, the best cell source is still a matter of debate, as are clinical issues that include the optimal cell dose as well as the timing and route of administration. In this context, the role of biomaterials is gaining importance. These can not only act as vehicles for the administered cells but also, in the case of chronic lesions, can be used to fill the permanent cyst, thus creating a more favourable and conducive environment for axonal regeneration in addition to serving as local delivery systems of therapeutic agents to improve the regenerative milieu. Some of the candidate molecules for the future are discussed in view of the knowledge derived from studying the mechanisms that facilitate the intrinsic regenerative capacity of central nervous system neurons. The future challenge for the multidisciplinary teams working in the field is to translate the knowledge acquired in basic research into effective combinatorial therapies to be applied in the clinic.
Collapse
Affiliation(s)
- Ana Paula Pêgo
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
126
|
Volarevic V, Erceg S, Bhattacharya SS, Stojkovic P, Horner P, Stojkovic M. Stem cell-based therapy for spinal cord injury. Cell Transplant 2012; 22:1309-23. [PMID: 23043847 DOI: 10.3727/096368912x657260] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stem cells (SCs) represent a new therapeutic approach for spinal cord injury (SCI) by enabling improved sensory and motor functions in animal models. The main goal of SC-based therapy for SCI is the replacement of neurons and glial cells that undergo cell death soon after injury. Stem cells are able to promote remyelination via oligodendroglia cell replacement to produce trophic factors enhancing neurite outgrowth, axonal elongation, and fiber density and to activate resident or transplanted progenitor cells across the lesion cavity. While several SC transplantation strategies have shown promising yet partial efficacy, mechanistic proof is generally lacking and is arguably the largest impediment toward faster progress and clinical application. The main challenge ahead is to spur on cooperation between clinicians, researchers, and patients in order to define and optimize the mechanisms of SC function and to establish the ideal source/s of SCs that produce efficient and also safe therapeutic approaches.
Collapse
Affiliation(s)
- Vladislav Volarevic
- Center for Molecular Medicine and Stem Cell Research, Medical Faculty, University of Kragujevac, Serbia
| | | | | | | | | | | |
Collapse
|
127
|
Saracino GAA, Cigognini D, Silva D, Caprini A, Gelain F. Nanomaterials design and tests for neural tissue engineering. Chem Soc Rev 2012; 42:225-62. [PMID: 22990473 DOI: 10.1039/c2cs35065c] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nanostructured scaffolds recently showed great promise in tissue engineering: nanomaterials can be tailored at the molecular level and scaffold morphology may more closely resemble features of extracellular matrix components in terms of porosity, framing and biofunctionalities. As a consequence, both biomechanical properties of scaffold microenvironments and biomaterial-protein interactions can be tuned, allowing for improved transplanted cell engraftment and better controlled diffusion of drugs. Easier said than done, a nanotech-based regenerative approach encompasses different fields of know-how, ranging from in silico simulations, nanomaterial synthesis and characterization at the nano-, micro- and mesoscales to random library screening methods (e.g. phage display), in vitro cellular-based experiments and validation in animal models of the target injury. All of these steps of the "assembly line" of nanostructured scaffolds are tightly interconnected both in their standard analysis techniques and in their most recent breakthroughs: indeed their efforts have to jointly provide the deepest possible analyses of the diverse facets of the challenging field of neural tissue engineering. The purpose of this review is therefore to provide a critical overview of the recent advances in and drawbacks and potential of each mentioned field, contributing to the realization of effective nanotech-based therapies for the regeneration of peripheral nerve transections, spinal cord injuries and brain traumatic injuries. Far from being the ultimate overview of such a number of topics, the reader will acknowledge the intrinsic complexity of the goal of nanotech tissue engineering for a conscious approach to the development of a regenerative therapy and, by deciphering the thread connecting all steps of the research, will gain the necessary view of its tremendous potential if each piece of stone is correctly placed to work synergically in this impressive mosaic.
Collapse
Affiliation(s)
- Gloria A A Saracino
- Center for Nanomedicine and Tissue Engineering, A.O. Ospedale Niguarda Cà Granda, Milan, 20162, Italy
| | | | | | | | | |
Collapse
|
128
|
Kubinová S, Syková E. Biomaterials combined with cell therapy for treatment of spinal cord injury. Regen Med 2012; 7:207-24. [PMID: 22397610 DOI: 10.2217/rme.11.121] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating traumatic injury resulting in paralysis or sensory deficits due to tissue damage and the poor ability of axons to regenerate across the lesion. Despite extensive research, there is still no effective treatment that would restore lost function after SCI. A possible therapeutic approach would be to bridge the area of injury with a bioengineered scaffold that would create a stimulatory environment as well as provide guidance cues for the re-establishment of damaged axonal connections. Advanced scaffold design aims at the fabrication of complex materials providing the concomitant delivery of cells, neurotrophic factors or other bioactive substances to achieve a synergistic effect for treatment. This review summarizes the current utilization of scaffolding materials for SCI treatment in terms of their physicochemical properties and emphasizes their use in combination with various cell types, as well as with other combinatorial approaches promoting spinal cord repair.
Collapse
Affiliation(s)
- Sárka Kubinová
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | | |
Collapse
|
129
|
Abstract
Growth factors are soluble secreted proteins capable of affecting a variety of cellular processes important for tissue regeneration. Consequently, the self-healing capacity of patients can be augmented by artificially enhancing one or more processes important for healing through the application of growth factors. However, their application in clinics remains limited due to lack of robust delivery systems and biomaterial carriers. Interestingly, all clinically approved therapies involving growth factors utilize some sort of a biomaterial carrier for growth factor delivery. This suggests that biomaterial delivery systems are extremely important for successful usage of growth factors in regenerative medicine. This review outlines the role of growth factors in tissue regeneration, and their application in both pre-clinical animal models of regeneration and clinical trials is discussed. Additionally, current status of biomaterial substrates and sophisticated delivery systems such as nanoparticles for delivery of exogenous growth factors and peptides in humans are reviewed. Finally, issues and possible future research directions for growth factor therapy in regenerative medicine are discussed.
Collapse
Affiliation(s)
- Piyush Koria
- Department of Chemical and Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|
130
|
Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther Deliv 2012; 2:1485-516. [PMID: 22826876 DOI: 10.4155/tde.11.105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Every living organism comprises of lipids as basic building blocks in addition to other components. Utilizing these lipids for pharmaceutical and biomedical applications can overcome biocompatibility and biodegradability issues. A well known example is liposomes (lipids arranged in lamellar structures), but other than that there are additional unique mesophasic structures of lipids formed as a result of lipid polymorphisms, which include cubic-, hexagonal- or sponge-phase structures. These structures provide the advantages of stability and production feasibility compared with liposomes. Cubosomes, which exist in a cubic structure, have improved stability, bioadhesivity and biocompatibility. Hexagonal phases or hexosomes exhibit hexagonal arrangements and can encapsulate different drugs with high stability. Lipids also forms tube-like structures known as tubules and ribbons that are also utilized in different biomedical applications, especially in tissue engineering. Immune stimulating complexes are nanocage-like structures formed as a result of interactions of lipid, antigen and Quillaja saponin. These lipidic mesophasic structures have been utilized for gene, vaccine and drug delivery. This article addresses lipid self-assembled supramolecular nanostructures, including cubosomes, hexosomes, tubules, ribbons, cochleates, lipoplexes and immune stimulating complexes and their biomedical applications.
Collapse
|
131
|
Li X, Katsanevakis E, Liu X, Zhang N, Wen X. Engineering neural stem cell fates with hydrogel design for central nervous system regeneration. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2012.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
132
|
Wang X, He J, Wang Y, Cui FZ. Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus 2012; 2:278-91. [PMID: 23741606 PMCID: PMC3363026 DOI: 10.1098/rsfs.2012.0016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/20/2012] [Indexed: 12/17/2022] Open
Abstract
Central nervous system (CNS) regeneration with central neuronal connections and restoration of synaptic connections has been a long-standing worldwide problem and, to date, no effective clinical therapies are widely accepted for CNS injuries. The limited regenerative capacity of the CNS results from the growth-inhibitory environment that impedes the regrowth of axons. Central neural tissue engineering has attracted extensive attention from multi-disciplinary scientists in recent years, and many studies have been carried out to develop cell- and regeneration-activating biomaterial scaffolds that create an artificial micro-environment suitable for axonal regeneration. Among all the biomaterials, hyaluronic acid (HA) is a promising candidate for central neural tissue engineering because of its unique physico-chemical and biological properties. This review attempts to outline current biomaterials-based strategies for CNS regeneration from a tissue engineering point of view and discusses the main progresses in research of HA-based scaffolds for central neural tissue engineering in detail.
Collapse
Affiliation(s)
- Xiumei Wang
- Institute for Regenerative Medicine and Biomimetic Materials, State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
133
|
|
134
|
Pakulska MM, Ballios BG, Shoichet MS. Injectable hydrogels for central nervous system therapy. Biomed Mater 2012; 7:024101. [PMID: 22456684 DOI: 10.1088/1748-6041/7/2/024101] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diseases and injuries of the central nervous system (CNS) including those in the brain, spinal cord and retina are devastating because the CNS has limited intrinsic regenerative capacity and currently available therapies are unable to provide significant functional recovery. Several promising therapies have been identified with the goal of restoring at least some of this lost function and include neuroprotective agents to stop or slow cellular degeneration, neurotrophic factors to stimulate cellular growth, neutralizing molecules to overcome the inhibitory environment at the site of injury, and stem cell transplant strategies to replace lost tissue. The delivery of these therapies to the CNS is a challenge because the blood-brain barrier limits the diffusion of molecules into the brain by traditional oral or intravenous routes. Injectable hydrogels have the capacity to overcome the challenges associated with drug delivery to the CNS, by providing a minimally invasive, localized, void-filling platform for therapeutic use. Small molecule or protein drugs can be distributed throughout the hydrogel which then acts as a depot for their sustained release at the injury site. For cell delivery, the hydrogel can reduce cell aggregation and provide an adhesive matrix for improved cell survival and integration. Additionally, by choosing a biodegradable or bioresorbable hydrogel material, the system will eventually be eliminated from the body. This review discusses both natural and synthetic injectable hydrogel materials that have been used for drug or cell delivery to the CNS including hyaluronan, methylcellulose, chitosan, poly(N-isopropylacrylamide) and Matrigel.
Collapse
Affiliation(s)
- Malgosia M Pakulska
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada
| | | | | |
Collapse
|
135
|
McCreedy DA, Sakiyama-Elbert SE. Combination therapies in the CNS: engineering the environment. Neurosci Lett 2012; 519:115-21. [PMID: 22343313 DOI: 10.1016/j.neulet.2012.02.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 02/03/2012] [Accepted: 02/08/2012] [Indexed: 01/03/2023]
Abstract
The inhibitory extracellular environment that develops in response to traumatic brain injury and spinal cord injury hinders axon growth thereby limiting restoration of function. Several strategies have been developed to engineer a more permissive central nervous system (CNS) environment to promote regeneration and functional recovery. The multi-faced inhibitory nature of the CNS lesion suggests that therapies used in combination may be more effective. In this mini-review we summarize the most recent attempts to engineer the CNS extracellular environment after injury using combinatorial strategies. The advantages and limits of various combination therapies utilizing neurotrophin delivery, cell transplantation, and biomaterial scaffolds are discussed. Treatments that reduce the inhibition by chondroitin sulfate proteoglycans, myelin-associated inhibitors, and other barriers to axon regeneration are also reviewed. Based on the current state of the field, future directions are suggested for research on combination therapies in the CNS.
Collapse
Affiliation(s)
- Dylan A McCreedy
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Dr. Box 1097, St. Louis, MO 63130, United States
| | | |
Collapse
|
136
|
Valmikinathan CM, Mukhatyar VJ, Jain A, Karumbaiah L, Dasari M, Bellamkonda RV. Photocrosslinkable chitosan based hydrogels for neural tissue engineering. SOFT MATTER 2012; 8:1964-1976. [PMID: 29805470 PMCID: PMC5969809 DOI: 10.1039/c1sm06629c] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Hydrogel based scaffolds for neural tissue engineering can provide appropriate physico-chemical and mechanical properties to support neurite extension and facilitate transplantation of cells by acting as 'cell delivery vehicles'. Specifically, in situ gelling systems such as photocrosslinkable hydrogels can potentially conformally fill irregular neural tissue defects and serve as stem cell delivery systems. Here, we report the development of a novel chitosan based photocrosslinkable hydrogel system with tunable mechanical properties and degradation rates. A two-step synthesis of amino-ethyl methacrylate derivitized, degradable, photocrosslinkable chitosan hydrogels is described. When human mesenchymal stem cells were cultured in photocrosslinkable chitosan hydrogels, negligible cytotoxicity was observed. Photocrosslinkable chitosan hydrogels facilitated enhanced neurite differentiation from primary cortical neurons and enhanced neurite extension from dorsal root ganglia (DRG) as compared to agarose based hydrogels with similar storage moduli. Neural stem cells (NSCs) cultured within photocrosslinkable chitosan hydrogels facilitated differentiation into tubulin positive neurons and astrocytes. These data demonstrate the potential of photocrosslinked chitosan hydrogels, and contribute to an increasing repertoire of hydrogels designed for neural tissue engineering.
Collapse
Affiliation(s)
- Chandra M. Valmikinathan
- Neurological Biomaterials and Cancer Therapeutics Laboratory, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 3108, UA Whitaker Building, 313 Ferst Drive, Atlanta, Georgia, 30332-0535, USA
| | - Vivek J. Mukhatyar
- Neurological Biomaterials and Cancer Therapeutics Laboratory, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 3108, UA Whitaker Building, 313 Ferst Drive, Atlanta, Georgia, 30332-0535, USA
| | - Anjana Jain
- Neurological Biomaterials and Cancer Therapeutics Laboratory, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 3108, UA Whitaker Building, 313 Ferst Drive, Atlanta, Georgia, 30332-0535, USA
| | - Lohitash Karumbaiah
- Neurological Biomaterials and Cancer Therapeutics Laboratory, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 3108, UA Whitaker Building, 313 Ferst Drive, Atlanta, Georgia, 30332-0535, USA
| | - Madhuri Dasari
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 3108, UA Whitaker Building, 313 Ferst Drive, Atlanta, Georgia, 30332-0535, USA
| | - Ravi V. Bellamkonda
- Neurological Biomaterials and Cancer Therapeutics Laboratory, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 3108, UA Whitaker Building, 313 Ferst Drive, Atlanta, Georgia, 30332-0535, USA
- ; Fax: +1 404 385 5044; Tel: +1 404 385 5038
| |
Collapse
|
137
|
Shoffstall AJ, Taylor DM, Lavik EB. Engineering therapies in the CNS: what works and what can be translated. Neurosci Lett 2012; 519:147-54. [PMID: 22330751 DOI: 10.1016/j.neulet.2012.01.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 01/01/2023]
Abstract
Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS.
Collapse
Affiliation(s)
- Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-1712, USA
| | | | | |
Collapse
|
138
|
Mekhail M, Almazan G, Tabrizian M. Oligodendrocyte-protection and remyelination post-spinal cord injuries: a review. Prog Neurobiol 2012; 96:322-39. [PMID: 22307058 DOI: 10.1016/j.pneurobio.2012.01.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 12/28/2022]
Abstract
In the past four decades, the main focus of investigators in the field of spinal cord regeneration has been to devise therapeutic measures that enhance neural regeneration. More recently, emphasis has been placed on enhancing remyelination and providing oligodendrocyte-protection after a spinal cord injury (SCI). Demyelination post-SCI is part of the cascading secondary injury that takes place immediately after the primary insult; therefore, therapeutic measures are needed to reduce oligodendrocyte death and/or enhance remyelination during the acute stage, preserving neurological functions that would be lost otherwise. In this review a thorough investigation of the oligodendrocyte-protective and remyelinative molecular therapies available to date is provided. The advent of new biomaterials shown to promote remyelination post-SCI is discussed mainly in the context of a combinatorial approach where the biomaterial also provides drug delivery capabilities. The aim of these molecular and biomaterial-based therapies is twofold: (1) oligodendrocyte-protective therapy, which involves protecting already existing oligodendrocytes from undergoing apoptosis/necrosis; and (2) inductive remyelination, which involves harnessing the remyelinative capabilities of endogenous oligodendrocyte precursor cells (OPCs) at the lesion site by providing a suitable environment for their migration, survival, proliferation and differentiation. From the evidence reported in the literature, we conclude that the use of a combinatorial approach including biomaterials and molecular therapies would provide advantages such as: (1) sustained release of the therapeutic molecule, (2) local delivery at the lesion site, and (3) an environment at the site of injury that promotes OPC migration, differentiation and remyelination.
Collapse
Affiliation(s)
- Mina Mekhail
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
139
|
Abstract
Spinal cord injury (SCI) presents a complex regenerative problem due to the multiple facets of growth inhibition that occur following trauma to the cord parenchyma and stroma. Clinically, SCI is further complicated by the heterogeneity in the size, shape and extent of human injuries. Many of these injuries do not breach the dura mater and have continuous viable axons through the injury site that can later lead to some degree of functional recovery. In these cases, surgical manipulation of the spinal cord by implanting a preformed scaffold or drug delivery device may lead to further damage. Given these circumstances, in situ-forming scaffolds are an attractive approach for SCI regeneration. These synthetic and natural polymers undergo a rapid transformation from liquid to gel upon injection into the cord tissue, conforming to the individual lesion site and directly integrating with the host tissue. Injectable materials can be formulated to have mechanical properties that closely match the native spinal cord extracellular matrix, and this may enhance axonal ingrowth. Such materials can also be loaded with cellular and molecular therapeutics to modulate the wound environment and enhance regeneration. This review will focus on the current status of in situ-forming materials for spinal cord repair. The advantages of, and requirements for, such polymers will be presented, and examples of the behavior of such systems in vitro and in vivo will be presented. There are helpful lessons to be learned from the investigations of injectable hydrogels for the treatment of SCI that apply to the use of these biomaterials for the treatment of lesions in other central nervous system tissues and in organs comprising other tissue types.
Collapse
Affiliation(s)
- D Macaya
- Tissue Engineering, VA Boston Healthcare System, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
140
|
McCormick AM, Leipzig ND. Neural regenerative strategies incorporating biomolecular axon guidance signals. Ann Biomed Eng 2012; 40:578-97. [PMID: 22218702 DOI: 10.1007/s10439-011-0505-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/28/2011] [Indexed: 01/19/2023]
Abstract
There are currently no acceptable cures for central nervous system injuries, and damage induced large gaps in the peripheral nervous system have been challenging to bridge to restore neural functionality. Innervation by neurons is made possible by the growth cone. This dynamic structure is unique to neurons, and can directly sense physical and chemical activity in its environment, utilizing these cues to propel axons to precisely reach their targets. Guidance can occur through chemoattractive factors such as neurotrophins and netrins, chemorepulsive agents like semaphorins and slits, or contact-mediated molecules such as ephrins and those located in the extracellular matrix. The understanding of biomolecular activity during nervous system development and injury has generated new techniques and tactics for improving and restoring function to the nervous system after injury. This review will focus on the major neuronal guidance molecules and their utility in current tissue engineering and neural regenerative strategies.
Collapse
Affiliation(s)
- Aleesha M McCormick
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, OH 44325-3906, USA
| | | |
Collapse
|
141
|
Zhang XY, Xue H, Liu JM, Chen D. Chemically extracted acellular muscle: A new potential scaffold for spinal cord injury repair. J Biomed Mater Res A 2011; 100:578-87. [DOI: 10.1002/jbm.a.33237] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/11/2011] [Accepted: 08/15/2011] [Indexed: 11/09/2022]
|
142
|
Turunen S, Haaparanta AM, Äänismaa R, Kellomäki M. Chemical and topographical patterning of hydrogels for neural cell guidancein vitro. J Tissue Eng Regen Med 2011; 7:253-70. [DOI: 10.1002/term.520] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 06/02/2011] [Accepted: 09/22/2011] [Indexed: 02/05/2023]
Affiliation(s)
- Sanna Turunen
- Department of Biomedical Engineering; Tampere University of Technology; Finland
| | | | - Riikka Äänismaa
- NeuroGroup, Institute for Biomedical Technology; University of Tampere; Finland
| | - Minna Kellomäki
- Department of Biomedical Engineering; Tampere University of Technology; Finland
| |
Collapse
|
143
|
Wilkinson AE, McCormick AM, Leipzig ND. Central Nervous System Tissue Engineering: Current Considerations and Strategies. ACTA ACUST UNITED AC 2011. [DOI: 10.2200/s00390ed1v01y201111tis008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
144
|
McMahon SS, Nikolskaya N, Choileáin SN, Hennessy N, O'Brien T, Strappe PM, Gorelov A, Rochev Y. Thermosensitive hydrogel for prolonged delivery of lentiviral vector expressing neurotrophin-3 in vitro. J Gene Med 2011; 13:591-601. [DOI: 10.1002/jgm.1613] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Siobhan S McMahon
- Discipline of Anatomy; National University of Ireland; Galway; Ireland
| | - Natalia Nikolskaya
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway; Ireland
| | - Siobhan Ní Choileáin
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway; Ireland
| | - Niamh Hennessy
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway; Ireland
| | - Timothy O'Brien
- Regenerative Medicine Institute; National University of Ireland; Galway; Ireland
| | - Padraig M Strappe
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga; NSW; Australia
| | - Alexander Gorelov
- School of Chemistry & Chemical Biology; University College Dublin; Ireland
| | - Yury Rochev
- National Centre for Biomedical Engineering Science; National University of Ireland; Galway; Ireland
| |
Collapse
|
145
|
Multifunctional, multichannel bridges that deliver neurotrophin encoding lentivirus for regeneration following spinal cord injury. Biomaterials 2011; 33:1618-26. [PMID: 22130565 DOI: 10.1016/j.biomaterials.2011.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/03/2011] [Indexed: 11/21/2022]
Abstract
Therapeutic strategies following spinal cord injury must address the multiple barriers that limit regeneration. Multiple channel bridges have been developed that stabilize the injury following implantation and provide physical guidance for regenerating axons. These bridges have now been employed as a vehicle for localized delivery of lentivirus. Implantation of lentivirus loaded multiple channel bridges produced transgene expression that persisted for at least 4 weeks. Expression was maximal at the implant at the earliest time point, and decreased with increasing time of implantation, as well as rostral and caudal to the bridge. Immunohistochemical staining indicated transduction of macrophages, Schwann cells, fibroblasts, and astrocytes within the bridge and adjacent tissue. Subsequently, the delivery of lentivirus encoding the neurotrophic factors NT-3 or BDNF significantly increased the extent of axonal growth into the bridge relative to empty scaffolds. In addition to promoting axon growth, the induced expression of neurotrophic factors led to myelination of axons within the channels of the bridge, where the number of myelinated axons was significantly enhanced relative to control. Combining gene delivery with biomaterials to provide physical guidance and create a permissive environment can provide a platform to enhance axonal growth and promote regeneration.
Collapse
|
146
|
|
147
|
Hwang DH, Kim HM, Kang YM, Joo IS, Cho CS, Yoon BW, Kim SU, Kim BG. Combination of Multifaceted Strategies to Maximize the Therapeutic Benefits of Neural Stem Cell Transplantation for Spinal Cord Repair. Cell Transplant 2011; 20:1361-79. [DOI: 10.3727/096368910x557155] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neural stem cells (NSCs) possess therapeutic potentials to reverse complex pathological processes following spinal cord injury (SCI), but many obstacles remain that could not be fully overcome by NSC transplantation alone. Combining complementary strategies might be required to advance NSC-based treatments to the clinical stage. The present study was undertaken to examine whether combination of NSCs, polymer scaffolds, neurotrophin-3 (NT3), and chondroitinase, which cleaves chondroitin sulfate proteoglycans at the interface between spinal cord and implanted scaffold, could provide additive therapeutic benefits. In a rat hemisection model, poly(e-caprolactone) (PCL) was used as a bridging scaffold and as a vehicle for NSC delivery. The PCL scaffolds seeded with F3 NSCs or NT3 overexpressing F3 cells (F3.NT3) were implanted into hemisected cavities. F3.NT3 showed better survival and migration, and more frequently differentiated into neurons and oligodendrocytes than F3 cells. Animals with PCL scaffold containing F3.NT3 cells showed the best locomotor recovery, and motor evoked potentials (MEPs) following transcranial magnetic stimulation were recorded only in PCL-F3.NT3 group in contralateral, but not ipsilateral, hindlimbs. Implantation of PCL scaffold with F3.NT3 cells increased NT3 levels, promoted neuroplasticity, and enhanced remyelination of contralateral white matter. Combining chondroitinase treatment after PCL-F3.NT3 implantation further enhanced cell migration and promoted axonal remodeling, and this was accompanied by augmented locomotor recovery and restoration of MEPs in ipsilateral hindlimbs. We demonstrate that combining multifaceted strategies can maximize the therapeutic benefits of NSC transplantation for SCI. Our results may have important clinical implications for the design of future NSC-based strategies.
Collapse
Affiliation(s)
- Dong H. Hwang
- Brain Disease Research Center, Institute of Medical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hyuk M. Kim
- Brain Disease Research Center, Institute of Medical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Young M. Kang
- Brain Disease Research Center, Institute of Medical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
| | - In S. Joo
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Byung-Woo Yoon
- Departments of Neurology and Neuroscience Research Center, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seung U. Kim
- Department of Neurology, University of British Columbia, Vancouver, BC, Canada
- Medical Research Institute, Chungang University School of Medicine, Seoul, Republic of Korea
| | - Byung G. Kim
- Brain Disease Research Center, Institute of Medical Sciences, Ajou University School of Medicine, Suwon, Republic of Korea
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
148
|
Conova L, Vernengo J, Jin Y, Himes BT, Neuhuber B, Fischer I, Lowman A, Vernengo J, Jin Y, Himes BT, Neuhuber B, Fischer I, Lowman A. A pilot study of poly(N-isopropylacrylamide)-g-polyethylene glycol and poly(N-isopropylacrylamide)-g-methylcellulose branched copolymers as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. J Neurosurg Spine 2011; 15:594-604. [PMID: 21888482 DOI: 10.3171/2011.7.spine11194] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The authors investigated the feasibility of using injectable hydrogels, based on poly(N-isopropylacrylamide) (PNIPAAm), lightly cross-linked with polyethylene glycol (PEG) or methylcellulose (MC), to serve as injectable scaffolds for local delivery of neurotrophins and cellular transplants into the injured spinal cord. The primary aims of this work were to assess the biocompatibility of the scaffolds by evaluating graft cell survival and the host tissue immune response. The scaffolds were also evaluated for their ability to promote axonal growth through the action of released brain-derived neurotrophic factor (BDNF). METHODS The in vivo performance of PNIPAAm-g-PEG and PNIPAAm-g-MC was evaluated using a rodent model of spinal cord injury (SCI). The hydrogels were injected as viscous liquids into the injury site and formed space-filling hydrogels. The host immune response and biocompatibility of the scaffolds were evaluated at 2 weeks by histological and fluorescent immunohistochemical analysis. Commercially available matrices were used as a control and examined for comparison. RESULTS Experiments showed that the scaffolds did not contribute to an injury-related inflammatory response. PNIPAAm-g-PEG was also shown to be an effective vehicle for delivery of cellular transplants and supported graft survival. Additionally, PNIPAAm-g-PEG and PNIPAAm-g-MC are permissive to axonal growth and can serve as injectable scaffolds for local delivery of BDNF. CONCLUSIONS Based on the results, the authors suggest that these copolymers are feasible injectable scaffolds for cell grafting into the injured spinal cord and for delivery of therapeutic factors.
Collapse
Affiliation(s)
- Lauren Conova
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Tamariz E, Wan ACA, Pek YS, Giordano M, Hernández-Padrón G, Varela-Echavarría A, Velasco I, Castaño VM. Delivery of chemotropic proteins and improvement of dopaminergic neuron outgrowth through a thixotropic hybrid nano-gel. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:2097-2109. [PMID: 21744103 DOI: 10.1007/s10856-011-4385-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 06/25/2011] [Indexed: 05/31/2023]
Abstract
Chemotropic proteins guide neuronal projections to their final target during embryo development and are useful to guide axons of neurons used in transplantation therapies. Site-specific delivery of the proteins however is needed for their application in the brain to avoid degradation and pleiotropic affects. In the present study we report the use of Poly (ethylene glycol)-Silica (PEG-Si) nanocomposite gel with thixotropic properties that make it injectable and suitable for delivery of the chemotropic protein semaphorin 3A. PEG-Si gel forms a functional gradient of semaphorin that enhances axon outgrowth of dopaminergic neurons from rat embryos or differentiated from stem cells in culture. It is not cytotoxic and its properties allowed its injection into the striatum without inflammatory response in the short term. Long term implantation however led to an increase in macrophages and glial cells. The inflammatory response could have resulted from non-degraded silica particles, as observed in biodegradation assays.
Collapse
Affiliation(s)
- Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, VER, México.
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Loverde JR, Ozoka VC, Aquino R, Lin L, Pfister BJ. Live imaging of axon stretch growth in embryonic and adult neurons. J Neurotrauma 2011; 28:2389-403. [PMID: 21663384 DOI: 10.1089/neu.2010.1598] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Strategies for nervous system repair arise from knowledge of growth mechanisms via a growth cone. The distinctive process of axon stretch growth is a robust, long-term growth that may reveal new pathways to accelerate nerve repair. Here, a live imaging bioreactor was engineered to closely explore cellular events initiated by applied tension. The stretch growth potential between adult and embryonic dorsal root ganglion (DRG) neurons was investigated, an important difference in nerve repair. Embryonic axons were capable of unidirectional stretch growth rates of 4?mm/d and reliably reached 4?cm in length within 2 weeks. Adult axons could only reach 2?mm/d and took over 3 weeks to reach 4?cm. Utilizing time-lapse imaging, we observed growth cone motility in coordination with stretch growth. Upon initiation of stretching, growth cones retracted. However, within 10?h of continuous stretching, growth cones extended at a rate of 0.2?mm/d opposite the direction of applied tension, contributing to overall axon elongation. We analyzed fast mitochondrial transport under increasing levels of strain to determine the effect of stretch on axonal transport. Transport began to diminish at 24% strain, and was almost completely absent at 39% strain. Surprisingly, axons recovered and were capable of subsequent stretch growth. When tension was completely released (?5% strain), stretch grown axons retracted at rates up to 6.1??m/sec and slowed as resting tension was restored. This ability to assess the process of axon stretch growth in real time will allow detailed study of how tension can be used to drive axonal growth and retraction.
Collapse
Affiliation(s)
- Joseph R Loverde
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey 07102-1982, USA
| | | | | | | | | |
Collapse
|