101
|
Holderith N, Németh B, Papp OI, Veres JM, Nagy GA, Hájos N. Cannabinoids attenuate hippocampal γ oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells. J Physiol 2011; 589:4921-34. [PMID: 21859823 PMCID: PMC3224883 DOI: 10.1113/jphysiol.2011.216259] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Non-technical summary Administration of cannabinoids can impair several cognitive functions, including memory by altering synchronous activities in cortical networks. We show that the gamma frequency (40 Hz) oscillations in hippocampal slices, that are prominent oscillations in electroencephalogram during awake states in vivo, are reduced by cannabinoids. This effect can be explained by the suppression of the excitatory synaptic transmission onto fast spiking basket cells, GABAergic cells that are key players in oscillogenesis. The reduced excitatory drive onto these interneurons leads to a reduction in neuronal firing frequency and precision, and thus to smaller field potentials. Our data further our understanding of the synaptic mechanisms of how cannabinoids alter neuronal operation. Abstract CB1 cannabinoid receptor (CB1R) activation by exogenous ligands can impair memory processes, which critically depend on synchronous neuronal activities that are temporarily structured by oscillations. In this study, we aimed to reveal the mechanisms underlying the cannabinoid-induced decrease in gamma oscillations. We first verified that cannabinoids (CP55,940 and WIN55,212-2) readily suppressed carbachol-induced gamma oscillations in the CA3 region of hippocampal slices via activation of CB1Rs. The cannabinoid-induced decrease in the peak power of oscillations was accompanied by reduced and less precise firing activity in CA3 pyramidal cells and fast spiking basket cells. By examining the cannabinoid sensitivity of synaptic inputs we found that the amplitude of evoked excitatory postsynaptic currents was significantly suppressed upon CB1R activation in both CA3 pyramidal cells and fast spiking basket cells. In contrast, evoked inhibitory postsynaptic currents in CA3 pyramidal cells were unaltered. Furthermore, we observed that a CB1R agonist-induced decrease in the oscillation power at the beginning of the drug application was accompanied primarily by the reduced discharge of fast spiking basket cells, while pyramidal cell firing was unaltered. This result implies that the dampening of cholinergically induced gamma oscillations in the hippocampus by cannabinoids can be explained by a reduced excitatory input predominantly onto fast spiking basket cells, which leads to a reduction in neuronal firing frequency and precision, and thus to smaller field potentials. In addition, we uncovered that the spontaneously occurring sharp wave-ripple activities in hippocampal slices could also be suppressed by CB1R activation suggesting that cannabinoids profoundly reduce the intrinsically generated oscillatory activities at distinct frequencies in CA3 networks by reducing synaptic neurotransmission.
Collapse
Affiliation(s)
- Noémi Holderith
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
102
|
Black MD, Stevens RJ, Rogacki N, Featherstone RE, Senyah Y, Giardino O, Borowsky B, Stemmelin J, Cohen C, Pichat P, Arad M, Barak S, De Levie A, Weiner I, Griebel G, Varty GB. AVE1625, a cannabinoid CB1 receptor antagonist, as a co-treatment with antipsychotics for schizophrenia: improvement in cognitive function and reduction of antipsychotic-side effects in rodents. Psychopharmacology (Berl) 2011; 215:149-63. [PMID: 21181124 DOI: 10.1007/s00213-010-2124-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 11/29/2010] [Indexed: 01/05/2023]
Abstract
RATIONALE The psychotomimetic effects of cannabis are believed to be mediated via cannabinoid CB1 receptors. Furthermore, studies have implicated CB1 receptors in the pathophysiology of schizophrenia. OBJECTIVE These studies investigated the effects of the CB1 receptor antagonist, AVE1625, in acute pharmacological and neurodevelopmental models of schizophrenia. AVE1625 was administered to rodents alone or as a co-treatment with clinically used antipsychotic drugs (APDs). METHODS The antipsychotic potential of AVE1625 was tested using psychotomimetic-induced hyperactivity and latent inhibition (LI) deficit models. The procognitive profile was assessed using hole board, novel object recognition, auditory evoked potential, and LI techniques. In addition, the side-effect profile was established by measuring catalepsy, antipsychotic-induced weight gain, plasma levels of prolactin, and anxiogenic potential. RESULTS AVE1625 (1, 3, and 10 mg/kg ip), reversed abnormally persistent LI induced by MK-801 or neonatal nitric oxide synthase inhibition in rodents, and improved both working and episodic memory. AVE1625 was not active in positive symptom models but importantly, it did not diminish the efficacy of APDs. It also decreased catalepsy and weight gain induced by APDs, suggesting that it may decrease APD-induced extrapyramidal side effects (EPS) and compliance. Unlike other CB1 antagonists, AVE1625 did not produce anxiogenic-like effects. CONCLUSIONS These preclinical data suggest that AVE1625 may be useful to treat the cognitive deficits in schizophrenia and as a co-treatment with currently available antipsychotics. In addition, an improved side-effect profile was seen, with potential to ameliorate the EPS and weight gain issues with currently available treatments.
Collapse
|
103
|
Disruption of frontal θ coherence by Δ9-tetrahydrocannabinol is associated with positive psychotic symptoms. Neuropsychopharmacology 2011; 36:827-36. [PMID: 21150914 PMCID: PMC3055738 DOI: 10.1038/npp.2010.222] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main ingredient in cannabis, Δ(9)-tetrahydrocannabinol (THC), can elicit acute psychotic reactions in healthy individuals and precipitate relapse in schizophrenic patients. However, the neural mechanism of this is unknown. We tested the hypothesis that THC psychopathology is related to changes in electroencephalography (EEG) power or inter-regional coherence. In a within-subjects design, participants (n=16) were given intravenous THC (1.25 mg) or placebo under double-blind conditions, during EEG recordings. Using fast-Fourier transform, EEG data were analyzed for power and coherence in the delta (1-3.5 Hz), theta (3.5-7 Hz), alpha (8-13 Hz), beta (14-25 Hz), low-gamma (30-40 Hz), and high-gamma (60-70 Hz) bands during engagement in the n-back test of working memory (WM). Compared with placebo, THC evoked positive and negative psychotic symptoms, as measured by the positive and negative syndrome scale (p<0.001) and slowed WM performance (p<0.05). Under THC, theta power was specifically reduced, (p<0.001) regardless of WM load; however, the reduction showed no relationship with psychotic symptoms or WM impairment. Coherence between bi-frontal electrodes in the theta band was also reduced by THC (p<0.05) and these reductions correlated with the change-in positive psychotic symptoms (rho=0.79, p<0.001). Bi-frontal specificity was suggested by the absence of a relationship between psychotic symptoms and fronto-parietal coherence. The results reveal that the pro-psychotic effects of THC might be related to impaired network dynamics with impaired communication between the right and left frontal lobes.
Collapse
|
104
|
Gamma synchrony: towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 2011; 62:1504-18. [PMID: 21349276 DOI: 10.1016/j.neuropharm.2011.02.007] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/01/2011] [Accepted: 02/07/2011] [Indexed: 12/22/2022]
Abstract
The lack of efficacy for antipsychotics with respect to negative symptoms and cognitive deficits is a significant obstacle for the treatment of schizophrenia. Developing new drugs to target these symptoms requires appropriate neural biomarkers that can be investigated in model organisms, be used to track treatment response, and provide insight into pathophysiological disease mechanisms. A growing body of evidence indicates that neural oscillations in the gamma frequency range (30-80 Hz) are disturbed in schizophrenia. Gamma synchrony has been shown to mediate a host of sensory and cognitive functions, including perceptual encoding, selective attention, salience, and working memory - neurocognitive processes that are dysfunctional in schizophrenia and largely refractory to treatment. This review summarizes the current state of clinical literature with respect to gamma-band responses (GBRs) in schizophrenia, focusing on resting and auditory paradigms. Next, preclinical studies of schizophrenia that have investigated gamma-band activity are reviewed to gain insight into neural mechanisms associated with these deficits. We conclude that abnormalities in gamma synchrony are ubiquitous in schizophrenia and likely reflect an elevation in baseline cortical gamma synchrony ('noise') coupled with reduced stimulus-evoked GBRs ('signal'). Such a model likely reflects hippocampal and cortical dysfunction, as well as reduced glutamatergic signaling with downstream GABAergic deficits, but is probably less influenced by dopaminergic abnormalities implicated in schizophrenia. Finally, we propose that analogous signal-to-noise deficits in the flow of cortical information in preclinical models are useful targets for the development of new drugs that target the treatment-resistant symptoms of schizophrenia.
Collapse
|
105
|
Viveros MP, Marco EM, López-Gallardo M, Garcia-Segura LM, Wagner EJ. Framework for sex differences in adolescent neurobiology: a focus on cannabinoids. Neurosci Biobehav Rev 2010; 35:1740-51. [PMID: 20869396 DOI: 10.1016/j.neubiorev.2010.09.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 12/23/2022]
Abstract
This review highlights the salient findings that have furthered our understanding of how sex differences are initiated during development and maintained throughout life. First we discuss how gonadal steroid hormones organize the framework for sex differences within critical periods of development-namely, during those exposures which occur in utero and post-partum, as well as those which occur during puberty. Given the extensive precedence of sex differences in cannabinoid-regulated biology, we then focus on the disparities within the endogenous cannabinoid system, as well as those observed with exogenously administered cannabinoids. We start with how the expression of cannabinoid CB(1) receptors is regulated throughout development. This is followed by a discussion of differential vulnerability to the pathological sequelae stemming from cannabinoid exposure during adolescence. Next we talk about sex differences in the interactions between cannabinoids and other drugs of abuse, followed by the organizational and activational roles of gonadal steroids in establishing and maintaining the sex dependence in the biological actions of cannabinoids. Finally, we discuss ways to utilize this knowledge to strategically target critical developmental windows of vulnerability/susceptibility and thereby implement more effective therapeutic interventions for afflictions that may be more prevalent in one sex vs. the other.
Collapse
Affiliation(s)
- Maria-Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, C/Jose Antonio Novais no. 2, Madrid, Spain.
| | | | | | | | | |
Collapse
|
106
|
Pietr MD, Knutsen PM, Shore DI, Ahissar E, Vogel Z. Cannabinoids reveal separate controls for whisking amplitude and timing in rats. J Neurophysiol 2010; 104:2532-42. [PMID: 20844105 DOI: 10.1152/jn.01039.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Whisking is controlled by multiple, possibly functionally segregated, motor sensory-motor loops. While testing for effects of endocannabinoids on whisking, we uncovered the first known functional segregation of channels controlling whisking amplitude and timing. Channels controlling amplitude, but not timing, were modulated by cannabinoid receptor type 1 (CB1R). Systemic administration of CB1R agonist Δ(9)-tetrahydrocannabinol (Δ(9)-THC) reduced whisking spectral power across all tested doses (1.25-5 mg/kg), whereas whisking frequency was affected at only very high doses (5 mg/kg). Concomitantly, whisking amplitude and velocity were significantly reduced in a dose-dependent manner (25-43 and 26-50%, respectively), whereas cycle duration and bilateral synchrony were hardly affected (3-16 and 3-9%, respectively). Preadministration of CB1R antagonist SR141716A blocked Δ(9)-THC-induced kinematic alterations of whisking, and when administered alone, increased whisking amplitude and velocity but affected neither cycle duration nor synchrony. These findings indicate that whisking amplitude and timing are controlled by separate channels and that endocannabinoids modulate amplitude control channels.
Collapse
|
107
|
Relationship of cannabinoid CB1 receptor and cholecystokinin immunoreactivity in monkey dorsolateral prefrontal cortex. Neuroscience 2010; 169:1651-61. [PMID: 20542094 DOI: 10.1016/j.neuroscience.2010.06.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 05/11/2010] [Accepted: 06/07/2010] [Indexed: 02/08/2023]
Abstract
Exposure to cannabis impairs cognitive functions reliant on the circuitry of the dorsolateral prefrontal cortex (DLPFC) and increases the risk of schizophrenia. The actions of cannabis are mediated via the brain cannabinoid 1 receptor (CB1R), which in rodents is heavily localized to the axon terminals of cortical GABA basket neurons that contain cholecystokinin (CCK). Differences in the laminar distribution of CB1R-immunoreactive (IR) axons have been reported between rodent and monkey neocortex, suggesting that the cell type(s) containing CB1Rs, and the synaptic targets of CB1R-IR axon terminals, may differ across species; however, neither the relationship of CB1Rs to CCK-containing interneurons, nor the postsynaptic targets of CB1R and CCK axon terminals, have been examined in primate DLPFC. Consequently, we compared the distribution patterns of CB1R- and CCK-IR structures, determined the proportions of CB1R and CCK neurons that were dual-labeled, and identified the synaptic types and postsynaptic targets of CB1R- and CCK-IR axon terminals in macaque monkey DLPFC. By light microscopy, CB1R- and CCK-IR axons exhibited a similar laminar distribution, with their greatest densities in layer 4. Dual-label fluorescence experiments demonstrated that 91% of CB1R-IR neurons were immunopositive for CCK, whereas only 51% of CCK-IR neurons were immunopositive for CB1R. By electron microscopy, all synapses formed by CB1R-IR axon terminals were symmetric, whereas CCK-IR axon terminals formed both symmetric (88%) and asymmetric (12%) synapses. The primary postsynaptic target of both CB1R- and CCK-IR axon terminals forming symmetric synapses was dendritic shafts (81-88%), with the remainder targeting cell bodies or dendritic spines. Thus, despite species differences in laminar distribution, CB1Rs are principally localized to CCK basket neuron axons in both rodent neocortex and monkey DLPFC. These axons target the perisomatic region of pyramidal neurons, providing a potential anatomical substrate for the impaired function of the DLPFC associated with cannabis use and schizophrenia.
Collapse
|
108
|
Woo TUW, Spencer K, McCarley RM. Gamma oscillation deficits and the onset and early progression of schizophrenia. Harv Rev Psychiatry 2010; 18:173-89. [PMID: 20415633 PMCID: PMC2860612 DOI: 10.3109/10673221003747609] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A fascinating convergence of evidence in recent years has implicated the disturbances of neural synchrony in the gamma frequency band (30-100 Hz) as a major pathophysiologic feature of schizophrenia. Evidence suggests that reduced glutamatergic neurotransmission via the N-methyl-D-aspartate (NMDA) receptors that are localized to inhibitory interneurons, perhaps especially the fast-spiking cells that contain the calcium-binding protein parvalbumin (PV), may contribute to gamma band synchrony deficits. These deficits may underlie the brain's failure to integrate information and hence the manifestations of many symptoms and deficits of schizophrenia. Furthermore, because gamma oscillations are thought to provide the temporal structure that is necessary for synaptic plasticity, gamma oscillation deficits may disturb the developmental synaptic reorganization process that is occurring during the period of late adolescence and early adulthood. This disturbance may contribute to the onset of schizophrenia and the functional deterioration that is characteristic of the early stage of the illness. Finally, reduced NMDA neurotransmission on inhibitory interneurons, including the PV-containing cells, may inflict excitotoxic or oxidative injury to downstream pyramidal neurons, leading to further loss of synapses and dendritic branchings. Hence, a key element in the conceptualization of rational early-intervention and prevention strategies for schizophrenia may involve correcting the abnormal NMDA neurotransmission on inhibitory interneurons-possibly that on the PV-containing neurons, in particular-thereby normalizing gamma oscillation deficits and attenuating downstream neuronal pathology.
Collapse
Affiliation(s)
- Tsung-Ung W. Woo
- Laboratory of Translational Psychiatry, Mailman Research Center McLean Hospital Belmont, MA 02478,Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA 02215,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| | - Kevin Spencer
- Department of Psychiatry, VA Boston Healthcare System, Brockton, MA 02301,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| | - Robert M. McCarley
- Laboratory of Translational Psychiatry, Mailman Research Center McLean Hospital Belmont, MA 02478,Department of Psychiatry, VA Boston Healthcare System, Brockton, MA 02301,Department of Psychiatry, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
109
|
Ishiguro H, Horiuchi Y, Ishikawa M, Koga M, Imai K, Suzuki Y, Morikawa M, Inada T, Watanabe Y, Takahashi M, Someya T, Ujike H, Iwata N, Ozaki N, Onaivi ES, Kunugi H, Sasaki T, Itokawa M, Arai M, Niizato K, Iritani S, Naka I, Ohashi J, Kakita A, Takahashi H, Nawa H, Arinami T. Brain cannabinoid CB2 receptor in schizophrenia. Biol Psychiatry 2010; 67:974-82. [PMID: 19931854 DOI: 10.1016/j.biopsych.2009.09.024] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 09/17/2009] [Accepted: 09/18/2009] [Indexed: 11/17/2022]
Abstract
BACKGROUND Neural endocannabinoid function appears to be involved in schizophrenia. Two endocannabinoid receptors, CB1 and CB2, are found in the brain and elsewhere in the body. We investigated roles of CB2 in schizophrenia. MATERIALS AND METHODS An association study was performed between tag single nucleotide polymorphisms (SNPs) in the CNR2 gene encoding the CB2 receptor and schizophrenia in two independent case-control populations. Allelic differences of associated SNPs were analyzed in human postmortem brain tissues and in cultured cells. Prepulse inhibition and locomotor activity in C57BL/6JJmsSlc mice with CB2 receptor antagonist AM630 administration was examined. RESULTS The analysis in the first population revealed nominally significant associations between schizophrenia and two SNPs, and the associations were replicated in the second population. The R63 allele of rs2501432 (R63Q) (p = .001), the C allele of rs12744386 (p = .005) and the haplotype of the R63-C allele (p = 5 x 10(-6)) were significantly increased among 1920 patients with schizophrenia compared with 1920 control subjects in the combined population. A significantly lower response to CB2 ligands in cultured CHO cells transfected with the R63 allele compared with those with Q63, and significantly lower CB2 receptor mRNA and protein levels found in human brain with the CC and CT genotypes of rs12744386 compared with TT genotype were observed. AM630 exacerbated MK-801- or methamphetamine-induced disturbance of prepulse inhibition and hyperactivity in C57BL/6JJmsSlc mice. CONCLUSIONS These findings indicate an increased risk of schizophrenia for people with low CB2 receptor function.
Collapse
Affiliation(s)
- Hiroki Ishiguro
- Department of Medical Genetics, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Sewell RA, Skosnik PD, Garcia-Sosa I, Ranganathan M, D'Souza DC. Efeitos comportamentais, cognitivos e psicofisiológicos dos canabinoides: relevância para a psicose e a esquizofrenia. BRAZILIAN JOURNAL OF PSYCHIATRY 2010. [DOI: 10.1590/s1516-44462010000500005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Avanços recentes no conhecimento sobre a função do receptor de canabinoide renovaram o interesse na associação entre cannabis e psicose. Linhas convergentes de evidências sugerem que os canabinoides podem produzir uma ampla gama de sintomas transitórios positivos, negativos e cognitivos assemelhados aos de esquizofrenia. Os canabinoides também produzem alguns déficits psicofisiológicos sabidamente presentes na esquizofrenia. É igualmente claro que em indivíduos com um transtorno psicótico estabelecido, os canabinoides podem exacerbar sintomas, desencadear recaídas e ter consequências negativas no curso da doença. Evidências crescentes sugerem que a exposição precoce e pesada à cannabis pode aumentar o risco de se desenvolver um transtorno psicótico como a esquizofrenia. A relação entre exposição à cannabis e esquizofrenia preenche alguns, mas não todos os critérios usuais de causalidade. Porém, a maioria das pessoas que utilizam cannabis não desenvolve esquizofrenia e muitas pessoas diagnosticadas com esquizofrenia nunca utilizaram cannabis. Portanto, é provável que a exposição à cannabis seja uma "causa componente" que interage com outros fatores para "causar" esquizofrenia ou outro transtorno psicótico, mas não é nem necessária nem suficiente para fazê-lo sozinha. No entanto, na ausência de causas conhecidas da esquizofrenia e com as implicações de políticas de saúde pública, se tal vínculo for estabelecido, as causas componentes, tais como a exposição a canabinoide, devem continuar sendo um foco de estudos futuros. Finalmente, são necessárias mais pesquisas para identificar os fatores subjacentes à vulnerabilidade à psicose relacionada a canabinoide e para elucidar os mecanismos biológicos subjacentes a esse risco.
Collapse
Affiliation(s)
- R. Andrew Sewell
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Patrick D. Skosnik
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Icelini Garcia-Sosa
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Mohini Ranganathan
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| | - Deepak Cyril D'Souza
- VA Connecticut Healthcare System, EUA; Connecticut Mental Health Center, EUA; Yale University School of Medicine, EUA
| |
Collapse
|
111
|
Wedzony K, Chocyk A. Cannabinoid CB1 receptors in rat medial prefrontal cortex are colocalized with calbindin- but not parvalbumin- and calretinin-positive GABA-ergic neurons. Pharmacol Rep 2010; 61:1000-7. [PMID: 20081234 DOI: 10.1016/s1734-1140(09)70161-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Revised: 10/22/2009] [Indexed: 01/08/2023]
Abstract
In the present study, we investigate putative localization of cannabinoid receptors 1 (CB1) protein on a population of cortical gamma-aminobutyric acid (GABA) - positive interneurons characterized by expression of calcium-binding proteins in rat medial prefrontal cortex (MPC). Parvalbumin (PARV)/calretinin (CALR)- and calbindin (CALB)-positive neurons form two distinct populations of GABA-ergic interneurons that comprise the axo-somatic/axo-axonic and axo-dendritic inhibitory systems of pyramidal cells. It has been found that CB1 receptor-positive cells are randomly distributed across the rat MPC. All spotted neurons that were positive for CB1 receptors were positive for GABA; however, the number of GABA-positive cells drastically exceeded the number of CB1 receptor-positive neurons. Subsequent experiments with double-labelling of CB1 receptors with PARV and CALR revealed no colocalization. CALB-positive neurons (e.g., double bouquet and bipolar cells) display colocalization: the degree of colocalization among CB1 receptor-positive cells reached 18%. The appearance of CB1 receptors in double bouquet and bipolar neurons indicates that CB1 receptors may control the activity of pyramidal neurons from presynaptic sites in axo-dendritic synapses formed on apical and basilar dendrites of pyramidal neurons, as is characteristic for CALB-positive cortical interneurons. The phenotype of GABA- and CB1 receptor-positive but CALB-negative neurons may represent a population of inhibitory neurons that allow axo-somatic control of information flow, governed by principal neurons of the MPC.
Collapse
Affiliation(s)
- Krzysztof Wedzony
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, PL 31-343 Kraków, Poland.
| | | |
Collapse
|
112
|
Abstract
The present review summarizes the latest information on the role and the pharmacological modulation of the endocannabinoid system in mood disorders and its potential implication in psychotic disorders such as schizophrenia. Reduced functionality might be considered a predisposing factor for major depression, so boosting endocannabinoid tone might be a useful alternative therapeutic approach for depressive disorders. The picture regarding endocannabinoids and anxiety is more complicated since either too much or too little anandamide can lead to anxiety states. However, a small rise in its level in specific brain areas might be beneficial for the response to a stressful situation and therefore to tone down anxiety. This effect might be achieved with low doses of cannabinoid indirect agonists, such as blockers of the degradative pathway (i.e. FAAH) or re-uptake inhibitors. Moreover several lines of experimental and clinical evidence point to a dysregulation of the endocannabinoid system in schizophrenia. The high anandamide levels found in schizophrenic patients, negatively correlated with psychotic symptoms, point to a protective role, whereas the role of 2-arachidonoyl glycerol is still unclear. There is a potential for pharmacological manipulation of the endocannabinoid system as a novel approach for treating schizophrenia, although experimental findings are still controversial, often with different effects depending on the drug, the dose, the species and the model used for simulating positive or negative symptoms. Besides all these limitations, SR141716A and cannabidiol show the most constant antipsychotic properties in dopamine- and glutamate-based models of schizophrenia, with profiles similar to an atypical antipsychotic drug.
Collapse
Affiliation(s)
- Daniela Parolaro
- DBSF and Neuroscience Center, University of Insubria, Via A. da Giussano 10, 21052 Busto Arsizio (Varese), Italy.
| | | | | | | | | |
Collapse
|
113
|
Lanre-Amos T, Kocsis B. Hippocampal oscillations in the rodent model of schizophrenia induced by amygdala GABA receptor blockade. Front Psychiatry 2010; 1:132. [PMID: 21308001 PMCID: PMC3034149 DOI: 10.3389/fpsyt.2010.00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain oscillations are critical for cognitive processes, and their alterations in schizophrenia have been proposed to contribute to cognitive impairments. Network oscillations rely upon GABAergic interneurons, which also show characteristic changes in schizophrenia. The aim of this study was to examine the capability of hippocampal networks to generate oscillations in a rat model previously shown to reproduce the stereotypic structural alterations of the hippocampal interneuron circuit seen in schizophrenic patients. This model uses injection of GABA-A receptor antagonist picrotoxin into the basolateral amygdala which causes cell-type specific disruption of interneuron signaling in the hippocampus. We found that after such treatment, hippocampal theta rhythm was still present during REM sleep, locomotion, and exploration of novel environment and could be elicited under urethane anesthesia. Subtle changes in theta and gamma parameters were observed in both preparations; specifically in the stimulus intensity-theta frequency relationship under urethane and in divergent reactions of oscillations at the two major theta dipoles in freely moving rats. Thus, theta power in the CA1 region was generally enhanced as compared with deep theta dipole which decreased or did not change. The results indicate that pathologic reorganization of interneurons that follows the over-activation of the amygdala-hippocampal pathway, as shown for this model of schizophrenia, does not lead to destruction of the oscillatory circuit but changes the normal balance of rhythmic activity in its various compartments.
Collapse
Affiliation(s)
- Tope Lanre-Amos
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
114
|
Scholes KE, Martin-Iverson MT. Alterations to pre-pulse inhibition (PPI) in chronic cannabis users are secondary to sustained attention deficits. Psychopharmacology (Berl) 2009; 207:469-84. [PMID: 19816676 DOI: 10.1007/s00213-009-1679-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 09/14/2009] [Indexed: 11/30/2022]
Abstract
RATIONALE Given the hypothesised association between cannabis use and schizophrenia, and the well documented alterations in pre-pulse inhibition (PPI) that are observed in schizophrenia, it is of interest to examine the effects of cannabis use on PPI. OBJECTIVE The objective of the study was to use novel methodology for the measurement and characterisation of attentional modulation of PPI, in order to examine the nature of PPI in chronic cannabis users. METHODS PPI was measured in 34 chronic cannabis users (who were otherwise healthy) and 32 healthy controls, across a range of startling stimulus intensities, during two attention set conditions, one in which they were instructed to attend to the auditory stimuli and one in which they were instructed to ignore the auditory stimuli and focus on a visual task. Curves of best fit were fitted to the startle magnitudes, across the stimulus intensities. A number of reflex parameters were extracted from these logistic functions, each of which reflects a different characteristic of the startle response. RESULTS Cannabis users failed to show attentional modulation of any of the reflex parameters and showed altered PPI, relative to controls, but only when they were instructed to sustain attention to the auditory stimuli. CONCLUSION Cannabis users showed an attention-dependant alteration in PPI, which appeared to reflect a deficit in sustain attention, and which was different to that which has been observed in schizophrenia using the same methodology.
Collapse
Affiliation(s)
- Kirsty Elizabeth Scholes
- Centre for Clinical Research in Neuropsychiatry, Graylands Hospital, Claremont, WA 6910, Australia.
| | | |
Collapse
|
115
|
Alteration of theta timescale dynamics of hippocampal place cells by a cannabinoid is associated with memory impairment. J Neurosci 2009; 29:12597-605. [PMID: 19812334 DOI: 10.1523/jneurosci.2407-09.2009] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The integrity of the hippocampus is critical for both spatial navigation and episodic memory, but how its neuronal firing patterns underlie those functions is not well understood. In particular, the modality by which hippocampal place cells contribute to spatial memory is debated. We found that administration of the cannabinoid receptor agonist CP55940 (2-[(1S,2R,5S)-5-hydroxy-2-(3-hydroxypropyl)cyclohexyl]-5-(2-methyloctan-2-yl)phenol) induced a profound and reversible behavioral deficit in the hippocampus-dependent delayed spatial alternation task. On the one hand, despite severe memory impairment, the location-dependent firing of CA1 hippocampal place cells remained mostly intact. On the other hand, both spike-timing coordination between place cells at the theta timescale and theta phase precession of spikes were reversibly reduced. These results raise the possibility that cannabinoids impair memory primarily by altering short-term temporal dynamics of hippocampal neurons. We hypothesize that precise temporal coordination of hippocampal neurons is necessary for guiding behavior in spatial memory tasks.
Collapse
|
116
|
Edwards CR, Skosnik PD, Steinmetz AB, O'Donnell BF, Hetrick WP. Sensory gating impairments in heavy cannabis users are associated with altered neural oscillations. Behav Neurosci 2009; 123:894-904. [PMID: 19634950 DOI: 10.1037/a0016328] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Central cannabinoid receptors mediate neural oscillations and are localized to networks implicated in auditory P50 sensory gating, including the hippocampus and neocortex. The current study examined whether neural oscillations evoked by the paired clicks (S1, S2) are associated with abnormal P50 gating reported in cannabis users. Seventeen heavy cannabis users and 16 cannabis naïve controls participated. Analyses included P50 amplitudes, and time-frequency analyses (event-related spectral perturbations, ERSPs; intertrial coherence, ITC). Consistent with prior studies, cannabis users exhibited reduced P50 gating. The ERSP analysis yielded attenuated high frequency activity in the beta range (13-29 Hz) post-S1 and in the gamma range (30-50 Hz) post-S2 in the cannabis group, compared with the control group. Greater levels of cannabis use were positively associated with high P50 ratios and negatively with post-S2 ERSP gamma power. Findings suggest that heavy cannabis use is associated with aberrant beta and gamma activity in the dual-click procedure, which corroborates recent work demonstrating disruption of beta/gamma by cannabinoid receptor (CB1) agonists in a rat analogue of this task and highlights the translational potential of the dual-click procedure [corrected]
Collapse
Affiliation(s)
- Chad R Edwards
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10th Street, Bloomington, IN 21455, USA.
| | | | | | | | | |
Collapse
|
117
|
Fernandez-Espejo E, Viveros MP, Núñez L, Ellenbroek BA, Rodriguez de Fonseca F. Role of cannabis and endocannabinoids in the genesis of schizophrenia. Psychopharmacology (Berl) 2009; 206:531-49. [PMID: 19629449 DOI: 10.1007/s00213-009-1612-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 07/02/2009] [Indexed: 11/25/2022]
Abstract
RATIONALE Cannabis abuse and endocannabinoids are associated to schizophrenia. OBJECTIVES It is important to discern the association between schizophrenia and exogenous Cannabis sativa, on one hand, and the endogenous cannabinoid system, on the other hand. RESULTS On one hand, there is substantial evidence that cannabis abuse is a risk factor for psychosis in genetically predisposed people, may lead to a worse outcome of the disease, or it can affect normal brain development during adolescence, increasing the risk for schizophrenia in adulthood. Regarding genetic predisposition, alterations affecting the cannabinoid CNR1 gene could be related to schizophrenia. On the other hand, the endogenous cannabinoid system is altered in schizophrenia (i.e., increased density of cannabinoid CB1 receptor binding in corticolimbic regions, enhanced cerebrospinal fluid anandamide levels), and dysregulation of this system can interact with neurotransmitter systems in such a way that a "cannabinoid hypothesis" can be integrated in the neurobiological hypotheses of schizophrenia. Finally, there is also evidence that some genetic alterations of the CNR1 gene can act as a protectant factor against schizophrenia or can induce a better pharmacological response to atypical antipsychotics. CONCLUSIONS Cannabis abuse is a risk factor for psychosis in predisposed people, it can affect neurodevelopment during adolescence leading to schizophrenia, and a dysregulation of the endocannabinoid system can participate in schizophrenia. It is also worth noting that some specific cannabinoid alterations can act as neuroprotectant for schizophrenia or can be a psychopharmacogenetic rather than a vulnerability factor.
Collapse
Affiliation(s)
- Emilio Fernandez-Espejo
- Departamento de Fisiología Médica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain.
| | | | | | | | | |
Collapse
|
118
|
D’Souza DC, Sewell RA, Ranganathan M. Cannabis and psychosis/schizophrenia: human studies. Eur Arch Psychiatry Clin Neurosci 2009; 259:413-31. [PMID: 19609589 PMCID: PMC2864503 DOI: 10.1007/s00406-009-0024-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 06/05/2009] [Indexed: 01/26/2023]
Abstract
The association between cannabis use and psychosis has long been recognized. Recent advances in knowledge about cannabinoid receptor function have renewed interest in this association. Converging lines of evidence suggest that cannabinoids can produce a full range of transient schizophrenia-like positive, negative, and cognitive symptoms in some healthy individuals. Also clear is that in individuals with an established psychotic disorder, cannabinoids can exacerbate symptoms, trigger relapse, and have negative consequences on the course of the illness. The mechanisms by which cannabinoids produce transient psychotic symptoms, while unclear may involve dopamine, GABA, and glutamate neurotransmission. However, only a very small proportion of the general population exposed to cannabinoids develop a psychotic illness. It is likely that cannabis exposure is a "component cause" that interacts with other factors to "cause" schizophrenia or a psychotic disorder, but is neither necessary nor sufficient to do so alone. Nevertheless, in the absence of known causes of schizophrenia, the role of component causes remains important and warrants further study. Dose, duration of exposure, and the age of first exposure to cannabinoids may be important factors, and genetic factors that interact with cannabinoid exposure to moderate or amplify the risk of a psychotic disorder are beginning to be elucidated. The mechanisms by which exposure to cannabinoids increase the risk for developing a psychotic disorder are unknown. However, novel hypotheses including the role of cannabinoids on neurodevelopmental processes relevant to psychotic disorders are being studied.
Collapse
Affiliation(s)
- Deepak Cyril D’Souza
- Schizophrenia Biological Research Center, Psychiatry Service, VA Connecticut Healthcare System, 116A, 950 Campbell Avenue, West Haven, CT 06516, USA, Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT, USA, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Andrew Sewell
- Schizophrenia Biological Research Center, Psychiatry Service, VA Connecticut Healthcare System, 116A, 950 Campbell Avenue, West Haven, CT 06516, USA, Substance Abuse Research Program, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Mohini Ranganathan
- Schizophrenia Biological Research Center, Psychiatry Service, VA Connecticut Healthcare System, 116A, 950 Campbell Avenue, West Haven, CT 06516, USA, Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
119
|
Basavarajappa BS, Nixon RA, Arancio O. Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration. Mini Rev Med Chem 2009; 9:448-62. [PMID: 19356123 DOI: 10.2174/138955709787847921] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The endocannabinoid system, including endogenous ligands ('endocannabinoids' ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors. Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed.
Collapse
Affiliation(s)
- Balapal S Basavarajappa
- Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Rd, Orangeburg, NY 10962, USA.
| | | | | |
Collapse
|
120
|
Involvement of the endocannabinoid system in phencyclidine-induced cognitive deficits modelling schizophrenia. Int J Neuropsychopharmacol 2009; 12:599-614. [PMID: 18789179 DOI: 10.1017/s1461145708009371] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent advances in the neurobiology of cannabinoids have renewed interest in the association between cannabis and schizophrenia. Our studies showed that chronic-intermittent phencyclidine (PCP) treatment of rats, an animal model of schizophrenia-like cognitive deficit, impaired recognition memory in the novel object recognition (NOR) test and induced alterations in CB1 receptor functionality and in endocannabinoid levels mainly in the prefrontal cortex. In this region, we observed a significant reduction in GTPgammaS binding (-41%) accompanied by an increase in the levels of the endocannabinoid 2-AG (+38%) in PCP-treated rats, suggesting that a maladaptation of the endocannabinoid system might contribute to the glutamatergic-related cognitive symptoms encountered in schizophrenia disorders. Moreover, we evaluated the ability of the main psychoactive ingredient of marijuana, Delta9-tetrahydrocannabinol (THC), to modulate the cognitive dysfunctions and neuroadaptations in the endocannabinoid system induced by PCP. Chronic THC co-treatment worsened PCP-induced cognitive impairment, without inducing any effect per se, and in parallel, it provoked a severe reduction in the levels of the other endocannabinoid, AEA, vs. either vehicle (-73%) or PCP (-64%), whereas it reversed the PCP-induced increase in 2-AG levels. These results point to the involvement of the endocannabinoid system in this pharmacological model of cognitive dysfunction, with a potentially different role of AEA and 2-AG in schizophrenia-like behaviours and suggest that prolonged cannabis use might aggravate cognitive performances induced by chronic PCP by throwing off-balance the endocannabinoid system.
Collapse
|
121
|
Nucleus accumbens deep brain stimulation produces region-specific alterations in local field potential oscillations and evoked responses in vivo. J Neurosci 2009; 29:5354-63. [PMID: 19386932 DOI: 10.1523/jneurosci.0131-09.2009] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Deep brain stimulation of the nucleus accumbens (NAC) region is an effective therapeutic avenue for several psychiatric disorders that are not responsive to traditional treatment strategies. Nonetheless, the mechanisms by which DBS achieves therapeutic effects remain unclear. We showed previously that high-frequency (HF) NAC DBS suppressed pyramidal cell firing and enhanced slow local field potential (LFP) oscillations in the orbitofrontal cortex (OFC) via antidromic activation of corticostriatal recurrent inhibition. Using simultaneous multisite LFP recordings in urethane-anesthetized rats, we now show that NAC DBS delivered for 90 min at high or low frequency (LF) selectively affects spontaneous and evoked LFP oscillatory power and coherence within and between the medial prefrontal cortex (mPFC), lateral OFC, mediodorsal thalamus (MD), and NAC. Compared with LF or sham DBS, HF DBS enhanced spontaneous slow oscillations and potentiated evoked LFP responses only in OFC. HF DBS also produced widespread increases in spontaneous beta and gamma power and enhanced coherent beta activity between MD and all other regions. In contrast, LF DBS elevated theta power in MD and NAC. Analysis of acute NAC-induced oscillations showed that HF DBS increased and LF DBS decreased induced relative gamma coherence compared with sham DBS. These data suggest that HF (therapeutic) and LF (possibly deleterious) NAC DBS produce distinct region-specific and frequency band-specific changes in LFP oscillations. NAC DBS may achieve therapeutic effects by enhancing rhythmicity and synchronous inhibition within and between afferent structures, thereby normalizing function of a neural circuit that shows aberrant activity in obsessive-compulsive disorder and depression.
Collapse
|
122
|
Abstract
Recent advances in knowledge about cannabinoid receptor function have renewed interest in the association between cannabis and psychosis. Case series, autobiographical accounts, and surveys of cannabis users in the general population suggest an association between cannabis and psychosis. Cross-sectional studies document an association between cannabis use and psychotic symptoms, and longitudinal studies suggest that early exposure to cannabis confers a close to two-fold increase in the risk of developing schizophrenia. Pharmacological studies show that cannabinoids can induce a full range of transient positive, negative, and cognitive symptoms in healthy individuals that are similar to those seen in schizophrenia. There is considerable evidence that in individuals with an established psychotic disorder such as schizophrenia, exposure to cannabis can exacerbate symptoms, trigger relapse, and worsen the course of the illness. Only a very small proportion of the general population exposed to cannabis develop a psychotic illness. It is likely that cannabis exposure is a 'component cause' that interacts with other factors to 'cause' schizophrenia or other psychotic disorder, but is neither necessary nor sufficient to do so alone. Further work is necessary to identify the factors that underlie individual vulnerability to cannabinoid-related psychosis and to elucidate the biological mechanisms underlying this risk.
Collapse
Affiliation(s)
- R Andrew Sewell
- Psychiatry Service, VA Connecticut Healthcare System, West Haven, Connecticut 06516, USA
| | | | | |
Collapse
|
123
|
Zhao Y, Rubio ME, Tzounopoulos T. Distinct functional and anatomical architecture of the endocannabinoid system in the auditory brainstem. J Neurophysiol 2009; 101:2434-46. [PMID: 19279154 DOI: 10.1152/jn.00047.2009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endocannabinoids (ECs) act as retrograde messengers that enable postsynaptic cells to regulate the strength of their synaptic inputs. Here, by using physiological and histological techniques, we showed that, unlike in other parts of the brain, excitatory inputs are more sensitive than inhibitory inputs to EC signaling in the dorsal cochlear nucleus (DCN), an auditory brainstem nucleus. The principal cells of the DCN, fusiform cells, integrate acoustic signals through nonplastic synapses located in the deep layer with multimodal sensory signals carried by plastic parallel fibers in the molecular layer. Parallel fibers contact fusiform cells and inhibitory interneurons, the cartwheel cells, which in turn inhibit fusiform cells. Postsynaptic depolarization or pairing of postsynaptic potentials (PSPs) with action potentials (APs) induced EC-mediated modulation of excitatory inputs but did not affect inhibitory inputs. Quantitative electron microscopical studies showed that glutamatergic terminals express more cannabinoid 1 receptors (CB1Rs) than glycinergic terminals. Fusiform and cartwheel cells express diacylglycerol lipase alpha and beta (DGLalpha/beta), the two enzymes involved in the generation of the EC, 2-arachidonoyl-glycerol (2-AG). DGLalpha and DGLbeta are found in the spines of cartwheel but not fusiform cells indicating that the synthesis of ECs is more distant from parallel fiber synapses in fusiform than cartwheel cells. The differential localization and density of DGLalpha/beta and CB1Rs leads to cell- and input-specific EC signaling that favors activity-dependent EC-mediated suppression at synapses between parallel fibers and cartwheel cell spines, thus leading to reduced feedforward inhibition in fusiform cells. We propose that EC signaling is a major modulator of the balance of excitation and inhibition in auditory circuits.
Collapse
Affiliation(s)
- Yanjun Zhao
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
124
|
Dissanayake DWN, Zachariou M, Marsden CA, Mason R. Auditory gating in rat hippocampus and medial prefrontal cortex: effect of the cannabinoid agonist WIN55,212-2. Neuropharmacology 2008; 55:1397-404. [PMID: 18809420 DOI: 10.1016/j.neuropharm.2008.08.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Revised: 06/25/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
Abstract
Sensory gating can be assessed in rodents and humans using an auditory conditioning (C)-test (T) paradigm, with schizophrenic patients exhibiting a loss of gating. Dysregulation of the endocannabinoid system has been proposed to be involved in the pathogenesis of schizophrenia. We studied auditory gating and the effects of the cannabinoid agonist WIN55,212-22 on gating in CA3 and dentate gyrus (DG) of the hippocampus and medial prefrontal cortex (mPFC) in male Lister hooded rats using in vivo electrophysiology. The effects of a single dose of WIN55,212-2 on the N2 local field potential (LFP) test/conditioning amplitude ratios (T/C ratio) and response latencies were examined. In rats that demonstrated gating of N2, mPFC showed higher T/C ratios and shorter conditioning response latencies compared to DG and CA3. WIN55,212-2 disrupted auditory gating in all three areas with a significant increase in test amplitudes in the gating rats. A group of non-gating rats demonstrated higher test amplitudes and higher T/C ratios compared to gating rats. WIN55,212-2 had no effect on T/C ratios in the non-gating rats. The cannabinoid receptor (CB1) antagonist SR141716A prevented WIN55,212-2 induced disruption of gating. This study demonstrates gated auditory-evoked responses in CA3, DG and mPFC. The mPFC showed an early phase of gating which may later be modulated by CA3 and DG activity. Furthermore, cannabinoid receptor activation disrupted auditory gating in CA3, DG and mPFC, an effect which was prevented by CB1 receptor antagonism. The results further demonstrate the presence of a non-gating rat population which responded differently to cannabinoid agonists.
Collapse
Affiliation(s)
- Dilshani W N Dissanayake
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, Nottinghamshire NG7 2UH, UK.
| | | | | | | |
Collapse
|
125
|
Eggan SM, Hashimoto T, Lewis DA. Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. ACTA ACUST UNITED AC 2008; 65:772-84. [PMID: 18606950 DOI: 10.1001/archpsyc.65.7.772] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT Cannabis use is associated with both impaired cognitive functions, including working memory, and an increased risk of schizophrenia. Schizophrenia is characterized by impairments in working memory that are associated with reduced gamma-aminobutyric acid (GABA) neurotransmission in the dorsolateral prefrontal cortex. The cannabinoid 1 receptor (CB1R) is highly expressed in the dorsolateral prefrontal cortex, is contained in the axon terminals of a subpopulation of perisomatic-targeting GABA neurons, and, when activated, suppresses the release of GABA. OBJECTIVE To determine the potential relationship between CB1R signaling and altered GABA neurotransmission in schizophrenia by evaluating CB1R messenger RNA (mRNA) and protein expression in the dorsolateral prefrontal cortex. DESIGN In situ hybridization and immunocytochemistry techniques were used to examine the cortical levels of CB1R mRNA and protein, respectively. SETTING Brain specimens were obtained from autopsies conducted at the Allegheny County Medical Examiner's Office, Pittsburgh, Pennsylvania. PARTICIPANTS Postmortem brain specimens from 23 pairs of subjects with schizophrenia and age-, sex-, and postmortem interval-matched comparison subjects, as well as brain specimens from 18 macaque monkeys with long-term exposure to haloperidol, olanzapine, or placebo. MAIN OUTCOME MEASURES Optical density measures of CB1R mRNA expression and protein levels and correlations with previously reported glutamic acid decarboxylase 67 and cholecystokinin mRNA measures. RESULTS Levels of CB1R mRNA were significantly lower by 14.8% in the subjects with schizophrenia. Similarly, CB1R protein levels, assessed by radioimmunocytochemistry and standard immunocytochemistry, were significantly decreased by 11.6% and 13.9%, respectively. Group differences in CB1R mRNA levels were significantly correlated with those in glutamic acid decarboxylase 67 and cholecystokinin mRNA levels. Expression of CB1R mRNA was not changed in antipsychotic-exposed monkeys, and neither CB1R mRNA levels nor protein levels were affected by potential confounding factors in the subjects with schizophrenia. CONCLUSIONS This combination of findings suggests the testable hypothesis that reduced CB1R mRNA and protein levels in schizophrenia represent a compensatory mechanism to increase GABA transmission from perisomatic-targeting cholecystokinin interneurons with impaired GABA synthesis.
Collapse
Affiliation(s)
- Stephen M Eggan
- Department of Psychiatry, University of Pittsburgh, 3811 O'Hara St, W1651 BST, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
126
|
Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajós M. Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov 2008; 7:68-83. [PMID: 18064038 PMCID: PMC2753449 DOI: 10.1038/nrd2463] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schizophrenia represents a pervasive deficit in brain function, leading to hallucinations and delusions, social withdrawal and a decline in cognitive performance. As the underlying genetic and neuronal abnormalities in schizophrenia are largely unknown, it is challenging to measure the severity of its symptoms objectively, or to design and evaluate psychotherapeutic interventions. Recent advances in neurophysiological techniques provide new opportunities to measure abnormal brain functions in patients with schizophrenia and to compare these with drug-induced alterations. Moreover, many of these neurophysiological processes are phylogenetically conserved and can be modelled in preclinical studies, offering unique opportunities for use as translational biomarkers in schizophrenia drug discovery.
Collapse
Affiliation(s)
- Daniel C Javitt
- Nathan Kline Institute for Schizophrenia Research/New York University School of Medicine, 140 Old Orangeburg Road, Orangeburg, New York 10962, USA
| | | | | | | | | |
Collapse
|