101
|
Huang H, Fan L, Zhao Y, Jin Q, Yang G, Zhao D, Xu Z. Integrating Broussonetia papyrifera and Two Bacillus Species to Repair Soil Antimony Pollutions. Front Microbiol 2022; 13:871581. [PMID: 35592006 PMCID: PMC9111523 DOI: 10.3389/fmicb.2022.871581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022] Open
Abstract
Heavy metal resistant bacteria play an important role in the metal biogeochemical cycle in soil, but the benefits of microbial oxidation for plants and soil have not been well-documented. The purpose of this study was to explore the contribution of two Bacillus spp. to alleviate the antimony (Sb) toxicity in plants, and, then, to propose a bioremediation method for Sb contaminated soil, which is characterized by environmental protection, high efficiency, and low cost. This study explored the effects of Bacillus cereus HM5 and Bacillus thuringiensis HM7 inoculation on Broussonetia papyrifera and soil were evaluated under controlled Sb stressed conditions (0 and 100 mmol/L, antimony slag) through a pot experiment. The results show that the total root length, root volume, tips, forks, crossings, and root activities of B. papyrifera with inoculation are higher than those of the control group, and the strains promote the plant absorption of Sb from the soil environment. Especially in the antimony slag treatment group, B. cereus HM5 had the most significant effect on root promotion and promoting the absorption of Sb by B. papyrifera. Compared with the control group, the total root length, root volume, tips, forks, crossings, and root activities increased by 64.54, 70.06, 70.04, 78.15, 97.73, and 12.95%, respectively. The absorption of Sb by root, stem, and leaf increased by 265.12, 250.00, and 211.54%, compared with the control group, respectively. Besides, both B. cereus HM5 and B. thuringiensis HM7 reduce the content of malondialdehyde, proline, and soluble sugars in plant leaves, keeping the antioxidant enzyme activity of B. papyrifera at a low level, and alleviating lipid peroxidation. Principal component analysis (PCA) shows that both B. cereus HM5 and B. thuringiensis HM7 are beneficial to the maintenance of plant root functions and the improvement of the soil environment, thereby alleviating the toxicity of Sb. Therefore, B. cereus HM5 and B. thuringiensis HM7 in phytoremediation with B. papyrifera is a promising inoculant used for bacteria-assisted phytoremediation on Sb contaminated sites.
Collapse
Affiliation(s)
- Huimin Huang
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- Changsha Environmental Protection College, Changsha, China
| | - Li Fan
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Yunlin Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Qi Jin
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Guiyan Yang
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| | - Di Zhao
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
| | - Zhenggang Xu
- Hunan Research Center of Engineering Technology for Utilization of Environmental and Resources Plant, Central South University of Forestry and Technology, Changsha, China
- Key Laboratory of National Forestry and Grassland Administration on Management of Western Forest Bio-Disaster, College of Forestry, Northwest A&F University, Xianyang, China
| |
Collapse
|
102
|
Li F, Jin H, Wu X, Liu Y, Chen X, Wang J. Remediation for trace metals in polluted soils by turfgrass assisted with chemical reagents. CHEMOSPHERE 2022; 295:133790. [PMID: 35104547 DOI: 10.1016/j.chemosphere.2022.133790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/08/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Trace metal pollution in soils is one of the universal environmental problems in the world. Phytoremediation is a green, safe, ecological, and economic method to achieve continuous reduction of soil pollutants. Turfgrass is a plant with great landscape value and has considerable biomass when used for remediation of trace metal contaminated soil. However, its remediation ability needs to be improved in future application. The combined application of turfgrass, citric acid (CA) and auxin (gibberellin, GA3) were applied in the phytoremediation of an artificial nutritive soil derived from sludge, and a field scale orthogonal experiment (L9) was conducted to understand the interaction effect and obtain the optimum phytoremediation. Experimental results showed that the types and cultural patterns of turfgrass mainly determined plant height, root length and trace metal concentration in turfgrass, however CA treatment was prone to increase the aboveground biomass and the concentrations of most trace metals in turfgrasses, especially the concentration of Ni in turfgrass. GA3 spraying significantly increased the concentration of Cd in turfgrass. The culture patterns of turfgrass played 42.4% influence on acid-extractable Cd, while CA applying had 53.8% influence on the acid-extractable Ni. The annual phytoextraction amount of trace metals based on five mowing a year were proposed to assess the remediation ability of treatments, which of the combination treatment (T3, intercropping Zoysia matrella and Lolium perenne, and applying 400 mg kg-1 CA and 30 mg kg-1 GA3) were 1.6-2.1 times higher CK group. This research provides technical reference for intercropping turfgrass for remediation of trace metals in sludge-derived nutritive soil.
Collapse
Affiliation(s)
- Feili Li
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China
| | - Hui Jin
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China
| | - Xingfei Wu
- Zhejiang Zhengjie Environmental Science & Technology Co.,Ltd. Hangzhou, 311222, Zhejiang, PR China
| | - Yannian Liu
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China
| | - Xiaoling Chen
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Deqing, 313200, Zhejiang, PR China.
| |
Collapse
|
103
|
Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils. BIOLOGY 2022; 11:biology11050676. [PMID: 35625404 PMCID: PMC9138774 DOI: 10.3390/biology11050676] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The legume–rhizobium symbiosis is one of the most beneficial interactions with high importance in agriculture, as it delivers nitrogen to plants and soil, thereby enhancing plant growth. Currently, this symbiosis is increasingly being exploited in phytoremediation of metal contaminated soil to improve soil fertility and simultaneously metal extraction or stabilization. Rhizobia increase phytoremediation directly by nitrogen fixation, protection of plants from pathogens, and production of plant growth-promoting factors and phytohormones. Abstract With the increasing industrial activity of the growing human population, the accumulation of various contaminants in soil, including heavy metals, has increased rapidly. Heavy metals as non-biodegradable elements persist in the soil environment and may pollute crop plants, further accumulating in the human body causing serious conditions. Hence, phytoremediation of land contamination as an environmental restoration technology is desirable for both human health and broad-sense ecology. Legumes (Fabaceae), which play a special role in nitrogen cycling, are dominant plants in contaminated areas. Therefore, the use of legumes and associated nitrogen-fixing rhizobia to reduce the concentrations or toxic effects of contaminants in the soil is environmentally friendly and becomes a promising strategy for phytoremediation and phytostabilization. Rhizobia, which have such plant growth-promoting (PGP) features as phosphorus solubilization, phytohormone synthesis, siderophore release, production of beneficial compounds for plants, and most of all nitrogen fixation, may promote legume growth while diminishing metal toxicity. The aim of the present review is to provide a comprehensive description of the main effects of metal contaminants in nitrogen-fixing leguminous plants and the benefits of using the legume–rhizobium symbiosis with both wild-type and genetically modified plants and bacteria to enhance an efficient recovery of contaminated lands.
Collapse
|
104
|
Yue L, Uwaremwe C, Tian Y, Liu Y, Zhao X, Zhou Q, Wang Y, Zhang Y, Liu B, Cui Z, Dun C, Wang R. Bacillus amyloliquefaciens Rescues Glycyrrhizic Acid Loss Under Drought Stress in Glycyrrhiza uralensis by Activating the Jasmonic Acid Pathway. Front Microbiol 2022; 12:798525. [PMID: 35368293 PMCID: PMC8966401 DOI: 10.3389/fmicb.2021.798525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 01/25/2023] Open
Abstract
Drought is a major factor limiting the production of the perennial medicinal plant Glycyrrhiza uralensis Fisch. (Fabaceae) in Northwest China. In this study, 1-year-old potted plants were inoculated with the strain Bacillus amyloliquefaciens FZB42, using a gradient of concentrations (CFU), to test for microbe-induced host tolerance to drought condition treatments in a greenhouse experiment. At the concentration of 108 CFU ml-1, FZB42 had significant growth-promoting effect on G. uralensis: the root biomass was 1.52, 0.84, 0.94, and 0.38 times that under normal watering and mild, moderate, and severe drought stress conditions, respectively. Under moderate drought, the positive impact of FZB42 on G. uralensis growth was most pronounced, with both developing axial and lateral roots strongly associated with indoleacetic acid (IAA) accumulation. An untargeted metabolomic analysis and physiological measurements of mature roots revealed that FZB42 improved the antioxidant system of G. uralensis through the accumulation of proline and sucrose, two osmotic adjustment solutes, and by promoting catalase (CAT) activity under moderate drought stress. Furthermore, significantly higher levels of total flavonoids, liquiritin, and glycyrrhizic acid (GA), the pharmacologically active substances of G. uralensis, were found in the roots of inoculated plants after FZB42 inoculation under all imposed drought conditions. The jasmonic acid (JA) content, which is closely related to plant defense responses and secondary metabolites' production, was greatly increased in roots after the bacterial inoculations, indicating that FZB42 activated the JA pathway. Taken together, our results demonstrate that inoculation with FZB42 alleviates the losses in production and pharmacological metabolites of G. uralensis caused by drought via the JA pathway's activation. These results provide a developed prospect of a microbial agent to improve the yield and quality of medical plants in arid and semi-arid regions.
Collapse
Affiliation(s)
- Liang Yue
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Constantine Uwaremwe
- University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Yuan Tian
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yang Liu
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xia Zhao
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qin Zhou
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yun Wang
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China
| | - Yubao Zhang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bailong Liu
- Gansu Institute for Drug Control, Lanzhou, China
| | - Zengtuan Cui
- The General Station of Construction and Protection for The Cultivated Land and Quality of Gansu Province, Lanzhou, China
| | - Chengchao Dun
- School of Management, Lanzhou University, Lanzhou, China
| | - Ruoyu Wang
- Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,Gansu Gaolan Field Scientific Observation and Research Station for Agricultural Ecosystem, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
105
|
González D, Robas M, Fernández V, Bárcena M, Probanza A, Jiménez PA. Comparative Metagenomic Study of Rhizospheric and Bulk Mercury-Contaminated Soils in the Mining District of Almadén. Front Microbiol 2022; 13:797444. [PMID: 35330761 PMCID: PMC8940170 DOI: 10.3389/fmicb.2022.797444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Soil contamination by heavy metals, particularly mercury (Hg), is a problem that can seriously affect the environment, animals, and human health. Hg has the capacity to biomagnify in the food chain. That fact can lead to pathologies, of those which affect the central nervous system being the most severe. It is convenient to know the biological environmental indicators that alert of the effects of Hg contamination as well as the biological mechanisms that can help in its remediation. To contribute to this knowledge, this study conducted comparative analysis by the use of Shotgun metagenomics of the microbial communities in rhizospheric soils and bulk soil of the mining region of Almadén (Ciudad Real, Spain), one of the most affected areas by Hg in the world The sequences obtained was analyzed with MetaPhlAn2 tool and SUPER-FOCUS. The most abundant taxa in the taxonomic analysis in bulk soil were those of Actinobateria and Alphaproteobacteria. On the contrary, in the rhizospheric soil microorganisms belonging to the phylum Proteobacteria were abundant, evidencing that roots have a selective effect on the rhizospheric communities. In order to analyze possible indicators of biological contamination, a functional potential analysis was performed. The results point to a co-selection of the mechanisms of resistance to Hg and the mechanisms of resistance to antibiotics or other toxic compounds in environments contaminated by Hg. Likewise, the finding of antibiotic resistance mechanisms typical of the human clinic, such as resistance to beta-lactams and glycopeptics (vancomycin), suggests that these environments can behave as reservoirs. The sequences involved in Hg resistance (operon mer and efflux pumps) have a similar abundance in both soil types. However, the response to abiotic stress (salinity, desiccation, and contaminants) is more prevalent in rhizospheric soil. Finally, sequences involved in nitrogen fixation and metabolism and plant growth promotion (PGP genes) were identified, with higher relative abundances in rhizospheric soils. These findings can be the starting point for the targeted search for microorganisms suitable for further use in bioremediation processes in Hg-contaminated environments.
Collapse
Affiliation(s)
- Daniel González
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marina Robas
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Vanesa Fernández
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marta Bárcena
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Agustín Probanza
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Pedro A Jiménez
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
106
|
Teo HM, A. A, A. WA, Bhubalan K, S. SNM, C. I. MS, Ng LC. Setting a Plausible Route for Saline Soil-Based Crop Cultivations by Application of Beneficial Halophyte-Associated Bacteria: A Review. Microorganisms 2022; 10:microorganisms10030657. [PMID: 35336232 PMCID: PMC8953261 DOI: 10.3390/microorganisms10030657] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
The global scale of land salinization has always been a considerable concern for human livelihoods, mainly regarding the food-producing agricultural industries. The latest update suggested that the perpetual salinity problem claimed up to 900 million hectares of agricultural land worldwide, inducing salinity stress among salt-sensitive crops and ultimately reducing productivity and yield. Moreover, with the constant growth of the human population, sustainable solutions are vital to ensure food security and social welfare. Despite that, the current method of crop augmentations via selective breeding and genetic engineering only resulted in mild success. Therefore, using the biological approach of halotolerant plant growth-promoting bacteria (HT-PGPB) as bio-inoculants provides a promising crop enhancement strategy. HT-PGPB has been proven capable of forming a symbiotic relationship with the host plant by instilling induced salinity tolerance (IST) and multiple plant growth-promoting traits (PGP). Nevertheless, the mechanisms and prospects of HT-PGPB application of glycophytic rice crops remains incomprehensively reported. Thus, this review describes a plausible strategy of halophyte-associated HT-PGPB as the future catalyst for rice crop production in salt-dominated land and aims to meet the global Sustainable Development Goals (SDGs) of zero hunger.
Collapse
Affiliation(s)
- Han Meng Teo
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Aziz A.
- Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Wahizatul A. A.
- Institute of Marine Biotechnology, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (W.A.A.); (K.B.)
| | - Kesaven Bhubalan
- Institute of Marine Biotechnology, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (W.A.A.); (K.B.)
| | - Siti Nordahliawate M. S.
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Muhamad Syazlie C. I.
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
| | - Lee Chuen Ng
- Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia; (H.M.T.); (S.N.M.S.); (M.S.C.I.)
- Correspondence:
| |
Collapse
|
107
|
Ma Y, Ankit, Tiwari J, Bauddh K. Plant-Mycorrhizal Fungi Interactions in Phytoremediation of Geogenic Contaminated Soils. Front Microbiol 2022; 13:843415. [PMID: 35283821 PMCID: PMC8908265 DOI: 10.3389/fmicb.2022.843415] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 11/26/2022] Open
Abstract
Soil contamination by geogenic contaminants (GCs) represents an imperative environmental problem. Various soil remediation methods have been successfully employed to ameliorate the health risks associated with GCs. Phytoremediation is considered as an eco-friendly and economical approach to revegetate GC-contaminated soils. However, it is a very slow process, as plants take a considerable amount of time to gain biomass. Also, the process is limited only to the depth and surface area of the root. Inoculation of arbuscular mycorrhizal fungi (AMF) with remediating plants has been found to accelerate the phytoremediation process by enhancing plant biomass and their metal accumulation potential while improving the soil physicochemical and biological characteristics. Progress in the field application is hindered by a lack of understanding of complex interactions between host plant and AMF that contribute to metal detoxification/(im)mobilization/accumulation/translocation. Thus, this review is an attempt to reveal the underlying mechanisms of plant-AMF interactions in phytoremediation.
Collapse
Affiliation(s)
- Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Ankit
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| |
Collapse
|
108
|
Jia J, Ford E, Hobbs SM, Baird SM, Lu SE. Occidiofungin Is the Key Metabolite for Antifungal Activity of the Endophytic Bacterium Burkholderia sp. MS455 Against Aspergillus flavus. PHYTOPATHOLOGY 2022; 112:481-491. [PMID: 34433293 DOI: 10.1094/phyto-06-21-0225-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aflatoxin is a secondary metabolite produced by Aspergillus fungi and presents a major food safety concern globally. Among the available methods for prevention and control of aflatoxin, the application of antifungal bacteria has gained favor in recent years. An endophytic bacterium MS455, isolated from soybean, exhibited broad-spectrum antifungal activity against economically important pathogens, including Aspergillus flavus. MS455 was identified as a strain of Burkholderia based on genomic analysis. Random and site-specific mutations were used in discovery of the genes that share high homology to the ocf gene cluster of Burkholderia contaminans strain MS14, which is responsible for production of the antifungal compound occidiofungin. RNA sequencing analysis demonstrated that ORF1, a homolog to the ambR1 LuxR-type regulatory gene, regulates occidiofungin biosynthesis in MS455. Additionally, 284 differentially expressed genes, including 138 upregulated and 146 downregulated genes, suggesting that, in addition to its role in occidiofungin production, ORF1 is involved in expression of multiple genes, especially those involved in ornibactin biosynthesis. Plate bioassays showed the growth of A. flavus was significantly inhibited by the wild-type strain MS455 as compared with the ORF1 mutant. Similarly, corn kernel assays showed that growth of A. flavus and aflatoxin production were reduced significantly by MS455 as compared with buffer control and the ORF1 mutant. Collectively, the results demonstrated that production of occidiofungin is essential for antifungal activity of the endophytic bacterium MS455. This research has provided insights about antifungal mechanisms of MS455 and development of biological approaches to prevent aflatoxin contamination in plant production.
Collapse
Affiliation(s)
- Jiayuan Jia
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Emerald Ford
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Sarah M Hobbs
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Sonya M Baird
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| | - Shi-En Lu
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS 39762
| |
Collapse
|
109
|
Oladoye PO, Olowe OM, Asemoloye MD. Phytoremediation technology and food security impacts of heavy metal contaminated soils: A review of literature. CHEMOSPHERE 2022; 288:132555. [PMID: 34653492 DOI: 10.1016/j.chemosphere.2021.132555] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 05/22/2023]
Abstract
Heavy metal accumulation in soil and water is one of major problems caused by inorganic contaminants. Their presence in agricultural soils in high quantities have impacted the food security significantly and, by extension, the human health. Amongst various physico-chemical methods available for remediation of heavy-metals-polluted-sites, phytoremediation approaches have been found to be safe and environment friendly. This review gathered scattered information on heavy metal phytoremediation studies published in both review and research articles. It described the impact of heavy metals on food security and comprehensively discussed the application of different phytoremediation approaches for treatment of heavy metal-polluted soils, the basic principles underlining them, their strengths and weaknesses. Our findings indicated that, while hundreds of hyper-accumulator plants are being reported yearly, only few describe limitations inherent in them, such as low growth rate, low biomass production, and low metal tolerance. Hence, this review also gave a detailed overview of research gaps in phytotechnology and advocates consideration of the 'omics' studies; genomics, proteomics, metabolomics and likes in selecting and enhancing potential plants for phytoremediation. For a sustainable large-scale phytoremediation application, we established a multi-technology repair strategy via the combination of different methods like application of biological composts, plant-growth promoting microorganisms, and phytohormones for stimulation of the plant-growth during phytoremediation. We also gave comprehensive insights to proper disposal of plants used for phytoremediation, this subject is often not well considered/planned while deciding the application of plants for removal of heavy metals from polluted environments.
Collapse
Affiliation(s)
- Peter Olusakin Oladoye
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA; Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, P.M.B 4000, Ogbomoso, Nigeria.
| | - Olumayowa Mary Olowe
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa.
| | - Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, 300072, Tianjin, China.
| |
Collapse
|
110
|
Separating Silver from Tin Silver Alloy Residue: Effect of Agitation Rate. METALS 2022. [DOI: 10.3390/met12020177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this paper, research on the effects of agitation rate for desilvering tin silver alloy residue by using pyrometallurgy was carried out. SnAg alloy residue with 92 wt.% tin and 3.56 wt.% silver was used in this study, and 99.999 wt.% zinc was added as metal solvent. Residues were melted to a temperature of 400 °C for enriching tin silver alloy. The obtained tin silver alloy was melted in a temperature range of 450 °C to 500 °C by adding zinc to evaluate zinc dissolution. The obtained tin silver zinc was agitated at different agitation rates for 20 min at a temperature of 480 °C, then cooled down while stirring to an eutectic point of tin zinc alloy (198.9 °C) to remove silver zinc dross. X-ray Fluorescent-1800 (XRF-1800) and Field Emission Scanning Electron Microscopy Energy Dispersive Spectroscopy (FE-SEM-EDS) analyses were performed in this research. Different factors including holding time, zinc dissolution, agitation time and agitation rate were evaluated. The results revealed that an agitation rate of 600 RPM, 25% Zn and 60 min at a temperature of 198.9 °C were efficient. Zinc silver was removed as dross every 20 min to get 92% silver separation efficiency, and the use of supergravity centrifuge is highly recommended to get best separation efficiency.
Collapse
|
111
|
Yang X, Gao Y, Gan T, Yang P, Cao M, Luo J. Elevated atmospheric CO 2 enhances the phytoremediation efficiency of tall fescue (Festuca arundinacea) in Cd-polluted soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1273-1283. [PMID: 35014567 DOI: 10.1080/15226514.2021.2025203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With the economic development of society, concentrations of atmospheric CO2 and heavy metals in soils have been increasing. The physiological responses of plants to the interaction between soil pollution and climatic change need to be understood. Pot experiments were designed to assess variations in Festuca arundinacea dry weight, leaf type, chlorophyll content, antioxidase activities, and Cd accumulation ability, under different atmospheric CO2 treatments. The results showed that the total dry weights increased with increasing CO2, and Cd concentrations in falling leaf tissues increased with raised atmospheric CO2, before reaching a peak at 600 ppm, above which they remained constant. Compared with the control (400 ppm), 600, 650, and 700 ppm CO2 treatments increased the proportions of the falling tissues by 1.7%, 3.3%, and 4.5%, respectively. Antioxidant enzyme activities in plant leaves increased with increasing atmospheric CO2 levels. The concentration of H2O2 in leaf tissues increased with increasing CO2, reaching a peak at 600 ppm, and then decreased significantly as the CO2 content increased further, to 700 ppm. The results in this study suggest that F. arundinacea could be regarded as a potential candidate for phytoremediation of Cd-polluted soil; especially if senescent and dead leaf tissues could be harvested, and that raised atmospheric CO2 levels could improve its soil remediation efficiency.Novelty statement Extrapolation of results from experiments of environmental impacts in greenhouse to real scale field requires to be considered cautiously. External factors such as water, temperature, humidity, and pollution are variable in real field. Plants will face a lot of beneficial or detrimental conditions which will influence the magnitude of the results. However, the elevation of CO2 is an inevitable phenomenon in future. Therefore, findings from experiments under artificial conditions are sometime a good choice to obtain knowledge about elevated CO2 related impacts on phytoremediation efficiency of a specific plant. The final goal of this work is to find a suitable CO2 fumigation strategy optimized for soil remediation. We report on that elevated atmospheric CO2 can increase the phytoremediation efficiency of Festuca arundinacea for Cd. This is significant because the combined influences of elevated atmospheric CO2 and metal pollution in terms of biomass yield, pollutant uptake, and phytoremediation efficiency would be more complex than the effects of each individual factor.
Collapse
Affiliation(s)
- Xiaoying Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Yueping Gao
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Tian Gan
- School of Civil Engineering, Shandong University, Jinan, China
| | - Pan Yang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Min Cao
- University of Leicester, Leicester, UK
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
112
|
Heavy metal resistant bacteria from coal dumping site with plant growth promoting potentials. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00963-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
113
|
Poria V, Dębiec-Andrzejewska K, Fiodor A, Lyzohub M, Ajijah N, Singh S, Pranaw K. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands. FRONTIERS IN PLANT SCIENCE 2022; 13:999866. [PMID: 36340355 PMCID: PMC9634634 DOI: 10.3389/fpls.2022.999866] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/04/2022] [Indexed: 05/13/2023]
Abstract
Land that has little to no utility for agriculture or industry is considered marginal land. This kind of terrain is frequently found on the edge of deserts or other arid regions. The amount of land that can be used for agriculture continues to be constrained by increasing desertification, which is being caused by climate change and the deterioration of agriculturally marginal areas. Plants and associated microorganisms are used to remediate and enhance the soil quality of marginal land. They represent a low-cost and usually long-term solution for restoring soil fertility. Among various phytoremediation processes (viz., phytodegradation, phytoextraction, phytostabilization, phytovolatilization, phytofiltration, phytostimulation, and phytodesalination), the employment of a specific mechanism is determined by the state of the soil, the presence and concentration of contaminants, and the plant species involved. This review focuses on the key economically important plants used for phytoremediation, as well as the challenges to plant growth and phytoremediation capability with emphasis on the advantages and limits of plant growth in marginal land soil. Plant growth-promoting bacteria (PGPB) boost plant development and promote soil bioremediation by secreting a variety of metabolites and hormones, through nitrogen fixation, and by increasing other nutrients' bioavailability through mineral solubilization. This review also emphasizes the role of PGPB under different abiotic stresses, including heavy-metal-contaminated land, high salinity environments, and organic contaminants. In our opinion, the improved soil fertility of marginal lands using PGPB with economically significant plants (e.g., Miscanthus) in dual precession technology will result in the reclamation of general agriculture as well as the restoration of native vegetation.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Klaudia Dębiec-Andrzejewska
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Angelika Fiodor
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Marharyta Lyzohub
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Nur Ajijah
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, India
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Kumar Pranaw, ;
| |
Collapse
|
114
|
Wang Y, Luo H, Peng H, Wang X, Xu F, Xu H. Coprinus comatus endophytic bacteria characteristics and mechanisms for the cadmium resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:584-593. [PMID: 34341927 DOI: 10.1007/s11356-021-15381-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Characteristics and resistant mechanisms of macro-fungus endophytic bacteria to cadmium (Cd) have not been well defined. Strains L1 and L3 with Cd-resistant capacity were isolated from the fruiting body of Coprinus comatus, which were identified as Bacillus sp. Under the stress of Cd, the morphologies of both L1 and L3 changed to reduce the threat of Cd. The results of Fourier Transform Infrared Spectrometry indicated that functional groups such as -OH, -COOH, and -NH2 participated in the Cd adsorption process. The contents of Cd adsorbed on the cell wall of L1 were 83.46-174.51% higher than that of L3. On the contrary, the contents of Cd accumulated in L1 cytoplasm were 38.77-74.77% lower than that of L3. As the level of Cd increased from 10 to 30 mg/L, the percentages of Cd distributed on the cell walls of L1 and L3 increased by 42.43% and 26.78%, respectively. The results also revealed that the contents of Cd absorbed by the sterilized strains L1 and L3 were 47.67-64.94% and 8.65-78.63% higher than that of living ones, respectively. In addition, the proline production of L1 was 23.75-109.68% higher than that of L3, while the malondialdehyde (MDA) production of L1 was 0.96-15.60% lower than that of L3. Thus, through the comparison of endophytic bacterial physiological responses, the possible characteristics and resistant mechanisms of macro-fungus endophytic bacteria under Cd stress were firstly reported.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Huanyan Luo
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - He Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Xitong Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No.24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, People's Republic of China.
| |
Collapse
|
115
|
He T, Xu ZJ, Wang JF, Wang FP, Zhou XF, Wang LL, Li QS. Improving cadmium accumulation by Solanum nigrum L. via regulating rhizobacterial community and metabolic function with phosphate-solubilizing bacteria colonization. CHEMOSPHERE 2022; 287:132209. [PMID: 34826911 DOI: 10.1016/j.chemosphere.2021.132209] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 05/03/2023]
Abstract
Soil cadmium (Cd) mobilized with phosphate-solubilizing bacteria (PSB), especially for strains effectively colonized in rhizosphere, is an important pathway for promoting its accumulation by Cd-hyperaccumulators. In this study, screened PSB strains, Acinetobacter pittii (AP) and Escherichia coli (EC), were used to evaluate their effects on Cd mobilization in rhizosphere, Cd accumulation by Solanum nigrum L., and rhizobacterial community and metabolic function under different colonization condition. Results indicated that AP or EC inoculated in soils significantly promoted plant growth, and simultaneously motivated Cd accumulation in S. nigrum L. by 119% and 88%, respectively, when compared with that of uninoculated treatment. Higher efficiency colonization of AP contributed to more organic acids (malic, l-proline, l-alanine, and γ-aminobutanoic) production in the rhizosphere soil and Cd accumulation by S. nigrum L., when compared with that of EC treatment. Taxonomic distribution and co-occurrence network analyses demonstrated that inoculation of AP or EC enriched dominant microbial taxa with plant growth promotion function and keystone taxa related to Cd mobilization in the rhizosphere soil, respectively. Inoculated strains up-regulated the expression of genes related to bacterial mobility, amino acid metabolism, and carbon metabolism among rhizobacterial community. Overall, this study provided a feasible method for soil Cd phytoremediation by promoting Cd mobilization with the enhancement of keystone taxa and organic acid secretion based on the high-efficiency colonization of PSB.
Collapse
Affiliation(s)
- Tao He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Zi-Jie Xu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Fo-Peng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Xue-Fang Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Li-Li Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
116
|
Kapadia C, Patel N, Rana A, Vaidya H, Alfarraj S, Ansari MJ, Gafur A, Poczai P, Sayyed RZ. Evaluation of Plant Growth-Promoting and Salinity Ameliorating Potential of Halophilic Bacteria Isolated From Saline Soil. FRONTIERS IN PLANT SCIENCE 2022; 13:946217. [PMID: 35909789 PMCID: PMC9335293 DOI: 10.3389/fpls.2022.946217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/17/2022] [Indexed: 05/09/2023]
Abstract
Among the biotic and abiotic stress affecting the physical, chemical, and biological properties of soil, salinity is a major threat that leads to the desertification of cultivable land throughout the world. The existence of diverse and versatile microbial populations inhabiting the nutrient-rich soil and varied soil conditions affects the soil dynamism. A normal soil constitutes 600 million bacteria belonging to about 20,000 species, which is reduced to 1 million with 5,000-8,000 species in stress conditions. Plant growth-promoting rhizobacteria (PGPR) are in symbiotic association with the plant system, which helps in combating the abiotic stress and increases the overall productivity and yield. These microorganisms are actively associated with varied cellular communication processes through quorum sensing and secondary metabolites such as the production of Indole-3-acetic acid (IAA), exopolysaccharide (EPS) siderophore, ammonia, ACC deaminase, and solubilization of phosphate. The present study focused on the isolation, identification, and characterization of the microorganisms isolated from the seacoast of Dandi, Navsari. Twelve isolates exhibited PGP traits at a high salt concentration of 15-20%. AD9 isolate identified as Bacillus halotolerans showed a higher ammonia production (88 ± 1.73 μg/mL) and phosphate solubilization (86 ± 3.06 μg/mL) at 15% salt concentration, while AD32* (Bacillus sp. clone ADCNO) gave 42.67 ±1.20 μg/mL IAA production at 20% salt concentration. AD2 (Streptomyces sp. clone ADCNB) and AD26 (Achromobacter sp. clone ADCNI) showed ACC deaminase activity of 0.61 ± 0.12 and 0.60 ± 0.04 nM α-ketobutyrate/mg protein/h, respectively. AD32 (Bacillus sp. clone ADCNL) gave a high siderophore activity of 65.40 ± 1.65%. These isolates produced salinity ameliorating traits, total antioxidant activities, and antioxidant enzymes viz. superoxide dismutase (SOD), Glutathione oxidase (GSH), and catalase (CAT). Inoculation of the multipotent isolate that produced PGP traits and salinity ameliorating metabolites promoted the plant growth and development in rice under salinity stress conditions. These results in 50% more root length, 25.00% more plant dry weight, and 41% more tillers compared to its control.
Collapse
Affiliation(s)
- Chintan Kapadia
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Nafisa Patel
- Naran Lala College of Professional and Applied Sciences, Navsari, India
- *Correspondence: Nafisa Patel
| | - Ankita Rana
- Naran Lala College of Professional and Applied Sciences, Navsari, India
| | - Harihar Vaidya
- Department of Plant Molecular Biology and Biotechnology, ASPEE College of Horticulture and Forestry, Navsari Agricultural University, Navsari, India
| | - Saleh Alfarraj
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College (Mahatma Jyotiba Phule Rohilkhand University Bareilly), Moradabad, India
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang, Indonesia
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Peter Poczai
| | - R. Z. Sayyed
- Department of Entomology, Asian PGPR Society for Sustainable Agriculture, Auburn University, Auburn, AL, United States
- Department of Microbiology, PSGVP Mandal's‘S I Patil Arts, G B Patel Science, and STKV Sangh Commerce College, Shahada, India
- R. Z. Sayyed
| |
Collapse
|
117
|
Al-Tarawneh A, Khleifat KM, Tarawneh IN, Shiyyab K, El-Hasan T, Sprocati AR, Alisi C, Tasso F, Alqaraleh M. Phenol biodegradation by plant growth promoting bacterium, S. odorifera: kinetic modeling and process optimization. Arch Microbiol 2021; 204:104. [PMID: 34967929 DOI: 10.1007/s00203-021-02691-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022]
Abstract
One of the main organic pollutants that could result from industrial products and chemical transformations is phenol. In the current study, the kinetics of Serratia odorifera, which was isolated from arable soil, was studied by growing it on broth minimal medium spiked with phenol as only carbon source and energy. The newly isolated plant growth-promoting bacterium (PGPB), S. odorifera, was used for the first time for phenol biodegradation. The growth kinetics parameters (phenol-dependent) including maximum specific growth rate (μmax), half-saturation coefficient (Ks), and the Haldane's growth kinetics inhibition coefficient (Ki), were tested via Haldane inhibition model and resulted on the 0.469 (h -1), 26.6 (mgL-1), and 292 (mgL-1), respectively. The sum of squared error (SSR) of 4.89 × 10-3 was fitted to the experimental data by Haldane equation. The results of phenol biodegradation were fitted into the modified Gombertz model. The increase of phenol concentrations led to increases in both the rate of phenol biodegradation and lagging time. The optimal phenol biodegradation and bacterial growth obtained by S. odorifera, were at 28 °C incubation temperature and a pH of 7.0. The pathway of phenol biodegradation by S. odorifera was proposed in the current study to provide a new insight into synchronization of phenol biodegradation and plant growth-promoting bacteria. This may play an important role in remediation of phenol-contaminated soil besides promoting the plant growth, thus lessening the plant stress.
Collapse
Affiliation(s)
- Amjad Al-Tarawneh
- Prince Faisal Center for Dead Sea, Environmental and Energy Research, Mutah University, Al-Karak, Jordan
| | - Khaled M Khleifat
- Department of Biology, College of Science, Mutah University, Al-Karak, 61710, Jordan.
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Ibrahim N Tarawneh
- Department of Chemistry, Al-Balqa Applied University, Al-Salt, 19117, Jordan
| | - Kholoud Shiyyab
- Department of Biology, College of Science, Mutah University, Al-Karak, 61710, Jordan
| | - Tayel El-Hasan
- Department of Chemistry, College of Science, Mutah University, Al-Karak, Jordan
| | - Anna Rosa Sprocati
- Territorial and Production Systems Sustainability Department, ENEA, via Anguillarese 301, 00123, Rome, Italy
| | - Chiara Alisi
- Territorial and Production Systems Sustainability Department, ENEA, via Anguillarese 301, 00123, Rome, Italy
| | - Flavia Tasso
- Territorial and Production Systems Sustainability Department, ENEA, via Anguillarese 301, 00123, Rome, Italy
| | - Moath Alqaraleh
- Pharmacological and Diagnostic Research Center (PDRC), Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, 19328, Jordan
| |
Collapse
|
118
|
Saha L, Tiwari J, Bauddh K, Ma Y. Recent Developments in Microbe-Plant-Based Bioremediation for Tackling Heavy Metal-Polluted Soils. Front Microbiol 2021; 12:731723. [PMID: 35002995 PMCID: PMC8733405 DOI: 10.3389/fmicb.2021.731723] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
Soil contamination with heavy metals (HMs) is a serious concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Rapid industrialization and activities such as mining, manufacturing, and construction are generating a huge quantity of toxic waste which causes environmental hazards. There are various traditional physicochemical techniques such as electro-remediation, immobilization, stabilization, and chemical reduction to clean the contaminants from the soil. However, these methods require high energy, trained manpower, and hazardous chemicals make these techniques costly and non-environment friendly. Bioremediation, which includes microorganism-based, plant-based, microorganism-plant associated, and other innovative methods, is employed to restore the contaminated soils. This review covers some new aspects and dimensions of bioremediation of heavy metal-polluted soils. The bioremediation potential of bacteria and fungi individually and in association with plants has been reviewed and critically examined. It is reported that microbes such as Pseudomonas spp., Bacillus spp., and Aspergillus spp., have high metal tolerance, and bioremediation potential up to 98% both individually and when associated with plants such as Trifolium repens, Helianthus annuus, and Vallisneria denseserrulata. The mechanism of microbe's detoxification of metals depends upon various aspects which include the internal structure, cell surface properties of microorganisms, and the surrounding environmental conditions have been covered. Further, factors affecting the bioremediation efficiency and their possible solution, along with challenges and future prospects, are also discussed.
Collapse
Affiliation(s)
- Lala Saha
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Jaya Tiwari
- Department of Community Medicine and School of Public Health, PGIMER, Chandigarh, India
| | - Kuldeep Bauddh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Ying Ma
- College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
119
|
Niu M, Bao C, Zhan J, Yue X, Zou J, Su N, Cui J. Plasma membrane-localized protein BcHIPP16 promotes the uptake of copper and cadmium in planta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112920. [PMID: 34678630 DOI: 10.1016/j.ecoenv.2021.112920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the toxic heavy metals in soil, which not only suppresses crop production but also threatens human health. In this study, we aim to clarify the biological function of Cd-related gene BcHIPP16, so as to provide potential genetic solutions to decrease the Cd levels of pak choi. Tissue expression analysis showed that BcHIPP16 expressed in almost all the plant bodies. The transcriptional level of BcHIPP16 in roots was higher than that in shoots, which was significantly induced by copper (Cu) deficiency and Cd exposure conditions. Subcellular localization revealed that BcHIPP16 localized in plasma membrane. Expressing BcHIPP16 in yeast cells improved the sensitivity to Cu and Cd and improved their accumulation in yeast. Furthermore, the Cu and Cd content of Arabidopsis seedlings were increased and complemented, respectively when expressing BcHIPP16 in wild type (WT) and hip16 mutants. Non-invasive Micro-test Technology (NMT) was used to measure the real-time Cd2+ influx from the root surface of BcHIPP16 transgenic Arabidopsis lines, and the result demonstrated that BcHIPP16 promoted Cd2+ influx into Arabidopsis root cells. Taken together, our study showed that BcHIPP16 contributed to absorbing nutrient metal Cu and heavy metal Cd in planta.
Collapse
Affiliation(s)
- Mengyang Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Changjian Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Junyi Zhan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Xiaomeng Yue
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianwen Zou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Cui
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
120
|
Phytoremediation of Cadmium Contaminated Soil Using Sesbania sesban L. in Association with Bacillus anthracis PM21: A Biochemical Analysis. SUSTAINABILITY 2021. [DOI: 10.3390/su132413529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sustainable food production to feed nine to 10 billion people by 2050 is one of the greatest challenges we face in the 21st century. Due to anthropogenic activities, cadmium (Cd) contamination is ubiquitous with deleterious effects on plant and soil microbiota. In the current study, the phytoremediation potential of Sesbania sesban L. was investigated in Cd-spiked soil inoculated with Bacillus anthracis PM21. The Cd-spiked soil drastically reduced important plant attributes; however, inoculation of B. anthracis PM21 significantly (p ≤ 0.05) enhanced root length (17.21%), shoot length (15.35%), fresh weight (37.02%), dry weight (28.37%), chlorophyll a (52.79%), chlorophyll b (48.38%), and total chlorophyll contents (17.65%) at the Cd stress level of 200 mg/kg as compared to the respective control. In addition, bacterial inoculation improved superoxide dismutase (11.98%), peroxidase (12.16%), catalase (25.26%), and relative water content (16.66%) whereas it reduced proline content (16.37%), malondialdehyde content (12.67%), and electrolyte leakage (12.5%). Inoculated plants showed significantly (p ≤ 0.05) higher Cd concentration in the S. sesban root (118.6 mg/kg) and shoot (73.4 mg/kg) with a translocation (0.61) and bioconcentration factor (0.36), at 200 mg/kg Cd. Surface characterization of bacteria through Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) predicted the involvement of various functional groups and cell surface morphology in the adsorption of Cd ions. Amplification of the CzcD gene in strain PM21, improved antioxidant activities, and the membrane stability of inoculated S. sesban plants conferred Cd tolerance of strain PM21. In addition, the evaluated bacterial strain B. anthracis PM21 revealed significant plant growth-promoting potential in S. sesban; thus, it can be an effective candidate for phyto-remediation of Cd-polluted soil.
Collapse
|
121
|
Tang Y, Gan T, Cao M, Song J, Chen D, Luo J. Impacts of root pruning intensity and direction on the phytoremediation of moderately Cd-polluted soil by Celosia argentea. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:1152-1162. [PMID: 34872411 DOI: 10.1080/15226514.2021.2011832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root pruning can impact the physiological functions of various plants, which influence phytoremediation. A series of root pruning treatments with different combinations of direction (two-side pruning and four-side pruning) and intensity (10, 25, and 33% pruning) were performed on Celosia argentea L. All two-side pruning treatments, regardless of intensity, decreased the dry biomass of the C. argentea roots at the end of the experiment relative to that of the control. However, the two-side-10% and two-side-25% pruning treatments stimulated the growth rate of the plant leaves significantly by 58.6 and 41.4%, respectively, relative to that of the control, and even offset the weight loss of the plant roots. Contrastingly, the two-side-33% pruning treatment reduced the biomass yield of leaves by 24.1%. For the four-side pruning treatments, the low intensity increased the dry weight of both the plant roots and leaves, while both decreased under high-intensity root pruning. The dry weight, Cd content, pigment level, and photosynthetic efficiency in the four-side-10% treatment were higher than those in the other treatments during the experiment. This study indicates that root pruning with a suitable combination of direction and intensity can positively influence the Cd removal ability of C. argentea.
Collapse
Affiliation(s)
- Youjun Tang
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Tian Gan
- School of Civil Engineering, Shandong University, Jinan, China
| | - Min Cao
- University of Leicester, Leicester, UK
| | - Jinnuo Song
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Dan Chen
- College of Resources and Environment, Yangtze University, Wuhan, China
| | - Jie Luo
- College of Resources and Environment, Yangtze University, Wuhan, China
| |
Collapse
|
122
|
El-Shahir AA, El-Tayeh NA, Ali OM, Abdel Latef AAH, Loutfy N. The Effect of Endophytic Talaromyces pinophilus on Growth, Absorption and Accumulation of Heavy Metals of Triticum aestivum Grown on Sandy Soil Amended by Sewage Sludge. PLANTS (BASEL, SWITZERLAND) 2021; 10:2659. [PMID: 34961130 PMCID: PMC8704920 DOI: 10.3390/plants10122659] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 05/24/2023]
Abstract
Sewage sludge improves agricultural soil and plant growth, but there are risks associated with its use, including high heavy metal content. In this study, experiments were carried out to investigate the role of endophytic Talaromyces pinophilus MW695526 on the growth of Triticum aestivum cultivated in soil amended with sewage sludge and its phytoremediation ability. T. pinophilus could produce gibberellic acid (GA) and stimulate T. aestivum to accumulate GA. The results showed that inoculation with T. pinophilus boosted plant growth criteria, photosynthetic pigments, osmolytes (soluble proteins, soluble sugars and total amino acids), enzymatic antioxidants (catalase, superoxide dismutase and peroxidase), K, Ca and Mg. On the other hand, it reduced Na, Na/K ratio, Cd, Ni, Cu and Zn in the growth media as well as in the shoot and root of T. aestivum. The results suggest that endophytic T. pinophilus can work as a barrier to reduce the absorption of heavy metals in T. aestivum cultivated in soil amended with sewage sludge.
Collapse
Affiliation(s)
- Amany A. El-Shahir
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| | - Noha A. El-Tayeh
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| | - Omar M. Ali
- Department of Chemistry, Turabah University College, Turabah Branch, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Arafat Abdel Hamed Abdel Latef
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| | - Naglaa Loutfy
- Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena 83523, Egypt; (N.A.E.-T.); (N.L.)
| |
Collapse
|
123
|
Pishchik VN, Filippova PS, Mirskaya GV, Khomyakov YV, Vertebny VE, Dubovitskaya VI, Ostankova YV, Semenov AV, Chakrabarty D, Zuev EV, Chebotar VK. Epiphytic PGPB Bacillus megaterium AFI1 and Paenibacillus nicotianae AFI2 Improve Wheat Growth and Antioxidant Status under Ni Stress. PLANTS (BASEL, SWITZERLAND) 2021; 10:2334. [PMID: 34834698 PMCID: PMC8620400 DOI: 10.3390/plants10112334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 06/12/2023]
Abstract
The present study demonstrates the Ni toxicity-ameliorating and growth-promoting abilities of two different bacterial isolates when applied to wheat (Triticum aestivum L.) as the host plant. Two bacterial strains tolerant to Ni stress were isolated from wheat seeds and selected based on their ability to improve the germination of wheat plants; they were identified as Bacillus megaterium AFI1 and Paenibacillus nicotianae AFI2. The protective effects of these epiphytic bacteria against Ni stress were studied in model experiments with two wheat cultivars: Ni stress-tolerant Leningradskaya 6 and susceptible Chinese spring. When these isolates were used as the inoculants applied to Ni-treated wheat plants, the growth parameters and the levels of photosynthetic pigments of the two wheat cultivars both under normal and Ni-stress conditions were increased, though B. megaterium AFI1 had a more pronounced ameliorative effect on the Ni contents in plant tissues due to its synthesis of siderophores. Over the 10 days of Ni exposure, the plant growth promotion bacteria (PGPB) significantly reduced the lipid peroxidation (LPO), ascorbate peroxidase (APX), superoxide dismutase (SOD) activities and proline content in the leaves of both wheat cultivars. The PGPB also increased peroxidase (POX) activity and the levels of chlorophyll a, chlorophyll b, and carotenoids in the wheat leaves. It was concluded that B. megaterium AFI1 is an ideal candidate for bioremediation and wheat growth promotion against Ni-induced oxidative stress, as it increases photosynthetic pigment contents, induces the antioxidant defense system, and lowers Ni metal uptake.
Collapse
Affiliation(s)
- Veronika N. Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, 196608 St. Petersburg, Russia
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Polina S. Filippova
- St. Petersburg Federal Research Center of the Russian Academy of Sciences, North-West Centre of Interdisciplinary Researches of Problems of Food Maintenance, Podbelskogo hwy, 7, Pushkin, 196608 St. Petersburg, Russia;
| | - Galina V. Mirskaya
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Yuriy V. Khomyakov
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Vitaliy E. Vertebny
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Viktoriya I. Dubovitskaya
- Agrophysical Scientific Research Institute, Grazhdansky pr. 14, 195220 St. Petersburg, Russia; (G.V.M.); (Y.V.K.); (V.E.V.); (V.I.D.)
| | - Yuliya V. Ostankova
- St. Petersburg Pasteur Institute, Federal Service for the Oversight of Consumer Protection and Welfare, 14, Mira Str., 197101 St. Petersburg, Russia;
| | - Aleksandr V. Semenov
- Yekaterinburg Research Institute of Viral Infections, The Federal Budgetary Institution of Science “State Scientific Center of Virology and Biotechnology Vector”, The Federal Service for Supervision of Consumer Rights Protection and Human Well-Being, 23, Letnyay Str., 620030 Yekaterinburg, Russia;
| | - Debasis Chakrabarty
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 22600, India;
| | - Evgeny V. Zuev
- Federal Research Center N. I. Vavilov, All-Russian Institute of Plant Genetic Resources, Bolshaya Morskaya Str., 42-44, 190000 St. Petersburg, Russia;
| | - Vladimir K. Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Podbelskogo hwy, 3, Pushkin, 196608 St. Petersburg, Russia
| |
Collapse
|
124
|
Chalot M, Puschenreiter M. Editorial: Exploring Plant Rhizosphere, Phyllosphere and Endosphere Microbial Communities to Improve the Management of Polluted Sites. Front Microbiol 2021; 12:763566. [PMID: 34691011 PMCID: PMC8527027 DOI: 10.3389/fmicb.2021.763566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- Michel Chalot
- UMR Chrono-environnement, CNRS 6249 - Université de Bourgogne-Franche-Comté, Besançon, France.,Université de Lorraine, Faculté des Sciences et Technologies, Nancy, France
| | | |
Collapse
|
125
|
Gul I, Manzoor M, Hashim N, Shah GM, Waani SPT, Shahid M, Antoniadis V, Rinklebe J, Arshad M. Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117667. [PMID: 34426392 DOI: 10.1016/j.envpol.2021.117667] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/10/2021] [Accepted: 06/26/2021] [Indexed: 05/28/2023]
Abstract
Cadmium (Cd) and lead (Pb) are ubiquitously present in surface soils, due to anthropogenic activities, causing threat to ecological and human health because of their carcinogenic nature. They accumulate in large quantities in the environment and affect negatively soil microbiota, plants, animals, and humans. For the cleanup of Cd/Pb polluted soils, different plant species have been studied. Many plants have shown the potential to hyperaccumulate Cd/Pb in their above-ground tissues. These plants decrease soil pH by root exudation or by releasing H+ ions, and this, in turn, increases the bioavailability of Cd/Pb for plant uptake. Different environmental processes related to soil organic matter, microorganisms, pH, genetic modifications, and various soil-borne chelating agents affect the potential of phytoremediation technology. Review papers trying to identify a single factor influencing the phytoremediation of heavy metals are available in the literature. However, an integrated approach dealing with different factors involved in the remediation of both metals is scarcely discussed. The main focus of this review is to discuss the phytoextraction technique for Cd/Pb removal from contaminated sites along with detoxification mechanisms. Further, the challenges in the Cd/Pb phytoextraction and different options available to cope with these challenges are also discussed. The update on the relevant findings on the use of microorganisms and amendments in enhancing the Cd/Pb phytoextraction is also provided. Finally, the areas to be explored in future research for the removal of Cd/Pb by integrated strategies have been discussed.
Collapse
Affiliation(s)
- Iram Gul
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan; Department of Earth and Environmental Sciences, Hazara University, Mansehra, Pakistan
| | - Maria Manzoor
- Department of Environmental Sciences, University of Okara, Okara, Pakistan
| | - Nosheen Hashim
- Department of Environmental Sciences, University of Peshawar, Peshawar, Pakistan
| | - Ghulam Mujtaba Shah
- Department of Earth and Environmental Sciences, Hazara University, Mansehra, Pakistan
| | - Sayyada Phziya Tariq Waani
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
126
|
Rallos RV, Dicen GP, Habibi S, Salem D, Ohkama-Ohtsu N, Yokoyama T. Influence of potassium-solubilizing bacteria on the growth and radiocesium phyto-transfer of Brassica rapa L. var. perviridis grown in contaminated Fukushima soils. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106682. [PMID: 34148005 DOI: 10.1016/j.jenvrad.2021.106682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The supply of K, being the chemical analog of Cs, affects the phytotransfer of radiocesium such as 137Cs from contaminated soils and its accumulation in plant tissues. Since K and Cs have high affinity to the same clay particle surfaces, the presence of potassium-solubilizing bacteria (KSB) could increase the availability of not only K+ in the rhizosphere but also of radiocesium. In this study, we obtained five KSB isolates with the highest solubilization capacities from soybean rhizosphere on modified Aleksandrov medium containing sericite as K source. Based on biochemical and 16S rRNA gene sequence analysis, we identified the bacteria as Bacillus aryabhattai MG774424, Pseudomonas umsongensis MG774425, P. frederiksbergensis MG774426, Burkholderia sabiae MG774427, and P. mandelii MG774428. We evaluated the KSB isolates based on plant growth promotion and 137Cs accumulation in komatsuna (Brassica rapa L. var. Perviridis) grown in three soils collected from Miyanoiri, Takanishi, and Ota contaminated by 137Cs from the Fukushima accident. Inoculation with KSB showed beneficial effects on plant growth and increased the overall plant biomass production (~40%). On the average, KSB inoculation resulted in the removal of 0.07 ± 0.04% of 137Cs from the soil, more than twice the control. But similar to the effect of KSB inoculation on komatsuna biomass production, different KSBs performed variably and exhibited site-specific responses independent of their K-solubilizing capacities, with higher 137Cs phyto-transfer in roots than in shoots. In terms of root transfer factor (TF), values were highest in komatsuna plants grown in Miyanoiri and Ota soils inoculated with P. frederiksbergensis and Burkholderia sabiae, while they were highest in Takanishi soils inoculated with Bacillus aryabhattai and P. umsongensis. These TF values were also much higher than previously reported values for komatsuna grown in 137Cs-contaminated Fukushima soils inoculated with other rhizobacteria. Thus, KSB inoculation significantly enhance not only the growth of komatsuna but 137Cs uptake.
Collapse
Affiliation(s)
- Roland V Rallos
- Agriculture Research Section, Atomic Research Division, Department of Science and Technology-Philippine Nuclear Research Institute (DOST-PNRI), Commonwealth Avenue, Diliman, 1101, Quezon City, Philippines; Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-12 8509, Japan.
| | - Gerald P Dicen
- Agriculture Research Section, Atomic Research Division, Department of Science and Technology-Philippine Nuclear Research Institute (DOST-PNRI), Commonwealth Avenue, Diliman, 1101, Quezon City, Philippines
| | - Safiullah Habibi
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-8509, Japan; Faculty of Agriculture, Kabul University, Kabul, Afghanistan
| | - Djedidi Salem
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-12 8509, Japan
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-12 8509, Japan; Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-12 8509, Japan
| | - Tadashi Yokoyama
- Institute of Agriculture, Tokyo University of Agriculture and Technology, Saiwaicho 3-5-8, Fuchu, Tokyo, 183-12 8509, Japan; The Faculty of Food and Agricultural Science, Fukushima University, Kanayagawa, Fukushima City, Fukushima, 960-1296, Japan
| |
Collapse
|
127
|
Zaman NR, Chowdhury UF, Reza RN, Chowdhury FT, Sarker M, Hossain MM, Akbor MA, Amin A, Islam MR, Khan H. Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. PLoS One 2021; 16:e0257863. [PMID: 34591915 PMCID: PMC8483353 DOI: 10.1371/journal.pone.0257863] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
The endophytic bacterium Burkholderia contaminans NZ was isolated from jute, which is an important fiber-producing plant. This bacterium exhibits significant growth promotion activity in in vivo pot experiments, and like other plant growth-promoting (PGP) bacteria fixes nitrogen, produces indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. B. contaminans NZ is considered to exert a promising growth inhibitory effect on Macrophomina phaseolina, a phytopathogen responsible for infecting hundreds of crops worldwide. This study aimed to identify the possibility of B. contaminans NZ as a safe biocontrol agent and assess its effectiveness in suppressing phytopathogenic fungi, especially M. phaseolina. Co-culture of M. phaseolina with B. contaminans NZ on both solid and liquid media revealed appreciable growth suppression of M. phaseolina and its chromogenic aberration in liquid culture. Genome mining of B. contaminans NZ using NaPDoS and antiSMASH revealed gene clusters that displayed 100% similarity for cytotoxic and antifungal substances, such as pyrrolnitrin. GC-MS analysis of B. contaminans NZ culture extracts revealed various bioactive compounds, including catechol; 9,10-dihydro-12'-hydroxy-2'-methyl-5'-(phenylmethyl)- ergotaman 3',6',18-trione; 2,3-dihydro-3,5- dihydroxy-6-methyl-4H-pyran-4-one; 1-(1,6-Dioxooctadecyl)- pyrrolidine; 9-Octadecenamide; and 2- methoxy- phenol. These compounds reportedly exhibit tyrosinase inhibitory, antifungal, and antibiotic activities. Using a more targeted approach, an RP-HPLC purified fraction was analyzed by LC-MS, confirming the existence of pyrrolnitrin in the B. contaminans NZ extract. Secondary metabolites, such as catechol and ergotaman, have been predicted to inhibit melanin synthesis in M. phaseolina. Thus, B. contaminans NZ appears to inhibit phytopathogens by apparently impairing melanin synthesis and other potential biochemical pathways, exhibiting considerable fungistatic activity.
Collapse
Affiliation(s)
- Nazia R. Zaman
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Umar F. Chowdhury
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Rifath N. Reza
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Farhana T. Chowdhury
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mrinmoy Sarker
- NSU Genome Research Institute (NGRI), Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Muhammad M. Hossain
- NSU Genome Research Institute (NGRI), Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Md. Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Al Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Riazul Islam
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Haseena Khan
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
128
|
Saeed Q, Xiukang W, Haider FU, Kučerik J, Mumtaz MZ, Holatko J, Naseem M, Kintl A, Ejaz M, Naveed M, Brtnicky M, Mustafa A. Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. Int J Mol Sci 2021; 22:10529. [PMID: 34638870 PMCID: PMC8509026 DOI: 10.3390/ijms221910529] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 01/23/2023] Open
Abstract
Agriculture in the 21st century is facing multiple challenges, such as those related to soil fertility, climatic fluctuations, environmental degradation, urbanization, and the increase in food demand for the increasing world population. In the meanwhile, the scientific community is facing key challenges in increasing crop production from the existing land base. In this regard, traditional farming has witnessed enhanced per acre crop yields due to irregular and injudicious use of agrochemicals, including pesticides and synthetic fertilizers, but at a substantial environmental cost. Another major concern in modern agriculture is that crop pests are developing pesticide resistance. Therefore, the future of sustainable crop production requires the use of alternative strategies that can enhance crop yields in an environmentally sound manner. The application of rhizobacteria, specifically, plant growth-promoting rhizobacteria (PGPR), as an alternative to chemical pesticides has gained much attention from the scientific community. These rhizobacteria harbor a number of mechanisms through which they promote plant growth, control plant pests, and induce resistance to various abiotic stresses. This review presents a comprehensive overview of the mechanisms of rhizobacteria involved in plant growth promotion, biocontrol of pests, and bioremediation of contaminated soils. It also focuses on the effects of PGPR inoculation on plant growth survival under environmental stress. Furthermore, the pros and cons of rhizobacterial application along with future directions for the sustainable use of rhizobacteria in agriculture are discussed in depth.
Collapse
Affiliation(s)
- Qudsia Saeed
- College of Natural Resources and Environment, Northwest Agriculture and Forestry University, Yangling 712100, China;
| | - Wang Xiukang
- College of Life Sciences, Yan’an University, Yan’an 716000, China
| | - Fasih Ullah Haider
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jiří Kučerik
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
| | - Muhammad Zahid Mumtaz
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Defense Road, Lahore 54000, Pakistan;
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Munaza Naseem
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Antonin Kintl
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
- Agricultural Research, Ltd., Zahradni 400/1, 664 41 Troubsko, Czech Republic
| | - Mukkaram Ejaz
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Muhammad Naveed
- Institute of Soil and Environmental Science, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan; (M.N.); (M.N.)
| | - Martin Brtnicky
- Institute of Chemistry and Technology of Environmental Protection, Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic; (J.K.); (M.B.)
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (J.H.); (A.K.)
| | - Adnan Mustafa
- Biology Center CAS, SoWa RI, Na Sadkach 7, 370 05 České Budějovice, Czech Republic
| |
Collapse
|
129
|
Pishchik V, Mirskaya G, Chizhevskaya E, Chebotar V, Chakrabarty D. Nickel stress-tolerance in plant-bacterial associations. PeerJ 2021; 9:e12230. [PMID: 34703670 PMCID: PMC8487243 DOI: 10.7717/peerj.12230] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Nickel (Ni) is an essential element for plant growth and is a constituent of several metalloenzymes, such as urease, Ni-Fe hydrogenase, Ni-superoxide dismutase. However, in high concentrations, Ni is toxic and hazardous to plants, humans and animals. High levels of Ni inhibit plant germination, reduce chlorophyll content, and cause osmotic imbalance and oxidative stress. Sustainable plant-bacterial native associations are formed under Ni-stress, such as Ni hyperaccumulator plants and rhizobacteria showed tolerance to high levels of Ni. Both partners (plants and bacteria) are capable to reduce the Ni toxicity and developed different mechanisms and strategies which they manifest in plant-bacterial associations. In addition to physical barriers, such as plants cell walls, thick cuticles and trichomes, which reduce the elevated levels of Ni entrance, plants are mitigating the Ni toxicity using their own antioxidant defense mechanisms including enzymes and other antioxidants. Bacteria in its turn effectively protect plants from Ni stress and can be used in phytoremediation. PGPR (plant growth promotion rhizobacteria) possess various mechanisms of biological protection of plants at both whole population and single cell levels. In this review, we highlighted the current understanding of the bacterial induced protective mechanisms in plant-bacterial associations under Ni stress.
Collapse
Affiliation(s)
- Veronika Pishchik
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Galina Mirskaya
- Agrophysical Scientific Research Institute, Saint-Petersburg, Russian Federation
| | - Elena Chizhevskaya
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | - Vladimir Chebotar
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Pushkin, Russian Federation
| | | |
Collapse
|
130
|
Ali M, Ali Q, Sohail MA, Ashraf MF, Saleem MH, Hussain S, Zhou L. Diversity and Taxonomic Distribution of Endophytic Bacterial Community in the Rice Plant and Its Prospective. Int J Mol Sci 2021; 22:ijms221810165. [PMID: 34576331 PMCID: PMC8465699 DOI: 10.3390/ijms221810165] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 11/16/2022] Open
Abstract
Endophytic bacterial communities are beneficial communities for host plants that exist inside the surfaces of plant tissues, and their application improves plant growth. They benefit directly from the host plant by enhancing the nutrient amount of the plant’s intake and influencing the phytohormones, which are responsible for growth promotion and stress. Endophytic bacteria play an important role in plant-growth promotion (PGP) by regulating the indirect mechanism targeting pest and pathogens through hydrolytic enzymes, antibiotics, biocontrol potential, and nutrient restriction for pathogens. To attain these benefits, firstly bacterial communities must be colonized by plant tissues. The nature of colonization can be achieved by using a set of traits, including attachment behavior and motility speed, degradation of plant polymers, and plant defense evasion. The diversity of bacterial endophytes colonization depends on various factors, such as plants’ relationship with environmental factors. Generally, each endophytic bacteria has a wide host range, and they are used as bio-inoculants in the form of synthetic applications for sustainable agriculture systems and to protect the environment from chemical hazards. This review discusses and explores the taxonomic distribution of endophytic bacteria associated with different genotypes of rice plants and their origin, movement, and mechanism of PGP. In addition, this review accentuates compressive meta data of endophytic bacteria communities associated with different genotypes of rice plants, retrieves their plant-growth-promoting properties and their antagonism against plant pathogens, and discusses the indication of endophytic bacterial flora in rice plant tissues using various methods. The future direction deepens the study of novel endophytic bacterial communities and their identification from rice plants through innovative techniques and their application for sustainable agriculture systems.
Collapse
Affiliation(s)
- Mohsin Ali
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (Q.A.); (L.Z.)
| | - Muhammad Aamir Sohail
- Center for Excellence in Molecular Plant Sciences, National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China;
| | | | - Muhammad Hamzah Saleem
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Punjab, Pakistan;
| | - Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
- Correspondence: (Q.A.); (L.Z.)
| |
Collapse
|
131
|
Kang DJ, Tazoe H, Yamada M. Effects of environmental conditions, low-level potassium, ethylenediaminetetraacetic acid, or combination treatment on radiocesium-137 decontamination in Napier grass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49602-49612. [PMID: 33939095 DOI: 10.1007/s11356-021-14177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Phytoextraction is widely used to remove environmental pollutants such as heavy metals or radionuclides from soil. It is important to understand how to enhance the accumulation of contaminants by plants. Previously, we found that Napier grass (Pennisetum purpureum Schum.) has the potential to effectively remove Cs (133Cs and 137Cs). In order to enhance the remediation efficiency of Napier grass, we evaluated the effects of low-level K (K), ethylenediaminetetraacetic acid (EDTA), or the combination of low-level K and EDTA (K+EDTA). We also examined the differences in 137Cs decontamination between two cropping years (2018 and 2019). Overall, there were no prominent effects from the K, EDTA, or K+EDTA treatments on plant growth (plant height, tiller number), aboveground biomass, 137Cs concentration, and 137Cs removal ratio (CR) in 2 years. However, the aboveground biomass (P < 0.001), 137Cs concentration (P < 0.001 in 2019 only), and CR (P < 0.001) in plants grown in the first growing period were significantly higher than in plants grown in the second growing period in both years. The mean 137Cs concentration (P < 0.001) and total CR (P < 0.001) per year was significantly greater in 2019 than in 2018. The precipitation amount during the cultivation period in 2019 (1197 mm) was 1.8-fold higher than in 2018 (655 mm). In this study, the K, EDTA, and K+EDTA treatments had less effect plant growth than the natural environmental conditions. To enhance remediation efficiency, soil moisture is one important factor to produce more aboveground biomass to achieve high CR in Napier grass.
Collapse
Affiliation(s)
- Dong-Jin Kang
- Teaching and Research Center for Bio-coexistence, Faculty of Agriculture and Life Science, Hirosaki University, Goshogawara, 037-0202, Japan.
| | - Hirofumi Tazoe
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Japan
| | - Masatoshi Yamada
- Institute of Radiation Emergency Medicine, Hirosaki University, Hirosaki, 036-8564, Japan
- Marine Ecology Research Institute, Chiba, 299-5105, Japan
| |
Collapse
|
132
|
Abstract
Soil contamination with petroleum hydrocarbons (PHCs) has become a global concern and has resulted from the intensification of industrial activities. This has created a serious environmental issue; therefore, there is a need to find solutions, including application of efficient remediation technologies or improvement of current techniques. Rhizoremediation is a green technology that has received global attention as a cost-effective and possibly efficient remediation technique for PHC-polluted soil. Rhizoremediation refers to the use of plants and their associated microbiota to clean up contaminated soils, where plant roots stimulate soil microbes to mineralize organic contaminants to H2O and CO2. However, this multipartite interaction is complicated because many biotic and abiotic factors can influence microbial processes in the soil, making the efficiency of rhizoremediation unpredictable. This review reports the current knowledge of rhizoremediation approaches that can accelerate the remediation of PHC-contaminated soil. Recent approaches discussed in this review include (1) selecting plants with desired characteristics suitable for rhizoremediation; (2) exploiting and manipulating the plant microbiome by using inoculants containing plant growth-promoting rhizobacteria (PGPR) or hydrocarbon-degrading microbes, or a combination of both types of organisms; (3) enhancing the understanding of how the host–plant assembles a beneficial microbiome, and how it functions, under pollutant stress. A better understanding of plant–microbiome interactions could lead to successful use of rhizoremediation for PHC-contaminated soil in the future.
Collapse
|
133
|
Wang L, Chen H, Wu J, Huang L, Brookes PC, Mazza Rodrigues JL, Xu J, Liu X. Effects of magnetic biochar-microbe composite on Cd remediation and microbial responses in paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125494. [PMID: 33652225 DOI: 10.1016/j.jhazmat.2021.125494] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
There is growing global interest in the bioremediation of cadmium (Cd) using combinations of biochar and microorganisms. However, the interactions among biochar, introduced and indigenous microorganisms remain unclear. Accordingly, a 90 day microcosm experiment was conducted to investigate this by adding Bacillus sp. K1 strain inoculated rice straw biochar (SBB) and magnetic straw biochar (MBB) into a Cd contaminated paddy soil from Hunan, China. All treatments were incubated aerobically (60% water holding capacity) or anaerobically for 90 d. During both soil incubations, Bacillus sp. K1 successfully colonized in soil with composites applications. Soil pH was significantly increased from acid to neutral, and available Cd decreased with the addition of both composites. The better remediation efficiency of MBB than SBB under anerobic conditions was attributed to the transformation of acetic acid-extractable Cd into the residual fraction, caused by Cd2+ bonding with crystal Fe3O4. The application of the two kinds of composites caused similar changes to both microbial communities. There was a slight decrease in indigenous microbial alpha diversity with the MBB aerobic application, while the total population number of bacteria was increased by 700%. Both the redundancy analysis and Mantel analyses indicated that pH and microbial biomass C contributed to the colonization of Bacillus sp. K1 with SBB under aerobic conditions, and with MBB under anerobic conditions, respectively. The research provides a new insight into interactive effects and investigates immobilization mechanisms involved of bacterial/biochar composites in anaerobic and aerobic soils.
Collapse
Affiliation(s)
- Lu Wang
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China; University of California - Davis, Davis, CA 95616, USA
| | - Hanrui Chen
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jizi Wu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Laibin Huang
- University of California - Davis, Davis, CA 95616, USA
| | - Philip C Brookes
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | | | - Jianming Xu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental Natural Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
134
|
Wang L, Zhang Q, Liao X, Li X, Zheng S, Zhao F. Phytoexclusion of heavy metals using low heavy metal accumulating cultivars: A green technology. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125427. [PMID: 33609878 DOI: 10.1016/j.jhazmat.2021.125427] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Heavy metal (HM) pollution of farmland is a serious problem worldwide and consumption of HM-contaminated food products poses significant public health risks. Phytoexclusion using low HM accumulating cultivars (LACs) is a promising and practical technology to mitigate the risk of HM contamination of agricultural products grown in polluted soils, and does not alter cultivation practices, is easy to apply, and is economical. This review provides an overview of the major scientific advances accomplished in the field of LACs worldwide. The LACs concept and identification criteria are presented, and the known LACs among currently cultivated grain crops and vegetables are re-evaluated. The low HM accumulation by LACs is affected by crop ecophysiological features and soil physicochemical characteristics. Taking low Cd accumulating cultivars as an example, it is known that they can efficiently exclude Cd from entering their edible parts in three ways: 1) decrease in root Cd uptake by reducing organic acids secretion in the rhizosphere and transport protein production; 2) restriction of Cd translocation from roots to shoots via enhanced Cd retention in the cell wall and Cd sequestration in vacuoles; and 3) reduction in Cd translocation from shoots to grains by limiting Cd redirection and remobilization mediated through nodes. We propose an LAC application strategy focused on LACs and optimized to work with other agronomic measures according to the classification of HM risk level for LACs, providing a cost-effective and practical solution for safe utilization of large areas of farmland polluted with low to moderate levels of HMs.
Collapse
Affiliation(s)
- Liang Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China
| | - Qingying Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; Beijing Key Laboratory of Environmental Damage Assessment and Remediation, Beijing 100101, China.
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture, Beijing 100125, China
| | - Shunan Zheng
- Rural Energy & Environment Agency, Ministry of Agriculture, Beijing 100125, China
| | - Fenghua Zhao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
135
|
Tamariz-Angeles C, Huamán GD, Palacios-Robles E, Olivera-Gonzales P, Castañeda-Barreto A. Characterization of siderophore-producing microorganisms associated to plants from high-Andean heavy metal polluted soil from Callejón de Huaylas (Ancash, Perú). Microbiol Res 2021; 250:126811. [PMID: 34242923 DOI: 10.1016/j.micres.2021.126811] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/10/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
Endophytic and rhizospheric microorganisms associated with six native plants adapted to heavy metal polluted soil from Punta Olímpica and Chahuapampa, located in Callejón de Huaylas mountains, were evaluated as potential candidates for technologies to clean polluted ecosystems. It was selected 14 bacteria and 9 fungi strains by their iron and/or aluminum siderophore production trait, where BEP17-Dm showed higher production. According to the 16S rDNA analysis, bacteria belong to Pseudomonas, Bacillus, and Achromobacter genera, whereas by ITS analysis fungi belong to Talaromyces, Hypoxylon, Tolypocladium, and Penicillium. All bacteria strains tolerated lead (2-8 mM) and eigth tolerated cadmium (1-6 mM); also all fungi tolerated lead (9-70 mM) and cadmium (3-10 mM). Two bacteria and six fungi solubilized cadmium carbonate, while eleven bacteria and two fungi solubilized tricalcium phosphate, where P. japonica BEP18-Dm and B. subtilis BRU16-Sr exhibited higher solubilization index. None strains solubilized lead carbonate. BEP18-Dm produced higher concentration of IAA (53.42 μgml-1); while six bacteria and all fungi strains produced a low concentration of auxins. Medicago sativa seedlings inoculated with BEP17-Dm, BEP18-Dm, or BRU16-Sr showed more surviving percentage under in vitro culture in presence of Cd, Pb (0.5-1.0 mM), or Al (2.5-5.0 mM). Finally, it is the first report of siderophore-producing microorganisms from polluted soil of Callejón de Huaylas highlands, interestedly they displayed metabolic properties useful to enhance phytoremediation and biotechnology application.
Collapse
Affiliation(s)
- Carmen Tamariz-Angeles
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| | - Gabriela D Huamán
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| | - Edson Palacios-Robles
- Facultad de Ciencias del Ambiente, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| | - Percy Olivera-Gonzales
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| | - Alberto Castañeda-Barreto
- Centro de Investigación de la Biodiversidad y Recursos Genéticos de Ancash, Facultad de Ciencias, Universidad Nacional Santiago Antúnez de Mayolo, Av. Centenario 200, 02002, Independencia, Huaraz, Ancash, Peru.
| |
Collapse
|
136
|
Kumar A, Jigyasu DK, Kumar A, Subrahmanyam G, Mondal R, Shabnam AA, Cabral-Pinto MMS, Malyan SK, Chaturvedi AK, Gupta DK, Fagodiya RK, Khan SA, Bhatia A. Nickel in terrestrial biota: Comprehensive review on contamination, toxicity, tolerance and its remediation approaches. CHEMOSPHERE 2021; 275:129996. [PMID: 33647680 DOI: 10.1016/j.chemosphere.2021.129996] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Nickel (Ni) has been a subject of interest for environmental, physiological, biological scientists due to its dual effect (toxicity and essentiality) in terrestrial biota. In general, the safer limit of Ni is 1.5 μg g-1 in plants and 75-150 μg g-1 in soil. Litreature review indicates that Ni concentrations have been estimated up to 26 g kg-1 in terrestrial, and 0.2 mg L-1 in aquatic resources. In case of vegetables and fruits, mean Ni content has been reported in the range of 0.08-0.26 and 0.03-0.16 mg kg-1. Considering, Ni toxicity and its potential health hazards, there is an urgent need to find out the suitable remedial approaches. Plant vascular (>80%) and cortical (<20%) tissues are the major sequestration site (cation exchange) of absorbed Ni. Deciphering molecular mechanisms in transgenic plants have immense potential for enhancing Ni phytoremediation and microbial remediation efficiency. Further, it has been suggested that integrated bioremediation approaches have a potential futuristic path for Ni decontamination in natural resources. This systematic review provides insight on Ni effects on terrestrial biota including human and further explores its transportation, bioaccumulation through food chain contamination, human health hazards, and possible Ni remediation approaches.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, 210044, China
| | - Dharmendra K Jigyasu
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Amit Kumar
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Gangavarapu Subrahmanyam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - Raju Mondal
- Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textiles, Thally Road, Hosur, Tamil Nadu, 635109, India.
| | - Aftab A Shabnam
- Central Muga Eri Research and Training Institute, Central Silk Board, Jorhat, Assam, 785700, India.
| | - M M S Cabral-Pinto
- Department of Geosciences, Geobiotec Research Centre, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sandeep K Malyan
- Research Management and Outreach Division, National Institute of Hydrology, Jalvigyan Bhawan, Roorkee, Uttarakhand, 247667, India.
| | - Ashish K Chaturvedi
- Land and Water Management Research Group, Centre for Water Resources Development and Management, Kozhikode, Kerala, 673571, India.
| | - Dipak Kumar Gupta
- ICAR-Central Arid Zone Research Institute Regional Research Station Pali Marwar, Rajasthan, 342003, India.
| | - Ram Kishor Fagodiya
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, 132001, India.
| | - Shakeel A Khan
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Arti Bhatia
- Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
137
|
Cheng C, Wang R, Sun L, He L, Sheng X. Cadmium-resistant and arginine decarboxylase-producing endophytic Sphingomonas sp. C40 decreases cadmium accumulation in host rice (Oryza sativa Cliangyou 513). CHEMOSPHERE 2021; 275:130109. [PMID: 33677267 DOI: 10.1016/j.chemosphere.2021.130109] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 05/20/2023]
Abstract
In this study, an cadmium (Cd)-immobilizing and arginine decarboxylase-producing endophytic Sphingomonas sp. strain C40 obtained from the seeds of Oryza sativa Cliangyou 513 was characterized for its Cd availability and Cd uptake in host rice using hydroponic and soil experiments. The Cd concentration decreased by 51-95% compared to the control, while the spermidine concentration increased by 19-25% with Cd compared with no Cd in the strain C40-inoculated solution. Strain C40 decreased the above-ground tissue Cd content by 27-37% and increased spermine and spermidine contents by 28-67% and the expression levels of genes involved in spermine and spermidine production by 29-217% in rice roots compared to the controls. Furthermore, correlation analyses showed the significantly negative correlation between rice root spermine and spermidine contents and above-ground tissue Cd content. In the Cd-added soil, strain C40 promoted the rice biomass by 29-36% and decreased rice root, above-ground tissue, and grain Cd contents by 18, 16, and 33% and total grain Cd uptake by 14% compared with the controls at the maturity stage. Strain C40 decreased the exchangeable Cd content by 27% and increased the Fe and Mn oxides-bound Cd content by 45% in the rice rhizosphere soils at the maturity stage compared with the controls. These results suggested that the endophytic bacterial strain C40 increased rice root polyamine production and their related gene expression and the transformation of available Cd to unavailable Cd, leading to reduced Cd accumulation and translocation from the rice roots to grains.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China; College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China
| | - Ru Wang
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China
| | - Lijing Sun
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China.
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture, Nanjing, 210095, PR China.
| |
Collapse
|
138
|
Laha A, Bhattacharyya S, Sengupta S, Bhattacharyya K, GuhaRoy S. Investigation of arsenic-resistant, arsenite-oxidizing bacteria for plant growth promoting traits isolated from arsenic contaminated soils. Arch Microbiol 2021; 203:4677-4692. [PMID: 34180014 DOI: 10.1007/s00203-021-02460-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
The problem of arsenic (As) pollution being severe warrants opting for low-cost microbial remediation strategies. The present study of identifying suitable bacterial strains led to the isolation of eleven As-tolerant strains from the As-contaminated rhizosphere soils of West Bengal, India. They were found to oxidize/reduce 55-31.6% of 5 mM As(III) and 73-37.6% of 5 mM As(V) within 12 h. The four isolates (BcAl-1, JN 73, LAR-2, and AR-30) had a high level of As(III) oxidase activity along with a higher level of As(V) and As(III) resistance. The agar diffusion assay of the isolates further confirmed their ability to endure As stress. The presence of aoxB gene was observed in these four As(III) oxidizing isolates. Evaluation of plant growth-promoting characteristics revealed that BcAl-1 (Burkholderia cepacia), JN 73 (Burkholderia metallica), AR-30 (Burkholderia cenocepacia), and LAR-2 (Burkholderia sp.) had significant plant growth-promoting characteristics (PGP), including the ability to solubilize phosphate, siderophore production, indole acetic acid-like molecules production, ACC deaminase production, and nodule formation under As stressed condition. BcAl-1 and JN 73 emerged as the most promising traits in As removal as well as plant growth promotion.
Collapse
Affiliation(s)
- Aritri Laha
- Department of Botany, West Bengal State University, Barasat, Kolkata, West Bengal, 700126, India. .,Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Somnath Bhattacharyya
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sudip Sengupta
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Kallol Bhattacharyya
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sanjoy GuhaRoy
- Department of Botany, West Bengal State University, Barasat, Kolkata, West Bengal, 700126, India
| |
Collapse
|
139
|
Abdelaal M, Mashaly IA, Srour DS, Dakhil MA, El-Liethy MA, El-Keblawy A, El-Barougy RF, Halmy MWA, El-Sherbeny GA. Phytoremediation Perspectives of Seven Aquatic Macrophytes for Removal of Heavy Metals from Polluted Drains in the Nile Delta of Egypt. BIOLOGY 2021; 10:biology10060560. [PMID: 34203088 PMCID: PMC8235055 DOI: 10.3390/biology10060560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Some main drains in the Nile Delta of Egypt are subjected to heavy pollution loads and used to irrigate crops and vegetables. Here, we assessed the pollution level and the ability of some wild aquatic macrophytes (Cyperus alopecuroides, Echinochloa stagnina, Eichhornia crassipes, Ludwigia stolonifera, Phragmites australis, Ranunculus sceleratus, and Typha domingensis) to accumulate eight heavy metals (Fe, Cu, Zn, Mn, Co, Cd, Ni, and Pb) in three of the polluted drains (Amar, El-Westany, and Omar-Beck). The sediment in the three drains exceeded the worldwide permissible ranges of Cu, Zn, and Pb, but it ranged within safe limits for Mn, Cd, Ni, and Co. P. australis accumulated the highest levels of Fe, Co, Cd, and Ni, while E. crassipes contained the highest concentrations of Cu, Zn, Mn and Pb. The bioaccumulation factor was > 1 for the investigated heavy metals (except Cu) in all species, except C. alopecuroides. Accordingly, these species could be applied for the accumulation and phytostabilization of these metals. Abstract The current study addressed the heavy metals accumulation potentials of seven perennial aquatic macrophytes (Cyperus alopecuroides, Echinochloa stagnina, Eichhornia crassipes, Ludwigia stolonifera, Phragmites australis, Ranunculus sceleratus and Typha domingensis) and the pollution status of three drains (Amar, El-Westany and Omar-Beck) in the Nile Delta of Egypt. Nine sites at each drain were sampled for sediment and plant analyses. Concentrations of eight metals (Fe, Cu, Zn, Mn, Co, Cd, Ni, and Pb) were determined in the sediment and the aboveground and belowground tissues of the selected macrophytes. Bioaccumulation factor (BF) and translocation factor (TF) were computed for each species. The sediment heavy metals concentrations of the three drains occurred in the following order: El-Westany > Amar > Omar-Beck. The concentrations of sediment heavy metals in the three drains were ordered as follows: Fe (438.45–615.17 mg kg−1) > Mn (341.22–481.09 mg kg−1) > Zn (245.08–383.19 mg kg−1) > Cu (205.41–289.56 mg kg−1) > Pb (31.49–97.73 mg kg−1) > Cd (13.97–55.99 mg kg−1) > Ni (14.36–39.34 mg kg−1) > Co (1.25–3.51 mg kg−1). The sediment exceeded the worldwide permissible ranges of Cu, Zn and Pb, but ranged within safe limits for Mn, Cd, Ni and Co. P. australis accumulated the highest concentrations of Fe, Co, Cd and Ni, while E. crassipes contained the highest concentrations of Cu, Zn, Mn, and Pb. Except for C. alopecuroides and Cu metal, the studied species had BF values greater than one for the investigated heavy metals. Nevertheless, the TFs of all species (except Cd in L. stolonifera) were less than one. Hence, the studied species are appropriate for accumulation, biomonitoring, and phytostabilization of the investigated metals.
Collapse
Affiliation(s)
- Mohamed Abdelaal
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (I.A.M.); (D.S.S.)
- Correspondence: (M.A.); (G.A.E.-S.)
| | - Ibrahim A. Mashaly
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (I.A.M.); (D.S.S.)
| | - Dina S. Srour
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (I.A.M.); (D.S.S.)
| | - Mohammed A. Dakhil
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11790, Egypt;
| | - Mohamed Azab El-Liethy
- Environmental Microbiology Lab., Water Pollution Research Department, National Research Centre, Giza 12622, Egypt;
| | - Ali El-Keblawy
- Department of Applied Biology, Faculty of Science, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Reham F. El-Barougy
- Department of Botany and Microbiology, Faculty of Science, Damietta University, New Damietta 34517, Egypt;
| | - Marwa Waseem A. Halmy
- Department of Environmental Sciences, Faculty of Science, Alexandria University, Alexandria 21511, Egypt;
| | - Ghada A. El-Sherbeny
- Department of Botany, Faculty of Science, Mansoura University, Mansoura 35516, Egypt; (I.A.M.); (D.S.S.)
- Correspondence: (M.A.); (G.A.E.-S.)
| |
Collapse
|
140
|
Martos S, Busoms S, Pérez-Martín L, Llugany M, Cabot C, Poschenrieder C. Identifying the Specific Root Microbiome of the Hyperaccumulator Noccaea brachypetala Growing in Non-metalliferous Soils. Front Microbiol 2021; 12:639997. [PMID: 34054748 PMCID: PMC8160108 DOI: 10.3389/fmicb.2021.639997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/06/2021] [Indexed: 12/02/2022] Open
Abstract
Noccaea brachypetala is a close relative of Noccaea caerulescens, a model plant species used in metal hyperaccumulation studies. In a previous survey in the Catalan Pyrenees, we found two occidental and two oriental N. brachypetala populations growing on non-metalliferous soils, with accumulated high concentrations of Cd and Zn. Our hypothesis was that the microbiome companion of the plant roots may influence the ability of these plants to absorb metals. We performed high-throughput sequencing of the bacterial and fungal communities in the rhizosphere soil and rhizoplane fractions. The rhizobiomes and shoot ionomes of N. brachypetala plants were analyzed along with those from other non-hyperaccumulator Brassicaceae species found at the same sampling locations. The analyses revealed that microbiome richness and relative abundance tended to increase in N. brachypetala plants compared to non-hyperaccumulator species, regardless of plant location. We confirmed that the root compartment is a key factor in describing the community composition linked to the cohabiting Brassicaceae species, and the rhizoplane fraction contained the specific and rare taxa associated with each species. N. brachypetala plants harbored a similar relative abundance of fungi compared to the other plant hosts, but there was a notable reduction in some specific taxa. Additionally, we observed an enrichment in the hyperaccumulator rhizoplane of previously described metal-tolerant bacteria and bacteria involved in nitrogen cycling. The bacteria involved in the nitrogen cycle could contribute indirectly to the hyperaccumulator phenotype by improving soil quality and fertility. Our results indicate that N. brachypetala captures a particular prokaryotic community from the soil. This particular prokaryotic community may benefit the extraction of metal ions and/or improve plant nutrition. Our research identified satellite groups associated with the root niche of a hyperaccumulator plant that may assist in improving biological strategies in heavy metal remediation.
Collapse
Affiliation(s)
- Soledad Martos
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Sílvia Busoms
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laura Pérez-Martín
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Mercè Llugany
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Catalina Cabot
- Department of Biology, Universitat de les Illes Balears, Palma, Spain
| | - Charlotte Poschenrieder
- Plant Physiology Laboratory, Bioscience Faculty, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
141
|
Morcillo RJL, Manzanera M. The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. Metabolites 2021; 11:337. [PMID: 34074032 PMCID: PMC8225083 DOI: 10.3390/metabo11060337] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial soil microorganisms that can stimulate plant growth and increase tolerance to biotic and abiotic stresses. Some PGPR are capable of secreting exopolysaccharides (EPS) to protect themselves and, consequently, their plant hosts against environmental fluctuations and other abiotic stresses such as drought, salinity, or heavy metal pollution. This review focuses on the enhancement of plant abiotic stress tolerance by bacterial EPS. We provide a comprehensive summary of the mechanisms through EPS to alleviate plant abiotic stress tolerance, including salinity, drought, temperature, and heavy metal toxicity. Finally, we discuss how these abiotic stresses may affect bacterial EPS production and its role during plant-microbe interactions.
Collapse
Affiliation(s)
- Rafael J L Morcillo
- Institute for Water Research, Department of Microbiology, University of Granada, 18003 Granada, Spain
| | - Maximino Manzanera
- Institute for Water Research, Department of Microbiology, University of Granada, 18003 Granada, Spain
| |
Collapse
|
142
|
Wang G, Zhang Q, Du W, Ai F, Yin Y, Ji R, Guo H. Microbial communities in the rhizosphere of different willow genotypes affect phytoremediation potential in Cd contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:145224. [PMID: 33485209 DOI: 10.1016/j.scitotenv.2021.145224] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 05/22/2023]
Abstract
Plant-associated microorganisms play an important role in controlling heavy metal uptake and accumulation in aerial parts. The microbial community and its interaction with Cd accumulation by willow were assessed to explore the association of phytoextraction efficiency and rhizospheric microbial populations. Therefore, the rhizosphere microbial compositions of three willow genotypes grown in two Cd polluted sites were investigated, focusing on their interactions with phytoremediation potential. Principal coordinate analysis revealed a significant effect of genotype on the rhizosphere microbial communities. Distinct beneficial microorganisms, such as plant growth promoting bacteria (PGPB) and mycorrhizal fungi, were assembled in the rhizosphere of different willow genotypes. Linear mixed models showed that the relative abundance of PGPB was positively associated (p < 0.01) with Cd accumulation, since these microbes significantly increased willow growth. The higher abundance of arbuscular mycorrhizal fungi in the rhizosphere of Salix × aureo-pendula CL 'J1011' at the Kejing site, showed a negative correlation with the Cd content, but a positive correlation with biomass. Conversely, mycorrhizal fungi, were more abundant in the rhizosphere of S. × jiangsuensis CL. 'J2345' and positively correlated with the Cd content in willow tissues. This study provides new insights into the distinctive microbial communities in rhizosphere of different willow genotypes, which may be consistent with the phytoremediation potential.
Collapse
Affiliation(s)
- Guobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Qingquan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Wenchao Du
- School of Environment, Nanjing Normal University, Nanjing 210036, China.
| | - Fuxun Ai
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, China; Joint International Research Centre for Critical Zone Science-University of Leeds and Nanjing University, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
143
|
Liu S, Liu H, Chen R, Ma Y, Yang B, Chen Z, Liang Y, Fang J, Xiao Y. Role of Two Plant Growth-Promoting Bacteria in Remediating Cadmium-Contaminated Soil Combined with Miscanthus floridulus (Lab.). PLANTS 2021; 10:plants10050912. [PMID: 34063227 PMCID: PMC8147505 DOI: 10.3390/plants10050912] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
Miscanthus spp. are energy plants and excellent candidates for phytoremediation approaches of metal(loid)s-contaminated soils, especially when combined with plant growth-promoting bacteria. Forty-one bacterial strains were isolated from the rhizosphere soils and roots tissue of five dominant plants (Artemisia argyi Levl., Gladiolus gandavensis Vaniot Houtt, Boehmeria nivea L., Veronica didyma Tenore, and Miscanthus floridulus Lab.) colonizing a cadmium (Cd)-contaminated mining area (Huayuan, Hunan, China). We subsequently tested their plant growth-promoting (PGP) traits (e.g., production of indole-3-acetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase) and Cd tolerance. Among bacteria, two strains, Klebsiella michiganensis TS8 and Lelliottia jeotgali MR2, presented higher Cd tolerance and showed the best results regarding in vitro growth-promoting traits. In the subsequent pot experiments using soil spiked with 10 mg Cd·kg−1, we investigated the effects of TS8 and MR2 strains on soil Cd phytoremediation when combined with M. floridulus (Lab.). After sixty days of planting M. floridulus (Lab.), we found that TS8 increased plant height by 39.9%, dry weight of leaves by 99.1%, and the total Cd in the rhizosphere soil was reduced by 49.2%. Although MR2 had no significant effects on the efficiency of phytoremediation, it significantly enhanced the Cd translocation from the root to the aboveground tissues (translocation factor > 1). The combination of K. michiganensis TS8 and M. floridulus (Lab.) may be an effective method to remediate Cd-contaminated soils, while the inoculation of L. jeotgali MR2 may be used to enhance the phytoextraction potential of M. floridulus.
Collapse
Affiliation(s)
- Shuming Liu
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Hongmei Liu
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Rui Chen
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Yong Ma
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Bo Yang
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
| | - Zhiyong Chen
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
| | - Yunshan Liang
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
| | - Jun Fang
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
- Correspondence: (J.F.); (Y.X.)
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, College of Resource and Environment, Hunan Agricultural University, Changsha 410128, China; (S.L.); (H.L.); (R.C.); (Y.M.); (B.Y.); (Z.C.); (Y.L.)
- Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, China
- Key Laboratory for Rural Ecosystem Health in Dongting Lake Area of Hunan Province, Changsha 410128, China
- Correspondence: (J.F.); (Y.X.)
| |
Collapse
|
144
|
Sharma P. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: An update. BIORESOURCE TECHNOLOGY 2021; 328:124835. [PMID: 33618184 DOI: 10.1016/j.biortech.2021.124835] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 05/12/2023]
Abstract
The aim of this review to address the plant-associated bacteria to enhance the phytoremediation efficiency of the heavy metals from polluted sites and it is also highlighted advances for the application in wastewater treatment. Plant-associated bacteria have potential to encourage the plant growth and resistance under stress conditions. Such bacteria could enhance plant growth by controlling growth hormone, nutrition security, producing siderophore, secondary metabolites, and improving the antioxidant enzymes system. This review also explores the concepts and applications of bacteria assisted phytoremediation, addressing aspects that affect phytoremediation and pathways for restoration. Significant review issues relating to production and application of bacteria for improvement of bioremediation were established and presented for possible future research. Bacteria assisted phytoremediation is cost-effective strategy and metal sequestration mechanism that hold high metal biosorption capacities. This also takes into consideration the current state of technology implementations and proposals for prospective clean-up studies.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar Central University, Lucknow 226 025, Uttar Pradesh, India
| |
Collapse
|
145
|
Shylla L, Barik SK, Behera MD, Singh H, Adhikari D, Upadhyay A, Thapa N, Sarma K, Joshi SR. Impact of heavy metals on water quality and indigenous Bacillus spp. prevalent in rat-hole coal mines. 3 Biotech 2021; 11:253. [PMID: 33968596 DOI: 10.1007/s13205-021-02808-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 04/22/2021] [Indexed: 11/29/2022] Open
Abstract
The present study reports pollution evaluation indices employed to assess the intensity of metal pollution in water systems affected by acid mine drainage from rat-hole coal mines prevalent in North-east India. The concentration of seven eco-toxic metals was evaluated from coal mine waters which showed concentration order of Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Chromium (Cr) > Lead (Pb) > Copper (Cu) > Cadmium (Cd). The water samples were acidic with mean pH 2.67 and burdened with dissolved solids (924.8 mg/L). The heavy metal pollution index (HPI) and heavy metal evaluation index (HEI) displayed high and medium range of pollution level in majority of the water samples. Statistical correlation suggested strong positive correlation between metals such as Cr with Mn (r = 0.780), Mn with Fe (r = 0.576), Cr with Fe (r = 0.680), Pb with Mn (r = 0.579) and Cr with Pb (r = 0.606), indicating Mn, Pb, Fe and Cr to be major metal contaminants; an unequivocal affirmation of degradation in water quality. The sampled waters had lower heavy metal concentration during monsoon and post-monsoon seasons. The commonly occurring bacterial species Bacillus pseudomycoides and Bacillus siamensis were chosen to understand their behavioral responses toward metal contamination. Findings demonstrated that Bacillus spp. from control environment had low tolerance to metals stress as evident from their MTC, MIC and growth curve studies. The survival of the native isolates across varying pH, salinity and temperature in the coal mine areas suggest these isolates as promising candidates for reclamation of rat-hole coal mining sites.
Collapse
Affiliation(s)
- Lily Shylla
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793022 India
| | - Saroj Kanta Barik
- CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh 226001 India
| | - Mukunda Dev Behera
- Centre for Oceans, Rivers, Atmosphere and Land Sciences (CORAL) and School of Water Resources, Indian Institute of Technology Kharagpur, Kharagpur, 721302 India
| | - Harsh Singh
- Department of Botany, North Eastern Hill University, Shillong, 793022 India
| | - Dibyendu Adhikari
- Department of Botany, North Eastern Hill University, Shillong, 793022 India
| | - Anamika Upadhyay
- Department of Botany, North Eastern Hill University, Shillong, 793022 India
| | - Namita Thapa
- Department of Botany, North Eastern Hill University, Shillong, 793022 India
| | - Kiranmay Sarma
- University School of Environment Management, GGS Indraprastha University, New Delhi, Delhi 110078 India
| | - Santa Ram Joshi
- Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793022 India
| |
Collapse
|
146
|
Tomczyk B, Siatecka A, Bogusz A, Oleszczuk P. Ecotoxicological assessment of sewage sludge-derived biochars-amended soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116484. [PMID: 33549892 DOI: 10.1016/j.envpol.2021.116484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/14/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The study aimed to evaluate the ecotoxicity of soil (S) amended with biochars (BCKN) produced by the thermal conversion of sewage sludge (SSL) at temperatures of 500 °C, 600 °C, or 700 °C and SSL itself. The ecotoxicological tests were carried out on organisms representing various trophic levels (Lepidium sativum in plant, Folsomia candida in invertebrates, and Aliivibrio fischeri in bacteria). Moreover, the study evaluated the effects of three plants (Lolium perenne, Trifolium repens, and Arabidopsis thaliana) growing on BCKN700-amended soil on its ecotoxicological properties. The experiment was carried out for six months. In most tests, the conversion of sewage sludge into biochar caused a significant decrease in toxicity by adding it to the soil. The pyrolysis temperature directly determined this effect. The soil amended with the biochars produced at higher temperatures (600 °C and 700 °C) generally exhibited lower toxicity to the test organisms than the SSL. Because of aging, all the biochars lost their inhibition properties against the tested organisms in the solid-phase tests and had a stimulating influence on the reproductive ability of F. candida. With time, the fertilizing effect of the BCKN700 amended soil also increased. The aged biochars also did not have an inhibitory effect on A. fischeri luminescence in the leachate tests. The study has also demonstrated that the cultivation of an appropriate plant species may additionally reduce the toxicity of soil fertilized with biochar. The obtained results show that the conversion of sewage sludge to biochar carried out at an appropriate temperature can become a useful method in reducing the toxicity of the waste and while being safe for agricultural purposes.
Collapse
Affiliation(s)
- Beata Tomczyk
- Department of Ecotoxicology, Institute of Environmental Protection, National Research Institute, Krucza 5/11D St., 00-548, Warsaw, Poland
| | - Anna Siatecka
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland
| | - Aleksandra Bogusz
- Department of Ecotoxicology, Institute of Environmental Protection, National Research Institute, Krucza 5/11D St., 00-548, Warsaw, Poland
| | - Patryk Oleszczuk
- Department of Radiochemistry and Environmental Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 3 Maria Curie-Skłodowska Square, 20-031, Lublin, Poland.
| |
Collapse
|
147
|
Ma Y, Vosátka M, Rensing C, Freitas H. Editorial: Advanced Microbial Biotechnologies for Sustainable Agriculture. Front Microbiol 2021; 12:634891. [PMID: 33841361 PMCID: PMC8027234 DOI: 10.3389/fmicb.2021.634891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/03/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Miroslav Vosátka
- Institute of Botany, Academy of Sciences of the Czech Republic, Pruhonice, Czechia.,Department of Experimental Plant Biology, Charles University, Faculty of Science, Prague, Czechia
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
148
|
Sepehri M, Khatabi B. Combination of Siderophore-Producing Bacteria and Piriformospora indica Provides an Efficient Approach to Improve Cadmium Tolerance in Alfalfa. MICROBIAL ECOLOGY 2021; 81:717-730. [PMID: 33099662 DOI: 10.1007/s00248-020-01629-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/19/2020] [Indexed: 05/22/2023]
Abstract
Application of siderophore-producing microorganisms (SPMs), as an environmentally friendly approach, facilitates plant growth and survival under heavy metals toxicity. This study evaluated the effectiveness of SPMs, belonging to the bacterial genera Rhizobium and Pseudomonas and a root endophytic fungus (Piriformospora indica) to improve the fitness of alfalfa under cadmium (Cd) stress. A greenhouse experiment was performed as a randomized design with factorial arrangement of treatments. Treatments included microbial inoculations (Sinorhizobium meliloti, Pseudomonas fluorescence, and P. indica) and different Cd concentrations (0, 2, 5, 10 mg/kg) with three replications in potting media containing sand and sterile perlite (v/v, 2:1). The effect of Cd on plant growth and development, antioxidant enzymes activities, and accumulation of Cd and nutrients in alfalfa plant was investigated. Alfalfa inoculated with SPMs showed significantly higher biomass and nutrients uptake under both normal and Cd stress conditions than the controls. Under the highest Cd concentration (10 mg/kg), alfalfa plants inoculated with P. fluorescens and P. indica, either alone or in combination, showed the highest shoot dry weights. Cd-induced oxidative stress was mitigated by SPMs through enhanced antioxidant enzyme activities of catalase, ascorbate peroxidase, and guaiacol peroxidase. We showed that P. indica either alone or in combination with the siderophore producing bacteria (SPB) minimized the toxicity of Cd by enhanced growth rate and the lower Cd concentration in the shoots. In conclusion, metal-resistant SPMs could assist alfalfa to survive in Cd-contaminated soil by enhancing plant growth and development. Application of plant-associated microbes is an efficient, environmentally friendly approach to surmount the adverse effects of heavy metals toxicity on plants, animals, and humans. Graphical abstract.
Collapse
Affiliation(s)
- Mozhgan Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Behnam Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA.
| |
Collapse
|
149
|
Sharma P, Pandey AK, Udayan A, Kumar S. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. BIORESOURCE TECHNOLOGY 2021; 326:124750. [PMID: 33517048 DOI: 10.1016/j.biortech.2021.124750] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 05/22/2023]
Abstract
This review illustrated the role of metal-binding proteins (MBPs) and microbial interaction in assisting the phytoremediation of industrial wastewater polluted with heavy metals. MBPs are used to increase the accumulation and tolerance of metals by microorganisms via binding protein synthesis. Microbes have various protection mechanisms to heavy metals stress like compartmentalization, exclusion, complexity rendering, and the synthesis of binding proteins. MBPs include phytochelatins, metallothioneins, Cd-binding peptides (CdBPs), cysteines (gcgcpcgcg) (CP), and histidines (ghhphg)2 (HP). In comparison with other physico-chemical methods, phytoremediation is an eco-friendly and safe method for the society. The present review concentrated on the efficiency of phytoremediation strategies for the use of MBPs and microbe-assisted approaches.
Collapse
Affiliation(s)
- Pooja Sharma
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Ashutosh Kumar Pandey
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Aswathy Udayan
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India
| | - Sunil Kumar
- CSIR-National Environmental and Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
150
|
Wu C, Wang Z, Ma Y, Luo J, Gao X, Ning J, Mei X, She D. Influence of the neonicotinoid insecticide thiamethoxam on soil bacterial community composition and metabolic function. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124275. [PMID: 33092881 DOI: 10.1016/j.jhazmat.2020.124275] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Understanding of neonicotinoid insecticides toxicity on non-target organisms, such as bees, has indirectly promoted their soil treatment use. However, their effect on soil ecosystems haven't fully understood. Here, based on 16S rRNA high-throughput sequencing and metagenomics, the effects of neonicotinoid insecticide thiamethoxam on bacterial communities and metabolic functions in two types of soils were studied. Thiamethoxam treatment significantly affected soil bacterial abundance, reduced microbial diversity, and changed the bacterial community structure in the short term, and the structure soon returned to a stable state. Soil type and time were important factors affecting bacterial community structure. Some plant growth-promoting rhizosphere bacteria (PGPR) including Actinobacteria were found, and their populations were reduced, while pollutant-degrading bacteria including Firmicutes were also found, and their populations were increased. Based on metagenomics analysis, thiamethoxam treatment insignificantly promoted or inhibited multiple metabolic processes, but gene abundance of some key processes significantly changed. Subtypes of 18 biodegradation genes (BDGs) and 5 pesticide degradation genes (PDGs) were identified. Thiamethoxam treatment significantly increased the abundance of BDGs and PDGs, including cytochrome P450. Potential hosts of P450 degradation genes, including the genus Rhodococcus, were discovered. Conclusions of this study will promote safety evaluation and degradation-related research on neonicotinoid insecticides in soil.
Collapse
Affiliation(s)
- Changcai Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Zhinan Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Jun Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangdong Mei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongmei She
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|