101
|
Pathak MP, Pathak K, Saikia R, Gogoi U, Ahmad MZ, Patowary P, Das A. Immunomodulatory effect of mushrooms and their bioactive compounds in cancer: A comprehensive review. Biomed Pharmacother 2022; 149:112901. [DOI: 10.1016/j.biopha.2022.112901] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
|
102
|
Keranmu A, Pan LB, Yu H, Fu J, Liu YF, Amuti S, Han P, Ma SR, Xu H, Zhang ZW, Chen D, Yang FY, Wang MS, Wang Y, Xing NZ, Jiang JD. The potential biological effects of quercetin based on pharmacokinetics and multi-targeted mechanism in vivo. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:403-431. [PMID: 35282731 DOI: 10.1080/10286020.2022.2045965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Quercetin is a plant-derived polyphenol flavonoid that has been proven to be effective for many diseases. However, the mechanism and in vivo metabolism of quercetin remains to be clarified. It achieves a wide range of biological effects through various metabolites, gut microbiota and its metabolites, systemic mediators produced by inflammation and oxidation, as well as by multiple mechanisms. The all-round disease treatment of quercetin is achieved through the organic combination of multiple channels. Therefore, this article clarifies the metabolic process of quercetin in the body, and explores the new pattern of action of quercetin in the treatment of diseases.
Collapse
Affiliation(s)
- Adili Keranmu
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Li-Bin Pan
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hang Yu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Jie Fu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Yi-Fang Liu
- Department of Tuberculosis, Shanghai Pulmonary Hospital Affiliated to Tongji University, Shanghai Clinical Research Center of Tuberculosis, Shanghai 200433, China
| | - Siyiti Amuti
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Ürümqi 830011, China
| | - Pei Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Shu-Rong Ma
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Hui Xu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Zheng-Wei Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Dong Chen
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fei-Ya Yang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ming-Shuai Wang
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| | - Nian-Zeng Xing
- State Key Laboratory of Molecular Oncology, Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jian-Dong Jiang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
103
|
Probiotics in Citrus Fruits Products: Health Benefits and Future Trends for the Production of Functional Foods—A Bibliometric Review. Foods 2022; 11:foods11091299. [PMID: 35564022 PMCID: PMC9103533 DOI: 10.3390/foods11091299] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 02/04/2023] Open
Abstract
The relationship between food and human health drives the search for knowledge of food components that are related to these benefits. The scientific community shows a growing interest in the knowledge of the interactions between components of citrus fruits and probiotics to develop ways to improve the quality of the food produced. In this bibliometric review, a study of scientific publications is carried out on the potential of probiotics in citrus fermentation, addressing the importance and future trends of plant-based products in the functional food group as an alternative to the dairy market. The review process of the articles initially took place with a bibliometric analysis and was followed by a literature review. The Scopus database was used in the search for articles, carried out in May 2021. The use of foods as carriers of probiotics is an alternative that has been growing and the surveys evaluated show the desire to diversify the probiotics available on the market. In addition, it was observed that citrus fruits have great potential for the development of functional foods due to their high acceptability and possibilities of development and application in various products.
Collapse
|
104
|
Ojo OA, Adeyemo TR, Rotimi D, Batiha GES, Mostafa-Hedeab G, Iyobhebhe ME, Elebiyo TC, Atunwa B, Ojo AB, Lima CMG, Conte-Junior CA. Anticancer Properties of Curcumin Against Colorectal Cancer: A Review. Front Oncol 2022; 12:881641. [PMID: 35530318 PMCID: PMC9072734 DOI: 10.3389/fonc.2022.881641] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common and reoccurring diseases, as well as the world’s second largest cause of mortality. Despite existing preventative, diagnostic, and treatment methods, such as chemotherapy, the number of instances rises year after year. As a result, new effective medications targeting specific checkpoints should be developed to combat CRC. Natural compounds, such as curcumin, have shown significant anti-colorectal cancer characteristics among medications that can be used to treat CRC. These chemicals are phenolic compounds that belong to the curcuminoids category. Curcumin exerts its anti-proliferative properties against CRC cell lines in vitro and in vivo via a variety of mechanisms, including the suppression of intrinsic and extrinsic apoptotic signaling pathways, the stoppage of the cell cycle, and the activation of autophagy. Curcumin also has anti-angiogenesis properties. Thus, this review is aimed at emphasizing the biological effect and mode of action of curcumin on CRC. Furthermore, the critical role of these substances in CRC chemoprevention was emphasized.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Bowen University, Iwo, Nigeria
- *Correspondence: Oluwafemi Adeleke Ojo,
| | - Temiloluwa Rhoda Adeyemo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Damilare Rotimi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department and Health Research Unit, Medical College, Jouf University, Sakaka, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Matthew Eboseremen Iyobhebhe
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Tobiloba Christiana Elebiyo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratories, Department of Biochemistry, Landmark University, Omu-Aran, Nigeria
| | - Bukola Atunwa
- Department of Physical Sciences, Chemistry Unit, Landmark University, Omu-Aran, Nigeria
| | | | | | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETED), Federal University of Rio de Janeiro (UFRJ), Cidade Universitaria, Rio de Janeiro, Brazil
| |
Collapse
|
105
|
Zhang J, Wang N, Zhang W, Chen W, Yu H. UPLC-Q-Exactive-MS based metabolomics reveals chemical variations of three types of insect teas and their in vitro antioxidant activities. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
106
|
Pathak K, Pathak MP, Saikia R, Gogoi U, Sahariah JJ, Zothantluanga JH, Samanta A, Das A. Cancer Chemotherapy via Natural Bioactive Compounds. Curr Drug Discov Technol 2022; 19:e310322202888. [PMID: 35362385 DOI: 10.2174/1570163819666220331095744] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 12/09/2022]
Abstract
BACKGROUND Cancer-induced mortality is increasingly prevalent globally which skyrocketed the necessity to discover new/novel safe and effective anticancer drugs. Cancer is characterized by the continuous multiplication of cells in the human which is unable to control. Scientific research is drawing its attention towards naturally-derived bioactive compounds as they have fewer side effects compared to the current synthetic drugs used for chemotherapy. OBJECTIVE Drugs isolated from natural sources and their role in the manipulation of epigenetic markers in cancer are discussed briefly in this review article. METHODS With advancing medicinal plant biotechnology and microbiology in the past century, several anticancer phytomedicines were developed. Modern pharmacopeia contains at least 25% herbal-based remedy including clinically used anticancer drugs. These drugs mainly include the podophyllotoxin derivatives vinca alkaloids, curcumin, mistletoe plant extracts, taxanes, camptothecin, combretastatin, and others including colchicine, artesunate, homoharringtonine, ellipticine, roscovitine, maytanasin, tapsigargin,andbruceantin. RESULTS Compounds (psammaplin, didemnin, dolastin, ecteinascidin,and halichondrin) isolated from marine sources and animals such as microalgae, cyanobacteria, heterotrophic bacteria, invertebrates. They have been evaluated for their anticancer activity on cells and experimental animal models and used chemotherapy.Drug induced manipulation of epigenetic markers plays an important role in the treatment of cancer. CONCLUSION The development of a new drug from isolated bioactive compounds of plant sources has been a feasible way to lower the toxicity and increase their effectiveness against cancer. Potential anticancer therapeutic leads obtained from various ethnomedicinal plants, foods, marine, and microorganisms are showing effective yet realistically safe pharmacological activity. This review will highlight important plant-based bioactive compounds like curcumin, stilbenes, terpenes, other polyphenolic phyto-compounds, and structurally related families that are used to prevent/ ameliorate cancer. However, a contribution from all possible fields of science is still a prerequisite for discovering safe and effective anticancer drugs.
Collapse
Affiliation(s)
- Kalyani Pathak
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Manash Pratim Pathak
- Faculty of Pharmaceutical Sciences, Assam down town University, Panikhaiti, Guwahati-781026, Assam, India
| | - Riya Saikia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Jon Jyoti Sahariah
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Abhishek Samanta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh - 786004, Assam, India
| |
Collapse
|
107
|
DeClercq V, Nearing JT, Sweeney E. Plant-Based Diets and Cancer Risk: What is the Evidence? Curr Nutr Rep 2022; 11:354-369. [PMID: 35334103 DOI: 10.1007/s13668-022-00409-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 01/23/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to summarize the recent (past 5 years) available evidence regarding the association between plant-based diets on cancer risk from clinical trials and observational studies. Biological mechanisms and gaps in the current literature will also be discussed. RECENT FINDINGS There is a lack of intervention studies but there are abundant observational studies assessing the association between plant-based diets and cancer risk, including multiple longitudinal cohort studies and similar data from case-control studies that demonstrate a decreased overall cancer risk with plant-based diets. Case-control studies support a decreased risk of colorectal and breast cancers with plant-based diets, but results for specific cancers remain inconsistent in cohort studies. Current evidence from observational studies indicates an inverse association between plant-based diets and overall cancer risk. Future research should include intervention studies, address inconsistencies in dietary assessment methods and provide greater detail on underrepresented groups.
Collapse
Affiliation(s)
- Vanessa DeClercq
- Department of Pharmacology, Dalhousie University, Room 5-D Tupper Medical Building, 5850 College Street, Halifax, NS, B3H 4R2, Canada. .,Department of Community Health and Epidemiology, Dalhousie University, Halifax, NS, Canada.
| | - Jacob T Nearing
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ellen Sweeney
- Atlantic Partnership for Tomorrow's Health (PATH), Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
108
|
Abstract
Cancer resistance to therapy is a big issue in cancer therapy. Tumours may develop some mechanisms to reduce the induction of cell death, thus stimulating tumour growth. Cancer cells may show a low expression and activity of tumour suppressor genes and a low response to anti-tumour immunity. These mutations can increase the resistance of cancer cells to programmed cell death mechanisms such as apoptosis, ferroptosis, pyroptosis, autophagic cell death, and some others. The upregulation of some mediators and transcription factors such as Akt, nuclear factor of κB, signal transducer and activator of transcription 3, Bcl-2, and others can inhibit cell death in cancer cells. Using adjuvants to induce the killing of cancer cells is an interesting strategy in cancer therapy. Nobiletin (NOB) is a herbal-derived agent with fascinating anti-cancer properties. It has been shown to induce the generation of endogenous ROS by cancer cells, leading to damage to critical macromolecules and finally cell death. NOB may induce the activity of p53 and pro-apoptosis mediators, and also inhibit the expression and nuclear translocation of anti-apoptosis mediators. In addition, NOB may induce cancer cell killing by modulating other mechanisms that are involved in programmed cell death mechanisms. This review aims to discuss the cellular and molecular mechanisms of the programmed cell death in cancer by NOB via modulating different types of cell death in cancer.
Collapse
|
109
|
Curcumin Alleviates DSS-Induced Anxiety-Like Behaviors via the Microbial-Brain-Gut Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6244757. [PMID: 35345829 PMCID: PMC8957039 DOI: 10.1155/2022/6244757] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
The anxiety and depression caused by inflammatory bowel diseases (IBD) are known to greatly affect the mental health of patients. The mechanism of psychiatric disorders caused by IBD is not fully understood. Previous research has suggested that the gut microbiome plays a key role in IBD. Curcumin is a yellow polyphenol extracted from the rhizome of the ginger plant, which has been shown to have effects against both depression and anxiety. Research has indicated that curcumin affects the gut microbiome and exerts antianxiety and neuroprotective effects through the microbiota-gut-brain axis (MGB). However, whether curcumin can alleviate the psychiatric disorders caused by IBD and how curcumin affects the MGB axis through the gut microbiota have not been fully understood. Therefore, this study was aimed at determining the metabolic parameters and microbiological environment in the peripheral and central nervous system to determine the effects of curcumin against anxiety induced by dextran sulfate sodium salt (DSS) in mice. To elaborate on the link between the gut microbiota and how curcumin alleviates anxiety-like behaviors, we performed a fecal microbiota transplantation (FMT) experiment. The results suggested that curcumin can effectively relieve anxiety-like behaviors caused by DSS in mice. Further, curcumin treatment can alleviate disturbances in the gut microbiota and systemic disorders of lipid metabolism caused by DSS. Finally, through FMT, we verified that curcumin increased phosphatidylcholine in the prefrontal cortex of the mice and alleviated DSS-induced anxiety-like behaviors by modulating specific gut microbiota. We also revealed that Muribaculaceae may be a key part of the gut microbiota for curcumin to alleviate DSS-induced anxiety-like behaviors through the MGB axis.
Collapse
|
110
|
DOĞAN M, KOÇYİĞİT ÜM, GEZEGEN H. Synthesis of Nanoparticles Loading Indenopyrazole Derivatives and Evaluation of Biological Features. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1055921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Objective: In this study, it was aimed to prepare nanoparticle formulations using chitosan, a cationic natural polymer, and tripoly phosphate, and to perform mechanical characterization and in vitro cell culture studies. In addition, the cytotoxic effects of nanoparticles containing indenopyrazol derivatives against human glioma cells (C6) and human cervical cancer cells (HeLa) were investigated.
Methods: Within the scope of the study, nanoparticles containing indenopyrazole derivative were prepared and characterization of particle size, zeta potential and morphological properties were performed. XTT cytotoxicity test was applied to evaluate the antiproliferative activities of nanoparticles containing these components.
Results: Particle size, zeta potential and morphological properties of nanoparticles were observed to be suitable for application. In vitro cell culture studies showed that nanoparticles containing indenopyrazol derivatives showed better cytotoxic effects in both cell lines.
Conclusion: The results showed that the mechanical properties of nanoparticles containing indenopyrazol derivatives are suitable and can be applied in anticancer activity studies.
Collapse
Affiliation(s)
- Murat DOĞAN
- SİVAS CUMHURİYET ÜNİVERSİTESİ, ECZACILIK FAKÜLTESİ
| | | | | |
Collapse
|
111
|
Kooshki L, Mahdavi P, Fakhri S, Akkol EK, Khan H. Targeting lactate metabolism and glycolytic pathways in the tumor microenvironment by natural products: A promising strategy in combating cancer. Biofactors 2022; 48:359-383. [PMID: 34724274 DOI: 10.1002/biof.1799] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Anticancer drugs are not purely effective because of their toxicity, side effects, high cost, inaccessibility, and associated resistance. On the other hand, cancer is a complex public health problem that could intelligently adopt different signaling pathways and alter the body's metabolism to escape from the immune system. One of the cancer strategies to metastasize is modifying pH in the tumor microenvironment, ranging between 6.5 and 6.9. As a powerful determiner, lactate is responsible for this acidosis. It is involved in immune stimulation, including innate and adaptive immunity, apoptotic-related factors (Bax/Bcl-2, caspase), and glycolysis pathways (e.g., GLUT-1, PKM2, PFK, HK2, MCT-1, and LDH). Lactate metabolism, in turn, is interconnected with several dysregulated signaling mediators, including PI3K/Akt/mTOR, AMPK, NF-κB, Nrf2, JAK/STAT, and HIF-1α. Because of lactate's emerging and critical role, targeting lactate production and its transporters is important for preventing and managing tumorigenesis. Hence, exploring and developing novel promising anticancer agents to minimize human cancers is urgent. Based on numerous studies, natural secondary metabolites as multi-target alternative compounds with health-promoting properties possess more high effectiveness and low side effects than conventional agents. Besides, the mechanism of multi-targeted natural sources is related to lactate production and cancer-associated cross-talked factors. This review focuses on targeting the lactate metabolism/transporters, and lactate-associated mediators, including glycolytic pathways. Besides, interconnected mediators to lactate metabolism are also targeted by natural products. Accordingly, plant-derived secondary metabolites are introduced as alternative therapies in combating cancer through modulating lactate metabolism and glycolytic pathways.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Parisa Mahdavi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| |
Collapse
|
112
|
Nur S, Aisyah AN, Lukitaningsih E, Rumiyati R, Fadri A, Marwati M. Cytotoxic Effect of the Paku Atai Merah (Angiopteris ferox Copel) Fraction on MCF-7 and HeLa Cells and its Compound Profile by GC-MS. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i1.2943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cancer is a condition of abnormal cell proliferation of tissue cells in the body that becomes malignant. It can attack other parts of the body and affect the normal function of the body organs. The sample used in this study was tubers of paku atai merah (Angiopteris ferox Copel), then extracted using 96% ethanol eluent to obtain a thick extract. The ethanolic extract of A. ferox was fractionated using column chromatography to get the active fraction to characterize the compound using thin-layer chromatography and gas chromatography-mass spectroscopy (GC-MS) and tested its cytotoxic effectiveness on MCF-7 and HeLa cancer cells. The results of this study were obtained from fractionation using the column chromatography method to get sub-fraction C and the results of compound characterization using GC-MS and obtained variations in the class of compounds contained in the sample: amino acids, glucosinolates, alkaloids, flavonoids, and terpenoids. Based on the cytotoxic effect test of sub-fraction C on MCF-7 cells, the results obtained moderate cytotoxic effects with an IC50 value of 61.027 µg/mL, and HeLa cells had an IC50 value of 521.03 µg/mL, which was categorized as having a weak cytotoxic effect. Based on the results obtained from this study, it can be concluded that sub-fraction C of A. ferox tubers has a cytotoxic effect on MCF-7 cells to be used as a reference for tracing pure compounds from A. ferox tuber.
Collapse
|
113
|
PI3K-AKT Pathway Modulation by Thymoquinone Limits Tumor Growth and Glycolytic Metabolism in Colorectal Cancer. Int J Mol Sci 2022; 23:ijms23042305. [PMID: 35216429 PMCID: PMC8880628 DOI: 10.3390/ijms23042305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/03/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of death in men and the fourth in women worldwide and is characterized by deranged cellular energetics. Thymoquinone, an active component from Nigella sativa, has been extensively studied against cancer, however, its role in affecting deregulated cancer metabolism is largely unknown. Further, the phosphoinositide 3-kinase (PI3K) pathway is one of the most activated pathways in cancer and its activation is central to most deregulated metabolic pathways for supporting the anabolic needs of growing cancer cells. Herein, we provide evidence that thymoquinone inhibits glycolytic metabolism (Warburg effect) in colorectal cancer cell lines. Further, we show that such an abrogation of deranged cell metabolism was due, at least in part, to the inhibition of the rate-limiting glycolytic enzyme, Hexokinase 2 (HK2), via modulating the PI3/AKT axis. While overexpression of HK2 showed that it is essential for fueling glycolytic metabolism as well as sustaining tumorigenicity, its pharmacologic and/or genetic inhibition led to a reduction in the observed effects. The results decipher HK2 mediated inhibitory effects of thymoquinone in modulating its glycolytic metabolism and antitumor effects. In conclusion, we provide evidence of metabolic perturbation by thymoquinone in CRC cells, highlighting its potential to be used/repurposed as an antimetabolite drug, though the latter needs further validation utilizing other suitable cell and/or preclinical animal models.
Collapse
|
114
|
Iatridis N, Kougioumtzi A, Vlataki K, Papadaki S, Magklara A. Anti-Cancer Properties of Stevia rebaudiana; More than a Sweetener. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041362. [PMID: 35209150 PMCID: PMC8874712 DOI: 10.3390/molecules27041362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 01/03/2023]
Abstract
Stevia rebaudiana Bertoni is a perennial shrub from Paraguay that is nowadays widely cultivated, since it is increasingly being utilized as a sugar substitute in various foodstuffs due to its sweetness and minimal caloric content. These properties of the plant’s derivatives have spurred research on their biological activities revealing a multitude of benefits to human health, including antidiabetic, anticariogenic, antioxidant, hypotensive, antihypertensive, antimicrobial, anti-inflammatory and antitumor actions. To our knowledge, no recent reviews have surveyed and reported published work solely on the latter. Consequently, our main objective was to present a concise, literature-based review of the biological actions of stevia derivatives in various tumor types, as studied in in vitro and in vivo models of the disease. With global cancer estimates suggesting a 47% increase in cancer cases by 2040 compared to 2020, the data reviewed in this article should provide a better insight into Stevia rebaudiana and its products as a means of cancer prevention and therapy within the context of a healthy diet.
Collapse
Affiliation(s)
- Nikos Iatridis
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
| | - Anastasia Kougioumtzi
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
- Biomedical Research Insitute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
| | - Katerina Vlataki
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
| | - Styliani Papadaki
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
| | - Angeliki Magklara
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; (N.I.); (A.K.); (K.V.); (S.P.)
- Biomedical Research Insitute, Foundation for Research and Technology-Hellas, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
- Correspondence:
| |
Collapse
|
115
|
Jia Y, Wang M, Sang X, Liu P, Gao J, Jiang K, Cheng H. Phenethyl Isothiocyanate Enhances the Cytotoxic Effects of PARP Inhibitors in High-Grade Serous Ovarian Cancer Cells. Front Oncol 2022; 11:812264. [PMID: 35155204 PMCID: PMC8825372 DOI: 10.3389/fonc.2021.812264] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
While PARP inhibitor (PARPi) therapies have shown promising results in the treatment of high-grade serous ovarian cancer (HGSOC) harboring homologous recombination deficiencies, primary resistance to PARPi frequently occurs and even initial responders may eventually become resistant. Therefore, the development of novel effective combinatorial strategies to treat HGSOC is urgently needed. Here, we report that H2O2-induced oxidative stress sensitized HGSOC cells to PARPi BMN 673. Furthermore, Phenethyl isothiocyanate (PEITC) as a ROS-inducing agent significantly enhanced the cytotoxic effects of BMN 673. Mechanistically, combined use of PEITC and BMN 673 resulted in ROS overproduction and accumulation, enhanced DNA damage, G2/M arrest and apoptosis, all of which were significantly reversed by the ROS scavenger N-Acetyl-L-cysteine. We also showed that while PEITC did not further enhance the ability of BMN 673 on PARP1 trapping in HGSOC cells, the therapeutic effects of the PEITC/BMN 673 combination were at least in part dependent on the presence of PARP1. Importantly, the PEITC/BMN 673 combination potently abrogated the growth of HGSOC tumor spheroids and patient-derived organoid models of HGSOC and cervical cancer. Our findings provide a basis for further investigation of the utility of PARPi combination regimen in HGSOC and cervical cancer through ROS-mediated mechanisms.
Collapse
Affiliation(s)
- Yaxun Jia
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Min Wang
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiaolin Sang
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| | - Pixu Liu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jingchun Gao
- Department of Obstetrics and Gynecology, The First Hospital of Dalian Medical University, Dalian, China
| | - Kui Jiang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Hailing Cheng
- Cancer Institute, Dalian Key Laboratory of Molecular Targeted Cancer Therapy, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
116
|
Sheng LT, Jiang YW, Pan A, Koh WP. Dietary total antioxidant capacity and mortality outcomes: the Singapore Chinese Health Study. Eur J Nutr 2022; 61:2375-2382. [PMID: 35122488 DOI: 10.1007/s00394-022-02812-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate the relations of dietary total antioxidant capacity (DTAC) with mortality outcomes in a Chinese population. METHODS The study included 62,063 participants from the Singapore Chinese Health Study. The participants were 45-74 years at baseline (1993-1998) when dietary data were collected with a validated 165-item food frequency questionnaire. The DTAC was derived using two widely adopted scores of integrated dietary consumption of antioxidant nutrients, i.e., the Comprehensive Dietary Antioxidant Index (CDAI) and Vitamin C Equivalent Antioxidant Capacity (VCEAC). We used Cox proportional hazard model to estimate the hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations with adjustment for potential confounders. RESULTS During 1,212,318 person-years of follow-up, 23,397 deaths [cardiovascular diseases (CVD): 7523; respiratory diseases: 4696; and cancer: 7713] occurred. In multivariable models, the HR (95% CI) comparing participants in the highest vs. lowest quartile of CDAI was 0.85 (0.82, 0.88) for all-cause mortality, 0.82 (0.76, 0.88) for CVD mortality, 0.76 (0.70, 0.83) for respiratory disease mortality (all P-trend < 0.001), and 0.94 (0.88, 1.00) for cancer mortality (P-trend = 0.16). Similar associations were found with the VCEAC index. Higher intakes of the DTAC components, i.e., vitamin C, vitamin E, carotenoids, and flavonoids, were all associated with lower mortality risk. CONCLUSION Diet with a higher antioxidant capacity in midlife was associated with a lower risk of all-cause, cardiovascular and respiratory disease mortality in the Singapore Chinese population, supporting the public health recommendation of consuming more plant-based foods that are rich in antioxidant nutrients.
Collapse
Affiliation(s)
- Li-Ting Sheng
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yi-Wen Jiang
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Woon-Puay Koh
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117545, Singapore.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, 117609, Singapore.
| |
Collapse
|
117
|
Circular economy and secondary raw materials from fruits as sustainable source for recovery and reuse. A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
118
|
Yang CM, Chu TH, Tsai KW, Hsieh S, Kung ML. Phytochemically Derived Zingerone Nanoparticles Inhibit Cell Proliferation, Invasion and Metastasis in Human Oral Squamous Cell Carcinoma. Biomedicines 2022; 10:320. [PMID: 35203529 PMCID: PMC8869513 DOI: 10.3390/biomedicines10020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Due to its aggressiveness and high mortality rate, oral cancer still represents a tough challenge for current cancer therapeutics. Similar to other carcinomas, cancerous invasion and metastasis are the most important prognostic factors and the main obstacles to therapy for human oral squamous cell carcinoma (OSCC). Fortunately, with the rise of the nanotechnical era and innovative nanomaterial fabrication, nanomaterials are widely used in biomedicine, cancer therapeutics, and chemoprevention. Recently, phytochemical substances have attracted increasing interest as adjuvants to conventional cancer therapy. The ginger phenolic compound zingerone, a multitarget pharmacological and bioactive phytochemical, possesses potent anti-inflammatory, antioxidant, and anticancer activities. In our previous study, we generated phytochemically derived zingerone nanoparticles (NPs), and documented their superior antitumorigenic effect on human hepatoma cells. In the present study, we further investigated the effects of zingerone NPs on inhibiting the invasiveness and metastasis of human OSCC cell lines. Zingerone NPs elicited significant cytotoxicity in three OSCC cell lines compared to zingerone. Moreover, the lower dose of zingerone NPs (25 µM) markedly inhibited colony formation and colony survival by at least five-fold compared to zingerone treatment. Additionally, zingerone NPs significantly attenuated cell motility and invasiveness. In terms of the signaling mechanism, we determined that the zingerone NP-mediated downregulation of Akt signaling played an important role in the inhibition of cell viability and cell motility. Zingerone NPs inhibited matrix metalloproteinase (MMP) activity, which was highly correlated with the attenuation of cell migration and cell invasion. By further detecting the roles of zingerone NPs in epithelial-mesenchymal transition (EMT), we observed that zingerone NPs substantially altered the levels of EMT-related markers by decreasing the levels of the mesenchymal markers, N-cadherin and vimentin, rather than the epithelial proteins, ZO-1 and E-cadherin, compared with zingerone. In conclusion, as novel and efficient phytochemically derived nanoparticles, zingerone NPs may serve as a potent adjuvant to protect against cell invasion and metastasis, which will provide a beneficial strategy for future applications in chemoprevention and conventional therapeutics in OSCC treatment.
Collapse
Affiliation(s)
- Cheng-Mei Yang
- Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Tian-Huei Chu
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan;
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan;
| | - Shuchen Hsieh
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan;
| | - Mei-Lang Kung
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
| |
Collapse
|
119
|
Coscueta ER, Sousa AS, Reis CA, Pintado MM. Phenylethyl Isothiocyanate: A Bioactive Agent for Gastrointestinal Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030794. [PMID: 35164058 PMCID: PMC8838155 DOI: 10.3390/molecules27030794] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 12/30/2022]
Abstract
The incidence of gastrointestinal pathologies (cancer in particular) has increased progressively, with considerable morbidity and mortality, and a high economic impact on the healthcare system. The dietary intake of natural phytochemicals with certain bioactive properties has shown therapeutic and preventive effects on these pathologies. This includes the cruciferous vegetable derivative phenylethyl isothiocyanate (PEITC), a bioactive compound present in some vegetables, such as watercress. Notably, PEITC has antioxidant, anti-inflammatory, bactericidal, and anticarcinogenic properties. This review summarized the current knowledge on the role of PEITC as a potential natural nutraceutical or an adjuvant against oxidative/inflammatory-related disorders in the gastrointestinal tract. We also discussed the safe and recommended dose of PEITC. In addition, we established a framework to guide the research and development of sustainable methodologies for obtaining and stabilizing this natural molecule for industrial use. With PEITC, there is great potential to develop a viable strategy for preventing cancer and other associated diseases of the gastrointestinal tract. However, this topic still needs more scientific studies to help develop new PEITC products for the nutraceutical, pharmaceutical, or food industries.
Collapse
Affiliation(s)
- Ezequiel R. Coscueta
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.S.S.); (M.M.P.)
- Correspondence: ; Tel.: +351-225-580-001 (ext. 8047)
| | - Ana Sofia Sousa
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.S.S.); (M.M.P.)
| | - Celso A. Reis
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4169-005 Porto, Portugal;
- IPATIMUP—Institute of Molecular Pathology and Immunology, University of Porto, 4169-005 Porto, Portugal
- Medical Faculty, University of Porto, Al. Prof. Hernâni Monteiro, 4169-005 Porto, Portugal
| | - Maria Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (A.S.S.); (M.M.P.)
| |
Collapse
|
120
|
Pterostilbene downregulates BCR/ABL and induces apoptosis of T315I-mutated BCR/ABL-positive leukemic cells. Sci Rep 2022; 12:704. [PMID: 35027628 PMCID: PMC8758722 DOI: 10.1038/s41598-021-04654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/29/2021] [Indexed: 11/08/2022] Open
Abstract
In this study, we examined the antileukemic effects of pterostilbene, a natural methylated polyphenol analog of resveratrol that is predominantly found in berries and nuts, using various human and murine leukemic cells, as well as bone marrow samples obtained from patients with leukemia. Pterostilbene administration significantly induced apoptosis of leukemic cells, but not of non-malignant hematopoietic stem/progenitor cells. Interestingly, pterostilbene was highly effective in inducing apoptosis of leukemic cells harboring the BCR/ABL fusion gene, including ABL tyrosine kinase inhibitor (TKI)-resistant cells with the T315I mutation. In BCR/ABL+ leukemic cells, pterostilbene decreased the BCR/ABL fusion protein levels and suppressed AKT and NF-κB activation. We further demonstrated that pterostilbene along with U0126, an inhibitor of the MEK/ERK signaling pathway, synergistically induced apoptosis of BCR/ABL+ cells. Our results further suggest that pterostilbene-promoted downregulation of BCR/ABL involves caspase activation triggered by proteasome inhibition-induced endoplasmic reticulum stress. Moreover, oral administration of pterostilbene significantly suppressed tumor growth in mice transplanted with BCR/ABL+ leukemic cells. Taken together, these results suggest that pterostilbene may hold potential for the treatment of BCR/ABL+ leukemia, in particular for those showing ABL-dependent TKI resistance.
Collapse
|
121
|
Lim HM, Park SH. Regulation of reactive oxygen species by phytochemicals for the management of cancer and diabetes. Crit Rev Food Sci Nutr 2022; 63:5911-5936. [PMID: 34996316 DOI: 10.1080/10408398.2022.2025574] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cancer and diabetes mellitus are served as typical life-threatening diseases with common risk factors. Developing therapeutic measures in cancers and diabetes have aroused attention for a long time. However, the problems with conventional treatments are in challenge, including side effects, economic burdens, and patient compliance. It is essential to secure safe and efficient therapeutic methods to overcome these issues. As an alternative method, antioxidant and pro-oxidant properties of phytochemicals from edible plants have come to the fore. Phytochemicals are naturally occurring compounds, considered promising agent applicable in treatment of various diseases with beneficial effects. Either antioxidative or pro-oxidative activity of various phytochemicals were found to contribute to regulation of cell proliferation, differentiation, cell cycle arrest, and apoptosis, which can exert preventive and therapeutic effects against cancer and diabetes. In this article, the antioxidant or pro-oxidant effects and underlying mechanisms of flavonoids, alkaloids, and saponins in cancer or diabetic models demonstrated by the recent studies are summarized.
Collapse
Affiliation(s)
- Heui Min Lim
- Department of Biological Science, Gachon University, Seongnam, Republic of Korea
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| |
Collapse
|
122
|
Hsia TC, Peng SF, Chueh FS, Lu KW, Yang JL, Huang AC, Hsu FT, Wu RSC. Bisdemethoxycurcumin Induces Cell Apoptosis and Inhibits Human Brain Glioblastoma GBM 8401/ Luc2 Cell Xenograft Tumor in Subcutaneous Nude Mice In Vivo. Int J Mol Sci 2022; 23:ijms23010538. [PMID: 35008959 PMCID: PMC8745075 DOI: 10.3390/ijms23010538] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/04/2023] Open
Abstract
Bisdemethoxycurcumin (BDMC) has biological activities, including anticancer effects in vitro; however, its anticancer effects in human glioblastoma (GBM) cells have not been examined yet. This study aimed to evaluate the tumor inhibitory effect and molecular mechanism of BDMC on human GBM 8401/luc2 cells in vitro and in vivo. In vitro studies have shown that BDMC significantly reduced cell viability and induced cell apoptosis in GBM 8401/luc2 cells. Furthermore, BDMC induced apoptosis via inhibited Bcl-2 (anti-apoptotic protein) and increased Bax (pro-apoptotic proteins) and cytochrome c release in GBM 8401/luc2 cells in vitro. Then, twelve BALB/c-nude mice were xenografted with human glioblastoma GBM 8401/luc2 cancer cells subcutaneously, and the xenograft nude mice were treated without and with BDMC (30 and 60 mg/kg of BDMC treatment) every 3 days. GBM 8401/luc2 cell xenografts experiment showed that the growth of the tumors was significantly suppressed by BDMC administration at both doses based on the reduction of tumor size and weights. BDMC did not change the body weight and the H&E histopathology analysis of liver samples, indicating that BDMC did not induce systemic toxicity. Meanwhile, treatment with BDMC up-regulated the expressions of BAX and cleaved caspase-3, while it down-regulated the protein expressions of Bcl-2 and XIAP in the tumor tissues compared with the control group. This study has demonstrated that BDMC presents potent anticancer activity on the human glioblastoma GBM 8401/luc2 cell xenograft model by inducing apoptosis and inhibiting tumor cell proliferation and shows the potential for further development to the anti-GBM cancer drug.
Collapse
Affiliation(s)
- Te-Chun Hsia
- Department of Respiratory Therapy, China Medical University, Taichung 406, Taiwan;
- Department of Internal Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Shu-Fen Peng
- Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan;
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
| | - Fu-Shin Chueh
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan;
| | - Kung-Wen Lu
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 406, Taiwan;
| | - Jiun-Long Yang
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan; (J.-L.Y.); (A.-C.H.)
| | - An-Cheng Huang
- Department of Nursing, St. Mary’s Junior College of Medicine, Nursing and Management, Yilan 266, Taiwan; (J.-L.Y.); (A.-C.H.)
| | - Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung 406, Taiwan
- Correspondence: (F.-T.H.); (R.S.-C.W.); Tel.: +886-4-2205-3366 (ext. 2532) (F.-T.H.); +886-4-2205-2121 (ext. 5242) (R.S.-C.W.); Fax: +886-4-2205-3764 (F.-T.H.); +886-4-2205-2121 (ext. 5237) (R.S.-C.W.)
| | - Rick Sai-Chuen Wu
- Department of Anesthesiology, China Medical University Hospital, Taichung 404, Taiwan
- Department of Anesthesiology, China Medical University, Taichung 404, Taiwan
- Correspondence: (F.-T.H.); (R.S.-C.W.); Tel.: +886-4-2205-3366 (ext. 2532) (F.-T.H.); +886-4-2205-2121 (ext. 5242) (R.S.-C.W.); Fax: +886-4-2205-3764 (F.-T.H.); +886-4-2205-2121 (ext. 5237) (R.S.-C.W.)
| |
Collapse
|
123
|
Plant-Based Polyphenols: Anti-Helicobacter pylori Effect and Improvement of Gut Microbiota. Antioxidants (Basel) 2022; 11:antiox11010109. [PMID: 35052613 PMCID: PMC8772845 DOI: 10.3390/antiox11010109] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori (H. pylori) infection affects more than half of the world’s population, and thus, about 10 to 20% of people with H. pylori suffer from peptic ulcers, which may ultimately lead to gastric cancer. The increase in antibiotic resistance and susceptibility has encouraged the search for new alternative therapies to eradicate this pathogen. Several plant species are essential sources of polyphenols, and these bioactive compounds have demonstrated health-promoting properties, such as the gut microbiota stimulation, inflammation reduction, and bactericidal effect. Therefore, this review aims to discuss the potential effect of plant-based polyphenols against H. pylori and their role in the gut microbiota improvement.
Collapse
|
124
|
Li X, Miao S, Li F, Ye F, Yue G, Lu R, Shen H, Ye Y. Cellular Calcium Signals in Cancer Chemoprevention and Chemotherapy by Phytochemicals. Nutr Cancer 2022; 74:2671-2685. [PMID: 35876249 DOI: 10.1080/01635581.2021.2020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xue Li
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Department of Laboratory Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Shuhan Miao
- Department of Health Care, Zhenjiang Fourth Peoples Hospital, Zhenjiang, China
| | - Feng Li
- Department of Thoracic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fen Ye
- Department of Clinical Laboratory Center, Shaoxing People’s Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, China
| | - Guang Yue
- Department of Internal Medicine, The Third Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Experimental Research, Affiliated Kunshan Hospital, Jiangsu University, Kunshan, Suzhou, China
| | - Haijun Shen
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yang Ye
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
125
|
Cai Y, Sheng Z, Wang J. Xanthorrhizol inhibits non-small cell carcinoma (A549) cell growth and promotes apoptosis through modulation of PI3K/AKT and NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:120-130. [PMID: 34664399 DOI: 10.1002/tox.23383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/12/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Xanthorrhizol (XNT) is a sesquiterpenoid agent isolated from Curcuma xanthorrhiza; It is known to exhibit various pharmacological activities including anti-cancer. We investigated the anti-cell proliferative and proapoptotic effects of XNT on Non-small cell carcinoma (A549) cells were analyzed by the generation of reactive oxygen species (ROS), alteration of mitochondrial membrane potential (ΔΨm), oxidative DNA damage, and apoptosis morphological changes were explored by Hoechst and AO/EtBr staining. Our study demonstrated that XNT treatment significantly reduced the viability of A549 cells in a concentration-dependent manner. We observed that XNT-induced oxidative stress-mediated apoptotic cell death by increasing intracellular ROS generation, depleting antioxidant levels, enhancing lipid peroxidation, increased apoptotic morphological changes, and % of DNA damage on human lung cancer cells. Furthermore, we observed that the XNT induce apoptosis through inhibits phosphorylation of PI3K, AKTand inhibit NF-κBp65 transcriptional signaling activity. In addition, XNT treatment alters the ΔΨm, thereby induces apoptosis was closely coordinated with the induction of pro-apoptotic markers Bax, Bad, caspase- 3, 9 and cytochrome c, and suppression of anti-apoptotic (Bcl-2, Bcl-XL) protein expression. According to our results, XNT-inducing apoptosis in A549 cells by causing oxidative damage and modulating apoptotic signaling events. Finally, XNT-induced apoptotic cell death was confirmed by the TUNEL assay. Therefore, XNT might be used as a chemotherapeutic agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yong Cai
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhaoying Sheng
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiying Wang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
126
|
FENG F, HU P, TAO X. Mulberry leaf polysaccharide extracted by response surface methodolog suppresses the proliferation, invasion and migration of MCF-7 breast cancer cells. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.05122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
127
|
Rao V, Bhushan R, Kumari P, Cheruku SP, Ravichandiran V, Kumar N. Chemobrain: A review on mechanistic insight, targets and treatments. Adv Cancer Res 2022; 155:29-76. [DOI: 10.1016/bs.acr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
128
|
Hussain Y, Khan H, Ahmad I, Efferth T, Alam W. Nanoscale delivery of phytochemicals targeting CRISPR/Cas9 for cancer therapy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153830. [PMID: 34775359 DOI: 10.1016/j.phymed.2021.153830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND With growing global prevalence, cancer is a major cause of disease-related deaths. The understanding of the fundamental tumor pathology has contributed to the development of agents targeting oncogenic signaling pathways. Although these agents have increased survival for defined cancers, the therapeutic choices are still limited due to the development of drug resistance. CRISPR/Cas9 is a powerful new technology in cancer therapy by facilitating the identification of novel treatment targets and development of cell-based treatment strategies. PURPOSE We focused on applications of the CRISPR/Cas9 system in cancer therapy and discuss nanoscale delivery of cytotoxic phytochemical targeting the CRISPR/Cas9 system. RESULTS Genome engineering has been significantly accelerated by the advancement of the CRISPR/Cas9 technique. Phytochemicals play a key role in treating cancer by targeting various mechanisms and pathways. CONCLUSIONS The use of CRISPR/Cas9 for nanoscale delivery of phytochemicals opens new avenues in cancer therapy. One of the main obstacles in the clinical application of CRISPR/Cas9 is safe and efficient delivery. As viral delivery methods have certain drawbacks, there is an urgent need to develop non-viral delivery systems for therapeutic applications.
Collapse
Affiliation(s)
- Yaseen Hussain
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Haroon Khan
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan.
| | - Imad Ahmad
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany.
| | - Waqas Alam
- Department of Pharmacy, Abasyn University, Peshawar, Pakistan
| |
Collapse
|
129
|
Yun B, King M, Draz MS, Kline T, Rodriguez-Palacios A. Oxidative reactivity across kingdoms in the gut: Host immunity, stressed microbiota and oxidized foods. Free Radic Biol Med 2022; 178:97-110. [PMID: 34843918 DOI: 10.1016/j.freeradbiomed.2021.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species play a major role in the induction of programmed cell death and numerous diseases. Production of reactive oxygen species is ubiquitous in biological systems such as humans, bacteria, fungi/yeasts, and plants. Although reactive oxygen species are known to cause diseases, little is known about the importance of the combined oxidative stress burden in the gut. Understanding the dynamics and the level of oxidative stress 'reactivity' across kingdoms could help ascertain the combined consequences of free radical accumulation in the gut lumen. Here, we present fundamental similarities of oxidative stress derived from the host immune cells, bacteria, yeasts, plants, and the therein-derived diets, which often accentuate the burden of free radicals by accumulation during storage and cooking conditions. Given the described similarities, oxidative stress could be better understood and minimized by monitoring the levels of oxidative stress in the feces to identify pro-inflammatory factors. However, we illustrate that dietary studies rarely monitor oxidative stress markers in the feces, and therefore our knowledge on fecal oxidative stress monitoring is limited. A more holistic approach to understanding oxidative stress 'reactivity' in the gut could help improve strategies to use diet and microbiota to prevent intestinal diseases.
Collapse
Affiliation(s)
- Bahda Yun
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Maria King
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Mohamed S Draz
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Terence Kline
- Veterinary Technology Program, Cuyahoga Community College, Cleveland, OH, USA
| | - Alex Rodriguez-Palacios
- Division of Gastroenterology & Liver Disease, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Germ-free and Gut Microbiome Core, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
130
|
Jit BP, Pradhan B, Dash R, Bhuyan PP, Behera C, Behera RK, Sharma A, Alcaraz M, Jena M. Phytochemicals: Potential Therapeutic Modulators of Radiation Induced Signaling Pathways. Antioxidants (Basel) 2021; 11:antiox11010049. [PMID: 35052553 PMCID: PMC8773162 DOI: 10.3390/antiox11010049] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Ionizing radiation results in extensive damage to biological systems. The massive amount of ionizing radiation from nuclear accidents, radiation therapy (RT), space exploration, and the nuclear battlefield leads to damage to biological systems. Radiation injuries, such as inflammation, fibrosis, and atrophy, are characterized by genomic instability, apoptosis, necrosis, and oncogenic transformation, mediated by the activation or inhibition of specific signaling pathways. Exposure of tumors or normal cells to different doses of ionizing radiation could lead to the generation of free radical species, which can release signal mediators and lead to harmful effects. Although previous FDA-approved agents effectively mitigate radiation-associated toxicities, their use is limited due to their high cellular toxicities. Preclinical and clinical findings reveal that phytochemicals derived from plants that exhibit potent antioxidant activities efficiently target several signaling pathways. This review examined the prospective roles played by some phytochemicals in altering signal pathways associated with radiation response.
Collapse
Affiliation(s)
- Bimal Prasad Jit
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Biswajita Pradhan
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Rutumbara Dash
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Prajna Paramita Bhuyan
- Department of Botany, Maharaja Sriram Chandra Bhanja Deo University, Baripada 757003, India;
| | - Chhandashree Behera
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
| | - Rajendra Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla 768019, India; (B.P.J.); (R.D.); (R.K.B.)
| | - Ashok Sharma
- Department of Biochemistry, AIIMS, Ansari Nagar, New Delhi 110029, India;
| | - Miguel Alcaraz
- Radiology and Physical Medicine Department, School of Medicine, Campus de Excelencia Internacional de Ámbito Regional (CEIR)-Campus Mare Nostrum (CMN), Universidad de Murcia, 30100 Murcia, Spain
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| | - Mrutyunjay Jena
- Algal Biotechnology and Molecular Systematic Laboratory, Post Graduate Department of Botany, Berhampur University, Bhanja Bihar, Berhampur 760007, India; (B.P.); (C.B.)
- Correspondence: (M.A.); (M.J.); Tel.: +34-868883601 (M.A.); +91-7978478950 (M.J.)
| |
Collapse
|
131
|
Sulforaphane Attenuates Nonalcoholic Fatty Liver Disease by Inhibiting Hepatic Steatosis and Apoptosis. Nutrients 2021; 14:nu14010076. [PMID: 35010950 PMCID: PMC8746639 DOI: 10.3390/nu14010076] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by lipotoxicity and ectopic lipid deposition within hepatocytes. Sulforaphane (SFA), an active compound used for inhibiting tumors, was found to have the potency to improve lipid metabolism. However, its molecular mechanisms on ameliorating NAFLD are still incompletely understood. This research evaluated if SFA could inhibit hepatic steatosis and apoptosis. The effects of SFA on cell viability, lipid accumulation, triglyceride (TG) contents, apoptosis, ceramide contents, and reactive oxygen species (ROS) levels were analyzed in palmitic acid (PA)-treated HepG2 cells and high-fat diet (HFD)-fed mice. The related molecular mechanisms were further explored in hepatocytes. The results showed SFA alleviated lipid accumulation and regulated AMPK/SREBP1c/FAS signaling pathway in PA-stressed HepG2 cells. In addition, SFA alleviated PA-mediated apoptosis, downregulated the expressions of cleaved caspase 3, as well as reduced ceramide contents and ROS levels. Moreover, SFA treatment reduced HFD-induced body weight gain, alleviated insulin resistance, decreased serum TG, total cholesterol (TC), and alanine aminotransferase (ALT) levels, and prevented lipid deposition and apoptosis in the liver. This study showed SFA suppressed lipid deposition and apoptosis both in vitro and in vivo, indicating that SFA may be a potential candidate for preventing and treating NAFLD.
Collapse
|
132
|
Liu JG, Wan JZ, Lin QM, Han GC, Feng XZ, Chen Z. Convenient Heme Nanorod Modified Electrode for Quercetin Sensing by Two Common Electrochemical Methods. MICROMACHINES 2021; 12:1519. [PMID: 34945369 PMCID: PMC8707963 DOI: 10.3390/mi12121519] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 01/02/2023]
Abstract
Quercetin (Qu) is one of the most abundant flavonoids in the human diet. High concentrations of Qu can easily cause adverse effects and induce inflammation, joint pain and stiffness. In this study, Heme was used as a sensitive element and deposited and formed nanorods on a glassy carbon electrode (GCE) for the detection of Qu. The Heme/GCE sensor was characterized using scanning electron microscopy (SEM), cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) techniques. Under optimized conditions, the developed sensor presented a linear concentration ranging from 0.1 to 700 μmol·L-1 according to the CV and DPV methods. The detection limit for the sensor was 0.134 μmol·L-1 and its sensitivity was 0.12 μA·μM-1·cm-2, which were obtained from CV analysis. Through DPV analysis we obtained a detection limit of 0.063 μmol·L-1 and a sensitivity of 0.09 μA·μM-1·cm-2. Finally, this sensor was used to detect the Qu concentration in loquat leaf powder extract, with recovery between 98.55-102.89% and total R.S.D. lower than 3.70%. The constructed electrochemical sensor showed good anti-interference, repeatability and stability, indicating that it is also usable for the rapid detection of Qu in actual samples.
Collapse
Affiliation(s)
| | | | | | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (J.-G.L.); (J.-Z.W.); (Q.-M.L.)
| | - Xiao-Zhen Feng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (J.-G.L.); (J.-Z.W.); (Q.-M.L.)
| | - Zhencheng Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China; (J.-G.L.); (J.-Z.W.); (Q.-M.L.)
| |
Collapse
|
133
|
Gupta S, Kumar A, Tejavath KK. A pharmacognostic approach for mitigating pancreatic cancer: emphasis on herbal extracts and phytoconstituents. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00246-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
Background
Pancreatic cancer is studied as one of the most lethal cancers with currently no control of its lethality, mainly due to its late diagnosis and lack of foolproof treatment processes. Despite continuous efforts being made in looking for therapies to deal with cancer, it keeps on being a labyrinth for the researchers. Efforts like discovering new treatment options, repurposing existing drugs, are continuously made to deal with this cancer.
Main body
With the urge to get answers and the fact that nature has all roots of therapeutics, efforts are made in the direction of finding those answers for providing ministrations for pancreatic cancer from plant products. Plant products are used as treatment options either directly in the form of extracts or an alternative to them is individual phytochemicals that are either isolated from the plants or are commercially synthesized for various purposes. In this review, we put forward such pharmacognostic initiatives made in combating pancreatic cancer, focusing mainly on plant extracts and various phytochemicals; along with the mechanisms which they triggered to fulfill the need for cytotoxicity to pancreatic cancer cells (in vitro and in vivo).
Conclusion
This study will thus provide insights into new combination therapy that can be used and also give a clue on which plant product and phytoconstituent can be used in dealing with pancreatic cancer.
Graphical abstract
Collapse
|
134
|
Martinelli F, Perrone A, Yousefi S, Papini A, Castiglione S, Guarino F, Cicatelli A, Aelaei M, Arad N, Gholami M, Salami SA. Botanical, Phytochemical, Anti-Microbial and Pharmaceutical Characteristics of Hawthorn ( Crataegusmonogyna Jacq.), Rosaceae. Molecules 2021; 26:molecules26237266. [PMID: 34885847 PMCID: PMC8659235 DOI: 10.3390/molecules26237266] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Hawthorn (Crataegus monogyna Jacq.) is a wild edible fruit tree of the genus Crataegus, one of the most interesting genera of the Rosaceae family. This review is the first to consider, all together, the pharmaceutical, phytochemical, functional and therapeutic properties of C. monogyna based on numerous valuable secondary metabolites, including flavonoids, vitamin C, glycoside, anthocyanin, saponin, tannin and antioxidants. Previous reviews dealt with the properties of all species of the entire genera. We highlight the multi-therapeutic role that C. monogyna extracts could have in the treatment of different chronic and degenerative diseases, mainly focusing on flavonoids. In the first part of this comprehensive review, we describe the main botanical characteristics and summarize the studies which have been performed on the morphological and genetic characterization of the C. monogyna germplasm. In the second part, the key metabolites and their nutritional and pharmaceutical properties are described. This work could be an essential resource for promoting future therapeutic formulations based on this natural and potent bioactive plant extract.
Collapse
Affiliation(s)
- Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
| | - Anna Perrone
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
- Correspondence: (A.P.); (S.A.S.)
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan 65178-38695, Iran; (S.Y.); (M.G.)
| | - Alessio Papini
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy; (F.M.); (A.P.)
| | - Stefano Castiglione
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Francesco Guarino
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Angela Cicatelli
- Dipartimento di Chimica e Biologia, University of Salerno, 84084 Fisciano, Italy; (S.C.); (F.G.); (A.C.)
| | - Mitra Aelaei
- Department of Horticulture, Faculty of Agriculture, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Neda Arad
- School of Plant Sciences, The University of Arizona, Tucson, AZ 85721, USA;
| | - Mansour Gholami
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan 65178-38695, Iran; (S.Y.); (M.G.)
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj 31587-77871, Iran
- Correspondence: (A.P.); (S.A.S.)
| |
Collapse
|
135
|
Parameters of Oxidative Stress, Vitamin D, Osteopontin, and Melatonin in Patients with Lip, Oral Cavity, and Pharyngeal Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:2364931. [PMID: 34721756 PMCID: PMC8550860 DOI: 10.1155/2021/2364931] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/07/2021] [Indexed: 12/16/2022]
Abstract
Lip, oral cavity, and pharyngeal cancers (LOCP) constitute a group of rare neoplasms with unfavorable prognosis. So far, not much is known about the role of vitamin D and oxidative stress in the pathogenesis of LOCP in the European population. The aim of the study was to determine the concentrations of vitamin D, osteopontin, melatonin, and malondialdehyde (MDA) as markers of oxidative stress and/or inflammation, as well as the activities of antioxidant enzymes in the course of LOCP. The vitamin D, melatonin, and osteopontin concentrations in blood serum, the MDA levels in erythrocytes and blood plasma, and the activities of superoxide dismutase (SOD-1), catalase (CAT), and glutathione peroxidase (GPx) in erythrocytes were measured in blood samples taken from 25 LOCP patients of middle age (YCG), 20 LOCP elderly patients (OCG), and 25 healthy middle-aged volunteers. In both cancer groups, decreases in vitamin D and CAT, as well as increases in osteopontin and blood plasma MDA, were observed. An increase in GPx activity in YCG and a decrease in melatonin level in OCG were found. The results indicate the vitamin D deficiency and disturbed oxidant-antioxidant homeostasis in LOCP patients. Osteopontin seems to be associated with LOCP carcinogenesis and requires further research.
Collapse
|
136
|
Experimental studies and computational modeling on cytochrome c reduction by quercetin: The role of oxidability and binding affinity. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
137
|
Verma E, Kumar A, Devi Daimary U, Parama D, Girisa S, Sethi G, Kunnumakkara AB. Potential of baicalein in the prevention and treatment of cancer: A scientometric analyses based review. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
138
|
Dini I. The Potential of Dietary Antioxidants. Antioxidants (Basel) 2021; 10:antiox10111752. [PMID: 34829623 PMCID: PMC8615033 DOI: 10.3390/antiox10111752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 10/28/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress happens when the levels of reactive species made from oxygen and nitrogen exceed the body's antioxidant capacity [...].
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
139
|
Tong J, Fang J, Zhu T, Xiang P, Shang J, Chen L, Zhao J, Wang Y, Tong L, Sun M. Pentagalloylglucose reduces AGE-induced inflammation by activating Nrf2/HO-1 and inhibiting the JAK2/STAT3 pathway in mesangial cells. J Pharmacol Sci 2021; 147:305-314. [PMID: 34663512 DOI: 10.1016/j.jphs.2021.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 01/18/2023] Open
Abstract
Pentagalloylglucose (PGG), a gallotannin polyphenolic compound, has been found to possess a host of beneficial pharmacologic activities, such as anti-inflammatory and antioxidative activities. We previously demonstrated that PGG is capable of binding to the cell membrane of renal mesangial cells, but the pharmacological effect of PGG on diabetic renal injury and the underlying mechanisms are still not yet clear. In this study, the effects of PGG on Nrf2/HO-1 and JAK2/STAT3 signaling were explored in AGE-stimulated mesangial cells. Furthermore, the Nrf2 transcriptional inhibitor ML385 was used to verify the involvement of Nrf2 in the PGG-mediated inhibition of the JAK2/STAT3 cascade. Our results showed that PGG significantly inhibited AGE-induced ROS generation and activated AGE-inhibited Nrf2/HO-1 signaling. Moreover, AGE-induced inflammatory cytokines (IL-1β and TNF-α) and their signaling through JAK2/STAT3 were blocked by PGG. Furthermore, ML385 suppressed Nrf2/HO-1 signaling, elevated ROS and cytokine production, and activated JAK2/STAT3 cascade were reversed by PGG. These findings indicate that PGG inhibits the JAK2/STAT3 cascade by activating Nrf2/HO-1 signaling.
Collapse
Affiliation(s)
- Jinzhi Tong
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Jian Fang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Tiantian Zhu
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Pan Xiang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Jiaojiao Shang
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Lei Chen
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China
| | - Jindong Zhao
- The First Affiliated Hospital of Anhui University of TCM, Hefei, Anhui, China
| | - Yanxin Wang
- The First Affiliated Hospital of Anhui University of TCM, Hefei, Anhui, China
| | - Li Tong
- Qinghai Provincial Key Laboratory of Traditional Chinese Medicine Research for Glucolipid Metabolic Diseases, Medical College of Qinghai University, Xining, Qinghai, China
| | - Min Sun
- Anhui Provincial Key Laboratory of R&D of Chinese Material Medica, School of Life Science, Anhui University, Hefei, Anhui, China.
| |
Collapse
|
140
|
González-Bosch C, Boorman E, Zunszain PA, Mann GE. Short-chain fatty acids as modulators of redox signaling in health and disease. Redox Biol 2021; 47:102165. [PMID: 34662811 PMCID: PMC8577496 DOI: 10.1016/j.redox.2021.102165] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/26/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Short-chain fatty acids (SCFAs), produced by colonic bacteria and obtained from the diet, have been linked to beneficial effects on human health associated with their metabolic and signaling properties. Their physiological functions are related to their aliphatic tail length and dependent on the activation of specific membrane receptors. In this review, we focus on the mechanisms underlying SCFAs mediated protection against oxidative and mitochondrial stress and their role in regulating metabolic pathways in specific tissues. We critically evaluate the evidence for their cytoprotective roles in suppressing inflammation and carcinogenesis and the consequences of aging. The ability of these natural compounds to induce signaling pathways, involving nuclear erythroid 2-related factor 2 (Nrf2), contributes to the maintenance of redox homeostasis under physiological conditions. SCFAs may thus serve as nutritional and therapeutic agents in healthy aging and in vascular and other diseases such as diabetes, neuropathologies and cancer. SCFAs are a link between the microbiota, redox signaling and host metabolism. SCFAs modulate Nrf2 redox signaling through specific free fatty acid receptors. Butyrate induces epigenetic regulation and/or Nrf2 nuclear translocation. Butyrate and propionate protect the blood-brain barrier by facilitating docosahexaenoic acid transport. Regulation of redox homeostasis by SCFAs supports their potential as therapeutic nutrients in health and disease.
Collapse
Affiliation(s)
- Carmen González-Bosch
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Departamento de Bioquímica y Biología Molecular, Universitat de València, Instituto de Agroquímica y Tecnología de Alimentos (IATA/CSIC), Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| | - Emily Boorman
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK; Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Patricia A Zunszain
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK.
| | - Giovanni E Mann
- King's British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
141
|
Alghamdi YS, Saleh OM, Alqadri N, Mashraqi MM, Bahattab O, Awad NS. Effect of Ducrosia flabellifolia and Savignya parviflora Extracts on Inhibition of Human Colon and Prostate Cancer Cell Lines. Curr Issues Mol Biol 2021; 43:1518-1528. [PMID: 34698080 PMCID: PMC8929105 DOI: 10.3390/cimb43030107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/06/2023] Open
Abstract
The goal of this study was to investigate whether Ducrosia flabellifolia and Savignya parviflora methanol extract the have effect on colon and prostate cancer cell lines. Analysis of total content of phenolics and flavonoids of each plant extract was carried out. Cytotoxic effect, cell cycle analysis, induction of apoptosis and gene expression of Bcl-2 and Bax genes were studied. Obtained results indicated that, the plant extracts exhibit growth inhibition of used cancer cell lines and induced apoptosis as well as arresting of cell cycle. At the molecular level, changes in gene expression were detected via qPCR and confirmed by western blotting. The exhibited anticancer potentialities of plant extracts against utilized cancer cell lines are due to its containing bioactive compounds. Further detailed isolation, fractionation and characterization of bioactive compounds are needed.
Collapse
Affiliation(s)
- Youssef Saeed Alghamdi
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (Y.S.A.); (N.A.)
| | - Osama Moseilhy Saleh
- Natural Products Research Department, National Centre for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Cairo 9621, Egypt;
- College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
| | - Nada Alqadri
- Department of Biology, Turabah University College, Taif University, Taif 21995, Saudi Arabia; (Y.S.A.); (N.A.)
| | - Mutaib Mosaued Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia;
| | - Omar Bahattab
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71497, Saudi Arabia;
| | - Nabil Saied Awad
- College of Biotechnology, Misr University for Science and Technology, Giza 12563, Egypt
- Department of Genetics, Faculty of Agriculture and Natural Resources, Aswan University, Aswan 81528, Egypt
- Correspondence: ; Tel.: +20-1126546410
| |
Collapse
|
142
|
Yang S, Xiao H, Sun Y, Cao L. Zeylenone synergizes with cisplatin in osteosarcoma by enhancing DNA damage, apoptosis, and necrosis via the Hsp90/AKT/GSK3β and Fanconi anaemia pathway. Phytother Res 2021; 35:5899-5918. [PMID: 34585447 DOI: 10.1002/ptr.7299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 11/12/2022]
Abstract
A safer and more effective combination strategy designed to enhance the efficacy and minimize the toxicity of cisplatin in osteosarcoma (OS) is urgently needed. Zeylenone (zey), a cyclohexene oxide compound, exerted an obvious inhibitory effect on several cancer cell lines and exhibited little cytotoxicity towards normal cells, enabling zey to play a unique role in combination therapy. Thus, the study aimed to determine whether the combination of zey and cisplatin produces synergistic antitumour effects on OS and to further explore molecular mechanisms. Initially, we found that zey potentiated the anti-osteosarcoma efficacy of cisplatin and exhibited synergistic interactions with cisplatin in vitro, which also were confirmed in vivo by using xenograft model. Mechanistically, zey and cisplatin synergistically induced DNA damage, cell cycle arrest, necrosis, and apoptosis in OS cells. Importantly, zey had a high binding affinity for Hsp90 and reduced the expression of Hsp90, which further induced the suppression of AKT/GSK3β signalling axis and the degradation of Fanconi anaemia (FA) pathway proteins. Thus, the Hsp90/AKT/GSK3β and FA pathway are the key to the synergism between zey and cisplatin. Overall, zey shows promise for development as a cisplatin chemosensitizer with clinical utility in restoring cisplatin sensitivity of cancer cells.
Collapse
Affiliation(s)
- Shuxian Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haiyan Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yunfang Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Li Cao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Zhongguancun Open Laboratory of the Research and Development of Natural Medicine and Health Products, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.,Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
143
|
Popoola TD, Guetchueng ST, Ritchie KJ, Awodele O, Dempster NM, Akinloye O, Sarker SD, Fatokun AA. Potent Nrf2-inducing, antioxidant, and anti-inflammatory effects and identification of constituents validate the anti-cancer use of Uvaria chamae and Olax subscorpioidea. BMC Complement Med Ther 2021; 21:234. [PMID: 34537049 PMCID: PMC8449903 DOI: 10.1186/s12906-021-03404-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 08/31/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Uvaria chamae (UC) and Olax subscorpioidea (OS) roots are included in traditional anti-cancer remedies and some studies have identified their chemopreventive/chemotherapeutic potential. This study aimed to identify some cellular/molecular mechanisms underlying such potential and the associated chemical constituents. METHODS Effect on the viability of cancer cells was assessed using the Alamar Blue assay; ability to modulate oxidative stress was assessed using the 2',7'-dichlorofluorescein diacetate (DCFDA) assay; potential to modulate Nuclear factor erythroid 2-related factor like-2 (Nrf2) activity was assessed in the AREc32 luciferase reporter cell line; and anti-inflammatory effect was assessed using lipopolysaccharide-induced nitric oxide release model in the RAW264.7 cells (Griess Assay). Chemical constituents were identified through liquid chromatography-mass spectrometry (LC-MS). RESULTS Extracts up to 100 μg/ml were non-toxic or mildly toxic to HeLa, AREc32, PC3 and A549 cells (IC50 > 200 μg/ml). Each extract reduced basal and peroxide-induced levels of reactive oxygen species (ROS) in HeLa cells. OS and UC activated Nrf2, with UC producing nearly four-fold induction. Both extracts demonstrated anti-inflammatory effects. Chamanetin, isochamanetin, isouvaretin, uvaricin I and other compounds were found in U. chamae root extract. CONCLUSION As Nrf-2 induction, antioxidant and anti-inflammatory activities are closely linked with chemoprevention and chemotherapy of cancers, the roles of these plants in traditional anti-cancer remedies are further highlighted, as is their potential as sources of drug leads.
Collapse
Affiliation(s)
- Temidayo D. Popoola
- grid.411782.90000 0004 1803 1817Department of Pharmacology, Therapeutics and Toxicology, University of Lagos, Lagos, Nigeria ,grid.4425.70000 0004 0368 0654Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF UK
| | - Stephanie T. Guetchueng
- grid.4425.70000 0004 0368 0654Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF UK ,grid.500526.40000 0004 0595 6917Institute of Medical Research and Medicinal Plants Studies, Ministry of Scientific Research and Innovation, P.O. Box 13033, Yaoundé, Cameroon
| | - Kenneth J. Ritchie
- grid.4425.70000 0004 0368 0654Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF UK
| | - Olufunsho Awodele
- grid.411782.90000 0004 1803 1817Department of Pharmacology, Therapeutics and Toxicology, University of Lagos, Lagos, Nigeria
| | - Nicola M. Dempster
- grid.4425.70000 0004 0368 0654Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF UK
| | - Oluyemi Akinloye
- grid.411782.90000 0004 1803 1817Clinical Chemistry Unit, Department of Medical Laboratory Science, University of Lagos, Lagos, Nigeria
| | - Satyajit D. Sarker
- grid.4425.70000 0004 0368 0654Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF UK
| | - Amos A. Fatokun
- grid.4425.70000 0004 0368 0654Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF UK
| |
Collapse
|
144
|
George BP, Chandran R, Abrahamse H. Role of Phytochemicals in Cancer Chemoprevention: Insights. Antioxidants (Basel) 2021; 10:antiox10091455. [PMID: 34573087 PMCID: PMC8466984 DOI: 10.3390/antiox10091455] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer is a condition where the body cells multiply in an uncontrollable manner. Chemoprevention of cancer is a broad term that describes the involvement of external agents to slow down or suppress cancer growth. Synthetic and natural compounds are found useful in cancer chemoprevention. The occurrence of global cancer type varies, depending on many factors such as environmental, lifestyle, genetic etc. Cancer is often preventable in developed countries with advanced treatment modalities, whereas it is a painful death sentence in developing and low-income countries due to the lack of modern therapies and awareness. One best practice to identify cancer control measures is to study the origin and risk factors associated with common types. Based on these factors and the health status of patients, stage, and severity of cancer, type of treatment is decided. Even though there are well-established therapies, cancer still stands as one of the major causes of death and a public health burden globally. Research shows that most cancers can be prevented, treated, or the incidence can be delayed. Phytochemicals from various medicinal plants were reported to reduce various risk factors associated with different types of cancer through their chemopreventive role. This review highlights the role of bioactive compounds or natural products from plants in the chemoprevention of cancer. There are many plant based dietary factors involved in the chemoprevention process. The review discusses the process of carcinogenesis and chemoprevention using plants and phytocompounds, with special reference to five major chemopreventive phytocompounds. The article also summarizes the important chemopreventive mechanisms and signaling molecules involved in the process. Since the role of antioxidants in chemoprevention is inevitable, an insight into plant-based antioxidant compounds that fight against this dreadful disease at various stages of carcinogenesis and disease progression is discussed. This will fill the research gap in search of chemopreventive natural compounds and encourage scientists in clinical trials of anticancer agents from plants.
Collapse
|
145
|
Wu Z, Huang S, Li T, Li N, Han D, Zhang B, Xu ZZ, Zhang S, Pang J, Wang S, Zhang G, Zhao J, Wang J. Gut microbiota from green tea polyphenol-dosed mice improves intestinal epithelial homeostasis and ameliorates experimental colitis. MICROBIOME 2021; 9:184. [PMID: 34493333 PMCID: PMC8424887 DOI: 10.1186/s40168-021-01115-9] [Citation(s) in RCA: 314] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/17/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Alteration of the gut microbiota may contribute to the development of inflammatory bowel disease (IBD). Epigallocatechin-3-gallate (EGCG), a major bioactive constituent of green tea, is known to be beneficial in IBD alleviation. However, it is unclear whether the gut microbiota exerts an effect when EGCG attenuates IBD. RESULTS We first explored the effect of oral or rectal EGCG delivery on the DSS-induced murine colitis. Our results revealed that anti-inflammatory effect and colonic barrier integrity were enhanced by oral, but not rectal, EGCG. We observed a distinct EGCG-mediated alteration in the gut microbiome by increasing Akkermansia abundance and butyrate production. Next, we demonstrated that the EGCG pre-supplementation induced similar beneficial outcomes to oral EGCG administration. Prophylactic EGCG attenuated colitis and significantly enriched short-chain fatty acids (SCFAs)-producing bacteria such as Akkermansia and SCFAs production in DSS-induced mice. To validate these discoveries, we performed fecal microbiota transplantation (FMT) and sterile fecal filtrate (SFF) to inoculate DSS-treated mice. Microbiota from EGCG-dosed mice alleviated the colitis over microbiota from control mice and SFF shown by superiorly anti-inflammatory effect and colonic barrier integrity, and also enriched bacteria such as Akkermansia and SCFAs. Collectively, the attenuation of colitis by oral EGCG suggests an intimate involvement of SCFAs-producing bacteria Akkermansia, and SCFAs, which was further demonstrated by prophylaxis and FMT. CONCLUSIONS This study provides the first data indicating that oral EGCG ameliorated the colonic inflammation in a gut microbiota-dependent manner. Our findings provide novel insights into EGCG-mediated remission of IBD and EGCG as a potential modulator for gut microbiota to prevent and treat IBD. Video Abstract.
Collapse
Affiliation(s)
- Zhenhua Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shimeng Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Tiantian Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Na Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Bing Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193 China
| | - Zhenjiang Zech Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 214122 China
| | - Shiyi Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Jiaman Pang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shilan Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078 USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701 USA
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
146
|
TAŞKIN D, DOĞAN M, ERMANOĞLU M, ARABACİ T. Achillea goniocephala Extract Loaded into Nanochitosan: In Vitro Cytotoxic and Antioxidant Activity. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.972180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
147
|
Debela DT, Muzazu SGY, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med 2021; 9:20503121211034366. [PMID: 34408877 PMCID: PMC8366192 DOI: 10.1177/20503121211034366] [Citation(s) in RCA: 433] [Impact Index Per Article: 144.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/05/2021] [Indexed: 01/11/2023] Open
Abstract
Cancer is a global health problem responsible for one in six deaths worldwide. Treating cancer has been a highly complex process. Conventional treatment approaches, such as surgery, chemotherapy, and radiotherapy, have been in use, while significant advances are being made in recent times, including stem cell therapy, targeted therapy, ablation therapy, nanoparticles, natural antioxidants, radionics, chemodynamic therapy, sonodynamic therapy, and ferroptosis-based therapy. Current methods in oncology focus on the development of safe and efficient cancer nanomedicines. Stem cell therapy has brought promising efficacy in regenerating and repairing diseased or damaged tissues by targeting both primary and metastatic cancer foci, and nanoparticles brought new diagnostic and therapeutic options. Targeted therapy possessed breakthrough potential inhibiting the growth and spread of specific cancer cells, causing less damage to healthy cells. Ablation therapy has emerged as a minimally invasive procedure that burns or freezes cancers without the need for open surgery. Natural antioxidants demonstrated potential tracking down free radicals and neutralizing their harmful effects thereby treating or preventing cancer. Several new technologies are currently under research in clinical trials, and some of them have already been approved. This review presented an update on recent advances and breakthroughs in cancer therapies.
Collapse
Affiliation(s)
- Dejene Tolossa Debela
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Seke GY Muzazu
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Enteric Diseases and Vaccines Research Unit, Centre for Infectious Disease Research in Zambia (CIDRZ), Lusaka, Zambia
| | - Kidist Digamo Heraro
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Wachemo University, Hossana, Ethiopia
| | - Maureen Tayamika Ndalama
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Betelhiem Woldemedhin Mesele
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Kotebe Metropolitan University, Addis Ababa, Ethiopia
| | - Dagimawi Chilot Haile
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- University of Gondar, Gondar, Ethiopia
| | - Sophia Khalayi Kitui
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tsegahun Manyazewal
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
148
|
Sularz O, Koronowicz A, Smoleń S, Kowalska I, Skoczylas Ł, Liszka-Skoczylas M, Tabaszewska M, Pitala J. Anti- and pro-oxidant potential of lettuce ( Lactuca sativa L.) biofortified with iodine by KIO 3, 5-iodo- and 3,5-diiodosalicylic acid in human gastrointestinal cancer cell lines. RSC Adv 2021; 11:27547-27560. [PMID: 35480668 PMCID: PMC9037830 DOI: 10.1039/d1ra04679a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/30/2021] [Indexed: 01/20/2023] Open
Abstract
Vegetables are particularly rich sources of micronutrients and phytochemicals such as polyphenols and vitamins. These plant-derived bioactive compounds provide antitumor and antioxidant properties due to their capacity to interact with reactive oxygen species (ROS). The objective of this study was to determine the effect of iodine biofortification (potassium iodate/KIO3/, 5-iodosalicylic acid/5-ISA/, and 3,5-diiodosalicylic acid/3,5-diISA/) on the antioxidant activity of lettuce (Lactuca sativa L. capitata) cv. ‘Melodion’. In this work, HPLC analysis was used to identify polyphenolic compounds while the antioxidant activity of iodine-enriched vegetables was determined by using DPPH, ABTS and FRAP methods. The content of the water-soluble vitamins was analyzed by using the LC-MS/MS technique. The impact of extracts from iodine-biofortified lettuce on production of reactive oxygen species (ROS) in gastrointestinal cancer cells was also evaluated. The results from this research indicate that application of iodine compounds improves the antioxidant potential of lettuce by increasing the concentration of some vitamins, antioxidant enzymes and polyphenolic compounds in the enriched plants. Moreover, the study has shown that iodine-biofortified lettuce induces production of ROS in cancer cells, resulting in an anticancer effect by the induction of programmed cancer cell death. Vegetables are particularly rich sources of micronutrients and phytochemicals such as polyphenols and vitamins.![]()
Collapse
Affiliation(s)
- Olga Sularz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow Balicka 122 St. 30-149 Krakow Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow Balicka 122 St. 30-149 Krakow Poland
| | - Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow Al. 29 Listopada 54 31-425 Krakow Poland
| | - Iwona Kowalska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow Al. 29 Listopada 54 31-425 Krakow Poland
| | - Łukasz Skoczylas
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow Balicka 122 St. 30-149 Krakow Poland
| | - Marta Liszka-Skoczylas
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture in Krakow Balicka 122 St. 30-149 Krakow Poland
| | - Małgorzata Tabaszewska
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow Balicka 122 St. 30-149 Krakow Poland
| | - Joanna Pitala
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow Al. 29 Listopada 54 31-425 Krakow Poland
| |
Collapse
|
149
|
Iahtisham-Ul-Haq, Khan S, Awan KA, Iqbal MJ. Sulforaphane as a potential remedy against cancer: Comprehensive mechanistic review. J Food Biochem 2021; 46:e13886. [PMID: 34350614 DOI: 10.1111/jfbc.13886] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/30/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022]
Abstract
Sulforaphane belongs to the active class of isothiocyanates capable of delivering various biological benefits for health promotion and disease prevention. This compound is considered vital to curtail numerous metabolic disorders. Various studies have proven its beneficial effects against cancer prevention and its possible utilization as a therapeutic agent in cancer treatment. Understanding the mechanistic pathways and possible interactions at cellular and subcellular levels is key to design and develop cancer therapeutics for humans. In this respect, a number of mechanisms such as modulation of carcinogen metabolism & phase II enzymatic activities, cell cycle arrest, activation of Nrf2, cytotoxic, proapoptotic and apoptotic pathways have been reported to be involved in cancer prevention. This article provides sufficient information by critical analysis to understand the mechanisms involved in cancer prevention attributed to sulforaphane. Furthermore, various clinical studies have also been included for design and development of novel therapies for cancer prevention and cure. PRACTICAL APPLICATIONS: Diet and dietary components are potential tools to address various lifestyle-related disorders. Due to plenty of environmental and cellular toxicants, the chances of cancer prevalence are quite large which are worsen by adopting unhealthy lifestyles. Cancer can be treated with various therapies but those are acquiring side effects causing the patients to suffer the treatment regime. Nutraceuticals and functional foods provide safer options to prevent or delay the onset of cancer. In this regard, sulforaphane is a pivotal compound to be targeted as a potential agent for cancer treatment both in preventive and therapeutic regimes. This article provides sufficient evidence via discussing the underlying mechanisms of positive effects of sulforaphane to further the research for developing anticancer drugs that will help assuage this lethal morbidity.
Collapse
Affiliation(s)
- Iahtisham-Ul-Haq
- School of Food and Nutrition, Faculty of Allied Health Sciences, Minhaj University, Lahore, Pakistan
| | - Sipper Khan
- Institute of Agricultural Engineering, Tropics and Subtropics Group, University of Hohenheim, Stuttgart, Germany
| | - Kanza Aziz Awan
- Department of Food Science and Technology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | |
Collapse
|
150
|
Aliyu-Amoo H, Isa HI, Njoya EM, McGaw LJ. Antiproliferative effect of extracts and fractions of the root of Terminalia avicennioides (Combretaceae) Guill and Perr. on HepG2 and Vero cell lines. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00307-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Terminalia avicennioides Guill and Perr (Combretaceae) is an important West African medicinal plant. The plant is used locally against microbes and parasites in both humans and animals and studies have demonstrated its cytotoxicity potential. Thus, this study was carried out to test the cytotoxic effect of the extracts and fractions of the root of the medicinal plant Terminalia avicennioides Guill and Perr (Combretaceae) in two different cell lines.
Methods
Methanol, ethanol, 30 % ethanol, hot water and cold water extracts and ethylacetate, hexane, chloroform, butanol and residual water fractions, were evaluated at 1000, 750, 500, 250, 100 and 50 µg/mL concentrations, with doxorubicin as positive control. The cells were incubated with the extracts for 48 h at 37 °C in a 5 % CO2 humidified incubator. The inhibition of cell viability, determined with the methyl blue thiazole tetrazolium bromide (MTT) assay, was used to assess the anti-proliferative effect of the extracts, in normal Vero Monkey kidney and human liver cancer (HepG2) cell lines.
Results
There was a concentration-dependent inhibition of cell viability in both the HepG2 and Vero cell lines. For HepG2 cells, antiproliferative effect was highest for the hexane fraction (viability ranged from 19.63 ± 1.10 % to 70.30 ± 1.78 % for 1000 and 50 µg/mL, respectively. For Vero cells, the highest antiproliferative effect, at 1000 µg/mL, was with hexane fraction (cell viability 21.37 ± 3.50 %), while at 50 µg/mL the chloroform fraction demonstrated the highest effect (viability of 86.10 ± 1.95 %).
Conclusions
The extracts and fractions from the root of Terminalia avicennioides have antiproliferative effect on the Vero and HepG2 cell lines tested. However, the extracts and fractions were not more toxic to the HepG2 than to the Vero cells. The cytotoxic effect of stem-bark and leaf extracts could be evaluated in the future to determine its anticancer potential.
Collapse
|