101
|
Breast Cancer-Derived Extracellular Vesicles: Characterization and Contribution to the Metastatic Phenotype. BIOMED RESEARCH INTERNATIONAL 2015; 2015:634865. [PMID: 26601108 PMCID: PMC4639645 DOI: 10.1155/2015/634865] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 09/24/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022]
Abstract
The study of extracellular vesicles (EVs) in cancer progression is a complex and rapidly evolving field. Whole categories of cellular interactions in cancer which were originally presumed to be due solely to soluble secreted molecules have now evolved to include membrane-enclosed extracellular vesicles (EVs), which include both exosomes and shed microvesicles (MVs), and can contain many of the same molecules as those secreted in soluble form but many different molecules as well. EVs released by cancer cells can transfer mRNA, miRNA, and proteins to different recipient cells within the tumor microenvironment, in both an autocrine and paracrine manner, causing a significant impact on signaling pathways, mRNA transcription, and protein expression. The transfer of EVs to target cells, in turn, supports cancer growth, immunosuppression, and metastasis formation. This review focuses exclusively on breast cancer EVs with an emphasis on breast cancer-derived exosomes, keeping in mind that breast cancer-derived EVs share some common physical properties with EVs of other cancers.
Collapse
|
102
|
Nieder C, Oehlke O, Hintz M, Grosu AL. The challenge of durable brain control in patients with brain-only metastases from breast cancer. SPRINGERPLUS 2015; 4:585. [PMID: 26543720 PMCID: PMC4627995 DOI: 10.1186/s40064-015-1384-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/27/2015] [Indexed: 11/11/2022]
Abstract
The vast majority of patients with brain metastases from breast cancer have extracranial metastases, e.g., in the liver, lungs or bones, with serious impact on prognosis. Limited research has been performed on patients with brain-only disease. We analyzed patterns of treatment, brain control and survival in uni- and multivariate analyses. All 25 patients with brain-only disease were treated with radiotherapy (whole-brain radiotherapy (WBRT) with or without stereotactic radiotherapy/radiosurgery (SRS) or surgical resection) and most patients with systemic treatment later during the disease trajectory. Only a minority of patients remained free from brain progression at 1 year after their initial therapy, regardless of initial treatment approach (median brain progression-free survival 6.2 months). However, overall survival was significantly better after initial surgical resection/SRS as compared to upfront WBRT (median 24.1 and 5.2 months, respectively). For all patients combined, median survival was 11.7 months (2-year survival rate 28 %). Several prognostic factors for shorter survival were identified in multivariate regression analysis: lower KPS, triple-negative tumor, coordination deficit, older age, lack of upfront surgical resection or SRS, and lack of endocrine or HER2-directed therapy after brain metastases treatment. Although durable brain control and long-term survival beyond 5 years could be achieved in a subset of patients (largely after successful salvage), progression of brain metastases during the first year after diagnosis was common. Prognosis was influenced by patient-, disease- and treatment-related factors.
Collapse
Affiliation(s)
- Carsten Nieder
- Department of Oncology and Palliative Medicine, Nordland Hospital, 8092 Bodø, Norway ; Institute of Clinical Medicine, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway
| | - Oliver Oehlke
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Mandy Hintz
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
103
|
Sartorius CA, Hanna CT, Gril B, Cruz H, Serkova NJ, Huber KM, Kabos P, Schedin TB, Borges VF, Steeg PS, Cittelly DM. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene 2015; 35:2881-92. [PMID: 26411365 PMCID: PMC4809801 DOI: 10.1038/onc.2015.353] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/21/2015] [Accepted: 08/17/2015] [Indexed: 01/03/2023]
Abstract
Brain metastases (BM) are a devastating consequence of breast cancer. BM occur more frequently in patients with estrogen receptor-negative (ER−) breast cancer subtypes; HER2 overexpressing (HER2+) tumors and triple-negative (TN) (ER−, progesterone receptor-negative (PR−) and normal HER2) tumors. Young age is an independent risk factor for development of BM, thus we speculated that higher circulating estrogens in young, pre-menopausal women could exert paracrine effects through the highly estrogen-responsive brain microenvironment. Using a TN experimental metastases model, we demonstrate that ovariectomy decreased the frequency of MRI detectable lesions by 56% as compared to estrogen supplementation, and that the combination of ovariectomy and letrozole further reduced the frequency of large lesions to 14.4% of the estrogen control. Human BM expressed 4.2-48.4% ER+ stromal area, particularly ER+ astrocytes. In vitro, E2-treated astrocytes increased proliferation, migration and invasion of 231BR-EGFP cells in an ER-dependent manner. E2 upregulated EGFR ligands Egf, Ereg, and Tgfa mRNA and protein levels in astrocytes, and activated EGFR in brain metastatic cells. Co-culture of 231BR-EGFP cells with E2-treated astrocytes led to upregulation of the metastatic mediator S100 Calcium-binding protein A4 (S100A4) (1.78-fold, P<0.05). Exogenous EGF increased S100A4 mRNA levels in 231BR-EGFP cells (1.40±0.02 fold, P<0.01 compared to vehicle-control) and an EGFR/HER2 inhibitor blocked this effect, suggesting that S100A4 is a downstream effector of EGFR activation. ShRNA-mediated S100A4 silencing in 231BR-EGFP cells decreased their migration and invasion in response to E2-CM, abolished their increased proliferation in co-cultures with E2-treated astrocytes, and decreased brain metastatic colonization. Thus, S100A4 is one effector of the paracrine action of E2 in brain metastatic cells. These studies provide a novel mechanism by which estrogens, acting through ER+ astrocytes in the brain microenvironment, can promote BM of TN breast cancers, and suggests existing endocrine agents may provide some clinical benefit towards reducing and managing BM.
Collapse
Affiliation(s)
- C A Sartorius
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - C T Hanna
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - B Gril
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - H Cruz
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - N J Serkova
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical, Aurora, CO, USA
| | - K M Huber
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical, Aurora, CO, USA
| | - P Kabos
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - T B Schedin
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - V F Borges
- Department of Medicine, Division of Medical Oncology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - P S Steeg
- Women's Malignancies Branch, National Cancer Institute, Bethesda, MD, USA
| | - D M Cittelly
- Department of Pathology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
104
|
Agajanian M, Runa F, Kelber JA. Identification of a PEAK1/ZEB1 signaling axis during TGFβ/fibronectin-induced EMT in breast cancer. Biochem Biophys Res Commun 2015; 465:606-12. [DOI: 10.1016/j.bbrc.2015.08.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/16/2015] [Indexed: 10/23/2022]
|
105
|
Kimbung S, Loman N, Hedenfalk I. Clinical and molecular complexity of breast cancer metastases. Semin Cancer Biol 2015; 35:85-95. [PMID: 26319607 DOI: 10.1016/j.semcancer.2015.08.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 12/24/2022]
Abstract
Clinical oncology is advancing toward a more personalized treatment orientation, making the need to understand the biology of metastasis increasingly acute. Dissecting the complex molecular, genetic and clinical phenotypes underlying the processes involved in the development of metastatic disease, which remains the principal cause of cancer-related deaths, could lead to the identification of more effective prognostication and targeted approaches to prevent and treat metastases. The past decade has witnessed significant progress in the field of cancer metastasis research. Clinical and technological milestones have been reached which have tremendously enriched our understanding of the complex pathways undertaken by primary tumors to progress into lethal metastases and how some of these processes might be amenable to therapy. The aim of this review article is to highlight the recent advances toward unraveling the clinical and molecular complexity of breast cancer metastases. We focus on genes mediating breast cancer metastases and organ-specific tropism, and discuss gene signatures for prediction of metastatic disease. The challenges of translating this information into clinically applicable tools for improving the prognostication of the metastatic potential of a primary breast tumor, as well as for therapeutic interventions against latent and active metastatic disease are addressed.
Collapse
Affiliation(s)
- Siker Kimbung
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden
| | - Niklas Loman
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; Department of Oncology, Skåne University Hospital, Lund/Malmö, Sweden
| | - Ingrid Hedenfalk
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden; CREATE Health Strategic Center for Translational Cancer Research, Lund University, Lund, Sweden.
| |
Collapse
|
106
|
Saunus JM, Quinn MCJ, Patch AM, Pearson JV, Bailey PJ, Nones K, McCart Reed AE, Miller D, Wilson PJ, Al-Ejeh F, Mariasegaram M, Lau Q, Withers T, Jeffree RL, Reid LE, Da Silva L, Matsika A, Niland CM, Cummings MC, Bruxner TJC, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Anderson MJ, Fink JL, Holmes O, Kazakoff S, Leonard C, Newell F, Taylor D, Waddell N, Wood S, Xu Q, Kassahn KS, Narayanan V, Taib NA, Teo SH, Chow YP, kConFab, Jat PS, Brandner S, Flanagan AM, Khanna KK, Chenevix-Trench G, Grimmond SM, Simpson PT, Waddell N, Lakhani SR. Integrated genomic and transcriptomic analysis of human brain metastases identifies alterations of potential clinical significance. J Pathol 2015; 237:363-78. [DOI: 10.1002/path.4583] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 12/30/2022]
Affiliation(s)
- Jodi M Saunus
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Michael CJ Quinn
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Ann-Marie Patch
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - John V Pearson
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Peter J Bailey
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences; University of Glasgow; UK
| | - Katia Nones
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Amy E McCart Reed
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - David Miller
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Kinghorn Centre for Clinical Genomics; Garvan Institute of Medical Research; Darlinghurst NSW Australia
| | - Peter J Wilson
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Fares Al-Ejeh
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Mythily Mariasegaram
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Queenie Lau
- Pathology Queensland; Gold Coast Hospital; Southport Queensland Australia
| | - Teresa Withers
- Department of Neurosurgery; Gold Coast Hospital; Southport Queensland Australia
| | - Rosalind L Jeffree
- Kenneth G Jamieson Department of Neurosurgery; Royal Brisbane and Women's Hospital; Herston Queensland Australia
| | - Lynne E Reid
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Leonard Da Silva
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- University of Queensland School of Medicine; Herston Queensland Australia
| | - Admire Matsika
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- Pathology Queensland; Royal Brisbane and Women's Hospital; Herston Queensland Australia
| | - Colleen M Niland
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | - Margaret C Cummings
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- University of Queensland School of Medicine; Herston Queensland Australia
- Pathology Queensland; Royal Brisbane and Women's Hospital; Herston Queensland Australia
| | - Timothy JC Bruxner
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Angelika N Christ
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Ivon Harliwong
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Senel Idrisoglu
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Suzanne Manning
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Craig Nourse
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences; University of Glasgow; UK
| | - Ehsan Nourbakhsh
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Shivangi Wani
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Matthew J Anderson
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - J Lynn Fink
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Oliver Holmes
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Stephen Kazakoff
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Conrad Leonard
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Felicity Newell
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Darrin Taylor
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Nick Waddell
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Scott Wood
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Qinying Xu
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Karin S Kassahn
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Genetic and Molecular Pathology, SA Pathology; Women's and Children's Hospital; North Adelaide South Australia Australia
- School of Molecular and Biomedical Science; University of Adelaide; South Australia Australia
| | - Vairavan Narayanan
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
| | - Nur Aishah Taib
- Breast Unit, Department of Surgery, Faculty of Medicine; University of Malaya; Kuala Lumpur Malaysia
- University Malaya Cancer Research Institute; University of Malaya; Kuala Lumpur Malaysia
| | - Soo-Hwang Teo
- University Malaya Cancer Research Institute; University of Malaya; Kuala Lumpur Malaysia
- Cancer Research Initiatives Foundation; Sime Darby Medical Centre; Selangor Malaysia
| | - Yock Ping Chow
- Cancer Research Initiatives Foundation; Sime Darby Medical Centre; Selangor Malaysia
| | - kConFab
- Peter MacCallum Cancer Centre; University of Melbourne; Victoria Australia
| | - Parmjit S Jat
- Department of Neurodegenerative Disease and MRC Prion Unit; UCL Institute of Neurology; London UK
| | - Sebastian Brandner
- Division of Neuropathology and Department of Neurodegenerative Disease; UCL Institute of Neurology; London UK
| | - Adrienne M Flanagan
- Histopathology; Royal National Orthopaedic Hospital NHS Trust; Stanmore UK
- University College London Cancer Institute; London UK
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
| | | | - Sean M Grimmond
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences; University of Glasgow; UK
| | - Peter T Simpson
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- University of Queensland School of Medicine; Herston Queensland Australia
| | - Nicola Waddell
- QIMR Berghofer Medical Research Institute; Herston Queensland Australia
- Queensland Centre for Medical Genomics, IMB; University of Queensland; St Lucia Queensland Australia
| | - Sunil R Lakhani
- University of Queensland; UQ Centre for Clinical Research; Herston Queensland Australia
- University of Queensland School of Medicine; Herston Queensland Australia
- Pathology Queensland; Royal Brisbane and Women's Hospital; Herston Queensland Australia
| |
Collapse
|
107
|
Peng G, Yuan X, Yuan J, Liu Q, Dai M, Shen C, Ma J, Liao Y, Jiang W. miR-25 promotes glioblastoma cell proliferation and invasion by directly targeting NEFL. Mol Cell Biochem 2015. [PMID: 26209061 DOI: 10.1007/s11010-015-2516-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant and common brain tumor; it is aggressive growth pattern means that GBM patients face a poor prognosis even when receiving the best available treatment modalities. In recent years, an increasing number of reports suggest that the discovery of microRNAs (miRNAs) might provide a novel therapeutic target for human cancers, including GBM. One miRNA in particular, microRNA-25 (miR-25), is overexpressed in several cancers, wherein accumulating evidence indicates that it functions as an oncogene. However, the function of miR-25 in GBM has not been totally elucidated. In this study, we demonstrated that miR-25 was significantly up-regulated in astrocytoma tissues and glioblastoma cell lines. In vitro studies further demonstrated that overexpressed miR-25 was able to promote, while its antisense oligos inhibited cell proliferation and invasion in U251 cells. Moreover, we identified neurofilament light polypeptide (NEFL) as a novel target molecule of miR-25. Also of note was the fact that NEFL was down-regulated with increased levels of miR-25 expression in human astrocytoma clinical specimens. In addition, via the mTOR signaling pathway, NEFL-siRNA could significantly attenuate the inhibitory effects of knockdown miR-25 on the proliferation and invasion of U251 cells. Overall, our results showed an important role for miR-25 in regulating NEFL expression in GBM, and suggest that miR-25 could be a potential target for GBM treatment.
Collapse
Affiliation(s)
- Gang Peng
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Xianrui Yuan
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Minhui Dai
- Department of Ophthalmology, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Jianrong Ma
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Yiwei Liao
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China
| | - Weixi Jiang
- Department of Neurosurgery, Xiangya Hospital of Central South University, 87 XiangYa Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
108
|
|