101
|
Gould CM, Courtneidge SA. Regulation of invadopodia by the tumor microenvironment. Cell Adh Migr 2015; 8:226-35. [PMID: 24714597 DOI: 10.4161/cam.28346] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumor microenvironment consists of stromal cells, extracellular matrix (ECM), and signaling molecules that communicate with cancer cells. As tumors grow and develop, the tumor microenvironment changes. In addition, the tumor microenvironment is not only influenced by signals from tumor cells, but also stromal components contribute to tumor progression and metastasis by affecting cancer cell function. One of the mechanisms that cancer cells use to invade and metastasize is mediated by actin-rich, proteolytic structures called invadopodia. Here, we discuss how signals from the tumor environment, including growth factors, hypoxia, pH, metabolism, and stromal cell interactions, affect the formation and function of invadopodia to regulate cancer cell invasion and metastasis. Understanding how the tumor microenvironment affects invadopodia biology could aid in the development of effective therapeutics to target cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Christine M Gould
- Tumor Microenvironment and Metastasis Program; Cancer Center; Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| | - Sara A Courtneidge
- Tumor Microenvironment and Metastasis Program; Cancer Center; Sanford-Burnham Medical Research Institute; La Jolla, CA USA
| |
Collapse
|
102
|
Sun Y, Sun J, Lungchukiet P, Quarni W, Yang S, Zhang X, Bai W. Fe65 Suppresses Breast Cancer Cell Migration and Invasion through Tip60 Mediated Cortactin Acetylation. Sci Rep 2015; 5:11529. [PMID: 26166158 PMCID: PMC4499803 DOI: 10.1038/srep11529] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/20/2015] [Indexed: 11/30/2022] Open
Abstract
Fe65 is a brain-enriched adaptor protein known for its role in the action of the Aβ amyloid precursor protein in neuronal cells and Alzheimer’s disease, but little is known about its functions in cancer cells. The present study documents for the first time a role of Fe65 in suppressing breast cancer cell migration and invasion. Mechanistic studies suggest that the suppression is mediated through its phosphotyrosine binding domain 1 that mediates the recruitment of Tip60 to cortactin to stimulate its acetylation. The studies identify the Tip60 acetyltransferase as a cytoplasmic drug target for the therapeutic intervention of metastatic breast cancers.
Collapse
Affiliation(s)
- Yuefeng Sun
- Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Jianwei Sun
- Comprehensive Melanoma Research Center and Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Panida Lungchukiet
- Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Waise Quarni
- Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612
| | - Shengyu Yang
- Comprehensive Melanoma Research Center and Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Xiaohong Zhang
- 1] Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612 [2] Department of Oncological Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33612 [3] Program of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Wenlong Bai
- 1] Departments of Pathology and Cell Biology, University of South Florida Morsani College of Medicine, Tampa, FL 33612 [2] Department of Oncological Sciences, University of South Florida Morsani College of Medicine, Tampa, FL 33612 [3] Program of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
103
|
Glogauer JE, Sun CX, Bradley G, Magalhaes MAO. Neutrophils Increase Oral Squamous Cell Carcinoma Invasion through an Invadopodia-Dependent Pathway. Cancer Immunol Res 2015; 3:1218-26. [PMID: 26112922 DOI: 10.1158/2326-6066.cir-15-0017] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
Abstract
Neutrophils have recently been shown to promote invasion and correlate with a poor prognosis in different cancers, including head and neck squamous cell carcinomas. In this study, we analyze the effects of neutrophils in the invasion of oral squamous cell carcinoma (OSCC) using a combination of conditioned media, direct and indirect coculture of human peripheral blood neutrophils, and UMSCC47 cells (OSCC cell line). Invasion and matrix degradation were determined using a modified in vitro invasion assay and an invadopodia assay, respectively. UMSCC47 and neutrophil cocultures or conditioned media from cocultures increased UMSCC47 invasion, invadopodia formation, and matrix degradation. Further analysis revealed an increase in TNFα and IL8 in supernatants of cocultures compared with neutrophil or UMSCC47 cultures alone and that inhibition of TNFα and IL8 significantly decreased OSCC invasion. Our results show that neutrophils increase the invasiveness of OSCC through the activation of invadopodia and matrix degradation, suggesting a paracrine activation loop between the two cells. Importantly, the presence of neutrophils in the oral environment may modulate the clinical behavior of OSCC.
Collapse
Affiliation(s)
- Judah E Glogauer
- Matrix Dynamics group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Chun X Sun
- Matrix Dynamics group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Grace Bradley
- Oral Pathology and Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marco A O Magalhaes
- Matrix Dynamics group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada. Oral Pathology and Oral Medicine, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
104
|
Ho FC, Zhang W, Li YY, Chan BP. Mechanoresponsive, omni-directional and local matrix-degrading actin protrusions in human mesenchymal stem cells microencapsulated in a 3D collagen matrix. Biomaterials 2015; 53:392-405. [DOI: 10.1016/j.biomaterials.2015.02.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/22/2015] [Accepted: 02/24/2015] [Indexed: 10/25/2022]
|
105
|
Arora PD, Wang Y, Bresnick A, Janmey PA, McCulloch CA. Flightless I interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling. Mol Biol Cell 2015; 26:2279-97. [PMID: 25877872 PMCID: PMC4462945 DOI: 10.1091/mbc.e14-11-1536] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 04/09/2015] [Indexed: 01/14/2023] Open
Abstract
The role of the actin-capping protein flightless I in collagen remodeling by mouse fibroblasts is examined. Flightless and nonmuscle myosin IIA cooperate to enable collagen phagocytosis. We examined the role of the actin-capping protein flightless I (FliI) in collagen remodeling by mouse fibroblasts. FliI-overexpressing cells exhibited reduced spreading on collagen but formed elongated protrusions that stained for myosin10 and fascin and penetrated pores of collagen-coated membranes. Inhibition of Cdc42 blocked formation of cell protrusions. In FliI-knockdown cells, transfection with constitutively active Cdc42 did not enable protrusion formation. FliI-overexpressing cells displayed increased uptake and degradation of exogenous collagen and strongly compacted collagen fibrils, which was blocked by blebbistatin. Mass spectrometry analysis of FliI immunoprecipitates showed that FliI associated with nonmuscle myosin IIA (NMMIIA), which was confirmed by immunoprecipitation. GFP-FliI colocalized with NMMIIA at cell protrusions. Purified FliI containing gelsolin-like domains (GLDs) 1–6 capped actin filaments efficiently, whereas FliI GLD 2–6 did not. Binding assays showed strong interaction of purified FliI protein (GLD 1–6) with the rod domain of NMMIIA (kD = 0.146 μM), whereas FliI GLD 2–6 showed lower binding affinity (kD = 0.8584 μM). Cells expressing FliI GLD 2–6 exhibited fewer cell extensions, did not colocalize with NMMIIA, and showed reduced collagen uptake compared with cells expressing FliI GLD 1–6. We conclude that FliI interacts with NMMIIA to promote cell extension formation, which enables collagen remodeling in fibroblasts.
Collapse
Affiliation(s)
- Pamma D Arora
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Anne Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY 10461
| | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| |
Collapse
|
106
|
Revach OY, Weiner A, Rechav K, Sabanay I, Livne A, Geiger B. Mechanical interplay between invadopodia and the nucleus in cultured cancer cells. Sci Rep 2015; 5:9466. [PMID: 25820462 PMCID: PMC4377574 DOI: 10.1038/srep09466] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 01/11/2023] Open
Abstract
Invadopodia are actin-rich membrane protrusions through which cells adhere to the extracellular matrix and degrade it. In this study, we explored the mechanical interactions of invadopodia in melanoma cells, using a combination of correlative light and electron microscopy. We show here that the core actin bundle of most invadopodia interacts with integrin-containing matrix adhesions at its basal end, extends through a microtubule-rich cytoplasm, and at its apical end, interacts with the nuclear envelope and indents it. Abolishment of invadopodia by microtubules or src inhibitors leads to the disappearance of these nuclear indentations. Based on the indentation profile and the viscoelastic properties of the nucleus, the force applied by invadopodia is estimated to be in the nanoNewton range. We further show that knockdown of the LINC complex components nesprin 2 or SUN1 leads to a substantial increase in the prominence of the adhesion domains at the opposite end of the invadopodia. We discuss this unexpected, long-range mechanical interplay between the apical and basal domains of invadopodia, and its possible involvement in the penetration of invadopodia into the matrix.
Collapse
Affiliation(s)
- Or-Yam Revach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Allon Weiner
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Katya Rechav
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ilana Sabanay
- 1] Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel [2] Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ariel Livne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
107
|
Tanaka H, Wang HH, Thatcher SE, Hagiwara H, Takano-Ohmuro H, Kohama K. Electron microscopic examination of podosomes induced by phorbol 12, 13 dibutyrate on the surface of A7r5 cells. J Pharmacol Sci 2015; 128:78-82. [PMID: 25986486 DOI: 10.1016/j.jphs.2015.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 11/17/2022] Open
Abstract
The role of myosin light chain kinase (MLCK) in inducing podosomes was examined by confocal and electron microscopy. Removal of myosin from the actin core of podosomes using blebbistatin, a myosin inhibitor, resulted in the formation of smaller podosomes. Downregulation of MLCK by the transfection of MLCK small interfering RNA (siRNA) led to the failure of podosome formation. However, ML-7, an inhibitor of the kinase activity of MLCK, failed to inhibit podosome formation. Based on our previous report (Thatcher et al. J.Pharm.Sci. 116 116-127, 2011), we outlined the important role of the actin-binding activity of MLCK in producing smaller podosomes.
Collapse
Affiliation(s)
- Hideyuki Tanaka
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hong-Hui Wang
- Department of Cellular and Molecular Medicine, University of California San Diego, 9500 Gillman Drive 0651, La Jolla, CA 92093-0651, USA; College of Biology, Hunan University, No.1 Denggao Road, Yuelushan, Changsha, Hunan 410082, PR China
| | - Sean E Thatcher
- Department of Nutritional Sciences, University of Kentucky, Charles T.Wethington Bldg, 900 South Limestone, Lexington, KY 40536-0200, USA
| | - Haruo Hagiwara
- Department of Anatomy, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hiromi Takano-Ohmuro
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Kazuhiro Kohama
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
108
|
Nicolson GL. Cell membrane fluid-mosaic structure and cancer metastasis. Cancer Res 2015; 75:1169-76. [PMID: 25788696 DOI: 10.1158/0008-5472.can-14-3216] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022]
Abstract
Cancer cells are surrounded by a fluid-mosaic membrane that provides a highly dynamic structural barrier with the microenvironment, communication filter and transport, receptor and enzyme platform. This structure forms because of the physical properties of its constituents, which can move laterally and selectively within the membrane plane and associate with similar or different constituents, forming specific, functional domains. Over the years, data have accumulated on the amounts, structures, and mobilities of membrane constituents after transformation and during progression and metastasis. More recent information has shown the importance of specialized membrane domains, such as lipid rafts, protein-lipid complexes, receptor complexes, invadopodia, and other cellular structures in the malignant process. In describing the macrostructure and dynamics of plasma membranes, membrane-associated cytoskeletal structures and extracellular matrix are also important, constraining the motion of membrane components and acting as traction points for cell motility. These associations may be altered in malignant cells, and probably also in surrounding normal cells, promoting invasion and metastatic colonization. In addition, components can be released from cells as secretory molecules, enzymes, receptors, large macromolecular complexes, membrane vesicles, and exosomes that can modify the microenvironment, provide specific cross-talk, and facilitate invasion, survival, and growth of malignant cells.
Collapse
Affiliation(s)
- Garth L Nicolson
- Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California.
| |
Collapse
|
109
|
Linder S, Wiesner C. Tools of the trade: podosomes as multipurpose organelles of monocytic cells. Cell Mol Life Sci 2015; 72:121-35. [PMID: 25300510 PMCID: PMC11113205 DOI: 10.1007/s00018-014-1731-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 01/07/2023]
Abstract
Podosomes are adhesion and invasion structures that are particularly prominent in cells of the monocytic lineage such as macrophages, dendritic cells, and osteoclasts. They are multifunctional organelles that combine several key abilities required for cell migration and invasion. The podosome repertoire includes well-established functions such as cell-substrate adhesion, and extracellular matrix degradation, recently discovered abilities such as rigidity and topology sensing as well as antigen sampling, and also more speculative functions such as cell protrusion stabilization and transmigration. Collectively, podosomes not only enable dynamic interactions of cells with their surroundings, they also gather information about the pericellular environment, and are actively involved in its reshaping. This review presents an overview of the current knowledge on podosome composition, architecture, and regulation. We focus in particular on the growing list of podosome functions and discuss the specific properties of podosomes in macrophages, dendritic cells, and osteoclasts. Moreover, this article highlights podosome-related intracellular transport processes, the formation of podosomes in 3D environments as well as potentially podosome-associated diseases involving monocytic cells.
Collapse
Affiliation(s)
- Stefan Linder
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Eppendorf, Martinistr. 52, 20246, Hamburg, Germany,
| | | |
Collapse
|
110
|
Abstract
Adhesive dynamics (AD) is a method for simulating the dynamic response of biological systems in response to force. Biological bonds are mechanical entities that exert force under strain, and applying forces to biological bonds modulates their rate of dissociation. Since small numbers of events usually control biological interactions, we developed a simple method for sampling probability distributions for the formation or failure of individual bonds. This method allows a simple coupling between force and strain and kinetics, while capturing the stochastic response of biological systems. Biological bonds are dynamically reconfigured in response to applied mechanical stresses, and a detailed spatio-temporal map of molecules and the forces they exert emerges from AD. The shape or motion of materials bearing the molecules is easily calculated from a mechanical energy balance provided the rheology of the material is known. AD was originally used to simulate the dynamics of adhesion of leukocytes under flow, but new advances have allowed the method to be extended to many other applications, including but not limited to the binding of viruses to surface, the clustering of adhesion molecules driven by stiff substrates, and the effect of cell-cell interaction on cell capture and rolling dynamics. The technique has also been applied to applications outside of biology. A particular exciting recent development is the combination of signaling with AD (so-called integrated signaling adhesive dynamics, or ISAD), which allows facile integration of signaling networks with mechanical models of cell adhesion and motility. Potential opportunities in applying AD are summarized.
Collapse
|
111
|
Martín-Villar E, Borda-d'Agua B, Carrasco-Ramirez P, Renart J, Parsons M, Quintanilla M, Jones GE. Podoplanin mediates ECM degradation by squamous carcinoma cells through control of invadopodia stability. Oncogene 2014; 34:4531-44. [PMID: 25486435 PMCID: PMC4430312 DOI: 10.1038/onc.2014.388] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/19/2014] [Accepted: 10/11/2014] [Indexed: 12/22/2022]
Abstract
Invadopodia are actin-rich cell membrane projections used by invasive cells to penetrate the basement membrane. Control of invadopodia stability is critical for efficient degradation of the extracellular matrix (ECM); however, the underlying molecular mechanisms remain poorly understood. Here, we uncover a new role for podoplanin, a transmembrane glycoprotein closely associated with malignant progression of squamous cell carcinomas (SCCs), in the regulation of invadopodia-mediated matrix degradation. Podoplanin downregulation in SCC cells impairs invadopodia stability, thereby reducing the efficiency of ECM degradation. We report podoplanin as a novel component of invadopodia-associated adhesion rings, where it clusters prior to matrix degradation. Early podoplanin recruitment to invadopodia is dependent on lipid rafts, whereas ezrin/moesin proteins mediate podoplanin ring assembly. Finally, we demonstrate that podoplanin regulates invadopodia maturation by acting upstream of the ROCK-LIMK-Cofilin pathway through the control of RhoC GTPase activity. Thus, podoplanin has a key role in the regulation of invadopodia function in SCC cells, controlling the initial steps of cancer cell invasion.
Collapse
Affiliation(s)
- E Martín-Villar
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain.,Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| | - B Borda-d'Agua
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| | - P Carrasco-Ramirez
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain
| | - J Renart
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain
| | - M Parsons
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| | - M Quintanilla
- Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), Madrid, Spain
| | - G E Jones
- Randall Division of Cell & Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
112
|
Sun J, Lu F, He H, Shen J, Messina J, Mathew R, Wang D, Sarnaik AA, Chang WC, Kim M, Cheng H, Yang S. STIM1- and Orai1-mediated Ca(2+) oscillation orchestrates invadopodium formation and melanoma invasion. ACTA ACUST UNITED AC 2014; 207:535-48. [PMID: 25404747 PMCID: PMC4242838 DOI: 10.1083/jcb.201407082] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium signaling mediated by STIM1 and Orai1 activates Src to promote invadopodium assembly while simultaneously promoting MT1-MMP recycling to the plasma membrane to promote ECM degradation. Ca2+ signaling has been increasingly implicated in cancer invasion and metastasis, and yet, the underlying mechanisms remained largely unknown. In this paper, we report that STIM1- and Orai1-mediated Ca2+ oscillations promote melanoma invasion by orchestrating invadopodium assembly and extracellular matrix (ECM) degradation. Ca2+ oscillation signals facilitate invadopodial precursor assembly by activating Src. Disruption of Ca2+ oscillations inhibited invadopodium assembly. Furthermore, STIM1 and Orai1 regulate the proteolysis activity of individual invadopodia. Mechanistically, Orai1 blockade inhibited the recycling of MT1–matrix metalloproteinase (MMP) to the plasma membrane and entrapped MT1-MMP in the endocytic compartment to inhibit ECM degradation. STIM1 knockdown significantly inhibited melanoma lung metastasis in a xenograft mouse model, implicating the importance of this pathway in metastatic dissemination. Our findings provide a novel mechanism for Ca2+-mediated cancer cell invasion and shed new light on the spatiotemporal organization of store-operated Ca2+ signals during melanoma invasion and metastasis.
Collapse
Affiliation(s)
- Jianwei Sun
- Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612 Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Fujian Lu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Huifang He
- Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612 Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Junling Shen
- Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612 Qingdao Agricultural University, Qingdao 266109, China
| | - Jane Messina
- Department of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612
| | - Rahel Mathew
- Department of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612
| | - Dapeng Wang
- Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Amod A Sarnaik
- Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612 Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Wei-Chiao Chang
- Department of Clinical Pharmacy, School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Minjung Kim
- Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612 Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Heping Cheng
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Shengyu Yang
- Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612 Comprehensive Melanoma Research Center, Department of Tumor Biology, Department of Molecular Oncology, Department of Cutaneous Oncology, Experimental Therapeutics Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| |
Collapse
|
113
|
Efimova N, Grimaldi A, Bachmann A, Frye K, Zhu X, Feoktistov A, Straube A, Kaverina I. Podosome-regulating kinesin KIF1C translocates to the cell periphery in a CLASP-dependent manner. J Cell Sci 2014; 127:5179-88. [PMID: 25344256 DOI: 10.1242/jcs.149633] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The kinesin KIF1C is known to regulate podosomes, actin-rich adhesion structures that remodel the extracellular matrix during physiological processes. Here, we show that KIF1C is a player in the podosome-inducing signaling cascade. Upon induction of podosome formation by protein kinase C (PKC), KIF1C translocation to the cell periphery intensifies and KIF1C accumulates both in the proximity of peripheral microtubules that show enrichment for the plus-tip-associated proteins CLASPs and around podosomes. Importantly, without CLASPs, both KIF1C trafficking and podosome formation are suppressed. Moreover, chimeric mitochondrially targeted CLASP2 recruits KIF1C, suggesting a transient CLASP-KIF1C association. We propose that CLASPs create preferred microtubule tracks for KIF1C to promote podosome induction downstream of PKC.
Collapse
Affiliation(s)
- Nadia Efimova
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Ashley Grimaldi
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Alice Bachmann
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Keyada Frye
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Xiaodong Zhu
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Alexander Feoktistov
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| | - Anne Straube
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville 37232, TN, USA
| |
Collapse
|
114
|
Maridonneau-Parini I. Control of macrophage 3D migration: a therapeutic challenge to limit tissue infiltration. Immunol Rev 2014; 262:216-31. [DOI: 10.1111/imr.12214] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Isabelle Maridonneau-Parini
- CNRS UMR 5089; Institut de Pharmacologie et de Biologie Structurale; Toulouse France
- Université de Toulouse; Toulouse France
| |
Collapse
|
115
|
Ward JD, Ha JH, Jayaraman M, Dhanasekaran DN. LPA-mediated migration of ovarian cancer cells involves translocalization of Gαi2 to invadopodia and association with Src and β-pix. Cancer Lett 2014; 356:382-91. [PMID: 25451317 DOI: 10.1016/j.canlet.2014.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 12/23/2022]
Abstract
Lysophosphatidic acid (LPA) plays a critical role in the migration and invasion of ovarian cancer cells. However, the downstream spatiotemporal signaling events involving specific G protein(s) underlying this process are largely unknown. In this report, we demonstrate that LPA signaling causes the translocation of Gαi2 into the invadopodia leading to its interaction with the tyrosine kinase Src and the Rac/CDC42-specific guanine nucleotide exchange factor, β-pix. Our results establish that Gαi2 activates Rac1 through a p130Cas-dependent pathway in ovarian cancer cells. Moreover, our report reveals that knockdown of Gαi2 leads to loss of β-pix and active-Rac association in the invadopodia. We also show that knockdown of Gαi2 leads to the complete loss of translocation to p130Cas to focal adhesions. Finally, when Gαi2 is knocked down, this led to the total distribution of Src being shifted primarily from invadopodia and the leading edge of the cells to the perinuclear region, suggesting that Src is inactive in the absence of Gαi2. Overall, our report provides tantalizing evidence that Gαi2 is a critical signaling component of a large signaling complex in the invadopodia that if disrupted could serve as an excellent target for therapy in ovarian and potentially other cancers.
Collapse
Affiliation(s)
- Jeremy D Ward
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Ji Hee Ha
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Muralidharan Jayaraman
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, Department of Cell Biology, The University of Oklahoma Health Sciences Center, 975 NE 10th Street, Oklahoma City, OK 73104, USA.
| |
Collapse
|
116
|
Baranov MV, Ter Beest M, van den Bogaart G. Reaching for far-flung antigen: How solid-core podosomes of dendritic cells transform into protrusive structures. Commun Integr Biol 2014; 7:970961. [PMID: 26843902 PMCID: PMC4594491 DOI: 10.4161/cib.29084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 01/22/2023] Open
Abstract
We recently identified a novel role for podosomes in antigen sampling. Podosomes are dynamic cellular structures that consist of point-like concentrations of actin surrounded by integrins and adaptor proteins such as vinculin and talin. Podosomes establish cellular contact with the extracellular matrix (ECM) and facilitate cell migration via ECM degradation. In our recent paper, we studied podosomes of human dendritic cells (DCs), major antigen presenting cells (APC) that take-up, process, and present foreign antigen to naive T-cells. We employed gelatin-impregnated porous polycarbonate filters to demonstrate that the mechanosensitive podosomes of DCs selectively localize to regions of low-physical resistance such as the filter pores. After degradation of the gelatin, podosomes increasingly protrude into the lumen of these pores. These protrusive podosome-derived structures contain several endocytic and early endosomal markers such as clathrin, Rab5, and VAMP3, and, surprisingly, also contain C-type lectins, a type of pathogen recognition receptors (PRRs). Finally, we performed functional uptake experiments to demonstrate that these PRRs facilitate uptake of antigen from the opposite side of the filter. Our data provide mechanistic insight in how dendritic cells sample for antigen across epithelial barriers for instance from the lumen of the lung and gut.
Collapse
Affiliation(s)
- Maksim V Baranov
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology; Radboud University Medical Center ; Radboud Institute for Molecular Life Sciences ; Nijmegen, The Netherlands
| |
Collapse
|
117
|
García E, Machesky LM, Jones GE, Antón IM. WIP is necessary for matrix invasion by breast cancer cells. Eur J Cell Biol 2014; 93:413-23. [PMID: 25169059 DOI: 10.1016/j.ejcb.2014.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 11/20/2022] Open
Abstract
Actin filament assembly and reorganisation during cell migration and invasion into extracellular matrices is a well-documented phenomenon. Among actin-binding proteins regulating its polymerisation, the members of the WASP (Wiskott Aldrich Syndrome Protein) family are generally thought to play the most significant role in supporting cell invasiveness. In situ, cytosolic N-WASP (neural WASP) is associated with a partner protein termed WIP (WASP Interacting Protein) that is bound to the N-terminal domain of N-WASP. Despite much effort, rather little is known about the role of WIP in regulating N-WASP and consequent actin-filament assembly. Even less is known about the function of WIP within the specialised cell adhesion and attachment structures known as podosomes and invadopodia. In particular, whilst the interaction of WIP with known participants in the development and maturation of invadopodia such as N-WASP, the Arp2/3 complex and cortactin has been described, little is known concerning the direct contribution of WIP to invadopodia and its potential role as a regulator of cancer cell invasion. In this report, we use 2D and 3D culture systems to describe the role played by WIP in modulating the morphology and invasiveness of metastatic breast cancer cells in vitro, as well as its effect on the process of mesenchymal-epithelial transition (MET) seen in these cells. We demonstrate that WIP is necessary for invadopodium formation and matrix degradation by basal breast cancer cells, but not sufficient to induce invasiveness in luminal cells.
Collapse
Affiliation(s)
- Esther García
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus UAM Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| | - Laura M Machesky
- The Beatson Institute for Cancer Research, Bearsden, Glasgow G61 1BD, Scotland, UK.
| | - Gareth E Jones
- Randall Division of Cell & Molecular Biophysics, King's College London, London SE1 1UL, UK.
| | - Inés M Antón
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus UAM Cantoblanco, Darwin 3, 28049 Madrid, Spain.
| |
Collapse
|
118
|
Seano G, Chiaverina G, Gagliardi PA, di Blasio L, Puliafito A, Bouvard C, Sessa R, Tarone G, Sorokin L, Helley D, Jain RK, Serini G, Bussolino F, Primo L. Endothelial podosome rosettes regulate vascular branching in tumour angiogenesis. Nat Cell Biol 2014; 16:931-41, 1-8. [PMID: 25218639 DOI: 10.1038/ncb3036] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 08/06/2014] [Indexed: 02/06/2023]
Abstract
The mechanism by which angiogenic endothelial cells break the physical barrier of the vascular basement membrane and consequently sprout to form new vessels in mature tissues is unclear. Here, we show that the angiogenic endothelium is characterized by the presence of functional podosome rosettes. These extracellular-matrix-degrading and adhesive structures are precursors of de novo branching points and represent a key feature in the formation of new blood vessels. VEGF-A stimulation induces the formation of endothelial podosome rosettes by upregulating integrin α6β1. In contrast, the binding of α6β1 integrin to the laminin of the vascular basement membrane impairs the formation of podosome rosettes by restricting α6β1 integrin to focal adhesions and hampering its translocation to podosomes. Using an ex vivo sprouting angiogenesis assay, transgenic and knockout mouse models and human tumour sample analysis, we provide evidence that endothelial podosome rosettes control blood vessel branching and are critical regulators of pathological angiogenesis.
Collapse
Affiliation(s)
- Giorgio Seano
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy [3] Edwin L. Steele Laboratory for Tumor Biology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Giulia Chiaverina
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Paolo Armando Gagliardi
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Laura di Blasio
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Alberto Puliafito
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Claire Bouvard
- UMR-S 765, Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Roberto Sessa
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Guido Tarone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Molecular Biotechnology Center, Turin 10124, Italy
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry, Muenster University, Muenster 48149, Germany
| | - Dominique Helley
- UMR-S 970, Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France
| | - Rakesh K Jain
- Edwin L. Steele Laboratory for Tumor Biology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Guido Serini
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Federico Bussolino
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| | - Luca Primo
- 1] Department of Oncology, University of Torino, Turin 10100, Italy [2] Candiolo Cancer Institute-FPO, IRCCS, Candiolo 10060, Italy
| |
Collapse
|
119
|
Satoyoshi R, Aiba N, Yanagihara K, Yashiro M, Tanaka M. Tks5 activation in mesothelial cells creates invasion front of peritoneal carcinomatosis. Oncogene 2014; 34:3176-87. [PMID: 25088196 DOI: 10.1038/onc.2014.246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/06/2014] [Accepted: 06/26/2014] [Indexed: 12/22/2022]
Abstract
Scirrhous gastric cancer is frequently associated with peritoneal dissemination, and the interaction of cancer cells with peritoneal mesothelial cells (PMCs) is crucial for the establishment of the metastasis in the peritoneum. Although cells derived from PMCs are detected within tumors of peritoneal carcinomatosis, how PMCs are incorporated into tumor architecture is not understood. The present study shows that PMCs create the invasion front of peritoneal carcinomatosis, which depends on activation of Tks5 in PMCs. In peritoneal tumor implants, PMCs represent majority of cells located at the invasive edge of the cancer tissue. Exogenously implanted PMCs and host PMCs aggressively invade into abdominal wall upon the peritoneal inoculation of cancer cells, and PMCs locate ahead of cancer cells in the direction of invasion. Tks5, a substrate of Src kinase, is predominantly expressed in the PMCs of cancer tissue, and promotes the invasion of PMCs and cancer cells. Expression and activation of Tks5 was induced in PMCs following their exposure to gastric cancer cells, and increased Tks5 expression was detected in PMCs located at the invasion front. Reduced Tks5 expression in PMCs blocked PMC invasion, which in turn prevents cancer cell invasion both in vitro and in vivo. The peritoneal dissemination of gastric cancer was significantly increased by mixing cancer cells and PMCs, and was suppressed by knockdown of Tks5 in PMCs. These results suggest that cancer-activated PMCs create invasion front by guiding cancer cells. Signaling leading to Tks5 activation in PMCs may be a suitable therapeutic target for prevention of peritoneal carcinomatosis.
Collapse
Affiliation(s)
- R Satoyoshi
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - N Aiba
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| | - K Yanagihara
- Division of Translational Research, Exploratory Oncology and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - M Yashiro
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - M Tanaka
- Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
120
|
Gawden-Bone C, West MA, Morrison VL, Edgar AJ, McMillan SJ, Dill BD, Trost M, Prescott A, Fagerholm SC, Watts C. A crucial role for β2 integrins in podosome formation, dynamics and Toll-like-receptor-signaled disassembly in dendritic cells. J Cell Sci 2014; 127:4213-24. [PMID: 25086067 PMCID: PMC4179490 DOI: 10.1242/jcs.151167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The dynamic properties of podosomes, their ability to degrade the underlying matrix and their modulation by Toll-like receptor (TLR) signaling in dendritic cells (DCs) suggests they have an important role in migration. Integrins are thought to participate in formation and dynamics of podosomes but the multiplicity of integrins in podosomes has made this difficult to assess. We report that murine DCs that lack β2 integrins fail to form podosomes. Re-expression of β2 integrins restored podosomes but not when the membrane proximal or distal NPxF motifs, or when an intervening triplet of threonine residues were mutated. We show that β2 integrins are remarkably long-lived in podosome clusters and form a persistent framework that hosts multiple actin-core-formation events at the same or adjacent sites. When β2 integrin amino acid residues 745 or 756 were mutated from Ser to Ala, podosomes became resistant to dissolution mediated through TLR signaling. TLR signaling did not detectably modulate phosphorylation at these sites but mutation of either residue to phospho-mimetic Asp increased β2 integrin turnover in podosomes, indicating that phosphorylation at one or both sites establishes permissive conditions for TLR-signaled podosome disassembly.
Collapse
Affiliation(s)
- Christian Gawden-Bone
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Michele A West
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Vicky L Morrison
- University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Alexander J Edgar
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sarah J McMillan
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Alan Prescott
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Susanna C Fagerholm
- University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Colin Watts
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
121
|
Beaty BT, Condeelis J. Digging a little deeper: the stages of invadopodium formation and maturation. Eur J Cell Biol 2014; 93:438-44. [PMID: 25113547 DOI: 10.1016/j.ejcb.2014.07.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/10/2014] [Accepted: 07/10/2014] [Indexed: 01/09/2023] Open
Abstract
Invadopodia are actin-rich protrusions that degrade the extracellular matrix and are required for penetration through the basement membrane, stromal invasion and intravasation. Invadopodia are enriched in actin regulators, such as cortactin, cofilin, N-WASp, Arp2/3 and fascin. Much of the work to date has centered around identifying the proteins involved in regulating actin polymerization and matrix degradation. Recently, there have been significant advances in characterization of the very early stages of invadopodium precursor assembly and the role of adhesion proteins, such as β1 integrin, talin, FAK and Hic-5, in promoting invadopodium maturation. This review summarizes these findings in the context of our current model of invadopodial function and highlights some of the important unanswered questions in the field.
Collapse
Affiliation(s)
- Brian T Beaty
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| | - John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, United States; Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, United States.
| |
Collapse
|
122
|
Stylli SS, Luwor RB, Kaye AH, I STT, Hovens CM, Lock P. Expression of the adaptor protein Tks5 in human cancer: prognostic potential. Oncol Rep 2014; 32:989-1002. [PMID: 24993883 DOI: 10.3892/or.2014.3310] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/04/2014] [Indexed: 11/05/2022] Open
Abstract
Tks5 (tyrosine kinase substrate with 5 SH3 domains) is an adaptor protein which cooperates with Src tyrosine kinase to promote the formation of protease-enriched, actin-based projections known as invadopodia, which are utilized by invasive cancer cells to degrade the extracellular matrix (ECM). We previously identified a Src-Tks5-Nck pathway which promotes invadopodium formation and ECM proteolysis in melanoma and breast cancer cells. We therefore sought to investigate the significance of Tks5 expression in human cancers. This was undertaken retrospectively through an immunohistochemical evaluation in tissue microarray cores and through data mining of the public database, Oncomine. Here we showed that Tks5 was expressed at higher levels in the microarray cores of breast, colon, lung and prostate cancer tissues compared to the levels in normal tissues. Importantly, mining of Oncomine datasets revealed a strong correlation between Tks5 mRNA overexpression in a number of cancers with increased metastatic events and a poorer prognosis. Collectively, these findings suggest a clinical association of Tks5 expression in human cancers. It identifies the importance for further investigations in examining the full potential of Tks5 as a relevant prognostic marker in a select number of cancers which may have implications for future targeted therapies.
Collapse
Affiliation(s)
- Stanley S Stylli
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Rodney B Luwor
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Andrew H Kaye
- Department of Surgery, The University of Melbourne, The Royal Melbourne Hospital, Parkville, Victoria 3052, Australia
| | - Stacey T T I
- Department of Biochemistry, La Trobe Institute of Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Christopher M Hovens
- Department of Neurosurgery, The Royal Melbourne Hospital, Parkville, Victoria 3050, Australia
| | - Peter Lock
- Department of Biochemistry, La Trobe Institute of Molecular Sciences, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
123
|
Abstract
The occurrence of invadopodia has been, since its characterization, a hallmark of cancerous cell invasion and metastasis. These structures are now the subject of a controversy concerning their cellular function, molecular regulation, and assembly. The terms invadopodia and podosomes have been used interchangeably since their discovery back in 1980. Since then, these phenotypes are now more established and accepted by the scientific community as vital structures for 3D cancer cell motility. Many characteristics relating to invadopodia and podosomes have been elucidated, which might prove these structures as good targets for metastasis treatment. In this review, we briefly review the actin reorganization process needed in most types of cancer cell motility. We also review the important characteristics of invadopodia, including molecular components, assembly, markers, and the signaling pathways, providing a comprehensive model for invadopodia regulation.
Collapse
Affiliation(s)
- Bechara A Saykali
- Department of Natural Sciences, The Lebanese American University , Beirut , Lebanon
| | | |
Collapse
|
124
|
Elevated expression of myosin X in tumours contributes to breast cancer aggressiveness and metastasis. Br J Cancer 2014; 111:539-50. [PMID: 24921915 PMCID: PMC4119973 DOI: 10.1038/bjc.2014.298] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/01/2014] [Accepted: 05/09/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Myosin X (MYO10) was recently reported to promote tumour invasion by transporting integrins to filopodial tips in breast cancer. However, the role of MYO10 in tumours remains poorly defined. Here, we report that MYO10 is required in invadopodia to mediate invasive growth and extracellular matrix degradation, which depends on the binding of MYO10's pleckstrin homology domain to PtdIns(3,4,5)P3. METHODS The expression of MYO10 and its associations with clinicopathological and biological factors were examined in breast cancer cells and breast cancer specimens (n=120). Cell migration and invasion were investigated after the silencing of MYO10. The ability of cells to form invadopodia was studied using a fluorescein isothiocyanate-conjugated gelatin degradation assay. A mouse model was established to study tumour invasive growth and metastasis in vivo. RESULTS Elevated MYO10 levels were correlated with oestrogen receptor status, progesterone receptor status, poor differentiation, and lymph node metastasis. Silencing MYO10 reduced cell migration and invasion. Invadopodia were responsible for MYO10's role in promoting invasion. Furthermore, decreased invasive growth and lung metastasis were observed in the MYO10-silenced nude mouse model. CONCLUSIONS Our findings suggest that elevated MYO10 expression increases the aggressiveness of breast cancer; this effect is dependent on the involvement of MYO10 in invadopodial formation.
Collapse
|
125
|
Gu Z. 0.1 kilopascal difference for mechanophenotyping: soft matrix precisely regulates cellular architecture for invasion. BIOARCHITECTURE 2014; 4:116-8. [PMID: 25029598 DOI: 10.4161/bioa.29175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current knowledge understands the mesenchymal cell invasion in a 3D matrix as a combined process of cell-to-matrix adhesion based cell migration and matrix remodeling. Excluding cell invasion stimulated by cytokines and chemokines, the basal cell invasion itself is a complicated process that can be regulated by matrix ligand type, density, geometry, and stiffness, etc. Understanding such a complicated biological process requires delicate dissections into simplified model studies by altering only one or two elements at a time. Past cell motility studies focusing on matrix stiffness have revealed that a stiffer matrix promotes 2D X-Y axis lateral cell motility. Here, we comment on two recent studies that report, instead of stiffer matrix, a softer matrix promotes matrix proteolysis and the formation of invadosome-like protrusions (ILPs) along the 3D Z axis. These studies also reveal that soft matrix precisely regulates such ILPs formation in the stiffness scale range of 0.1 kilopascal in normal cells. In contrast, malignant cells such as cancer cells can form ILPs in response to a much wider range of matrix stiffness. Further, different cancer cells respond to their own favorable range of matrix stiffness to spontaneously form ILPs. Thus, we hereby propose the idea of utilizing the matrix stiffness to precisely regulate ILP formation as a mechanophenotyping tool for cancer metastasis prediction and pathological diagnosis.
Collapse
Affiliation(s)
- Zhizhan Gu
- Division of Rheumatology, Immunology, and Allergy; Department of Medicine; Brigham and Women's Hospital; Harvard Medical School; Boston, MA USA
| |
Collapse
|
126
|
Spuul P, Ciufici P, Veillat V, Leclercq A, Daubon T, Kramer IJ, Génot E. Importance of RhoGTPases in formation, characteristics, and functions of invadosomes. Small GTPases 2014; 5:e28195. [PMID: 24967648 DOI: 10.4161/sgtp.28713] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Podosomes and invadopodia (collectively known as invadosomes) are specialized plasma-membrane actin-based microdomains that combine adhesive properties with matrix degrading and/or mechanosensor activities. These organelles have been extensively studied in vitro and current concerted efforts aim at establishing their physiological relevance and subsequent association with human diseases. Proper functioning of the bone, immune, and vascular systems is likely to depend on these structures while their occurrence in cancer cells appears to be linked to tumor metastasis. The elucidation of the mechanisms driving invadosome assembly is a prerequisite to understanding their role in vivo and ultimately to controlling their functions. Adhesive and soluble ligands act via transmembrane receptors that propagate signals to the cytoskeleton via small G proteins of the Rho family, assisted by tyrosine kinases and scaffold proteins to induce invadosome formation and rearrangements. Oncogene expression and cell-cell interactions may also trigger their assembly. Manipulation of the signals that regulate invadosome formation and dynamics could therefore be a strategy to interfere with their functions in a multitude of pathological settings, such as excessive bone breakdown, infections, vascular remodeling, transendothelial diapedesis, and metastasis.
Collapse
Affiliation(s)
- Pirjo Spuul
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Paolo Ciufici
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Véronique Veillat
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Anne Leclercq
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Thomas Daubon
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - IJsbrand Kramer
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| | - Elisabeth Génot
- Université de Bordeaux; Bordeaux, France; INSERM U1045; Bordeaux, France; IECB; European Institute of Chemistry and Biology; Pessac, France
| |
Collapse
|
127
|
Takahashi R, Nagayama S, Furu M, Kajita Y, Jin Y, Kato T, Imoto S, Sakai Y, Toguchida J. AFAP1L1, a novel associating partner with vinculin, modulates cellular morphology and motility, and promotes the progression of colorectal cancers. Cancer Med 2014; 3:759-74. [PMID: 24723436 PMCID: PMC4303145 DOI: 10.1002/cam4.237] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/17/2014] [Accepted: 03/03/2014] [Indexed: 12/18/2022] Open
Abstract
We have previously identified actin filament-associated protein 1-like 1 (AFAP1L1) as a metastasis-predicting marker for spindle cell sarcomas by gene expression profiling, and demonstrated that AFAP1L1 is involved in the cell invasion process by in vitro analyses. However, its precise molecular function has not been fully elucidated, and it remains unknown whether AFAP1L1 could be a prognostic marker and/or therapeutic target of other malignancies. In this study, we found a marked elevation of AFAP1L1 gene expression in colorectal cancer (CRC) tissues as compared to the adjacent normal mucosa. Multivariate analysis revealed that AFAP1L1 was an independent and significant factor for the recurrence of rectal cancers. Moreover, the addition of the AFAP1L1 expression level to the lymph node metastasis status provided more predictive information regarding postoperative recurrence in rectal cancers. AFAP1L1-transduced CRC cells exhibited a rounded shape, increased cell motility on planar substrates, and resistance to anoikis in vitro. AFAP1L1 localized to the ringed structure of the invadopodia, together with vinculin, and AFAP1L1 was identified as a novel associating partner of vinculin by immunoprecipitation assay. AFAP1L1-transduced cells showed accelerated tumor growth in vivo, presumably reflecting the anoikis resistance of these AFAP1L1-expressing cells. Furthermore, the local administration of a siRNA against AFAP1L1 significantly suppressed the in vivo tumor growth of xenografts, suggesting that AFAP1L1 might be a candidate therapeutic target for CRCs. These results suggest that AFAP1L1 plays a role in the progression of CRCs by modulating cell shape and motility and by inhibiting anoikis, presumably through interactions with vinculin-including protein complexes.
Collapse
Affiliation(s)
- Ryo Takahashi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan; Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Ophir MJ, Liu BC, Bunnell SC. The N terminus of SKAP55 enables T cell adhesion to TCR and integrin ligands via distinct mechanisms. ACTA ACUST UNITED AC 2014; 203:1021-41. [PMID: 24368808 PMCID: PMC3871428 DOI: 10.1083/jcb.201305088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The T cell receptor (TCR) triggers the assembly of "SLP-76 microclusters," which mediate signals required for T cell activation. In addition to regulating integrin activation, we show that Src kinase-associated phosphoprotein of 55 kD (SKAP55) is required for microcluster persistence and movement, junctional stabilization, and integrin-independent adhesion via the TCR. These functions require the dimerization of SKAP55 and its interaction with the adaptor adhesion and degranulation-promoting adaptor protein (ADAP). A "tandem dimer" containing two ADAP-binding SKAP55 Src homology 3 (SH3) domains stabilized SLP-76 microclusters and promoted T cell adhesion via the TCR, but could not support adhesion to integrin ligands. Finally, the SKAP55 dimerization motif (DM) enabled the coimmunoprecipitation of the Rap1-dependent integrin regulator Rap1-GTP-interacting adaptor molecule (RIAM), the recruitment of talin into TCR-induced adhesive junctions, and "inside-out" signaling to β1 integrins. Our data indicate that SKAP55 dimers stabilize SLP-76 microclusters, couple SLP-76 to the force-generating systems responsible for microcluster movement, and enable adhesion via the TCR by mechanisms independent of RIAM, talin, and β1 integrins.
Collapse
Affiliation(s)
- Michael J Ophir
- Program in Immunology, Sackler School of Graduate Biomedical Sciences, and 2 Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine, Boston, MA 02111
| | | | | |
Collapse
|
129
|
Fogh BS, Multhaupt HAB, Couchman JR. Protein kinase C, focal adhesions and the regulation of cell migration. J Histochem Cytochem 2014; 62:172-84. [PMID: 24309511 PMCID: PMC3935447 DOI: 10.1369/0022155413517701] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/21/2013] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion to extracellular matrix is a complex process involving protrusive activity driven by the actin cytoskeleton, engagement of specific receptors, followed by signaling and cytoskeletal organization. Thereafter, contractile and endocytic/recycling activities may facilitate migration and adhesion turnover. Focal adhesions, or focal contacts, are widespread organelles at the cell-matrix interface. They arise as a result of receptor interactions with matrix ligands, together with clustering. Recent analysis shows that focal adhesions contain a very large number of protein components in their intracellular compartment. Among these are tyrosine kinases, which have received a great deal of attention, whereas the serine/threonine kinase protein kinase C has received much less. Here the status of protein kinase C in focal adhesions and cell migration is reviewed, together with discussion of its roles and potential substrates.
Collapse
Affiliation(s)
- Betina S Fogh
- Department of Biomedical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
130
|
Exo70 isoform switching upon epithelial-mesenchymal transition mediates cancer cell invasion. Dev Cell 2014; 27:560-73. [PMID: 24331928 DOI: 10.1016/j.devcel.2013.10.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 07/31/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is an important developmental process hijacked by cancer cells for their dissemination. Here, we show that Exo70, a component of the exocyst complex, undergoes isoform switching mediated by ESRP1, a pre-mRNA splicing factor that regulates EMT. Expression of the epithelial isoform of Exo70 affects the levels of key EMT transcriptional regulators such as Snail and ZEB2 and is sufficient to drive the transition to epithelial phenotypes. Differential Exo70 isoform expression in human tumors correlates with cancer progression, and increased expression of the epithelial isoform of Exo70 inhibits tumor metastasis in mice. At the molecular level, the mesenchymal-but not the epithelial-isoform of Exo70 interacts with the Arp2/3 complex and stimulates actin polymerization for tumor invasion. Our findings provide a mechanism by which the exocyst function and actin dynamics are modulated for EMT and tumor invasion.
Collapse
|
131
|
Burger KL, Learman BS, Boucherle AK, Sirintrapun SJ, Isom S, Díaz B, Courtneidge SA, Seals DF. Src-dependent Tks5 phosphorylation regulates invadopodia-associated invasion in prostate cancer cells. Prostate 2014; 74:134-48. [PMID: 24174371 PMCID: PMC4083496 DOI: 10.1002/pros.22735] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 09/05/2013] [Indexed: 11/07/2022]
Abstract
BACKGROUND The Src tyrosine kinase substrate and adaptor protein Tks5 had previously been implicated in the invasive phenotype of normal and transformed cell types via regulation of cytoskeletal structures called podosomes/invadopodia. The role of Src-Tks5 signaling in invasive prostate cancer, however, had not been previously evaluated. METHODS We measured the relative expression of Tks5 in normal (n = 20) and cancerous (n = 184, from 92 patients) prostate tissue specimens by immunohistochemistry using a commercially available tumor microarray. We also manipulated the expression and activity of wild-type and mutant Src and Tks5 constructs in the LNCaP and PC-3 prostate cancer cell lines in order to ascertain the role of Src-Tks5 signaling in invadopodia development, matrix-remodeling activity, motility, and invasion. RESULTS Our studies demonstrated that Src was activated and Tks5 upregulated in high Gleason score prostate tumor specimens and in invasive prostate cancer cell lines. Remarkably, overexpression of Tks5 in LNCaP cells was sufficient to induce invadopodia formation and associated matrix degradation. This Tks5-dependent increase in invasive behavior further depended on Src tyrosine kinase activity and the phosphorylation of Tks5 at tyrosine residues 557 and 619. In PC-3 cells we demonstrated that Tks5 phosphorylation at these sites was necessary and sufficient for invadopodia-associated matrix degradation and invasion. CONCLUSIONS Our results suggest a general role for Src-Tks5 signaling in prostate tumor progression and the utility of Tks5 as a marker protein for the staging of this disease.
Collapse
Affiliation(s)
- Karen L. Burger
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Brian S. Learman
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Amy K. Boucherle
- Department of Cancer Biology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - S. Joseph Sirintrapun
- Department of Pathology, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Scott Isom
- Department of Biostatistical Sciences, Wake Forest Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Begoña Díaz
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Sara A. Courtneidge
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California
| | - Darren F. Seals
- Department of Biology, Appalachian State University, Boone, North Carolina
| |
Collapse
|
132
|
Baranov M, Ter Beest M, Reinieren-Beeren I, Cambi A, Figdor CG, van den Bogaart G. Podosomes of dendritic cells facilitate antigen sampling. J Cell Sci 2014; 127:1052-1064. [PMID: 24424029 DOI: 10.1242/jcs.141226] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells sample the environment for antigens and play an important role in establishing the link between innate and acquired immunity. Dendritic cells contain mechanosensitive adhesive structures called podosomes that consist of an actin-rich core surrounded by integrins, adaptor proteins and actin network filaments. They facilitate cell migration via localized degradation of extracellular matrix. Here, we show that podosomes of human dendritic cells locate to spots of low physical resistance in the substrate (soft spots) where they can evolve into protrusive structures. Pathogen recognition receptors locate to these protrusive structures where they can trigger localized antigen uptake, processing and presentation to activate T-cells. Our data demonstrate a novel role in antigen sampling for the podosomes of dendritic cells.
Collapse
Affiliation(s)
- Maksim Baranov
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Martin Ter Beest
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Inge Reinieren-Beeren
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Alessandra Cambi
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology Radboud University Medical Centre Radboud Centre for Molecular Life Sciences Geert Grooteplein 28 6525GA Nijmegen The Netherlands
| |
Collapse
|
133
|
Yu CH, Rafiq NBM, Krishnasamy A, Hartman KL, Jones GE, Bershadsky AD, Sheetz MP. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 2013; 5:1456-68. [PMID: 24290759 PMCID: PMC3898747 DOI: 10.1016/j.celrep.2013.10.040] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 09/05/2013] [Accepted: 10/24/2013] [Indexed: 01/07/2023] Open
Abstract
Matrix-activated integrins can form different adhesion structures. We report that nontransformed fibroblasts develop podosome-like adhesions when spread on fluid Arg-Gly-Asp peptide (RGD)-lipid surfaces, whereas they habitually form focal adhesions on rigid RGD glass surfaces. Similar to classic macrophage podosomes, the podosome-like adhesions are protrusive and characterized by doughnut-shaped RGD rings that surround characteristic core components including F-actin, N-WASP, and Arp2/Arp3. Furthermore, there are 18 podosome markers in these adhesions, though they lack matrix metalloproteinases that characterize invadopodia and podosomes of Src-transformed cells. When nontransformed cells develop force on integrin-RGD clusters by pulling RGD lipids to prefabricated rigid barriers (metal lines spaced by 1–2 μm), these podosomes fail to form and instead form focal adhesions. The formation of podosomes on fluid surfaces is mediated by local activation of phosphoinositide 3-kinase (PI3K) and the production of phosphatidylinositol-(3,4,5)-triphosphate (PIP3) in a FAK/PYK2-dependent manner. Enrichment of PIP3 precedes N-WASP activation and the recruitment of RhoA-GAP ARAP3. We propose that adhesion structures can be modulated by traction force development and that production of PIP3 stimulates podosome formation and subsequent RhoA downregulation in the absence of traction force. Nontransformed fibroblasts on RGD membranes form podosome-like protrusions Nanopatterned RGD membranes enable traction force, suppressing protrusion formation Local activation of PI3K transforms prepodosomal-like RGD clusters PIP3-bound RhoA GAP ARAP3 is recruited at the protrusion and downregulates RhoA-GTP
Collapse
Affiliation(s)
- Cheng-han Yu
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
| | - Nisha Bte Mohd Rafiq
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Randall Division of Cell & Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Anitha Krishnasamy
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Kevin L Hartman
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Gareth E Jones
- Randall Division of Cell & Molecular Biophysics, King's College London, London SE1 1UL, UK
| | - Alexander D Bershadsky
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael P Sheetz
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
134
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
135
|
Sun J, He H, Pillai S, Xiong Y, Challa S, Xu L, Chellappan S, Yang S. GATA3 transcription factor abrogates Smad4 transcription factor-mediated fascin overexpression, invadopodium formation, and breast cancer cell invasion. J Biol Chem 2013; 288:36971-82. [PMID: 24235142 DOI: 10.1074/jbc.m113.506535] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor β (TGFβ) is a potent and context-dependent regulator of tumor progression. TGFβ promotes the lung metastasis of basal-like (but not the luminal-like) breast cancer. Here, we demonstrated that fascin, a pro-metastasis actin bundling protein, was a direct target of the canonical TGFβ-Smad4 signaling pathway in basal-like breast cancer cells. TGFβ and Smad4 induced fascin overexpression by directly binding to a Smad binding element on the fascin promoter. We identified GATA3, a transcription factor crucial for mammary gland morphogenesis and luminal differentiation, as a negative regulator of TGFβ- and Smad4-induced fascin overexpression. When ectopically expressed in basal-like breast cancer cells, GATA-3 abrogated TGFβ- and Smad4-mediated overexpression of fascin and other TGFβ response genes, invadopodium formation, cell migration, and invasion, suggesting suppression of the canonical TGFβ-Smad signaling axis. Mechanistically, GATA3 abrogated the canonical TGFβ-Smad signaling by abolishing interactions between Smad4 and its DNA binding elements, potentially through physical interactions between the N-terminal of GATA3 and Smad3/4 proteins. Our findings provide mechanistic insight into how TGFβ-mediated cell motility and invasiveness are differentially regulated in breast cancer.
Collapse
|
136
|
Mutations in SH3PXD2B cause Borrone dermato-cardio-skeletal syndrome. Eur J Hum Genet 2013; 22:741-7. [PMID: 24105366 DOI: 10.1038/ejhg.2013.229] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/08/2013] [Accepted: 08/31/2013] [Indexed: 11/08/2022] Open
Abstract
Borrone Dermato-Cardio-Skeletal (BDCS) syndrome is a severe progressive autosomal recessive disorder characterized by coarse facies, thick skin, acne conglobata, dysmorphic facies, vertebral abnormalities and mitral valve prolapse. We identified a consanguineous kindred with a child clinically diagnosed with BDCS. Linkage analysis of this family (BDCS1) identified five regions homozygous by descent with a maximum LOD score of 1.75. Linkage analysis of the family that originally defined BDCS (BDCS3) identified an overlapping linkage peak at chromosome 5q35.1. Sequence analysis identified two different homozygous mutations in BDCS1 and BDCS3, affecting the gene encoding the protein SH3 and PX domains 2B (SH3PXD2B), which localizes to 5q35.1. Western blot analysis of patient fibroblasts derived from affected individuals in both families demonstrated complete loss of SH3PXD2B. Homozygosity mapping and sequence analysis in a second published BDCS family (BDCS2) excluded SH3PXD2B. SH3PXD2B is required for the formation of functional podosomes, and loss-of-function mutations in SH3PXD2B have recently been shown to underlie 7 of 13 families with Frank-Ter Haar syndrome (FTHS). FTHS and BDCS share some overlapping clinical features; therefore, our results demonstrate that a proportion of BDCS and FTHS cases are allelic. Mutations in other gene(s) functioning in podosome formation and regulation are likely to underlie the SH3PXD2B-mutation-negative BDSC/FTHS patients.
Collapse
|
137
|
Fortin Ensign SP, Mathews IT, Symons MH, Berens ME, Tran NL. Implications of Rho GTPase Signaling in Glioma Cell Invasion and Tumor Progression. Front Oncol 2013; 3:241. [PMID: 24109588 PMCID: PMC3790103 DOI: 10.3389/fonc.2013.00241] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/02/2013] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GB) is the most malignant of primary adult brain tumors, characterized by a highly locally invasive cell population, as well as abundant proliferative cells, neoangiogenesis, and necrosis. Clinical intervention with chemotherapy or radiation may either promote or establish an environment for manifestation of invasive behavior. Understanding the molecular drivers of invasion in the context of glioma progression may be insightful in directing new treatments for patients with GB. Here, we review current knowledge on Rho family GTPases, their aberrant regulation in GB, and their effect on GB cell invasion and tumor progression. Rho GTPases are modulators of cell migration through effects on actin cytoskeleton rearrangement; in non-neoplastic tissue, expression and activation of Rho GTPases are normally under tight regulation. In GB, Rho GTPases are deregulated, often via hyperactivity or overexpression of their activators, Rho GEFs. Downstream effectors of Rho GTPases have been shown to promote invasiveness and, importantly, glioma cell survival. The study of aberrant Rho GTPase signaling in GB is thus an important investigation of cell invasion as well as treatment resistance and disease progression.
Collapse
Affiliation(s)
- Shannon Patricia Fortin Ensign
- Cancer and Cell Biology Division, Translational Genomics Research Institute , Phoenix, AZ , USA ; Cancer Biology Graduate Interdisciplinary Program, University of Arizona , Tucson, AZ , USA
| | | | | | | | | |
Collapse
|
138
|
Aristaeus de Asis M, Pires M, Lyon K, Vogl AW. A network of spectrin and plectin surrounds the actin cuffs of apical tubulobulbar complexes in the rat. SPERMATOGENESIS 2013; 3:e25733. [PMID: 24381803 PMCID: PMC3861171 DOI: 10.4161/spmg.25733] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/10/2013] [Accepted: 07/11/2013] [Indexed: 11/19/2022]
Abstract
Tubulobulbar complexes (TBCs) are actin-related endocytic structures that internalize intercellular junctions in the seminiferous epithelium. The structures consist of elongate tubular projections of the attached plasma membranes of two adjacent cells that project into Sertoli cells. This double membrane core is cuffed by a dentritic actin network and is capped at its end by a clathrin-coated pit. Here we explore the possibility that elements of the spectrin cytoskeleton are associated with clusters of tubulobulbar complexes that develop at adhesion junctions between late spermatids and Sertoli cells at the apex of the epithelium, and extend what is known about the distribution of plectin at the sites. Cryo-sections of perfusion-fixed testes and apical processes of Sertoli cells mechanically dissociated from perfusion-fixed testes were probed for spectrin, EPB41, and actin and analyzed using conventional fluorescence microscopy and confocal microscopy. Data sets from confocal microscopy were analyzed further in three-dimensional reconstructions using computer software. Additional apical Sertoli cell processes were probed for plectin and analyzed using conventional fluorescence microscopy. Antibodies generated against elements of the spectrin cytoskeleton react with material around and between the actin cuffs of tubulobulbar complexes, but appear excluded from the actin cuffs themselves. A similar staining pattern occurs with a probe for plectin. Immunoelectron microscopy confirmed the staining patterns observed by fluourescence microscopy. Based on our results, we suggest that a network of spectrin and plectin forms a scaffold around tubulobulbar complexes that may provide support for the actin network that cuffs each complex and also link adjacent complexes together.
Collapse
Affiliation(s)
| | - Manuel Pires
- Faculte des Sciences Fondamentales et Appliquees; Universite de Poitiers; Poitiers, France
| | - Kevin Lyon
- Department of Cellular and Physiological Sciences; Faculty of Medicine; University of British Columbia; BC Canada
| | - A Wayne Vogl
- Department of Cellular and Physiological Sciences; Faculty of Medicine; University of British Columbia; BC Canada
| |
Collapse
|
139
|
Zhou S, Tang L, Wang H, Dai J, Zhang J, Shen L, Ng SW, Berkowitz RS. Overexpression of c-Abl predicts unfavorable outcome in epithelial ovarian cancer. Gynecol Oncol 2013; 131:69-76. [PMID: 23820113 DOI: 10.1016/j.ygyno.2013.06.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/21/2013] [Accepted: 06/23/2013] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Abelson tyrosine kinase (c-Abl) has been shown to promote solid tumor invasion and metastasis. However, little is known regarding whether c-Abl contributes to the development or progression of epithelial ovarian cancer (EOC). The aims of this study are to determine the expression of c-Abl and investigate a possible relationship between c-Abl and prognosis in EOC. METHODS c-Abl protein level was evaluated in 137 EOC specimens by immunohistochemical staining and 32 EOC specimens by Western blot analysis. Expression of c-Abl in ovarian cancer cell lines was measured by Western blot analysis and immunofluorescence. Survival analysis was performed to assess the correlation between c-Abl expression and survival. RESULTS Immunohistochemical staining and Western blot analysis revealed that c-Abl was overexpressed in EOC compared with samples from a non-invasive ovarian tumor and normal ovaries (P<0.05). Furthermore, expression of c-Abl was significantly associated with advanced FIGO stage, poor grade, serum Ca-125 and residual tumor size (P<0.05). By Western blot analysis, c-Abl expression was examined in four ovarian cancer cell lines. Meanwhile, immunofluorescence was performed to show c-Abl expression in SKOV3 and 3AO cell lines. Survival analysis demonstrated that patients with low c-Abl staining had a significantly better survival compared to patients with high c-Abl staining (P<0.05). In multivariate analysis, c-Abl overexpression, poor grade, advanced stage and suboptimal surgical debulking were independent prognostic factors of poor survival. CONCLUSIONS Our present study finds that c-Abl overexpression is associated with an unfavorable outcome. c-Abl may be a crucial predictor for EOC metastasis.
Collapse
Affiliation(s)
- Suiyang Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Beck MR, Dixon RDS, Goicoechea SM, Murphy GS, Brungardt JG, Beam MT, Srinath P, Patel J, Mohiuddin J, Otey CA, Campbell SL. Structure and function of palladin's actin binding domain. J Mol Biol 2013; 425:3325-37. [PMID: 23806659 DOI: 10.1016/j.jmb.2013.06.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 11/28/2022]
Abstract
Here, we report the NMR structure of the actin-binding domain contained in the cell adhesion protein palladin. Previously, we demonstrated that one of the immunoglobulin domains of palladin (Ig3) is both necessary and sufficient for direct filamentous actin binding in vitro. In this study, we identify two basic patches on opposite faces of Ig3 that are critical for actin binding and cross-linking. Sedimentation equilibrium assays indicate that the Ig3 domain of palladin does not self-associate. These combined data are consistent with an actin cross-linking mechanism that involves concurrent attachment of two actin filaments by a single palladin molecule by an electrostatic mechanism. Palladin mutations that disrupt actin binding show altered cellular distributions and morphology of actin in cells, revealing a functional requirement for the interaction between palladin and actin in vivo.
Collapse
Affiliation(s)
- Moriah R Beck
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, 120 Mason Farm Road, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Watanabe A, Hosino D, Koshikawa N, Seiki M, Suzuki T, Ichikawa K. Critical role of transient activity of MT1-MMP for ECM degradation in invadopodia. PLoS Comput Biol 2013; 9:e1003086. [PMID: 23737743 PMCID: PMC3667784 DOI: 10.1371/journal.pcbi.1003086] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
Focal degradation of extracellular matrix (ECM) is the first step in the invasion of cancer cells. MT1-MMP is a potent membrane proteinase employed by aggressive cancer cells. In our previous study, we reported that MT1-MMP was preferentially located at membrane protrusions called invadopodia, where MT1-MMP underwent quick turnover. Our computer simulation and experiments showed that this quick turnover was essential for the degradation of ECM at invadopodia (Hoshino, D., et al., (2012) PLoS Comp. Biol., 8: e1002479). Here we report on characterization and analysis of the ECM-degrading activity of MT1-MMP, aiming at elucidating a possible reason for its repetitive insertion in the ECM degradation. First, in our computational model, we found a very narrow transient peak in the activity of MT1-MMP followed by steady state activity. This transient activity was due to the inhibition by TIMP-2, and the steady state activity of MT1-MMP decreased dramatically at higher TIMP-2 concentrations. Second, we evaluated the role of the narrow transient activity in the ECM degradation. When the transient activity was forcibly suppressed in computer simulations, the ECM degradation was heavily suppressed, indicating the essential role of this transient peak in the ECM degradation. Third, we compared continuous and pulsatile turnover of MT1-MMP in the ECM degradation at invadopodia. The pulsatile insertion showed basically consistent results with the continuous insertion in the ECM degradation, and the ECM degrading efficacy depended heavily on the transient activity of MT1-MMP in both models. Unexpectedly, however, low-frequency/high-concentration insertion of MT1-MMP was more effective in ECM degradation than high-frequency/low-concentration pulsatile insertion even if the time-averaged amount of inserted MT1-MMP was the same. The present analysis and characterization of ECM degradation by MT1-MMP together with our previous report indicate a dynamic nature of MT1-MMP at invadopodia and the importance of its transient peak in the degradation of the ECM.
Collapse
Affiliation(s)
- Ayako Watanabe
- Division of Mathematical Oncology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Daisuke Hosino
- Division of Cancer Cell Research, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Naohiko Koshikawa
- Division of Cancer Cell Research, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Motoharu Seiki
- Division of Cancer Cell Research, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
| | - Takashi Suzuki
- JST, CREST, Chiyoda-ku, Tokyo, Japan
- Division of Mathematical Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kazuhisa Ichikawa
- Division of Mathematical Oncology, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- JST, CREST, Chiyoda-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
142
|
Olayioye MA, Barisic S, Hausser A. Multi-level control of actin dynamics by protein kinase D. Cell Signal 2013; 25:1739-47. [PMID: 23688773 DOI: 10.1016/j.cellsig.2013.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/24/2013] [Accepted: 04/30/2013] [Indexed: 11/26/2022]
Abstract
Dynamic actin remodeling is fundamental to processes such as cell motility, vesicle trafficking, and cytokinesis. Protein kinase D (PKD) is a serine-threonine kinase known to be involved in diverse biological functions ranging from vesicle fission at the Golgi complex to regulation of cell motility and invasion. This review addresses the role of PKD in the organization of the actin cytoskeleton with a particular emphasis on the substrates associated with this function. We further highlight the multi-level control of actin dynamics by PKD and suggest that the tight spatio-temporal control of PKD activity is critical for the coordination of directed cell migration.
Collapse
Affiliation(s)
- Monilola A Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | | | | |
Collapse
|
143
|
Götz A, Jessberger R. Dendritic cell podosome dynamics does not depend on the F-actin regulator SWAP-70. PLoS One 2013; 8:e60642. [PMID: 23544157 PMCID: PMC3609734 DOI: 10.1371/journal.pone.0060642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/01/2013] [Indexed: 01/02/2023] Open
Abstract
In addition to classical adhesion structures like filopodia or focal adhesions, dendritic cells similar to macrophages and osteoclasts assemble highly dynamic F-actin structures called podosomes. They are involved in cellular processes such as extracellular matrix degradation, bone resorption by osteoclasts, and trans-cellular diapedesis of lymphocytes. Besides adhesion and migration, podosomes enable dendritic cells to degrade connective tissue by matrix metalloproteinases. SWAP-70 interacts with RhoGTPases and F-actin and regulates migration of dendritic cells. SWAP-70 deficient osteoclasts are impaired in F-actin-ring formation and bone resorption. In the present study, we demonstrate that SWAP-70 is not required for podosome formation and F-actin turnover in dendritic cells. Furthermore, we found that toll-like receptor 4 ligand induced podosome disassembly and podosome-mediated matrix degradation is not affected by SWAP-70 in dendritic cells. Thus, podosome formation and function in dendritic cells is independent of SWAP-70.
Collapse
Affiliation(s)
- Anne Götz
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, Dresden, Germany
| | - Rolf Jessberger
- Faculty of Medicine Carl Gustav Carus, Institute of Physiological Chemistry, Dresden University of Technology, Dresden, Germany
| |
Collapse
|
144
|
Goicoechea SM, García-Mata R, Staub J, Valdivia A, Sharek L, McCulloch CG, Hwang RF, Urrutia R, Yeh JJ, Kim HJ, Otey CA. Palladin promotes invasion of pancreatic cancer cells by enhancing invadopodia formation in cancer-associated fibroblasts. Oncogene 2013; 33:1265-73. [PMID: 23524582 DOI: 10.1038/onc.2013.68] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 12/17/2012] [Accepted: 01/25/2013] [Indexed: 12/29/2022]
Abstract
The stromal compartment surrounding epithelial-derived pancreatic tumors is thought to have a key role in the aggressive phenotype of this malignancy. Emerging evidence suggests that cancer-associated fibroblasts (CAFs), the most abundant cells in the stroma of pancreatic tumors, contribute to the tumor's invasion, metastasis and resistance to therapy, but the precise molecular mechanisms that regulate CAFs behavior are poorly understood. In this study, we utilized immortalized human pancreatic CAFs to investigate molecular pathways that control the matrix-remodeling and invasion-promoting activity of CAFs. We showed previously that palladin, an actin-associated protein, is expressed at high levels in CAFs of pancreatic tumors and other solid tumors, and also in an immortalized line of human CAFs. In this study, we found that short-term exposure of CAFs to phorbol esters reduced the number of stress fibers and triggered the appearance of individual invadopodia and invadopodial rosettes in CAFs. Molecular analysis of invadopodia revealed that their composition resembled that of similar structures (that is, invadopodia and podosomes) described in other cell types. Pharmacological inhibition and small interfering RNA knockdown experiments demonstrated that protein kinase C, the small GTPase Cdc42 and palladin were necessary for the efficient assembly of invadopodia by CAFs. In addition, GTPase activity assays showed that palladin contributes to the activation of Cdc42. In mouse xenograft experiments using a mixture of CAFs and tumor cells, palladin expression in CAFs promoted the rapid growth and metastasis of human pancreatic tumor cells. Overall, these results indicate that high levels of palladin expression in CAFs enhance their ability to remodel the extracellular matrix by regulating the activity of Cdc42, which in turn promotes the assembly of matrix-degrading invadopodia in CAFs and tumor cell invasion. Together, these results identify a novel molecular signaling pathway that may provide new molecular targets for the inhibition of pancreatic cancer metastasis.
Collapse
Affiliation(s)
- S M Goicoechea
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - R García-Mata
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J Staub
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A Valdivia
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Sharek
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C G McCulloch
- CIHR Group in Matrix Dynamics, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - R F Hwang
- Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Urrutia
- Department of Biochemistry and Molecular Biology, Epigenetics and Chromatin Dynamics Laboratory, Division of Gastroenterology and Hepatology, Translational Epigenomics Program, Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, MN, USA
| | - J J Yeh
- 1] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [3] Department of Surgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - H J Kim
- 1] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Department of Surgery, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - C A Otey
- 1] Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
145
|
Proszynski TJ, Sanes JR. Amotl2 interacts with LL5β, localizes to podosomes and regulates postsynaptic differentiation in muscle. J Cell Sci 2013; 126:2225-35. [PMID: 23525008 DOI: 10.1242/jcs.121327] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Neuromuscular junctions (NMJs) in mammalian skeletal muscle undergo a postnatal topological transformation from a simple oval plaque to a complex branched structure. We previously showed that podosomes, actin-rich adhesive organelles, promote the remodeling process, and demonstrated a key role for one podosome component, LL5β. To further investigate molecular mechanisms of postsynaptic maturation, we purified LL5β-associated proteins from myotubes and showed that three regulators of the actin cytoskeleton--Amotl2, Asef2 and Flii--interact with LL5β. These and other LL5β-interacting proteins are associated with conventional podosomes in macrophages and podosome-like invadopodia in fibroblasts, strengthening the close relationship between synaptic and non-synaptic podosomes. We then focused on Amotl2, showing that it is associated with synaptic podosomes in cultured myotubes and with NMJs in vivo. Depletion of Amotl2 in myotubes leads to increased size of synaptic podosomes and corresponding alterations in postsynaptic topology. Depletion of Amotl2 from fibroblasts disrupts invadopodia in these cells. These results demonstrate a role for Amotl2 in synaptic maturation and support the involvement of podosomes in this process.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Department of Molecular and Cellular Biology and Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
146
|
Wang S, Li E, Gao Y, Wang Y, Guo Z, He J, Zhang J, Gao Z, Wang Q. Study on invadopodia formation for lung carcinoma invasion with a microfluidic 3D culture device. PLoS One 2013; 8:e56448. [PMID: 23441195 PMCID: PMC3575410 DOI: 10.1371/journal.pone.0056448] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/14/2013] [Indexed: 12/20/2022] Open
Abstract
Invadopodia or invasive feet, which are actin-rich membrane protrusions with matrix degradation activity formed by invasive cancer cells, are a key determinant in the malignant invasive progression of tumors and represent an important target for cancer therapies. In this work, we presented a microfluidic 3D culture device with continuous supplement of fresh media via a syringe pump. The device mimicked tumor microenvironment in vivo and could be used to assay invadopodia formation and to study the mechanism of human lung cancer invasion. With this device, we investigated the effects of epidermal growth factor (EGF) and matrix metalloproteinase (MMP) inhibitor, GM6001 on invadopodia formation by human non-small cell lung cancer cell line A549 in 3D matrix model. This device was composed of three units that were capable of achieving the assays on one control group and two experimental groups' cells, which were simultaneously pretreated with EGF or GM6001 in parallel. Immunofluorescence analysis of invadopodia formation and extracellular matrix degradation was conducted using confocal imaging system. We observed that EGF promoted invadopodia formation by A549 cells in 3D matrix and that GM6001 inhibited the process. These results demonstrated that epidermal growth factor receptor (EGFR) signaling played a significant role in invadopodia formation and related ECM degradation activity. Meanwhile, it was suggested that MMP inhibitor (GM6001) might be a powerful therapeutic agent targeting invadopodia formation in tumor invasion. This work clearly demonstrated that the microfluidic-based 3D culture device provided an applicable platform for elucidating the mechanism of cancer invasion and could be used in testing other anti-invasion agents.
Collapse
Affiliation(s)
- Shanshan Wang
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Encheng Li
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Yanghui Gao
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Yan Wang
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Zhe Guo
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Jiarui He
- Graduate School of Dalian Medical University, Dalian, People's Republic of China
| | - Jianing Zhang
- Department of Biochemistry, Institute of Glycobiology, Dalian Medical University, Dalian, China
| | - Zhancheng Gao
- Departments of Respiratory & Critical Care Medicine, Peking University People's Hospital, Beijing, China
- * E-mail: (QW); (ZG)
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital Affiliated to Dalian Medical University, Dalian, China
- * E-mail: (QW); (ZG)
| |
Collapse
|
147
|
Tang H, Li A, Bi J, Veltman DM, Zech T, Spence HJ, Yu X, Timpson P, Insall RH, Frame MC, Machesky LM. Loss of Scar/WAVE complex promotes N-WASP- and FAK-dependent invasion. Curr Biol 2013; 23:107-17. [PMID: 23273897 DOI: 10.1016/j.cub.2012.11.059] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/25/2012] [Accepted: 11/30/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND The Scar/WAVE regulatory complex (WRC) drives lamellipodia assembly via the Arp2/3 complex, whereas the Arp2/3 activator N-WASP is not essential for 2D migration but is increasingly implicated in 3D invasion. It is becoming ever more apparent that 2D and 3D migration utilize the actin cytoskeletal machinery differently. RESULTS We discovered that WRC and N-WASP play opposing roles in 3D epithelial cell migration. WRC depletion promoted N-WASP/Arp2/3 complex activation and recruitment to leading invasive edges and increased invasion. WRC disruption also altered focal adhesion dynamics and drove FAK activation at leading invasive edges. We observed coalescence of focal adhesion components together with N-WASP and Arp2/3 complex at leading invasive edges in 3D. Unexpectedly, WRC disruption also promoted FAK-dependent cell transformation and tumor growth in vivo. CONCLUSIONS N-WASP has a crucial proinvasive role in driving Arp2/3 complex-mediated actin assembly in cooperation with FAK at invasive cell edges, but WRC depletion can promote 3D cell motility.
Collapse
Affiliation(s)
- Haoran Tang
- The Beatson Institute for Cancer Research, Switchback Road, Glasgow G61 1BD, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Abstract
Podosomes are multifunctional organelles of invasive cells that combine several key abilities including cell-matrix adhesion, extracellular matrix degradation, and mechanosensing. In combination with their high turnover rates that allow quick adaptation to the pericellular environment, podosomes are likely to play important roles during invasive migration of cells. Primary human macrophages constitutively form numerous podosomes and are thus an ideal system for the quantitative study of podosome dynamics. This protocol describes assays for the study of podosome dynamics, namely, reformation of podosomes, in fixed and living cells, with subsequent software-based analyses allowing the extraction of quantitative parameters such as the number of podosomes per cell, podosome density, and half times for podosome disruption and reformation. Moreover, we describe the preparation of podosome-enriched cell fractions and their analysis by immunoblotting.
Collapse
Affiliation(s)
- Pasquale Cervero
- Institut für medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Eppendorf, Hamburg, Germany
| | | | | |
Collapse
|
149
|
Juin A, Planus E, Guillemot F, Horakova P, Albiges-Rizo C, Génot E, Rosenbaum J, Moreau V, Saltel F. Extracellular matrix rigidity controls podosome induction in microvascular endothelial cells. Biol Cell 2012; 105:46-57. [PMID: 23106484 DOI: 10.1111/boc.201200037] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/23/2012] [Indexed: 12/30/2022]
Abstract
BACKGROUND INFORMATION Podosomes are actin-based structures involved in cell adhesion, migration, invasion and extracellular matrix degradation. They have been described in large vessel endothelial cells, but nothing is known concerning microvascular endothelial cells. Here, we focussed on liver sinusoidal endothelial cells (LSECs), fenestrated microvascular cells that play major roles in liver physiology. Liver fibrosis induces a dedifferentiation of LSECs leading notably to a loss of fenestrae. Because liver fibrosis is associated with increased matrix stiffness, and because substrate stiffness is known to regulate the actin cytoskeleton, we investigated the impact of matrix rigidity on podosome structures in LSECs. RESULTS Using primary LSECs, we demonstrated that microvascular endothelial cells are able to form constitutive podosomes. Podosome presence in LSECs was independent of cytokines such as transforming growth factor-β or vascular endothelial growth factor, but could be modulated by matrix stiffness. As expected, LSECs lost their differentiated phenotype during cell culture, which was paralleled by a loss of podosomes. LSECs however retained the capacity to form active podosomes following detachment/reseeding or actin-destabilising drug treatments. Finally, constitutive podosomes were also found in primary microvascular endothelial cells from other organs. CONCLUSIONS Our results show that microvascular endothelial cells are able to form podosomes without specific stimulation. Our data suggest that the major determinant of podosome induction in these cells is substrate rigidity.
Collapse
|
150
|
Exocyst complex component Sec8: a presumed component in the progression of human oral squamous-cell carcinoma by secretion of matrix metalloproteinases. J Cancer Res Clin Oncol 2012. [PMID: 23207790 DOI: 10.1007/s00432-012-1356-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Sec8, a component of the exocyst complex, has been implicated in tethering of secretory vesicles to specific regions on the plasma membrane. To investigate the involvement of Sec8 in oral squamous-cell carcinoma (OSCC), we evaluated the expression status and effect of Sec8 in OSCC cell lines. METHODS Sec8 mRNA and protein expressions in human OSCC cell lines were assessed by quantitative reverse transcriptase-polymerase chain reaction and immunoblotting. Functional analyses, proliferation assay, invasiveness assay, and gelatin zymography in Sec8 knockdown cells were performed. Also the correlation between Sec8 expression and the clinicopathological features in 98 primary OSCCs samples was evaluated by immunohistochemistry. RESULTS Sec8 mRNA and protein expression were significantly up-regulated in all cell lines (p < 0.05). Sec8 knockdown cells were characterized by reduced cellular proliferation, invasiveness, and secretion of matrix metalloproteinases (MMPs) (MMP-2, proMMP-2, and proMMP-9). Sec8 protein expression in primary OSCCs also was significantly (p < 0.05) greater than in normal counterparts, and higher Sec8 expression was correlated with tumor size (p = 0.03). CONCLUSIONS Our results suggested for the first time that Sec8 might play a specific role in OSCC progression by mediating MMP secretion.
Collapse
|