101
|
Verkhratsky A, Olabarria M, Noristani HN, Yeh CY, Rodriguez JJ. Astrocytes in Alzheimer's disease. Neurotherapeutics 2010; 7:399-412. [PMID: 20880504 PMCID: PMC5084302 DOI: 10.1016/j.nurt.2010.05.017] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/25/2010] [Accepted: 05/10/2010] [Indexed: 11/24/2022] Open
Abstract
The circuitry of the human brain is formed by neuronal networks embedded into astroglial syncytia. The astrocytes perform numerous functions, providing for the overall brain homeostasis, assisting in neurogenesis, determining the micro-architecture of the grey matter, and defending the brain through evolutionary conserved astrogliosis programs. Astroglial cells are engaged in neurological diseases by determining the progression and outcome of neuropathological process. Astrocytes are specifically involved in various neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Parkinson's disease, and various forms of dementia. Recent evidence suggest that early stages of neurodegenerative processes are associated with atrophy of astroglia, which causes disruptions in synaptic connectivity, disbalance in neurotransmitter homeostasis, and neuronal death through increased excitotoxicity. At the later stages, astrocytes become activated and contribute to the neuroinflammatory component of neurodegeneration.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- grid.5379.80000000121662407Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, UK
- grid.11480.3c0000000121671098Ikerbasque, Basque Foundation for Science, Department of Neuroscience, The University of the Basque Country UPV/EHU, Technological Park, Bldg. 205, Floor-1, Laida Bidea, 48170 Zamudio, Vizcaya Spain
| | - Markel Olabarria
- grid.5379.80000000121662407Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, UK
| | - Harun N. Noristani
- grid.5379.80000000121662407Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, UK
| | - Chia-Yu Yeh
- grid.5379.80000000121662407Faculty of Life Sciences, The University of Manchester, M13 9PT Manchester, UK
| | - Jose Julio Rodriguez
- grid.418095.10000000110153316Institute of Experimental Medicine, ASCR, 142 20 Prague, Czech Republic
- grid.424810.b0000000404672314Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain
- grid.11480.3c0000000121671098Department of Neurosciences, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
102
|
Betzenhauser MJ, Yule DI. Regulation of inositol 1,4,5-trisphosphate receptors by phosphorylation and adenine nucleotides. CURRENT TOPICS IN MEMBRANES 2010; 66:273-98. [PMID: 22353484 DOI: 10.1016/s1063-5823(10)66012-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Matthew J Betzenhauser
- Department of Physiology and Cellular Biophysics, Columbia University Medical School, New York City, New York, USA
| | | |
Collapse
|
103
|
Isolation of inositol 1,4,5-trisphosphate receptor-associating proteins and selective knockdown using RNA interference. Methods Mol Biol 2010. [PMID: 20645186 DOI: 10.1007/978-1-60327-175-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)Rs) are IP(3)-gated Ca(2+) release channels localized on intracellular Ca(2+) stores and play a role in the generation of complex patterns of intracellular Ca(2+) signals. We show herein experimental protocols for the identification of associating proteins of IP(3)R isoforms from various cells and tissues using affinity column chromatography and for the specific knockdown of the expression of IP(3)R isoforms and their associating proteins using RNA interference. These methods will provide clues to understand the exact nature of how the signaling complex contributes to the generation of spatio-temporal patterns of intracellular Ca(2+) signals.
Collapse
|
104
|
Yule DI, Betzenhauser MJ, Joseph SK. Linking structure to function: Recent lessons from inositol 1,4,5-trisphosphate receptor mutagenesis. Cell Calcium 2010; 47:469-79. [PMID: 20510450 DOI: 10.1016/j.ceca.2010.04.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 12/12/2022]
Abstract
Great insight has been gained into the structure and function of the inositol 1,4,5 trisphosphate receptor (InsP(3)R) by studies employing mutagenesis of the cDNA encoding the receptor. Notably, early studies using this approach defined the key constituents required for InsP(3) binding in the N-terminus and the membrane spanning regions in the C-terminal domain responsible for channel formation, targeting and function. In this article we evaluate recent studies which have used a similar approach to investigate key residues underlying the in vivo modulation by select regulatory factors. In addition, we review studies defining the structural requirements in the channel domain which comprise the conduction pathway and are suggested to be involved in the gating of the channel.
Collapse
Affiliation(s)
- David I Yule
- Department of Pharmacology and Physiology, University of Rochester, NY, United States.
| | | | | |
Collapse
|
105
|
Fedorenko EA, Duzhii DE, Marchenko SM. Voltage Dependence of the Activity of Inositol Trisphosphate Receptors of the Nuclear Envelope of Hippocampal Pyramidal Neurons. NEUROPHYSIOLOGY+ 2010. [DOI: 10.1007/s11062-010-9106-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
106
|
Cheng FC, Feng JJ, Chen KH, Imanishi H, Fujishima M, Takekoshi H, Naoki Y, Shimoda M. Receptor binding activities of Chlorella on cysteinyl leukotriene CysLT, glutamate AMPA, ion channels, purinergic P 2Y, tachykinin NK2 receptors and adenosine transporter. Phytother Res 2010; 24:43-8. [PMID: 19517465 DOI: 10.1002/ptr.2864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Chlorella powder was tested in a total of 129 in vitro receptor binding assay systems. The results showed a potent inhibition of this powder on cysteinyl leukotriene CysLT2, and glutamate AMPA in a dose-concentration manner with IC(50) mean +/- SEM values of 20 +/- 4.5 microg/mL and 44 +/- 14 microg/mL, respectively. Other moderate and weak activities reflected in competitive binding experiments were seen versus adenosine transporter; calcium channel L-type, benzothiazepine; gabapentin; kainate, NMDA-glycine; inositol trisphosphate IP(3); cysteinyl CysLT(1), LTB(4); purinergic P(2Y); tachykinin NK(2); serotonin 5-HT(2B) and prostanoid, thromboxane A(2). Together, the results suggest that the various inhibitory effects of Chlorella powder in these receptor binding assays could reflect its actions in modulating Ca(2+)-dependent signal related targets and might be relevant to the mechanisms of its biological effects. These results reveal important potential biochemical activities that might be exploited for the prevention or treatment of several pathologies. From these results, the possible therapeutic usage of the product is discussed.
Collapse
Affiliation(s)
- Fong-Chi Cheng
- MDS Pharma Services Taiwan Ltd, 158 Li-Teh Road, Peitou, Taipei, 112, Taiwan, ROC.
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Brnjic S, Olofsson MH, Havelka AM, Linder S. Chemical biology suggests a role for calcium signaling in mediating sustained JNK activation during apoptosis. MOLECULAR BIOSYSTEMS 2010; 6:767-74. [PMID: 20567760 DOI: 10.1039/b920805d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calcium (Ca(2+)) is used as a signaling molecule to regulate many cellular processes. Calcium signaling generally involves transient elevations of the concentration of free Ca(2+) in the cytosol. More pronounced and sustained elevations of intracellular Ca(2+) concentrations are observed during apoptosis (programmed cell death). These Ca(2+) elevations have been shown to lead to the activation of proteases (calpains) and to changes in protein phosphorylation. Recent evidence, using chemical biology, has raised the possibility that calcium signaling is involved in sustained JNK activation during late phases of apoptosis. For at least some stimuli, calcium release leads to activation of calmodulin kinase II (CaMKII), apoptosis signaling kinase 1 (ASK1) and JNK. Calcium signaling may help to orchestrate the apoptotic response during the execution phase.
Collapse
Affiliation(s)
- Slavica Brnjic
- Department of Oncology-Pathology, Cancer Center Karolinska, R8:00, Karolinska Institute, S-171 76 Stockholm, Sweden
| | | | | | | |
Collapse
|
108
|
Calcium dyshomeostasis and pathological calcium signalling in neurological diseases. Cell Calcium 2010; 47:101-2. [PMID: 20079921 DOI: 10.1016/j.ceca.2009.12.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 12/17/2009] [Indexed: 01/23/2023]
|
109
|
Abstract
The versatility of Ca(2+) as an intracellular messenger derives largely from the spatial organization of cytosolic Ca(2+) signals, most of which are generated by regulated openings of Ca(2+)-permeable channels. Most Ca(2+) channels are expressed in the plasma membrane (PM). Others, including the almost ubiquitous inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, the ryanodine receptors (RyR), are predominantly expressed in membranes of the sarcoplasmic or endoplasmic reticulum (ER). Targeting of these channels to appropriate destinations underpins their ability to generate spatially organized Ca(2+) signals. All Ca(2+) channels begin life in the cytosol, and the vast majority are then functionally assembled in the ER, where they may either remain or be dispatched to other membranes. Here, by means of selective examples, we review two issues related to this trafficking of Ca(2+) channels via the ER. How do cells avoid wayward activity of Ca(2+) channels in transit as they pass from the ER via other membranes to their final destination? How and why do some cells express small numbers of the archetypal intracellular Ca(2+) channels, IP(3)R and RyR, in the PM?
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | | | | |
Collapse
|
110
|
Fernyhough P, Calcutt NA. Abnormal calcium homeostasis in peripheral neuropathies. Cell Calcium 2009; 47:130-9. [PMID: 20034667 DOI: 10.1016/j.ceca.2009.11.008] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/17/2009] [Indexed: 01/02/2023]
Abstract
Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neurone function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation in both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies.
Collapse
Affiliation(s)
- Paul Fernyhough
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, Manitoba, Canada R3E0T6.
| | | |
Collapse
|
111
|
Li Y, Santoso NG, Yu S, Woodward OM, Qian F, Guggino WB. Polycystin-1 interacts with inositol 1,4,5-trisphosphate receptor to modulate intracellular Ca2+ signaling with implications for polycystic kidney disease. J Biol Chem 2009; 284:36431-36441. [PMID: 19854836 DOI: 10.1074/jbc.m109.068916] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The PKD1 or PKD2 genes encode polycystins (PC) 1 and 2, which are associated with polycystic kidney disease. Previously we demonstrated that PC2 interacts with the inositol 1,4,5-trisphosphate receptor (IP(3)R) to modulate Ca(2+) signaling. Here, we investigate whether PC1 also regulates IP(3)R. We generated a fragment encoding the last six transmembrane (TM) domains of PC1 and the C-terminal tail (QIF38), a section with the highest homology to PC2. Using a Xenopus oocyte Ca(2+) imaging system, we observed that expression of QIF38 significantly reduced the initial amplitude of IP(3)-induced Ca(2+) transients, whereas a mutation lacking the C-terminal tail did not. Thus, the C terminus is essential to QIF38 function. Co-immunoprecipitation assays demonstrated that through its C terminus, QIF38 associates with the IP(3)-binding domain of IP(3)R. A shorter PC1 fragment spanning only the last TM and the C-terminal tail also reduced IP(3)-induced Ca(2+) release, whereas another C-terminal fragment lacking any TM domain did not. Thus, only endoplasmic reticulum-localized PC1 can modulate IP(3)R. Finally, we show that in the polarized Madin-Darby canine kidney cells, heterologous expression of full-length PC1 resulted in a smaller IP(3)-induced Ca(2+) response. Overexpression of the IP(3)-binding domain of IP(3)R reversed the inhibitory effect of PC1, suggesting interaction of full-length PC1 (or its cleavage forms) with endogenous IP(3)R in Madin-Darby canine kidney cells. These results indicate that the behavior of full-length PC1 in mammalian cells is congruent with that of PC1 C-terminal fragments in the oocyte system. These data demonstrate that PC1 inhibits Ca(2+) release, perhaps opposing the effect of PC2, which facilitates Ca(2+) release through the IP(3)R.
Collapse
Affiliation(s)
- Yun Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Netty G Santoso
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Shengqiang Yu
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Owen M Woodward
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Feng Qian
- Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - William B Guggino
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
112
|
Shuai JW, Yang DP, Pearson JE, Rüdiger S. An investigation of models of the IP3R channel in Xenopus oocyte. CHAOS (WOODBURY, N.Y.) 2009; 19:037105. [PMID: 19792030 PMCID: PMC2771705 DOI: 10.1063/1.3156402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 05/29/2009] [Indexed: 05/28/2023]
Abstract
We consider different models of inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) channels in order to fit nuclear membrane patch clamp data of the stationary open probability, mean open time, and mean close time of channels in the Xenopus oocyte. Our results indicate that rather than to treat the tetrameric IP(3)R as four independent and identical subunits, one should assume sequential binding-unbinding processes of Ca(2+) ions and IP(3) messengers. Our simulations also favor the assumption that a channel opens through a conformational transition from a close state to an active state.
Collapse
Affiliation(s)
- J W Shuai
- Department of Physics, Xiamen University, Xiamen, China.
| | | | | | | |
Collapse
|
113
|
Hong K, Nishiyama M. From Guidance Signals to Movement: Signaling Molecules Governing Growth Cone Turning. Neuroscientist 2009; 16:65-78. [DOI: 10.1177/1073858409340702] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Directed growth cone movements in response to external guidance signals are required for the establishment of functional neuronal connections during development, adult nerve regeneration, and adult neurogenesis. Growth cone intrinsic properties permit different growth cone responses (e.g., attraction or repulsion) to a guidance signal, and alterations to these intrinsic properties often result in opposite growth cone responses. This article reviews the current knowledge of growth cone signaling, emphasizing the dependency of Ca2+ signaling on membrane potential shifts, and cyclic nucleotide and phosphoinositide signaling pathways during growth cone turning in response to guidance signals. We also discuss how asymmetrical growth cone signaling is achieved for the fine-tuned growth cone movement.
Collapse
Affiliation(s)
- Kyonsoo Hong
- Department of Biochemistry, New York University School of Medicine, New York, New York,
| | - Makoto Nishiyama
- Department of Biochemistry, New York University School of Medicine, New York, New York
| |
Collapse
|
114
|
The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci U S A 2009; 106:14397-402. [PMID: 19706527 DOI: 10.1073/pnas.0907555106] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Although the presence of a BH4 domain distinguishes the antiapoptotic protein Bcl-2 from its proapoptotic relatives, little is known about its function. BH4 deletion converts Bcl-2 into a proapoptotic protein, whereas a TAT-BH4 fusion peptide inhibits apoptosis and improves survival in models of disease due to accelerated apoptosis. Thus, the BH4 domain has antiapoptotic activity independent of full-length Bcl-2. Here we report that the BH4 domain mediates interaction of Bcl-2 with the inositol 1,4,5-trisphosphate (IP3) receptor, an IP3-gated Ca(2+) channel on the endoplasmic reticulum (ER). BH4 peptide binds to the regulatory and coupling domain of the IP3 receptor and inhibits IP3-dependent channel opening, Ca(2+) release from the ER, and Ca(2+)-mediated apoptosis. A peptide inhibitor of Bcl-2-IP3 receptor interaction prevents these BH4-mediated effects. By inhibiting proapoptotic Ca(2+) signals at their point of origin, the Bcl-2 BH4 domain has the facility to block diverse pathways through which Ca(2+) induces apoptosis.
Collapse
|
115
|
Puzianowska-Kuznicka M, Kuznicki J. The ER and ageing II: calcium homeostasis. Ageing Res Rev 2009; 8:160-72. [PMID: 19427411 DOI: 10.1016/j.arr.2009.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/30/2009] [Accepted: 05/01/2009] [Indexed: 11/29/2022]
Abstract
Increase in intracellular Ca(2+) concentration occurs by Ca(2+) influx through the plasma membrane and by Ca(2+) release from intracellular stores. The ER is the most important Ca(2+) store. Its stress, characterized by the impairment of Ca(2+) homeostasis and by the accumulation of misfolded proteins, can be induced by different factors. In turn, it induces defense mechanisms such as unfolded protein response, and when it is severe and prolonged, activation of the apoptotic pathway. Damage to the ER, impairment of its function, and a decreased level of its Ca(2+)-handling proteins might all play a role in physiological ageing by handicapping the ER stress response. Thus, healthy ageing is accompanied by subtle alterations of Ca(2+) homeostasis and signaling, including alterations in the ER Ca(2+) load and release. The expression and/or function of ryanodine receptors, IP3 receptors, and SERCA Ca(2+) pumps located in the ER membrane, and Ca(2+)-binding proteins within ER lumen all seem to be affected in aged cells. Data are presented on age-dependent, tissue-specific changes in ER-related Ca(2+) homeostasis in skeletal, cardiac and smooth muscles, as well as in the nervous and immune systems. Disturbances of Ca(2+) homeostasis and of signaling are potential targets for intervention in aged humans.
Collapse
|
116
|
Vanderheyden V, Wakai T, Bultynck G, De Smedt H, Parys JB, Fissore RA. Regulation of inositol 1,4,5-trisphosphate receptor type 1 function during oocyte maturation by MPM-2 phosphorylation. Cell Calcium 2009; 46:56-64. [PMID: 19482353 PMCID: PMC2774721 DOI: 10.1016/j.ceca.2009.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/27/2009] [Accepted: 04/28/2009] [Indexed: 11/30/2022]
Abstract
Egg activation and further embryo development require a sperm-induced intracellular Ca(2+) signal at the time of fertilization. Prior to fertilization, the egg's Ca(2+) machinery is therefore optimized. To this end, during oocyte maturation, the sensitivity, i.e. the Ca(2+) releasing ability, of the inositol 1,4,5-trisphosphate receptor type 1 (IP(3)R1), which is responsible for most of this Ca(2+) release, markedly increases. In this study, the recently discovered specific Polo-like kinase (Plk) inhibitor BI2536 was used to investigate the role of Plk1 in this process. BI2536 inactivates Plk1 in oocytes at the early stages of maturation and significantly decreases IP(3)R1 phosphorylation at an MPM-2 epitope at this stage. Moreover, this decrease in Plk1-dependent MPM-2 phosphorylation significantly lowers IP(3)R1 sensitivity. Finally, using in vitro phosphorylation techniques we identified T(2656) as a major Plk1 site on IP(3)R1. We therefore propose that the initial increase in IP(3)R1 sensitivity during oocyte maturation is underpinned by IP(3)R1 phosphorylation at an MPM-2 epitope(s).
Collapse
Affiliation(s)
- Veerle Vanderheyden
- Laboratory of Molecular and Cellular Signalling, Department of Molecular Cell Biology, K.U. Leuven, Campus Gasthuisberg, O&N1 Bus 802, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
117
|
Kopacek J, Ondrias K, Sedlakova B, Tomaskova J, Zahradnikova L, Sedlak J, Sulova Z, Zahradnikova A, Pastorek J, Krizanova O. Type 2 IP(3) receptors are involved in uranyl acetate induced apoptosis in HEK 293 cells. Toxicology 2009; 262:73-9. [PMID: 19460415 DOI: 10.1016/j.tox.2009.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/11/2009] [Accepted: 05/11/2009] [Indexed: 11/19/2022]
Abstract
Calcium released from endoplasmic reticulum through special calcium release channels - inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and ryanodine receptors (RyRs) - serves as a main source of cytosolic calcium signaling in the majority of cell types in physiological state and also in pathological situations. In this work, we studied whether IP(3)Rs can be involved in uranyl acetate induced nephrotoxicity. Using human embryonic kidney cell line (HEK293) as an experimental model we have found that uranyl acetate (5 and 50microM) up-regulates both, mRNA and protein levels of the type 1 and type 2 IP(3) receptors in HEK293 cells. This increase was associated with elevated expression of proapoptotic factors Bax and Caspase 3 and also by higher extent of apoptosis. Vice versa, induction of apoptosis resulted in increased mRNA levels of IP(3)R2 and also elevated levels of apoptotic markers. Therefore we propose that enhanced expression of the type 2 IP(3)Rs can at least partially contribute to increased levels of apoptosis due to uranyl acetate treatment.
Collapse
Affiliation(s)
- Juraj Kopacek
- Institute of Virology, Centre of Excellence for Cardiovascular Research, Bratislava, Slovakia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Peron S, Zordan MA, Magnabosco A, Reggiani C, Megighian A. From action potential to contraction: neural control and excitation-contraction coupling in larval muscles of Drosophila. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:173-83. [PMID: 19427393 DOI: 10.1016/j.cbpa.2009.04.626] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/16/2009] [Accepted: 04/22/2009] [Indexed: 11/17/2022]
Abstract
The neuromuscular system of Drosophila melanogaster has been studied for many years for its relative simplicity and because of the genetic and molecular versatilities. Three main types of striated muscles are present in this dipteran: fibrillar muscles, tubular muscles and supercontractile muscles. The visceral muscles in adult flies and the body wall segmental muscles in embryos and larvae belong to the group of supercontractile muscles. Larval body wall muscles have been the object of detailed studies as a model for neuromuscular junction function but have received much less attention with respect to their mechanical properties and to the control of contraction. In this review we wish to assess available information on the physiology of the Drosophila larval muscular system. Our aim is to establish whether this system has the requisites to be considered a good model in which to perform a functional characterization of Drosophila genes, with a known muscular expression, as well as Drosophila homologs of human genes, the dysfunction of which, is known to be associated with human hereditary muscle pathologies.
Collapse
Affiliation(s)
- Samantha Peron
- Department of Anatomy and Physiology, University of Padua, Italy
| | | | | | | | | |
Collapse
|
119
|
Betzenhauser MJ, Wagner LE, Park HS, Yule DI. ATP regulation of type-1 inositol 1,4,5-trisphosphate receptor activity does not require walker A-type ATP-binding motifs. J Biol Chem 2009; 284:16156-16163. [PMID: 19386591 DOI: 10.1074/jbc.m109.006452] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP is known to increase the activity of the type-1 inositol 1,4,5-trisphosphate receptor (InsP3R1). This effect is attributed to the binding of ATP to glycine rich Walker A-type motifs present in the regulatory domain of the receptor. Only two such motifs are present in neuronal S2+ splice variant of InsP3R1 and are designated the ATPA and ATPB sites. The ATPA site is unique to InsP3R1, and the ATPB site is conserved among all three InsP3R isoforms. Despite the fact that both the ATPA and ATPB sites are known to bind ATP, the relative contribution of these two sites to the enhancing effects of ATP on InsP3R1 function is not known. We report here a mutational analysis of the ATPA and ATPB sites and conclude neither of these sites is required for ATP modulation of InsP3R1. ATP augmented InsP3-induced Ca2+ release from permeabilized cells expressing wild type and ATP-binding site-deficient InsP3R1. Similarly, ATP increased the single channel open probability of the mutated InsP3R1 to the same extent as wild type. ATP likely exerts its effects on InsP3R1 channel function via a novel and as yet unidentified mechanism.
Collapse
Affiliation(s)
- Matthew J Betzenhauser
- From the Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642
| | - Larry E Wagner
- From the Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642
| | - Hyung Seo Park
- From the Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642; Department of Physiology, College of Medicine, Konyang University, Daejeon 302-718, South Korea
| | - David I Yule
- From the Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642.
| |
Collapse
|
120
|
Novel types of Ca2+ release channels participate in the secretory cycle of Paramecium cells. Mol Cell Biol 2009; 29:3605-22. [PMID: 19380481 DOI: 10.1128/mcb.01592-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A database search of the Paramecium genome reveals 34 genes related to Ca(2+)-release channels of the inositol-1,4,5-trisphosphate (IP(3)) or ryanodine receptor type (IP(3)R, RyR). Phylogenetic analyses show that these Ca(2+) release channels (CRCs) can be subdivided into six groups (Paramecium tetraurelia CRC-I to CRC-VI), each one with features in part reminiscent of IP(3)Rs and RyRs. We characterize here the P. tetraurelia CRC-IV-1 gene family, whose relationship to IP(3)Rs and RyRs is restricted to their C-terminal channel domain. CRC-IV-1 channels localize to cortical Ca(2+) stores (alveolar sacs) and also to the endoplasmic reticulum. This is in contrast to a recently described true IP(3) channel, a group II member (P. tetraurelia IP(3)R(N)-1), found associated with the contractile vacuole system. Silencing of either one of these CRCs results in reduced exocytosis of dense core vesicles (trichocysts), although for different reasons. Knockdown of P. tetraurelia IP(3)R(N) affects trichocyst biogenesis, while CRC-IV-1 channels are involved in signal transduction since silenced cells show an impaired release of Ca(2+) from cortical stores in response to exocytotic stimuli. Our discovery of a range of CRCs in Paramecium indicates that protozoans already have evolved multiple ways for the use of Ca(2+) as signaling molecule.
Collapse
|
121
|
Bergner A, Kellner J, Tufman A, Huber RM. Endoplasmic reticulum Ca2+-homeostasis is altered in Small and non-small Cell Lung Cancer cell lines. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2009; 28:25. [PMID: 19236728 PMCID: PMC2653468 DOI: 10.1186/1756-9966-28-25] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 02/24/2009] [Indexed: 12/03/2022]
Abstract
Background Knowledge of differences in the cellular physiology of malignant and non-malignant cells is a prerequisite for the development of cancer treatments that effectively kill cancer without damaging normal cells. Calcium is a ubiquitous signal molecule that is involved in the control of proliferation and apoptosis. We aimed to investigate if the endoplasmic reticulum (ER) Ca2+-homeostasis is different in lung cancer and normal human bronchial epithelial (NHBE) cells. Methods The intracellular Ca2+-signaling was investigated using fluorescence microscopy and the expression of Ca2+-regulating proteins was assessed using Western Blot analysis. Results In a Small Cell Lung Cancer (H1339) and an Adeno Carcinoma Lung Cancer (HCC) cell line but not in a Squamous Cell Lung Cancer (EPLC) and a Large Cell Lung Cancer (LCLC) cell line the ER Ca2+-content was reduced compared to NHBE. The reduced Ca2+-content correlated with a reduced expression of SERCA 2 pumping calcium into the ER, an increased expression of IP3R releasing calcium from the ER, and a reduced expression of calreticulin buffering calcium within the ER. Lowering the ER Ca2+-content with CPA led to increased proliferation NHBE and lung cancer cells. Conclusion The significant differences in Ca2+-homeostasis between lung cancer and NHBE cells could represent a new target for cancer treatments.
Collapse
Affiliation(s)
- Albrecht Bergner
- Division of Respiratory Medicine, Medizinische Klinik-Innenstadt, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | |
Collapse
|
122
|
Ando H, Mizutani A, Mikoshiba K. An IRBIT homologue lacks binding activity to inositol 1,4,5-trisphosphate receptor due to the unique N-terminal appendage. J Neurochem 2009; 109:539-50. [PMID: 19220705 DOI: 10.1111/j.1471-4159.2009.05979.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
IRBIT is an inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R)-binding protein that inhibits the activation of IP(3)R by competing with IP(3) for the common binding site on IP(3)R. In this study, we characterize an IRBIT homologue, termed Long-IRBIT. Long-IRBIT is highly homologous to IRBIT ( approximately 88%) and heteromerizes with IRBIT. In spite of complete conservation of critical amino acids required for the interaction with IP(3)R and comparable phosphorylations on critical four Ser residues for IP(3)R-binding, Long-IRBIT retains little ability to interact with IP(3)R. Deletion mutagenesis analysis revealed that this low affinity to IP(3)R is attributable to an inhibitory effect of the Long-IRBIT specific N-terminal appendage (LISN domain). Immunohistochemical analysis revealed the distinct distribution of Long-IRBIT and IRBIT in mouse cerebellar cortex, that is, Long-IRBIT is mainly expressed in interneurons such as basket cells, while IRBIT is mainly expressed in glial cells. Furthermore, Long-IRBIT, but not IRBIT, underwent phosphorylation during neuronal differentiation in neuroblastoma cells and this phosphorylation was dependent on the LISN domain. These results suggest that Long-IRBIT has a different function from IRBIT.
Collapse
Affiliation(s)
- Hideaki Ando
- International Cooperative Research Project-Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | | | | |
Collapse
|
123
|
|
124
|
Kawaai K, Hisatsune C, Kuroda Y, Mizutani A, Tashiro T, Mikoshiba K. 80K-H Interacts with Inositol 1,4,5-Trisphosphate (IP3) Receptors and Regulates IP3-induced Calcium Release Activity. J Biol Chem 2009; 284:372-380. [DOI: 10.1074/jbc.m805828200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
125
|
Verkhratsky A. Neuronismo y reticulismo: neuronal-glial circuits unify the reticular and neuronal theories of brain organization. Acta Physiol (Oxf) 2009; 195:111-22. [PMID: 18983447 DOI: 10.1111/j.1748-1716.2008.01926.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The neuronal doctrine, which shaped the development of neuroscience, was born from a long-lasting struggle between reticularists, who assumed internal continuity of neural networks and neuronists, who defined the brain as a network of physically separated cellular entities, defined as neurones. Modern views regard the brain as a complex of constantly interacting cellular circuits, represented by neuronal networks embedded into internally connected astroglial syncytium. The neuronal-glial circuits endowed with distinct signalling cascades form a 'diffuse nervous net' suggested by Golgi, where millions of synapses belonging to very different neurones are integrated first into neuronal-glial-vascular units and then into more complex structures connected through glial syncytium. These many levels of integration, both morphological and functional, presented by neuronal-glial circuitry ensure the spatial and temporal multiplication of brain cognitive power.
Collapse
Affiliation(s)
- A Verkhratsky
- Faculty of Life Sciences, The University of Manchester, Manchester, UK.
| |
Collapse
|
126
|
Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G, Parys JB. Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:959-70. [PMID: 19133301 DOI: 10.1016/j.bbamcr.2008.12.003] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Revised: 11/27/2008] [Accepted: 12/03/2008] [Indexed: 12/12/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) is a universal intracellular Ca2+-release channel. It is activated after cell stimulation and plays a crucial role in the initiation and propagation of the complex spatio-temporal Ca2+ signals that control cellular processes as different as fertilization, cell division, cell migration, differentiation, metabolism, muscle contraction, secretion, neuronal processing, and ultimately cell death. To achieve these various functions, often in a single cell, exquisite control of the Ca2+ release is needed. This review aims to highlight how protein kinases and protein phosphatases can interact with the IP3R or with associated proteins and so provide a large potential for fine tuning the Ca2+-release activity and for creating efficient Ca2+ signals in subcellular microdomains.
Collapse
Affiliation(s)
- Veerle Vanderheyden
- Laboratory of Molecular and Cellular Signalling, Department Molecular and Cellular Biology, Campus Gasthuisberg O/N1-K. U. Leuven, Herestraat 49-Bus 802, B-3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
127
|
Park KM, Yule DI, Bowers WJ. Tumor necrosis factor-alpha potentiates intraneuronal Ca2+ signaling via regulation of the inositol 1,4,5-trisphosphate receptor. J Biol Chem 2008; 283:33069-79. [PMID: 18838384 PMCID: PMC2586262 DOI: 10.1074/jbc.m802209200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 09/12/2008] [Indexed: 01/01/2023] Open
Abstract
Inflammatory events have long been implicated in initiating and/or propagating the pathophysiology associated with a number of neurological diseases. In addition, defects in Ca2+-handling processes, which shape membrane potential, influence gene transcription, and affect neuronal spiking patterns, have also been implicated in disease progression and cognitive decline. The mechanisms underlying the purported interplay that exists between neuroinflammation and Ca2+ homeostasis have yet to be defined. Herein, we describe a novel neuron-intrinsic pathway in which the expression of the type-1 inositol 1,4,5-trisphosphate receptor is regulated by the potent pro-inflammatory cytokine tumor necrosis factor-alpha. Exposure of primary murine neurons to tumor necrosis factor-alpha resulted in significant enhancement of Ca2+ signals downstream of muscarinic and purinergic stimulation. An increase in type-1 inositol 1,4,5-trisphosphate receptor mRNA and protein steady-state levels following cytokine exposure positively correlated with this alteration in Ca2+ homeostasis. Modulation of Ca2+ responses arising from this receptor subtype and its downstream effectors may exact significant consequences on neuronal function and could underlie the compromise in neuronal activity observed in the setting of chronic neuroinflammation, such as that associated with Parkinson disease and Alzheimer disease.
Collapse
Affiliation(s)
- Keigan M Park
- Center for Neural Development and Disease, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
128
|
Fritz N, Dabertrand F, Mironneau J, Macrez N, Morel JL. Acetylcholine evokes an InsP3R1-dependent transient Ca2+ signal in rat duodenum myocytes. Can J Physiol Pharmacol 2008; 86:626-32. [PMID: 18758512 DOI: 10.1139/y08-067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In smooth muscle myocytes, agonist-activated release of calcium ions (Ca2+) stored in the sarcoplasmic reticulum (SR) occurs via different but overlapping transduction pathways. Hence, to fully study how SR Ca2+ channels are activated, the simultaneous activation of different Ca2+ signals should be separated. In rat duodenum myocytes, we have previously characterized that acetylcholine (ACh) induces Ca2+ oscillations by binding to its M2 muscarinic receptor and activating the ryanodine receptor subtype 2. Here, we show that ACh simultaneously evokes a Ca2+ signal dependent on activation of inositol 1,4,5-trisphosphate (InsP3) receptor subtype 1. A pharmacologic approach, the use of antisense oligonucleotides directed against InsP3R1, and the expression of a specific biosensor derived from green-fluorescent protein coupled to the pleckstrin homology domain of phospholipase C, suggested that the InsP3R1-dependent Ca2+ signal is transient and due to a transient synthesis of InsP3 via M3 muscarinic receptor. Moreover, we suggest that both M2 and M3 signalling pathways are modulating phosphatidylinositol 4,5-bisphosphate and InsP3 concentration, thus describing closely interacting pathways activated by ACh in duodenum myocytes.
Collapse
Affiliation(s)
- Nicolas Fritz
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
129
|
Rong YP, Barr P, Yee VC, Distelhorst CW. Targeting Bcl-2 based on the interaction of its BH4 domain with the inositol 1,4,5-trisphosphate receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1793:971-8. [PMID: 19056433 DOI: 10.1016/j.bbamcr.2008.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 10/28/2008] [Accepted: 10/29/2008] [Indexed: 01/03/2023]
Abstract
Bcl-2 is the founding member of a large family of apoptosis regulating proteins. Bcl-2 is a prime target for novel therapeutics because it is elevated in many forms of cancer and contributes to cancer progression and therapy resistance based on its ability to inhibit apoptosis. Bcl-2 interacts with proapoptotic members of the Bcl-2 family to inhibit apoptosis and small molecules that disrupt this interaction have already entered the cancer therapy arena. A separate function of Bcl-2 is to inhibit Ca2+ signals that promote apoptosis. This function is mediated through interaction of the Bcl-2 BH4 domain with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel. A novel peptide inhibitor of this interaction enhances proapoptotic Ca2+ signals. In preliminary experiments this peptide enhanced ABT-737 induced apoptosis in chronic lymphocytic leukemia cells. These findings draw attention to the BH4 domain as a potential therapeutic target. This review summarizes what is currently known about the BH4 domain of Bcl-2, its interaction with the IP3R and other proteins, and the part it plays in Bcl-2's anti-apoptotic function. In addition, we speculate on how the BH4 domain of Bcl-2 can be targeted therapeutically not only for diseases associated with apoptosis resistance, but also for diseases associated with accelerated cell death.
Collapse
Affiliation(s)
- Yi-Ping Rong
- Department of Medicine, Comprehensive Cancer Center and University Hospital of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | |
Collapse
|
130
|
Wu Z, Bowen WD. Role of sigma-1 receptor C-terminal segment in inositol 1,4,5-trisphosphate receptor activation: constitutive enhancement of calcium signaling in MCF-7 tumor cells. J Biol Chem 2008; 283:28198-215. [PMID: 18539593 PMCID: PMC2661391 DOI: 10.1074/jbc.m802099200] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/06/2008] [Indexed: 11/06/2022] Open
Abstract
Sigma-1 receptor (sigma-1R) agonists enhance inositol 1,4,5-trisphosphate (IP3)-dependent calcium release from endoplasmic reticulum by inducing dissociation of ankyrin B 220 (ANK 220) from the IP3 receptor (IP3R-3), releasing it from inhibition. MCF-7 breast tumor cells express little or no sigma-1R and were used here to investigate the effect of receptor overexpression and the role of its N- and C-terminal segments in function. We stably expressed intact sigma-1R (amino acids (aa) 1-223; lines 11 and 41), N-fragment (aa 1-100; line K3), or C-fragment (aa 102-223; line sg101). C-fragment expressed as a peripheral membrane-bound protein that was removable from the endoplasmic reticulum membrane by chaotropic salt wash, consistent with lack of a putative transmembrane domain. The expressed sigma-1R, N-fragment, and C-fragment exhibited normal, low affinity, and no [3H](+)-pentazocine binding activity, respectively. All transfected lines showed constitutive enhancement of bradykinin (BDK)-induced calcium release, because of a decrease in BDK ED50 values. Interestingly, sigma-1R and C-fragment had high activities, whereas the N-fragment was much less active. The antagonist BD1063 behaved as an inverse agonist in sigma-1R cells, whereas C-fragment was insensitive to ligand regulation. Like BDK, vasopressin- and ATP-induced calcium release was enhanced with the same pattern in cell lines. Anti-IP3R-3 immunoprecipitates from cells expressing sigma-1R or C-fragment contained significantly less ANK 220 compared with untransfected or N-fragment cells, indicating a higher amount of ankyrin-free IP3R-3. Anti-ankyrin B immunoprecipitates contained sigma-1R or C-fragment, with markedly lower levels of N-fragment present. These results suggest that sigma-1R overexpression drives sigma agonist-independent dissociation of ANK 220 from IP3R-3, resulting in activation. The C-terminal segment plays a key role in the interaction.
Collapse
Affiliation(s)
- Zhiping Wu
- Department of Molecular Pharmacology, Physiology and Biotechnology, Division of Biology and Medicine, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
131
|
Wheeler GL, Brownlee C. Ca2+ signalling in plants and green algae--changing channels. TRENDS IN PLANT SCIENCE 2008; 13:506-14. [PMID: 18703378 DOI: 10.1016/j.tplants.2008.06.004] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 05/26/2008] [Accepted: 06/04/2008] [Indexed: 05/05/2023]
Abstract
Eukaryotic cells generate cytosolic Ca2+ signals via Ca2+-conducting channels in cellular membranes. Plants and animals exhibit substantial differences in their complement of Ca2+ channels. In particular, the four-domain voltage-dependent Ca2+ channels, transient receptor potential channels and inositol (1,4,5)-trisphosphate receptors, which have important roles in animal physiology, are all absent from land plants. Recent evidence from biochemical and genomic studies has indicated that representatives of these classes of Ca2+ channels are present in members of the green plant lineage, the chlorophyte algae. This indicates that the Ca2+-signalling mechanisms absent from land plants were, in fact, present in ancestral eukaryotes and were lost by land plants after their divergence from the chlorophyte algae.
Collapse
Affiliation(s)
- Glen L Wheeler
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK.
| | | |
Collapse
|
132
|
Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2's inhibition of apoptotic calcium signals. Mol Cell 2008; 31:255-65. [PMID: 18657507 DOI: 10.1016/j.molcel.2008.06.014] [Citation(s) in RCA: 201] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 02/26/2008] [Accepted: 06/01/2008] [Indexed: 12/12/2022]
Abstract
The antiapoptotic protein Bcl-2 inhibits Ca2+ release from the endoplasmic reticulum (ER). One proposed mechanism involves an interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (IP3R) Ca2+ channel localized with Bcl-2 on the ER. Here we document Bcl-2-IP3R interaction within cells by FRET and identify a Bcl-2 interacting region in the regulatory and coupling domain of the IP3R. A peptide based on this IP3R sequence displaced Bcl-2 from the IP3R and reversed Bcl-2-mediated inhibition of IP3R channel activity in vitro, IP3-induced ER Ca2+ release in permeabilized cells, and cell-permeable IP3 ester-induced Ca2+ elevation in intact cells. This peptide also reversed Bcl-2's inhibition of T cell receptor-induced Ca2+ elevation and apoptosis. Thus, the interaction of Bcl-2 with IP3Rs contributes to the regulation of proapoptotic Ca2+ signals by Bcl-2, suggesting the Bcl-2-IP3R interaction as a potential therapeutic target in diseases associated with Bcl-2's inhibition of cell death.
Collapse
|
133
|
Kockskämper J, Zima AV, Roderick HL, Pieske B, Blatter LA, Bootman MD. Emerging roles of inositol 1,4,5-trisphosphate signaling in cardiac myocytes. J Mol Cell Cardiol 2008; 45:128-47. [PMID: 18603259 PMCID: PMC2654363 DOI: 10.1016/j.yjmcc.2008.05.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/20/2008] [Accepted: 05/21/2008] [Indexed: 01/19/2023]
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a ubiquitous intracellular messenger regulating diverse functions in almost all mammalian cell types. It is generated by membrane receptors that couple to phospholipase C (PLC), an enzyme which liberates IP(3) from phosphatidylinositol 4,5-bisphosphate (PIP(2)). The major action of IP(3), which is hydrophilic and thus translocates from the membrane into the cytoplasm, is to induce Ca(2+) release from endogenous stores through IP(3) receptors (IP(3)Rs). Cardiac excitation-contraction coupling relies largely on ryanodine receptor (RyR)-induced Ca(2+) release from the sarcoplasmic reticulum. Myocytes express a significantly larger number of RyRs compared to IP(3)Rs (~100:1), and furthermore they experience substantial fluxes of Ca(2+) with each heartbeat. Therefore, the role of IP(3) and IP(3)-mediated Ca(2+) signaling in cardiac myocytes has long been enigmatic. Recent evidence, however, indicates that despite their paucity cardiac IP(3)Rs may play crucial roles in regulating diverse cardiac functions. Strategic localization of IP(3)Rs in cytoplasmic compartments and the nucleus enables them to participate in subsarcolemmal, bulk cytoplasmic and nuclear Ca(2+) signaling in embryonic stem cell-derived and neonatal cardiomyocytes, and in adult cardiac myocytes from the atria and ventricles. Intriguingly, expression of both IP(3)Rs and membrane receptors that couple to PLC/IP(3) signaling is altered in cardiac disease such as atrial fibrillation or heart failure, suggesting the involvement of IP(3) signaling in the pathology of these diseases. Thus, IP(3) exerts important physiological and pathological functions in the heart, ranging from the regulation of pacemaking, excitation-contraction and excitation-transcription coupling to the initiation and/or progression of arrhythmias, hypertrophy and heart failure.
Collapse
Affiliation(s)
- Jens Kockskämper
- Division of Cardiology, Medical University of Graz,, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Aleksey V. Zima
- Department of Molecular Biophysics & Physiology, Rush University, 1750 W. Harrison St., Chicago, IL 60612, USA
| | - H. Llewelyn Roderick
- Laboratory of Molecular Signalling, Babraham Institute, Cambridge CB2 4AT, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1 PD, UK
| | - Burkert Pieske
- Division of Cardiology, Medical University of Graz,, Auenbruggerplatz 15, A-8036 Graz, Austria
| | - Lothar A. Blatter
- Department of Molecular Biophysics & Physiology, Rush University, 1750 W. Harrison St., Chicago, IL 60612, USA
| | - Martin D. Bootman
- Laboratory of Molecular Signalling, Babraham Institute, Cambridge CB2 4AT, UK
| |
Collapse
|
134
|
Park HS, Betzenhauser MJ, Won JH, Chen J, Yule DI. The type 2 inositol (1,4,5)-trisphosphate (InsP3) receptor determines the sensitivity of InsP3-induced Ca2+ release to ATP in pancreatic acinar cells. J Biol Chem 2008; 283:26081-8. [PMID: 18658132 DOI: 10.1074/jbc.m804184200] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium release through inositol (1,4,5)-trisphosphate receptors (InsP(3)R) is the primary signal driving digestive enzyme and fluid secretion from pancreatic acinar cells. The type 2 (InsP(3)R2) and type 3 (InsP(3)R3) InsP(3)R are the predominant isoforms expressed in acinar cells and are required for proper exocrine gland function. Both InsP(3)R2 and InsP(3)R3 are positively regulated by cytosolic ATP, but InsP(3)R2 is 10-fold more sensitive than InsP(3)R3 to this form of modulation. In this study, we examined the role of InsP(3)R2 in setting the sensitivity of InsP(3)-induced Ca(2+) release (IICR) to ATP in pancreatic acinar cells. IICR was measured in permeabilized acinar cells from wild-type (WT) and InsP(3)R2 knock-out (KO) mice. ATP augmented IICR from WT pancreatic cells with an EC(50) of 38 microm. However, the EC(50) was 10-fold higher in acinar cells isolated from InsP(3)R2-KO mice, indicating a role for InsP(3)R2 in setting the sensitivity of IICR to ATP. Consistent with this idea, heterologous expression of InsP(3)R2 in RinM5F cells, which natively express predominately InsP(3)R3, increased the sensitivity of IICR to ATP. Depletion of ATP attenuated agonist-induced Ca(2+) signaling in WT pancreatic acinar cells. This effect was more profound in acinar cells prepared from InsP(3)R2-KO mice. These data suggest that the sensitivity of IICR to ATP depletion is regulated by the particular complement of InsP(3)R expressed in an individual cell. The effects of metabolic stress on intracellular Ca(2+) signals can therefore be determined by the relative amount of InsP(3)R2 expressed in cells.
Collapse
Affiliation(s)
- Hyung Seo Park
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
135
|
Modeling Ca2+ feedback on a single inositol 1,4,5-trisphosphate receptor and its modulation by Ca2+ buffers. Biophys J 2008; 95:3738-52. [PMID: 18641077 DOI: 10.1529/biophysj.108.137182] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) is a major regulator of intracellular Ca(2+) signaling, and liberates Ca(2+) ions from the endoplasmic reticulum in response to binding at cytosolic sites for both IP(3) and Ca(2+). Although the steady-state gating properties of the IP(3)R have been extensively studied and modeled under conditions of fixed [IP(3)] and [Ca(2+)], little is known about how Ca(2+) flux through a channel may modulate the gating of that same channel by feedback onto activating and inhibitory Ca(2+) binding sites. We thus simulated the dynamics of Ca(2+) self-feedback on monomeric and tetrameric IP(3)R models. A major conclusion is that self-activation depends crucially on stationary cytosolic Ca(2+) buffers that slow the collapse of the local [Ca(2+)] microdomain after closure. This promotes burst-like reopenings by the rebinding of Ca(2+) to the activating site; whereas inhibitory actions are substantially independent of stationary buffers but are strongly dependent on the location of the inhibitory Ca(2+) binding site on the IP(3)R in relation to the channel pore.
Collapse
|
136
|
|
137
|
Wagner LE, Joseph SK, Yule DI. Regulation of single inositol 1,4,5-trisphosphate receptor channel activity by protein kinase A phosphorylation. J Physiol 2008; 586:3577-96. [PMID: 18535093 DOI: 10.1113/jphysiol.2008.152314] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP(3)R) by PKA represents an important, common route for regulation of Ca(2+) release. Following phosphorylation of the S2 splice variant of InsP(3)R-1 (S2-InsP-1), Ca(2+) release is markedly potentiated. In this study we utilize the plasma membrane (PM) expression of InsP(3)R-1 and phosphorylation state mutant InsP(3)R-1 to study how this regulation occurs at the single InsP(3)R-1 channel level. DT40-3KO cells stably expressing rat S2- InsP(3)R-1 were generated and studied in the whole-cell mode of the patch clamp technique. At hyperpolarized holding potentials, small numbers of unitary currents (average approximately 1.7 per cell) were observed which were dependent on InsP(3) and the presence of functional InsP(3)R-1, and regulated by both cytoplasmic Ca(2+) and ATP. Raising cAMP markedly enhanced the open probability (P(o)) of the InsP(3)R-1 and induced bursting activity, characterized by extended periods of rapid channel openings and subsequent prolonged refractory periods. The activity, as measured by the P(o) of the channel, of a non-phosphorylatable InsP(3)R-1 construct (Ser1589Ala/Ser1755Ala InsP(3)R-1) was markedly less than wild-type (WT) InsP(3)R-1 and right shifted some approximately 15-fold when the concentration dependency was compared to a phosphomimetic construct (Ser1589Glu/Ser1755Glu InsP(3)R-1). No change in conductance of the channel was observed. This shift in apparent InsP(3) sensitivity occurred without a change in InsP(3) binding or Ca(2+) dependency of activation or inactivation. Biophysical analysis indicated that channel activity can be described by three states: an open state, a long lived closed state which manifests itself as long interburst intervals, and a short-lived closed state. Bursting activity occurs as the channel shuttles rapidly between the open and short-lived closed state. The predominant effect of InsP(3)R-1 phosphorylation is to increase the likelihood of extended bursting activity and thus markedly augment Ca(2+) release. These analyses provide insight into the mechanism responsible for augmenting InsP(3)R-1 channel activity following phosphorylation and moreover should be generally useful for further detailed investigation of the biophysical properties of InsP(3)R.
Collapse
Affiliation(s)
- Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | |
Collapse
|
138
|
Betzenhauser MJ, Wagner LE, Iwai M, Michikawa T, Mikoshiba K, Yule DI. ATP modulation of Ca2+ release by type-2 and type-3 inositol (1, 4, 5)-triphosphate receptors. Differing ATP sensitivities and molecular determinants of action. J Biol Chem 2008; 283:21579-87. [PMID: 18505727 DOI: 10.1074/jbc.m801680200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP enhances Ca(2+) release from inositol (1,4,5)-trisphosphate receptors (InsP(3)R). However, the three isoforms of InsP(3)R are reported to respond to ATP with differing sensitivities. Ca(2+) release through InsP(3)R1 is positively regulated at lower ATP concentrations than InsP(3)R3, and InsP(3)R2 has been reported to be insensitive to ATP modulation. We have reexamined these differences by studying the effects of ATP on InsP(3)R2 and InsP(3)R3 expressed in isolation on a null background in DT40 InsP(3)R knockout cells. We report that the Ca(2+)-releasing activity as well as the single channel open probability of InsP(3)R2 was enhanced by ATP, but only at submaximal InsP(3) levels. Further, InsP(3)R2 was more sensitive to ATP modulation than InsP(3)R3 under similar experimental conditions. Mutations in the ATPB sites of InsP(3)R2 and InsP(3)R3 were generated, and the functional consequences of these mutations were tested. Surprisingly, mutation of the ATPB site in InsP(3)R3 had no effect on ATP modulation, suggesting an additional locus for the effects of ATP on this isoform. In contrast, ablation of the ATPB site of InsP(3)R2 eliminated the enhancing effects of ATP. Furthermore, this mutation had profound effects on the patterns of intracellular calcium signals, providing evidence for the physiological significance of ATP binding to InsP(3)R2.
Collapse
Affiliation(s)
- Matthew J Betzenhauser
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14625, USA
| | | | | | | | | | | |
Collapse
|
139
|
Schmidt R, Baumann O, Walz B. cAMP potentiates InsP3-induced Ca2+ release from the endoplasmic reticulum in blowfly salivary glands. BMC PHYSIOLOGY 2008; 8:10. [PMID: 18492257 PMCID: PMC2408587 DOI: 10.1186/1472-6793-8-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 05/20/2008] [Indexed: 01/09/2023]
Abstract
Background Serotonin induces fluid secretion from Calliphora salivary glands by the parallel activation of the InsP3/Ca2+ and cAMP signaling pathways. We investigated whether cAMP affects 5-HT-induced Ca2+ signaling and InsP3-induced Ca2+ release from the endoplasmic reticulum (ER). Results Increasing intracellular cAMP level by bath application of forskolin, IBMX or cAMP in the continuous presence of threshold 5-HT concentrations converted oscillatory [Ca2+]i changes into a sustained increase. Intraluminal Ca2+ measurements in the ER of β-escin-permeabilized glands with mag-fura-2 revealed that cAMP augmented InsP3-induced Ca2+ release in a concentration-dependent manner. This indicated that cAMP sensitized the InsP3 receptor Ca2+ channel for InsP3. By using cAMP analogs that activated either protein kinase A (PKA) or Epac and the application of PKA-inhibitors, we found that cAMP-induced augmentation of InsP3-induced Ca2+ release was mediated by PKA not by Epac. Recordings of the transepithelial potential of the glands suggested that cAMP sensitized the InsP3/Ca2+ signaling pathway for 5-HT, because IBMX potentiated Ca2+-dependent Cl- transport activated by a threshold 5-HT concentration. Conclusion This report shows, for the first time for an insect system, that cAMP can potentiate InsP3-induced Ca2+ release from the ER in a PKA-dependent manner, and that this crosstalk between cAMP and InsP3/Ca2+ signaling pathways enhances transepithelial electrolyte transport.
Collapse
Affiliation(s)
- Ruth Schmidt
- Institute of Biochemistry and Biology, Department of Animal Physiology, University of Potsdam, Karl-Liebknecht-Str, 24-25, 14476 Potsdam-Golm, Germany.
| | | | | |
Collapse
|
140
|
Rong Y, Distelhorst CW. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 2008; 70:73-91. [PMID: 17680735 DOI: 10.1146/annurev.physiol.70.021507.105852] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bcl-2 family members are important regulators of cell survival and cell death. Researchers have focused mainly on mitochondria, where both proapoptotic and antiapoptotic family members function to regulate the release of cytochrome c and other mediators of apoptosis. However, as reviewed here, Bcl-2 family members also operate on another front, the endoplasmic reticulum (ER), to both positively and negatively regulate the release of Ca2+. There is abundant evidence that Ca2+ signals trigger apoptosis in response to a wide variety of agents and conditions. Conversely, Ca2+ signals can also mediate cell survival. Recent findings indicate that Bcl-2 interacts with inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ channels on the ER, regulating their opening in response to IP3- and thus inhibiting IP3-mediated Ca2+ signals that induce apoptosis while enhancing Ca2+ signals that support cell survival.
Collapse
Affiliation(s)
- Yiping Rong
- Department of Medicine and Pharmacology, Comprehensive Cancer Center and University Hospitals of Cleveland, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | |
Collapse
|
141
|
Vázquez-Manrique RP, Nagy AI, Legg JC, Bales OAM, Ly S, Baylis HA. Phospholipase C-epsilon regulates epidermal morphogenesis in Caenorhabditis elegans. PLoS Genet 2008; 4:e1000043. [PMID: 18369461 PMCID: PMC2274882 DOI: 10.1371/journal.pgen.1000043] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 02/28/2008] [Indexed: 12/01/2022] Open
Abstract
Migration of cells within epithelial sheets is an important feature of embryogenesis and other biological processes. Previous work has demonstrated a role for inositol 1,4,5-trisphosphate (IP3)-mediated calcium signalling in the rearrangement of epidermal cells (also known as hypodermal cells) during embryonic morphogenesis in Caenorhabditis elegans. However the mechanism by which IP3 production is stimulated is unknown. IP3 is produced by the action of phospholipase C (PLC). We therefore surveyed the PLC family of C. elegans using RNAi and mutant strains, and found that depletion of PLC-1/PLC-ε produced substantial embryonic lethality. We used the epithelial cell marker ajm-1::gfp to follow the behaviour of epidermal cells and found that 96% of the arrested embryos have morphogenetic defects. These defects include defective ventral enclosure and aberrant dorsal intercalation. Using time-lapse confocal microscopy we show that the migration of the ventral epidermal cells, especially of the leading cells, is slower and often fails in plc-1(tm753) embryos. As a consequence plc-1 loss of function results in ruptured embryos with a Gex phenotype (gut on exterior) and lumpy larvae. Thus PLC-1 is involved in the regulation of morphogenesis. Genetic studies using gain- and loss-of-function alleles of itr-1, the gene encoding the IP3 receptor in C. elegans, demonstrate that PLC-1 acts through ITR-1. Using RNAi and double mutants to deplete the other PLCs in a plc-1 background, we show that PLC-3/PLC-γ and EGL-8/PLC-β can compensate for reduced PLC-1 activity. Our work places PLC-ε into a pathway controlling epidermal cell migration, thus establishing a novel role for PLC-ε. Morphogenesis is a fundamental part of development which underlies the ability of animals, including humans, to define the shape of their tissues and organs and thus enable their proper function. To understand morphogenesis we need to understand the signalling networks that regulate coordinated changes in cell morphology, movement and adhesion. We know that in C. elegans intracellular signalling through the messenger inositol 1,4,5-trisphosphate (IP3) is required for the proper completion of the morphogenetic processes. However the mechanism by which this signal is produced remains unclear. In this work we define the mechanism responsible for IP3 production in C. elegans. We use a combination of genetic and morphological analysis to show that phospholipase C-epsilon (PLC-ε) is the molecule responsible for IP3 production. In worms with disrupted PLC-ε the embryonic epidermal cells fail to migrate properly so that morphogenesis fails. PLC-ε was only discovered relatively recently and interacts directly with a wide range of signalling pathways, including others that are known to regulate important cellular properties during morphogenesis such as small GTPases. Therefore we establish a potential link between IP3 signalling and other pathways that are known to be involved in cell movements. This is an important advance in defining the network of interactions that regulate epithelial cell movements in morphogenesis.
Collapse
Affiliation(s)
| | - Anikó I. Nagy
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - James C. Legg
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Olivia A. M. Bales
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Sung Ly
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Howard A. Baylis
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
142
|
Davis MC, McColl KS, Zhong F, Wang Z, Malone MH, Distelhorst CW. Dexamethasone-induced inositol 1,4,5-trisphosphate receptor elevation in murine lymphoma cells is not required for dexamethasone-mediated calcium elevation and apoptosis. J Biol Chem 2008; 283:10357-65. [PMID: 18272518 DOI: 10.1074/jbc.m800269200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucocorticosteroid hormones, including dexamethasone, have diverse effects on immature lymphocyte function that ultimately lead to cell death. Previous studies established that glucocorticoid-induced alterations in intracellular calcium homeostasis promote apoptosis, but the mechanism by which glucocorticoids disrupt calcium homeostasis is unknown. Through gene expression array analysis, we found that dexamethasone induces a striking elevation of inositol 1,4,5-trisphosphate receptor (IP(3)R) levels in two murine lymphoma cell lines, WEHI7.2 and S49.A2. IP(3)R elevation was confirmed at both mRNA and protein levels. However, there was not a strong correlation between IP(3)R elevation and altered calcium homeostasis in terms of either kinetics or dose response. Moreover, IP(3)R knockdown, by either antisense or small interfering RNA, did not prevent either calcium disruption or apoptosis. Finally, DT40 lymphoma cells lacking all three IP(3)R isoforms were just as sensitive to dexamethasone-induced apoptosis as wild-type DT40 cells expressing all three IP(3)R isoforms. Thus, although alterations in intracellular calcium homeostasis contribute to glucocorticoid-induced apoptosis, these calcium alterations are not directly attributable to IP(3)R elevation.
Collapse
Affiliation(s)
- Michael C Davis
- Division of Hematology/Oncology, Departments of Medicine and Pharmacology, Comprehensive Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
143
|
Dai R, Ali MK, Lezcano N, Bergson C. A crucial role for cAMP and protein kinase A in D1 dopamine receptor regulated intracellular calcium transients. Neurosignals 2008; 16:112-23. [PMID: 18253052 DOI: 10.1159/000111557] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
D1-like dopamine receptors stimulate Ca(2+) transients in neurons but the effector coupling and signaling mechanisms underlying these responses have not been elucidated. Here we investigated potential mechanisms using both HEK 293 cells that stably express D1 receptors (D1HEK293) and hippocampal neurons in culture. In D1HEK293 cells, the full D1 receptor agonist SKF 81297 evoked a robust dose-dependent increase in Ca(2+)(i) following 'priming' of endogenous G(q/11)-coupled muscarinic or purinergic receptors. The effect of SKF81297 could be mimicked by forskolin or 8-Br-cAMP. Further, cholera toxin and the cAMP-dependent protein kinase (PKA) inhibitors, KT5720 and H89, as well as thapsigargin abrogated the D1 receptor evoked Ca(2+) transients. Removal of the priming agonist and treatment with the phospholipase C inhibitor U73122 also blocked the SKF81297-evoked responses. D1R agonist did not stimulate IP(3) production, but pretreatment of cells with the D1R agonist potentiated G(q)-linked receptor agonist mobilization of intracellular Ca(2+) stores. In neurons, SKF81297 and SKF83959, a partial D1 receptor agonist, promoted Ca(2+) oscillations in response to G(q/11)-coupled metabotropic glutamate receptor (mGluR) stimulation. The effects of both D1R agonists on the mGluR-evoked Ca(2+) responses were PKA dependent. Altogether the data suggest that dopamine D1R activation and ensuing cAMP production dynamically regulates the efficiency and timing of IP(3)-mediated intracellular Ca(2+) store mobilization.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2300, USA
| | | | | | | |
Collapse
|
144
|
Regulation of the inositol 1,4,5-trisphosphate receptor type I by O-GlcNAc glycosylation. J Neurosci 2008; 27:13813-21. [PMID: 18077693 DOI: 10.1523/jneurosci.2069-07.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptor type I (InsP3R-I) is the principle channel for intracellular calcium (Ca2+) release in many cell types, including central neurons. It is regulated by endogenous compounds like Ca2+ and ATP, by protein partners, and by posttranslational modification. We report that the InsP3R-I is modified by O-linked glycosylation of serine or threonine residues with beta-N-acetylglucosamine (O-GlcNAc). The level of O-GlcNAcylation can be altered in vitro by the addition of the enzymes which add [OGT (O-GlcNActransferase)] or remove (O-GlcNAcase) this sugar or by loading cells with UDP-GlcNAc. We monitored the effects of this modification on InsP3R function at the single-channel level and on intracellular Ca2+ transients. Single-channel activity was monitored with InsP3R incorporated into bilayers; Ca2+ signaling was monitored using cells loaded with a Ca2+-sensitive fluorophore. We found that channel activity was decreased by the addition of O-GlcNAc and that this decrease was reversed by removal of the sugar. Similarly, cells loaded with UDP-GlcNAc had an attenuated response to uncaging of InsP3. These results show that O-GlcNAcylation is an important regulator of the InsP3R-I and suggest a mechanism for neuronal dysfunction under conditions in which O-GlcNAc is high, such as diabetes or physiological stress.
Collapse
|
145
|
Abstract
Calcium signalling system controls majority of cellular reactions. Calcium signals occurring within tightly regulated temporal and spatial domains, govern a host of Ca2(+)-dependent enzymes, which in turn determine specified cellular responses. Generation of Ca2+ signals is achieved through coordinated activity of several families of Ca2+ channels and transporters differentially distributed between intracellular compartments. Cell damage induced by environmental insults or by overstimulation of physiological pathways results in pathological Ca2+ signals, which trigger necrotic or apoptotic cellular death.
Collapse
|
146
|
Pearce MMP, Wang Y, Kelley GG, Wojcikiewicz RJH. SPFH2 Mediates the Endoplasmic Reticulum-associated Degradation of Inositol 1,4,5-Trisphosphate Receptors and Other Substrates in Mammalian Cells. J Biol Chem 2007; 282:20104-15. [PMID: 17502376 DOI: 10.1074/jbc.m701862200] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) receptors are endoplasmic reticulum (ER) membrane calcium channels that, upon activation, become substrates for the ER-associated degradation (ERAD) pathway. Although it is clear that IP(3) receptors are polyubiquitinated upon activation and are transferred to the proteasome by a p97-based complex, currently nothing is known about the proteins that initially select activated IP(3) receptors for ERAD. Here, we sought to identify novel proteins that associate with and mediate the ERAD of endogenous activated IP(3) receptors. SPFH2, an uncharacterized SPFH domain-containing protein, rapidly associated with IP(3) receptors in a manner that preceded significant polyubiquitination and the association of p97 and related proteins. SPFH2 was found to be an ER membrane protein largely residing within the ER lumen and in resting and stimulated cells was linked to ERAD pathway components, apparently via endogenous substrates undergoing degradation. Suppression of SPFH2 expression by RNA interference markedly inhibited IP(3) receptor polyubiquitination and degradation and the processing of other ERAD substrates. Overall, these studies identify SPFH2 as a key ERAD pathway component and suggest that it may act as a substrate recognition factor.
Collapse
Affiliation(s)
- Margaret M P Pearce
- Departments of Pharmacology and Medicine, State University of New York Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
147
|
Chamero P, Manjarres IM, García-Verdugo JM, Villalobos C, Alonso MT, García-Sancho J. Nuclear calcium signaling by inositol trisphosphate in GH3 pituitary cells. Cell Calcium 2007; 43:205-14. [PMID: 17583789 DOI: 10.1016/j.ceca.2007.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 05/01/2007] [Accepted: 05/08/2007] [Indexed: 11/28/2022]
Abstract
It has been proposed that nuclear and cytosolic Ca(2+) ([Ca(2+)](N) and [Ca(2+)](C)) may be regulated independently. We address here the issue of whether inositol trisphosphate (IP(3)) can, bypassing changes of [Ca(2+)](C), produce direct release of Ca(2+) into the nucleoplasm. We have used targeted aequorins to selectively measure and compare the changes in [Ca(2+)](C) and [Ca(2+)](N) induced by IP(3) in GH(3) pituitary cells. Heparin, an IP(3) inhibitor that does not permeate the nuclear pores, abolished the [Ca(2+)](C) peaks but inhibited only partly the [Ca(2+)](N) peaks. The permeant inhibitor 2-aminoethoxy-diphenyl-borate (2-APB) blocked both responses. Removal of ATP also inhibited more strongly the [Ca(2+)](C) than [Ca(2+)](N) peak. The [Ca(2+)](N) and [Ca(2+)](C) responses differed also in their sensitivity to IP(3), the nuclear response showing higher affinity. Among IP(3) receptors, type 2 (IP(3)R2) has a higher affinity for IP(3) and is not inactivated by ATP removal. We find that IP(3)R2 immunoreactivity is present inside the nucleus whereas the other IP(3)R subtypes are detected only in the cytoplasm. The nuclear envelope (NE) of GH(3) cells showed deep invaginations into the nucleoplasm, with cytosol and cytoplasmic organella inside. These results indicate that GH(3) pituitary cells possess mechanisms able to produce selective increases of [Ca(2+)](N).
Collapse
Affiliation(s)
- Pablo Chamero
- Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid and Consejo Superior de Investigaciones Científicas (CSIC), Departamento de Fisiología y Bioquímica, Facultad de Medicina, E-47005 Valladolid, Spain
| | | | | | | | | | | |
Collapse
|
148
|
Shuai J, Pearson JE, Foskett JK, Mak DOD, Parker I. A kinetic model of single and clustered IP3 receptors in the absence of Ca2+ feedback. Biophys J 2007; 93:1151-62. [PMID: 17526578 PMCID: PMC1929031 DOI: 10.1529/biophysj.107.108795] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ca2+ liberation through inositol 1,4,5-trisphosphate receptor (IP3R) channels generates complex patterns of spatiotemporal cellular Ca2+ signals owing to the biphasic modulation of channel gating by Ca2+ itself. These processes have been extensively studied in Xenopus oocytes, where imaging studies have revealed local Ca2+ signals ("puffs") arising from clusters of IP3R, and patch-clamp studies on isolated oocyte nuclei have yielded extensive data on IP3R gating kinetics. To bridge these two levels of experimental data, we developed an IP3R model and applied stochastic simulation and transition matrix theory to predict the behavior of individual and clustered IP3R channels. The channel model consists of four identical, independent subunits, each of which has an IP3-binding site together with one activating and one inactivating Ca2+-binding site. The channel opens when at least three subunits undergo a conformational change to an "active" state after binding IP3 and Ca2+. The model successfully reproduces patch-clamp data; including the dependence of open probability, mean open duration, and mean closed duration on [IP3] and [Ca2+]. Notably, the biexponential distribution of open-time duration and the dependence of mean open time on [Ca2+] are explained by populations of openings involving either three or four active subunits. As a first step toward applying the single IP3R model to describe cellular responses, we then simulated measurements of puff latency after step increases of [IP3]. Assuming that stochastic opening of a single IP3R at basal cytosolic [Ca2+] and any given [IP3] has a high probability of rapidly triggering neighboring channels by calcium-induced calcium release to evoke a puff, optimal correspondence with experimental data of puff latencies after photorelease of IP3 was obtained when the cluster contained a total of 40-70 IP3Rs.
Collapse
Affiliation(s)
- Jianwei Shuai
- Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4550, USA.
| | | | | | | | | |
Collapse
|
149
|
Devogelaere B, Verbert L, Parys JB, Missiaen L, De Smedt H. The complex regulatory function of the ligand-binding domain of the inositol 1,4,5-trisphosphate receptor. Cell Calcium 2007; 43:17-27. [PMID: 17499849 DOI: 10.1016/j.ceca.2007.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 03/23/2007] [Indexed: 11/21/2022]
Abstract
The inositol 1,4,5-trisphosphate (IP(3)) receptor (IP(3)R) can be divided in three functionally distinct regions: a ligand-binding domain, a modulatory domain and a channel domain. Numerous regulatory mechanisms including inter- and intra-molecular protein-protein interactions and phosphorylation events act via these domains to regulate the function of the IP(3)R. Regulation at the level of the ligand-binding domain primarily affects the affinity for IP(3). The extent of IP(3)-induced Ca(2+) release (IICR) is, however, not only determined by the affinity for IP(3) but also by the effectiveness of the coupling between ligand binding and channel opening. As a result, regulation as well as malfunction of IICR may be affected by both steps in the activation mechanism. The 3D structures of the two subdomains of the ligand-binding domain have recently been determined by X-ray diffraction analysis. This allows a more detailed molecular explanation of the regulatory events situated at the ligand-binding domain of the IP(3)R. In this review, we will focus on recent structural and functional data on the ligand-binding domain that have extended and clarified the view on the molecular mechanisms of IP(3)R regulation.
Collapse
Affiliation(s)
- Benoit Devogelaere
- Laboratory of Molecular and Cellular Signalling, Division of Physiology, Department of Molecular Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
150
|
Parthimos D, Haddock RE, Hill CE, Griffith TM. Dynamics of a three-variable nonlinear model of vasomotion: comparison of theory and experiment. Biophys J 2007; 93:1534-56. [PMID: 17483163 PMCID: PMC1948040 DOI: 10.1529/biophysj.107.106278] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The effects of pharmacological interventions that modulate Ca(2+) homeodynamics and membrane potential in rat isolated cerebral vessels during vasomotion (i.e., rhythmic fluctuations in arterial diameter) were simulated by a third-order system of nonlinear differential equations. Independent control variables employed in the model were [Ca(2+)] in the cytosol, [Ca(2+)] in intracellular stores, and smooth muscle membrane potential. Interactions between ryanodine- and inositol 1,4,5-trisphosphate-sensitive intracellular Ca(2+) stores and transmembrane ion fluxes via K(+) channels, Cl(-) channels, and voltage-operated Ca(2+) channels were studied by comparing simulations of oscillatory behavior with experimental measurements of membrane potential, intracellular free [Ca(2+)] and vessel diameter during a range of pharmacological interventions. The main conclusion of the study is that a general model of vasomotion that predicts experimental data can be constructed by a low-order system that incorporates nonlinear interactions between dynamical control variables.
Collapse
Affiliation(s)
- D Parthimos
- Wales Heart Research Institute, Department of Diagnostic Radiology, Cardiff University, Cardiff, UK
| | | | | | | |
Collapse
|