101
|
Szyszka P, Stierle JS. Mixture processing and odor-object segregation in insects. PROGRESS IN BRAIN RESEARCH 2014; 208:63-85. [PMID: 24767479 DOI: 10.1016/b978-0-444-63350-7.00003-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When enjoying the scent of grinded coffee or cut grass, most of us are unaware that these scents consist of up to hundreds of volatile substances. We perceive these odorant mixtures as a unitary scent rather than a combination of multiple odorants. The olfactory system processes odor mixtures into meaningful odor objects to provide animals with information that is relevant in everyday tasks, such as habitat localization, foraging, social communication, reproduction, and orientation. For example, odor objects can be a particular flower species on which a bee feeds or the receptive female moth which attracts males by its specific pheromone blend. Using odor mixtures as cues for odor-driven behavior rather than single odorants allows unambiguous identification of a potentially infinite number of odor objects. When multiple odor objects are present at the same time, they form a temporally complex mixture. In order to segregate this mixture into its meaningful constituents, animals must have evolved odor-object segregation mechanisms which are robust against the interference by background odors. In this review, we describe how insects use information of the olfactory environment to either bind odorants into unitary percepts or to segregate them from each other.
Collapse
Affiliation(s)
- Paul Szyszka
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany.
| | - Jacob S Stierle
- Department of Biology-Neurobiology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
102
|
Mishra D, Chen YC, Yarali A, Oguz T, Gerber B. Olfactory memories are intensity specific in larval Drosophila. ACTA ACUST UNITED AC 2013; 216:1552-60. [PMID: 23596280 DOI: 10.1242/jeb.082222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Learning can rely on stimulus quality, stimulus intensity, or a combination of these. Regarding olfaction, the coding of odour quality is often proposed to be combinatorial along the olfactory pathway, and working hypotheses are available concerning short-term associative memory trace formation of odour quality. However, it is less clear how odour intensity is coded, and whether olfactory memory traces include information about the intensity of the learnt odour. Using odour-sugar associative conditioning in larval Drosophila, we first describe the dose-effect curves of learnability across odour intensities for four different odours (n-amyl acetate, 3-octanol, 1-octen-3-ol and benzaldehyde). We then chose odour intensities such that larvae were trained at an intermediate odour intensity, but were tested for retention with either that trained intermediate odour intensity, or with respectively higher or lower intensities. We observed a specificity of retention for the trained intensity for all four odours used. This adds to the appreciation of the richness in 'content' of olfactory short-term memory traces, even in a system as simple as larval Drosophila, and to define the demands on computational models of associative olfactory memory trace formation. We suggest two kinds of circuit architecture that have the potential to accommodate intensity learning, and discuss how they may be implemented in the insect brain.
Collapse
Affiliation(s)
- Dushyant Mishra
- Universität Würzburg, Biozentrum, Neurobiologie und Genetik, Würzburg, Germany
| | | | | | | | | |
Collapse
|
103
|
Heinbockel T, Shields VDC, Reisenman CE. Glomerular interactions in olfactory processing channels of the antennal lobes. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:929-46. [PMID: 23893248 PMCID: PMC4066976 DOI: 10.1007/s00359-013-0842-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/14/2013] [Accepted: 07/16/2013] [Indexed: 11/24/2022]
Abstract
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female's sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.
Collapse
Affiliation(s)
- Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, 520 W St., N.W., Washington, DC, 20059, USA,
| | | | | |
Collapse
|
104
|
Abstract
In the olfactory system of Drosophila melanogaster, it is relatively straightforward to target in vivo measurements of neural activity to specific processing channels. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antennal lobe. We now understand in some detail the cellular and synaptic mechanisms that shape odor representations in these neurons. Together, these mechanisms imply that interesting neural adaptations to environmental statistics have occurred. These mechanisms also place some fundamental constraints on early sensory processing that pose challenges for higher brain regions. These findings suggest some general principles with broad relevance to early sensory processing in other modalities.
Collapse
Affiliation(s)
- Rachel I Wilson
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
105
|
Sinakevitch IT, Smith AN, Locatelli F, Huerta R, Bazhenov M, Smith BH. Apis mellifera octopamine receptor 1 (AmOA1) expression in antennal lobe networks of the honey bee (Apis mellifera) and fruit fly (Drosophila melanogaster). Front Syst Neurosci 2013; 7:70. [PMID: 24187534 PMCID: PMC3807565 DOI: 10.3389/fnsys.2013.00070] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 10/07/2013] [Indexed: 12/01/2022] Open
Abstract
Octopamine (OA) underlies reinforcement during appetitive conditioning in the honey bee and fruit fly, acting via different subtypes of receptors. Recently, antibodies raised against a peptide sequence of one honey bee OA receptor, AmOA1, were used to study the distribution of these receptors in the honey bee brain (Sinakevitch et al., 2011). These antibodies also recognize an isoform of the AmOA1 ortholog in the fruit fly (OAMB, mushroom body OA receptor). Here we describe in detail the distribution of AmOA1 receptors in different types of neurons in the honey bee and fruit fly antennal lobes. We integrate this information into a detailed anatomical analysis of olfactory receptor neurons (ORNs), uni- and multi-glomerular projection neurons (uPNs, and mPNs) and local interneurons (LNs) in glomeruli of the antennal lobe. These neurons were revealed by dye injection into the antennal nerve, antennal lobe, medial and lateral antenno-protocerbral tracts (m-APT and l-APT), and lateral protocerebral lobe (LPL) by use of labeled cell lines in the fruit fly or by staining with anti-GABA. We found that ORN receptor terminals and uPNs largely do not show immunostaining for AmOA1. About seventeen GABAergic mPNs leave the antennal lobe through the ml-APT and branch into the LPL. Many, but not all, mPNs show staining for AmOA1. AmOA1 receptors are also in glomeruli on GABAergic processes associated with LNs. The data suggest that in both species one important action of OA in the antennal lobe involves modulation of different types of inhibitory neurons via AmOA1 receptors. We integrated this new information into a model of circuitry within glomeruli of the antennal lobes of these species.
Collapse
|
106
|
Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN. Genetically targeted optical electrophysiology in intact neural circuits. Cell 2013; 154:904-13. [PMID: 23932121 DOI: 10.1016/j.cell.2013.07.027] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 04/17/2013] [Accepted: 07/16/2013] [Indexed: 01/31/2023]
Abstract
Nervous systems process information by integrating the electrical activity of neurons in complex networks. This motivates the long-standing interest in using optical methods to simultaneously monitor the membrane potential of multiple genetically targeted neurons via expression of genetically encoded fluorescent voltage indicators (GEVIs) in intact neural circuits. No currently available GEVIs have demonstrated robust signals in intact brain tissue that enable reliable recording of individual electrical events simultaneously in multiple neurons. Here, we show that the recently developed "ArcLight" GEVI robustly reports both subthreshold events and action potentials in genetically targeted neurons in the intact Drosophila fruit fly brain and reveals electrical signals in neurite branches. In the same way that genetically encoded fluorescent sensors have revolutionized the study of intracellular Ca(2+) signals, ArcLight now enables optical measurement in intact neural circuits of membrane potential, the key cellular parameter that underlies neuronal information processing.
Collapse
Affiliation(s)
- Guan Cao
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
107
|
Serrano E, Nowotny T, Levi R, Smith BH, Huerta R. Gain control network conditions in early sensory coding. PLoS Comput Biol 2013; 9:e1003133. [PMID: 23874176 PMCID: PMC3715526 DOI: 10.1371/journal.pcbi.1003133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 05/26/2013] [Indexed: 11/19/2022] Open
Abstract
Gain control is essential for the proper function of any sensory system. However, the precise mechanisms for achieving effective gain control in the brain are unknown. Based on our understanding of the existence and strength of connections in the insect olfactory system, we analyze the conditions that lead to controlled gain in a randomly connected network of excitatory and inhibitory neurons. We consider two scenarios for the variation of input into the system. In the first case, the intensity of the sensory input controls the input currents to a fixed proportion of neurons of the excitatory and inhibitory populations. In the second case, increasing intensity of the sensory stimulus will both, recruit an increasing number of neurons that receive input and change the input current that they receive. Using a mean field approximation for the network activity we derive relationships between the parameters of the network that ensure that the overall level of activity of the excitatory population remains unchanged for increasing intensity of the external stimulation. We find that, first, the main parameters that regulate network gain are the probabilities of connections from the inhibitory population to the excitatory population and of the connections within the inhibitory population. Second, we show that strict gain control is not achievable in a random network in the second case, when the input recruits an increasing number of neurons. Finally, we confirm that the gain control conditions derived from the mean field approximation are valid in simulations of firing rate models and Hodgkin-Huxley conductance based models.
Collapse
Affiliation(s)
- Eduardo Serrano
- GNB, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
| | - Thomas Nowotny
- CCNR, Informatics, University of Sussex, Brighton, United Kingdom
| | - Rafael Levi
- GNB, Escuela Politécnica Superior, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Neurobiology and Behavior, University of California, Irvine, California, United States of America
| | - Brian H. Smith
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Ramón Huerta
- BioCircuits Institute, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
108
|
Data-driven honeybee antennal lobe model suggests how stimulus-onset asynchrony can aid odour segregation. Brain Res 2013; 1536:119-34. [PMID: 23743263 DOI: 10.1016/j.brainres.2013.05.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/21/2013] [Accepted: 05/24/2013] [Indexed: 02/06/2023]
Abstract
Insects have a remarkable ability to identify and track odour sources in multi-odour backgrounds. Recent behavioural experiments show that this ability relies on detecting millisecond stimulus asynchronies between odourants that originate from different sources. Honeybees, Apis mellifera, are able to distinguish mixtures where both odourants arrive at the same time (synchronous mixtures) from those where odourant onsets are staggered (asynchronous mixtures) down to an onset delay of only 6ms. In this paper we explore this surprising ability in a model of the insects' primary olfactory brain area, the antennal lobe. We hypothesize that a winner-take-all inhibitory network of local neurons in the antennal lobe has a symmetry-breaking effect, such that the response pattern in projection neurons to an asynchronous mixture is different from the response pattern to the corresponding synchronous mixture for an extended period of time beyond the initial odourant onset where the two mixture conditions actually differ. The prolonged difference between response patterns to synchronous and asynchronous mixtures could facilitate odoursegregation in downstream circuits of the olfactory pathway. We present a detailed data-driven model of the bee antennal lobe that reproduces a large data set of experimentally observed physiological odour responses, successfully implements the hypothesised symmetry-breaking mechanism and so demonstrates that this mechanism is consistent with our current knowledge of the olfactory circuits in the bee brain. This article is part of a Special Issue entitled Neural Coding 2012.
Collapse
|
109
|
Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc Natl Acad Sci U S A 2013; 110:10294-9. [PMID: 23729809 DOI: 10.1073/pnas.1220560110] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glutamatergic neurons are abundant in the Drosophila central nervous system, but their physiological effects are largely unknown. In this study, we investigated the effects of glutamate in the Drosophila antennal lobe, the first relay in the olfactory system and a model circuit for understanding olfactory processing. In the antennal lobe, one-third of local neurons are glutamatergic. Using in vivo whole-cell patch clamp recordings, we found that many glutamatergic local neurons are broadly tuned to odors. Iontophoresed glutamate hyperpolarizes all major cell types in the antennal lobe, and this effect is blocked by picrotoxin or by transgenic RNAi-mediated knockdown of the GluClα gene, which encodes a glutamate-gated chloride channel. Moreover, antennal lobe neurons are inhibited by selective activation of glutamatergic local neurons using a nonnative genetically encoded cation channel. Finally, transgenic knockdown of GluClα in principal neurons disinhibits the odor responses of these neurons. Thus, glutamate acts as an inhibitory neurotransmitter in the antennal lobe, broadly similar to the role of GABA in this circuit. However, because glutamate release is concentrated between glomeruli, whereas GABA release is concentrated within glomeruli, these neurotransmitters may act on different spatial and temporal scales. Thus, the existence of two parallel inhibitory transmitter systems may increase the range and flexibility of synaptic inhibition.
Collapse
|
110
|
Tanaka NK, Endo K, Ito K. Organization of antennal lobe-associated neurons in adult Drosophila melanogaster brain. J Comp Neurol 2013; 520:4067-130. [PMID: 22592945 DOI: 10.1002/cne.23142] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The primary olfactory centers of both vertebrates and insects are characterized by glomerular structure. Each glomerulus receives sensory input from a specific type of olfactory sensory neurons, creating a topographic map of the odor quality. The primary olfactory center is also innervated by various types of neurons such as local neurons, output projection neurons (PNs), and centrifugal neurons from higher brain regions. Although recent studies have revealed how olfactory sensory input is conveyed to each glomerulus, it still remains unclear how the information is integrated and conveyed to other brain areas. By using the GAL4 enhancer-trap system, we conducted a systematic mapping of the neurons associated with the primary olfactory center of Drosophila, the antennal lobe (AL). We identified in total 29 types of neurons, among which 13 are newly identified in the present study. Analyses of arborizations of these neurons in the AL revealed how glomeruli are linked with each other, how different PNs link these glomeruli with multiple secondary sites, and how these secondary sites are organized by the projections of the AL-associated neurons.
Collapse
Affiliation(s)
- Nobuaki K Tanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
111
|
Gong J, Wang Q, Wang Z. NOMPC is likely a key component ofDrosophilamechanotransduction channels. Eur J Neurosci 2013; 38:2057-64. [DOI: 10.1111/ejn.12214] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/08/2023]
Affiliation(s)
| | - Qingxiu Wang
- Institute of Neuroscience; State Key Laboratory of Neuroscience; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai; China
| | - Zuoren Wang
- Institute of Neuroscience; State Key Laboratory of Neuroscience; Shanghai Institutes for Biological Sciences; Chinese Academy of Sciences; Shanghai; China
| |
Collapse
|
112
|
Das A, Gupta T, Davla S, Godino LLP, Diegelmann S, Reddy OV, VijayRaghavan K, Reichert H, Lovick J, Hartenstein V. Neuroblast lineage-specific origin of the neurons of the Drosophila larval olfactory system. Dev Biol 2013; 373:322-37. [PMID: 23149077 PMCID: PMC4045504 DOI: 10.1016/j.ydbio.2012.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/02/2012] [Accepted: 11/06/2012] [Indexed: 11/20/2022]
Abstract
The complete neuronal repertoire of the central brain of Drosophila originates from only approximately 100 pairs of neural stem cells, or neuroblasts. Each neuroblast produces a highly stereotyped lineage of neurons which innervate specific compartments of the brain. Neuroblasts undergo two rounds of mitotic activity: embryonic divisions produce lineages of primary neurons that build the larval nervous system; after a brief quiescence, the neuroblasts go through a second round of divisions in larval stage to produce secondary neurons which are integrated into the adult nervous system. Here we investigate the lineages that are associated with the larval antennal lobe, one of the most widely studied neuronal systems in fly. We find that the same five neuroblasts responsible for the adult antennal lobe also produce the antennal lobe of the larval brain. However, there are notable differences in the composition of larval (primary) lineages and their adult (secondary) counterparts. Significantly, in the adult, two lineages (lNB/BAlc and adNB/BAmv3) produce uniglomerular projection neurons connecting the antennal lobe with the mushroom body and lateral horn; another lineage, vNB/BAla1, generates multiglomerular neurons reaching the lateral horn directly. lNB/BAlc, as well as a fourth lineage, vlNB/BAla2, generate a diversity of local interneurons. We describe a fifth, previously unknown lineage, BAlp4, which connects the posterior part of the antennal lobe and the neighboring tritocerebrum (gustatory center) with a higher brain center located adjacent to the mushroom body. In the larva, only one of these lineages, adNB/BAmv3, generates all uniglomerular projection neurons. Also as in the adult, lNB/BAlc and vlNB/BAla2 produce local interneurons which, in terms of diversity in architecture and transmitter expression, resemble their adult counterparts. In addition, lineages lNB/BAlc and vNB/BAla1, as well as the newly described BAlp4, form numerous types of projection neurons which along the same major axon pathways (antennal tracts) used by the antennal projection neurons, but which form connections that include regions outside the "classical" olfactory circuit triad antennal lobe-mushroom body-lateral horn. Our work will benefit functional studies of the larval olfactory circuit, and shed light on the relationship between larval and adult neurons.
Collapse
Affiliation(s)
- Abhijit Das
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | - Tripti Gupta
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | - Sejal Davla
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | | | - Sören Diegelmann
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ
| | - O. Venkateswara Reddy
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | - K. VijayRaghavan
- National Centre for Biological Sciences, TIFR, UAS-GKVK Campus, Bangalore-560065, India
| | - Heinrich Reichert
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Jennifer Lovick
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Volker Hartenstein
- Department of Molecular Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
113
|
Drosophila rugose is a functional homolog of mammalian Neurobeachin and affects synaptic architecture, brain morphology, and associative learning. J Neurosci 2013; 32:15193-204. [PMID: 23100440 DOI: 10.1523/jneurosci.6424-11.2012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neurobeachin (Nbea) is implicated in vesicle trafficking in the regulatory secretory pathway, but details on its molecular function are currently unknown. We have used Drosophila melanogaster mutants for rugose (rg), the Drosophila homolog of Nbea, to further elucidate the function of this multidomain protein. Rg is expressed in a granular pattern reminiscent of the Golgi network in neuronal cell bodies and colocalizes with transgenic Nbea, suggesting a function in secretory regulation. In contrast to Nbea(-/-) mice, rg null mutants are viable and fertile and exhibit aberrant associative odor learning, changes in gross brain morphology, and synaptic architecture as determined at the larval neuromuscular junction. At the same time, basal synaptic transmission is essentially unaffected, suggesting that structural and functional aspects are separable. Rg phenotypes can be rescued by a Drosophila rg+ transgene, whereas a mouse Nbea transgene rescues aversive odor learning and synaptic architecture; it fails to rescue brain morphology and appetitive odor learning. This dissociation between the functional redundancy of either the mouse or the fly transgene suggests that their complex composition of numerous functional and highly conserved domains support independent functions. We propose that the detailed compendium of phenotypes exhibited by the Drosophila rg null mutant provided here will serve as a test bed for dissecting the different functional domains of BEACH (for beige and human Chediak-Higashi syndrome) proteins, such as Rugose, mouse Nbea, or Nbea orthologs in other species, such as human.
Collapse
|
114
|
Herrero P. Fruit fly behavior in response to chemosensory signals. Peptides 2012; 38:228-37. [PMID: 23022590 DOI: 10.1016/j.peptides.2012.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/16/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
Abstract
An important question in contemporary sensory neuroscience is how animals perceive their environment and make appropriate behavioral choices based on chemical perceptions. The fruit fly Drosophila melanogaster exhibits robust tastant and odor-evoked behaviors. Understanding how the gustatory and olfactory systems support the perception of these contact and volatile chemicals and translate them into appropriate attraction or avoidance behaviors has made an unprecedented contribution to our knowledge of the organization of chemosensory systems. In this review, I begin by describing the receptors and signaling mechanisms of the Drosophila gustatory and olfactory systems and then highlight their involvement in the control of simple and complex behaviors. The topics addressed include feeding behavior, learning and memory, navigation behavior, neuropeptide modulation of chemosensory behavior, and I conclude with a discussion of recent work that provides insight into pheromone signaling pathways.
Collapse
Affiliation(s)
- Pilar Herrero
- Departamento de Biología, Universidad Autónoma de Madrid and Centro de Biología Molecular, Severo Ochoa, E-28049 Madrid, Spain.
| |
Collapse
|
115
|
Girardin CC, Kreissl S, Galizia CG. Inhibitory connections in the honeybee antennal lobe are spatially patchy. J Neurophysiol 2012; 109:332-43. [PMID: 23100135 DOI: 10.1152/jn.01085.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The olfactory system is a classical model for studying sensory processing. The first olfactory brain center [the olfactory bulb of vertebrates and the antennal lobe (AL) of insects] contains spherical neuropiles called glomeruli. Each glomerulus receives the information from one olfactory receptor type. Interglomerular computation is accomplished by lateral connectivity via interneurons. However, the spatial and functional organization of these lateral connections is not completely understood. Here we studied the spatial logic in the AL of the honeybee. We combined topical application of neurotransmitters, olfactory stimulations, and in vivo calcium imaging to visualize the arrangement of lateral connections. Suppression of activity in a single glomerulus with γ-aminobutyric acid (GABA) while presenting an odor reveals the existence of inhibitory interactions. Stimulating a glomerulus with acetylcholine (ACh) activates inhibitory interglomerular connections that can reduce odor-evoked responses. We show that this lateral network is patchy, in that individual glomeruli inhibit other glomeruli with graded strength, but in a spatially discontinuous manner. These results suggest that processing of olfactory information requires combinatorial activity patterns with complex topologies across the AL.
Collapse
|
116
|
Løfaldli BB, Kvello P, Kirkerud N, Mustaparta H. Activity in Neurons of a Putative Protocerebral Circuit Representing Information about a 10 Component Plant Odor Blend in Heliothis virescens. Front Syst Neurosci 2012; 6:64. [PMID: 23060753 PMCID: PMC3461648 DOI: 10.3389/fnsys.2012.00064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/21/2012] [Indexed: 11/24/2022] Open
Abstract
The olfactory pathway in the insect brain is anatomically well described from the antennal lobe (AL) to the mushroom bodies and the lateral protocerebrum (LP) in several species. Less is known about the further connections of the olfactory network in protocerebrum and how information about relevant plant odorants and mixtures are represented in this network, resulting in output information mediated by descending neurons. In the present study we have recorded intracellularly followed by dye injections from neurons in the LP and superior protocerebrum (SP) of the moth, Heliothis virescens. As relevant stimuli, we have used selected primary plant odorants and mixtures of them. The results provide the morphology and physiological responses of neurons involved in a putative circuit connecting the mushroom body lobes, the SP, and the LP, as well as input to SP and LP by one multiglomerular AL neuron and output from the LP by one descending neuron. All neurons responded to a particular mixture of ten primary plant odorants, some of them also to single odorants of the mixture. Altogether, the physiological data indicate integration in protocerebral neurons of information from several of the receptor neuron types functionally described in this species.
Collapse
Affiliation(s)
- Bjarte Bye Løfaldli
- Neuroscience Unit, Department of Biology, Norwegian University of Science and Technology Trondheim, Norway
| | | | | | | |
Collapse
|
117
|
Melnattur KV, Berdnik D, Rusan Z, Ferreira CJ, Nambu JR. The sox gene Dichaete is expressed in local interneurons and functions in development of the Drosophila adult olfactory circuit. Dev Neurobiol 2012; 73:107-26. [PMID: 22648855 DOI: 10.1002/dneu.22038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 05/16/2012] [Indexed: 11/07/2022]
Abstract
In insects, the primary sites of integration for olfactory sensory input are the glomeruli in the antennal lobes. Here, axons of olfactory receptor neurons synapse with dendrites of the projection neurons that relay olfactory input to higher brain centers, such as the mushroom bodies and lateral horn. Interactions between olfactory receptor neurons and projection neurons are modulated by excitatory and inhibitory input from a group of local interneurons. While significant insight has been gleaned into the differentiation of olfactory receptor and projection neurons, much less is known about the development and function of the local interneurons. We have found that Dichaete, a conserved Sox HMG box gene, is strongly expressed in a cluster of LAAL cells located adjacent to each antennal lobe in the adult brain. Within these clusters, Dichaete protein expression is detected in both cholinergic and GABAergic local interneurons. In contrast, Dichaete expression is not detected in mature or developing projection neurons, or developing olfactory receptor neurons. Analysis of novel viable Dichaete mutant alleles revealed misrouting of specific projection neuron dendrites and axons, and alterations in glomeruli organization. These results suggest noncell autonomous functions of Dichaete in projection neuron differentiation as well as a potential role for Dichaete-expressing local interneurons in development of the adult olfactory circuitry.
Collapse
Affiliation(s)
- Krishna V Melnattur
- Biology Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
118
|
Rangan AV. Functional roles for synaptic-depression within a model of the fly antennal lobe. PLoS Comput Biol 2012; 8:e1002622. [PMID: 22927802 PMCID: PMC3426607 DOI: 10.1371/journal.pcbi.1002622] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 06/11/2012] [Indexed: 11/18/2022] Open
Abstract
Several experiments indicate that there exists substantial synaptic-depression at the synapses between olfactory receptor neurons (ORNs) and neurons within the drosophila antenna lobe (AL). This synaptic-depression may be partly caused by vesicle-depletion, and partly caused by presynaptic-inhibition due to the activity of inhibitory local neurons within the AL. While it has been proposed that this synaptic-depression contributes to the nonlinear relationship between ORN and projection neuron (PN) firing-rates, the precise functional role of synaptic-depression at the ORN synapses is not yet fully understood. In this paper we propose two hypotheses linking the information-coding properties of the fly AL with the network mechanisms responsible for ORNAL synaptic-depression. Our first hypothesis is related to variance coding of ORN firing-rate information — once stimulation to the ORNs is sufficiently high to saturate glomerular responses, further stimulation of the ORNs increases the regularity of PN spiking activity while maintaining PN firing-rates. The second hypothesis proposes a tradeoff between spike-time reliability and coding-capacity governed by the relative contribution of vesicle-depletion and presynaptic-inhibition to ORNAL synaptic-depression. Synaptic-depression caused primarily by vesicle-depletion will give rise to a very reliable system, whereas an equivalent amount of synaptic-depression caused primarily by presynaptic-inhibition will give rise to a less reliable system that is more sensitive to small shifts in odor stimulation. These two hypotheses are substantiated by several small analyzable toy models of the fly AL, as well as a more physiologically realistic large-scale computational model of the fly AL involving glomerular channels. Understanding the intricacies of sensory processing is a major scientific challenge. In this paper we examine the early stages of the olfactory system of the fruit-fly. Many experiments have revealed a great deal regarding the architecture of this system, including the types of neurons within it, as well as the connections those neurons make amongst one another. In this paper we examine the potential dynamics produced by this neuronal network. Specifically, we construct a computational model of this early olfactory system and study the effects of synaptic-depression within this system. We find that the dynamics and coding properties of this system depend strongly on the strength, and sources of, synaptic-depression. This work has ramifications for understanding the coding properties of other insect olfactory systems, and perhaps even other sensory modalities in other animals.
Collapse
Affiliation(s)
- Aaditya V Rangan
- Courant Institute of Mathematical Sciences, New York University, New York, New York, United States of America.
| |
Collapse
|
119
|
Assisi C, Stopfer M, Bazhenov M. Excitatory local interneurons enhance tuning of sensory information. PLoS Comput Biol 2012; 8:e1002563. [PMID: 22807661 PMCID: PMC3395596 DOI: 10.1371/journal.pcbi.1002563] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 05/04/2012] [Indexed: 11/18/2022] Open
Abstract
Neurons in the insect antennal lobe represent odors as spatiotemporal patterns of activity that unfold over multiple time scales. As these patterns unspool they decrease the overlap between odor representations and thereby increase the ability of the olfactory system to discriminate odors. Using a realistic model of the insect antennal lobe we examined two competing components of this process -lateral excitation from local excitatory interneurons, and slow inhibition from local inhibitory interneurons. We found that lateral excitation amplified differences between representations of similar odors by recruiting projection neurons that did not receive direct input from olfactory receptors. However, this increased sensitivity also amplified noisy variations in input and compromised the ability of the system to respond reliably to multiple presentations of the same odor. Slow inhibition curtailed the spread of projection neuron activity and increased response reliability. These competing influences must be finely balanced in order to decorrelate odor representations.
Collapse
Affiliation(s)
- Collins Assisi
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, United States of America
| | - Mark Stopfer
- US National Institutes of Health, National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Maxim Bazhenov
- Department of Cell Biology and Neuroscience, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
120
|
Thum AS, Leisibach B, Gendre N, Selcho M, Stocker RF. Diversity, variability, and suboesophageal connectivity of antennal lobe neurons in D. melanogaster larvae. J Comp Neurol 2012; 519:3415-32. [PMID: 21800296 DOI: 10.1002/cne.22713] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Whereas the "vertical" elements of the insect olfactory pathway, the olfactory receptor neurons and the projection neurons, have been studied in great detail, local interneurons providing "horizontal" connections in the antennal lobe were ignored for a long time. Recent studies in adult Drosophila demonstrate diverse roles for these neurons in the integration of odor information, consistent with the identification of a large variety of anatomical and neurochemical subtypes. Here we focus on the larval olfactory circuit of Drosophila, which is much reduced in terms of cell numbers. We show that the horizontal connectivity in the larval antennal lobe differs largely from its adult counterpart. Only one of the five anatomical types of neurons we describe is restricted to the antennal lobe and therefore fits the definition of a local interneuron. Interestingly, the four remaining subtypes innervate both the antennal lobe and the suboesophageal ganglion. In the latter, they may overlap with primary gustatory terminals and with arborizations of hugin cells, which are involved in feeding control. This circuitry suggests special links between smell and taste, which may reflect the chemosensory constraints of a crawling and burrowing lifestyle. We also demonstrate that many of the neurons we describe exhibit highly variable trajectories and arborizations, especially in the suboesophageal ganglion. Together with reports from adult Drosophila, these data suggest that wiring variability may be another principle of insect brain organization, in parallel with stereotypy.
Collapse
Affiliation(s)
- A S Thum
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| | | | | | | | | |
Collapse
|
121
|
Krosnowski K, Ashby S, Sathyanesan A, Luo W, Ogura T, Lin W. Diverse populations of intrinsic cholinergic interneurons in the mouse olfactory bulb. Neuroscience 2012; 213:161-78. [PMID: 22525133 DOI: 10.1016/j.neuroscience.2012.04.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 10/28/2022]
Abstract
Cholinergic activities affect olfactory bulb (OB) information processing and associated learning and memory. However, the presence of intrinsic cholinergic interneurons in the OB remains controversial. As a result, morphological and functional properties of these cells are largely undetermined. We characterized cholinergic interneurons using transgenic mice that selectively mark choline acetyltransferase (ChAT)-expressing cells and immunolabeling. We found a significant number of intrinsic cholinergic interneurons in the OB. These interneurons reside primarily in the glomerular layer (GL) and external plexiform layer (EPL) and exhibit diverse distribution patterns of nerve processes, indicating functional heterogeneity. Further, we found these neurons express ChAT and vesicular acetylcholine transporter (VAChT), but do not immunoreact to glutamatergic, GABAergic or dopaminergic markers and are distinct from calretinin-expressing interneurons. Interestingly, the cholinergic population partially overlaps with the calbindin D28K-expressing interneuron population, revealing the neurotransmitter identity of this sub-population. Additionally, we quantitatively determined the density of VAChT labeled cholinergic nerve fibers in various layers of the OB, as well as the intensity of VAChT immunoreactivity within the GL, suggesting primary sites of cholinergic actions. Taken together, our results provide clear evidence showing the presence of a significant number of cholinergic interneurons and that these morphologically and distributionally diverse interneurons make up complex local cholinergic networks in the OB. Thus, our results suggest that olfactory information processing is modulated by dual cholinergic systems of local interneuron networks and centrifugal projections.
Collapse
Affiliation(s)
- K Krosnowski
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | | | | | |
Collapse
|
122
|
Capurro A, Baroni F, Olsson SB, Kuebler LS, Karout S, Hansson BS, Pearce TC. Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks. FRONTIERS IN NEUROENGINEERING 2012; 5:6. [PMID: 22529799 PMCID: PMC3329896 DOI: 10.3389/fneng.2012.00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
Neural responses to odor blends often exhibit non-linear interactions to blend components. The first olfactory processing center in insects, the antennal lobe (AL), exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth Manduca sexta with those generated using a population-based computational model constructed from the morphologically based connectivity pattern of projection neurons (PNs) and local interneurons (LNs) with randomized connection probabilities from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition) exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies.
Collapse
Affiliation(s)
- Alberto Capurro
- Department of Engineering, Centre for Bioengineering, University of Leicester Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
123
|
Dupuis J, Louis T, Gauthier M, Raymond V. Insights from honeybee (Apis mellifera) and fly (Drosophila melanogaster) nicotinic acetylcholine receptors: from genes to behavioral functions. Neurosci Biobehav Rev 2012; 36:1553-64. [PMID: 22525891 DOI: 10.1016/j.neubiorev.2012.04.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/26/2012] [Accepted: 04/04/2012] [Indexed: 11/25/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed throughout the central nervous system of insects where they supply fast synaptic excitatory transmission and represent a major target for several insecticides. The unbalance is striking between the abundant literature on nAChR sensitivity to insecticides and the rarity of information regarding their molecular properties and cognitive functions. The recent advent of genome sequencing disclosed that nAChR gene families of insects are rather small-sized compared to vertebrates. Behavioral experiments performed in the honeybee demonstrated that a subpopulation of nAChRs sensitive to the venom α-bungarotoxin and permeant to calcium is necessary for the formation of long-term memory. Concomitant data in Drosophila reported that repetitive exposure to nicotine results in a calcium-dependent plasticity of the nAChR-mediated response involving cAMP signaling cascades and indicated that ACh-induced Ca++ currents are modulated by monoamines involved in aversive and appetitive learning. As in vertebrates, in which glutamate and NMDA-type glutamate receptors are involved in experience-associated synaptic plasticity and memory formation, insects could display a comparable system based on ACh and α-Bgt-sensitive nAChRs.
Collapse
Affiliation(s)
- Julien Dupuis
- Université de Toulouse, UPS, Centre de Recherches sur la Cognition Animale (CRCA), 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | | | | | | |
Collapse
|
124
|
Oizumi M, Satoh R, Kazama H, Okada M. Functional Differences between Global Pre- and Postsynaptic Inhibition in the Drosophila Olfactory Circuit. Front Comput Neurosci 2012; 6:14. [PMID: 22470334 PMCID: PMC3309306 DOI: 10.3389/fncom.2012.00014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 02/26/2012] [Indexed: 11/13/2022] Open
Abstract
The Drosophila antennal lobe is subdivided into multiple glomeruli, each of which represents a unique olfactory information processing channel. In each glomerulus, feedforward input from olfactory receptor neurons (ORNs) is transformed into activity of projection neurons (PNs), which represent the output. Recent investigations have indicated that lateral presynaptic inhibitory input from other glomeruli controls the gain of this transformation. Here, we address why this gain control acts “pre”-synaptically rather than “post”-synaptically. Postsynaptic inhibition could work similarly to presynaptic inhibition with regard to regulating the firing rates of PNs depending on the stimulus intensity. We investigate the differences between pre- and postsynaptic gain control in terms of odor discriminability by simulating a network model of the Drosophila antennal lobe with experimental data. We first demonstrate that only presynaptic inhibition can reproduce the type of gain control observed in experiments. We next show that presynaptic inhibition decorrelates PN responses whereas postsynaptic inhibition does not. Due to this effect, presynaptic gain control enhances the accuracy of odor discrimination by a linear decoder while its postsynaptic counterpart only diminishes it. Our results provide the reason gain control operates “pre”-synaptically but not “post”-synaptically in the Drosophila antennal lobe.
Collapse
|
125
|
Central adaptation to odorants depends on PI3K levels in local interneurons of the antennal lobe. J Neurosci 2012; 32:417-22. [PMID: 22238078 DOI: 10.1523/jneurosci.2921-11.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We have previously shown that driving PI3K levels up or down leads to increases or reductions in the number of synapses, respectively. Using these tools to assay their behavioral effects in Drosophila melanogaster, we showed that a loss of synapses in two sets of local interneurons, GH298 and krasavietz, leads to olfaction changes toward attraction or repulsion, while the simultaneous manipulation of both sets of neurons restored normal olfactory indexes. We show here that olfactory central adaptation also requires the equilibrated changes in both sets of local interneurons. The same genetic manipulations directed to projection (GH146) or mushroom body (201Y, MB247) neurons did not affect adaptation. Also, we show that the equilibrium is a requirement for the glomerulus-specific size changes which are a morphological signature of central adaptation. Since the two sets of local neurons are mostly, although not exclusively, inhibitory (GH298) and excitatory (krasavietz), we interpret that the normal phenomena of sensory perception, measured as an olfactory index, and central adaptation rely on an inhibition/excitation ratio.
Collapse
|
126
|
Proske JH, Wittmann M, Galizia CG. Olfactory sensor processing in neural networks: lessons from modeling the fruit fly antennal lobe. FRONTIERS IN NEUROENGINEERING 2012; 5:2. [PMID: 22347182 PMCID: PMC3274705 DOI: 10.3389/fneng.2012.00002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 01/18/2012] [Indexed: 11/13/2022]
Abstract
The insect olfactory system can be a model for artificial olfactory devices. In particular, Drosophila melanogaster due to its genetic tractability has yielded much information about the design and function of such systems in biology. In this study we investigate possible network topologies to separate representations of odors in the primary olfactory neuropil, the antennal lobe. In particular we compare networks based on stochastic and homogeneous connection weight distributions to connectivities that are based on the input correlations between the glomeruli in the antennal lobe. We show that moderate homogeneous inhibition implements a soft winner-take-all mechanism when paired with realistic input from a large meta-database of odor responses in receptor cells (DoOR database). The sparseness of representations increases with stronger inhibition. Excitation, on the other hand, pushes the representation of odors closer together thus making them harder to distinguish. We further analyze the relationship between different inhibitory network topologies and the properties of the receptor responses to different odors. We show that realistic input from the DoOR database has a relatively high entropy of activation values over all odors and receptors compared to the theoretical maximum. Furthermore, under conditions in which the information in the input is artificially decreased, networks with heterogeneous topologies based on the similarity of glomerular response profiles perform best. These results indicate that in order to arrive at the most beneficial representation for odor discrimination it is important to finely tune the strength of inhibition in combination with taking into account the properties of the available sensors.
Collapse
Affiliation(s)
- J Henning Proske
- Department of Neurobiology, University of Konstanz Konstanz, Germany
| | | | | |
Collapse
|
127
|
Miesenböck G. Synapto-pHluorins: genetically encoded reporters of synaptic transmission. Cold Spring Harb Protoc 2012; 2012:213-7. [PMID: 22301651 DOI: 10.1101/pdb.ip067827] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
pHluorins are pH-sensitive mutants of green fluorescent protein (GFP). Attached to proteins with defined cellular locations or itineraries, pHluorins report subcellular pH as well as protein transport between compartments of differing pH. Key applications in neurobiology include the optical detection of neurotransmitter release with synapto-pHluorins and their derivatives, as well as measurements of neurotransmitter receptor trafficking. This article describes the properties and uses of synapto-pHluorins, as well as their advantages and limitations.
Collapse
|
128
|
Dacks AM, Green DS, Root CM, Nighorn AJ, Wang JW. Serotonin modulates olfactory processing in the antennal lobe of Drosophila. J Neurogenet 2012; 23:366-77. [PMID: 19863268 DOI: 10.3109/01677060903085722] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Sensory systems must be able to extract features of environmental cues within the context of the different physiological states of the organism and often temper their activity in a state-dependent manner via the process of neuromodulation. We examined the effects of the neuromodulator serotonin on a well-characterized sensory circuit, the antennal lobe of Drosophila melanogaster, using two-photon microscopy and the genetically expressed calcium indicator, G-CaMP. Serotonin enhances sensitivity of the antennal lobe output projection neurons in an odor-specific manner. For odorants that sparsely activate the antennal lobe, serotonin enhances projection neuron responses and causes an offset of the projection neuron tuning curve, most likely by increasing projection neuron sensitivity. However, for an odorant that evokes a broad activation pattern, serotonin enhances projection neuron responses in some, but not all, glomeruli. Further, serotonin enhances the responses of inhibitory local interneurons, resulting in a reduction of neurotransmitter release from the olfactory sensory neurons via GABA(B) receptor-dependent presynaptic inhibition, which may be a mechanism underlying the odorant-specific modulation of projection neuron responses. Our data suggest that the complexity of serotonin modulation in the antennal lobe accommodates coding stability in a glomerular pattern and flexible projection neuron sensitivity under different physiological conditions.
Collapse
Affiliation(s)
- Andrew M Dacks
- ARL Division of Neurobiology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | | | | | |
Collapse
|
129
|
Chong KY, Capurro A, Karout S, Pearce TC. Stimulus and network dynamics collide in a ratiometric model of the antennal lobe macroglomerular complex. PLoS One 2012; 7:e29602. [PMID: 22253743 PMCID: PMC3254609 DOI: 10.1371/journal.pone.0029602] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 12/01/2011] [Indexed: 12/20/2022] Open
Abstract
Time is considered to be an important encoding dimension in olfaction, as neural populations generate odour-specific spatiotemporal responses to constant stimuli. However, during pheromone mediated anemotactic search insects must discriminate specific ratios of blend components from rapidly time varying input. The dynamics intrinsic to olfactory processing and those of naturalistic stimuli can therefore potentially collide, thereby confounding ratiometric information. In this paper we use a computational model of the macroglomerular complex of the insect antennal lobe to study the impact on ratiometric information of this potential collision between network and stimulus dynamics. We show that the model exhibits two different dynamical regimes depending upon the connectivity pattern between inhibitory interneurons (that we refer to as fixed point attractor and limit cycle attractor), which both generate ratio-specific trajectories in the projection neuron output population that are reminiscent of temporal patterning and periodic hyperpolarisation observed in olfactory antennal lobe neurons. We compare the performance of the two corresponding population codes for reporting ratiometric blend information to higher centres of the insect brain. Our key finding is that whilst the dynamically rich limit cycle attractor spatiotemporal code is faster and more efficient in transmitting blend information under certain conditions it is also more prone to interference between network and stimulus dynamics, thus degrading ratiometric information under naturalistic input conditions. Our results suggest that rich intrinsically generated network dynamics can provide a powerful means of encoding multidimensional stimuli with high accuracy and efficiency, but only when isolated from stimulus dynamics. This interference between temporal dynamics of the stimulus and temporal patterns of neural activity constitutes a real challenge that must be successfully solved by the nervous system when faced with naturalistic input.
Collapse
Affiliation(s)
- Kwok Ying Chong
- Centre for Bioengineering, Department of Engineering, University of Leicester, Leicester, United Kingdom
| | - Alberto Capurro
- Centre for Bioengineering, Department of Engineering, University of Leicester, Leicester, United Kingdom
| | - Salah Karout
- Centre for Bioengineering, Department of Engineering, University of Leicester, Leicester, United Kingdom
| | - Timothy Charles Pearce
- Centre for Bioengineering, Department of Engineering, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
130
|
Neupert S, Fusca D, Schachtner J, Kloppenburg P, Predel R. Toward a single-cell-based analysis of neuropeptide expression in Periplaneta americana antennal lobe neurons. J Comp Neurol 2012; 520:694-716. [DOI: 10.1002/cne.22745] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
131
|
Optogenetic reporters: Fluorescent protein-based genetically encoded indicators of signaling and metabolism in the brain. PROGRESS IN BRAIN RESEARCH 2012; 196:235-63. [PMID: 22341329 DOI: 10.1016/b978-0-444-59426-6.00012-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluorescent protein technology has evolved to include genetically encoded biosensors that can monitor levels of ions, metabolites, and enzyme activities as well as protein conformation and even membrane voltage. They are well suited to live-cell microscopy and quantitative analysis, and they can be used in multiple imaging modes, including one- or two-photon fluorescence intensity or lifetime microscopy. Although not nearly complete, there now exists a substantial set of genetically encoded reporters that can be used to monitor many aspects of neuronal and glial biology, and these biosensors can be used to visualize synaptic transmission and activity-dependent signaling in vitro and in vivo. In this review, we present an overview of design strategies for engineering biosensors, including sensor designs using circularly permuted fluorescent proteins and using fluorescence resonance energy transfer between fluorescent proteins. We also provide examples of indicators that sense small ions (e.g., pH, chloride, zinc), metabolites (e.g., glutamate, glucose, ATP, cAMP, lipid metabolites), signaling pathways (e.g., G protein-coupled receptors, Rho GTPases), enzyme activities (e.g., protein kinase A, caspases), and reactive species. We focus on examples where these genetically encoded indicators have been applied to brain-related studies and used with live-cell fluorescence microscopy.
Collapse
|
132
|
Strutz A, Völler T, Riemensperger T, Fiala A, Sachse S. Calcium Imaging of Neural Activity in the Olfactory System of Drosophila. GENETICALLY ENCODED FUNCTIONAL INDICATORS 2012. [DOI: 10.1007/978-1-62703-014-4_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
133
|
Complementary function and integrated wiring of the evolutionarily distinct Drosophila olfactory subsystems. J Neurosci 2011; 31:13357-75. [PMID: 21940430 DOI: 10.1523/jneurosci.2360-11.2011] [Citation(s) in RCA: 336] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To sense myriad environmental odors, animals have evolved multiple, large families of divergent olfactory receptors. How and why distinct receptor repertoires and their associated circuits are functionally and anatomically integrated is essentially unknown. We have addressed these questions through comprehensive comparative analysis of the Drosophila olfactory subsystems that express the ionotropic receptors (IRs) and odorant receptors (ORs). We identify ligands for most IR neuron classes, revealing their specificity for select amines and acids, which complements the broader tuning of ORs for esters and alcohols. IR and OR sensory neurons exhibit glomerular convergence in segregated, although interconnected, zones of the primary olfactory center, but these circuits are extensively interdigitated in higher brain regions. Consistently, behavioral responses to odors arise from an interplay between IR- and OR-dependent pathways. We integrate knowledge on the different phylogenetic and developmental properties of these receptors and circuits to propose models for the functional contributions and evolution of these distinct olfactory subsystems.
Collapse
|
134
|
Yang Y, Yan Y, Zou X, Zhang C, Zhang H, Xu Y, Wang X, Janos P, Yang Z, Gu H. Static magnetic field modulates rhythmic activities of a cluster of large local interneurons in Drosophila antennal lobe. J Neurophysiol 2011; 106:2127-35. [PMID: 21775714 DOI: 10.1152/jn.00067.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With the development of superconducting magnets, the chances of exposure to intense static magnetic fields (SMFs) have increased. Therefore, safety concerns related to magnetic field exposure need to be studied, especially the effects of magnetic field exposure on the central nervous system. Only a limited number of studies prove a direct connection between magnetic fields and electrophysiological signal processing. Here we described a cluster of large local interneurons (LNs) located laterally to each antennal lobe of Drosophila melanogaster, which exhibit extensive arborizations throughout the whole antennal lobe. Dual recordings showed that these large LNs demonstrated rhythmic spontaneous activities that correlated with other LNs and projection neurons (PNs) in the olfactory circuit. The results suggest that 3.0-T SMF can interfere with the properties of the action potential, rhythmic spontaneous activities of large LNs, and correlated activity in pairs of ipsilateral large LN/LN in the olfactory circuit. This indicates that Drosophila can be an ideal intact neural circuit model and that the activities of the olfactory circuit can be used to evaluate the effects of magnetic field stimulations.
Collapse
Affiliation(s)
- Ying Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine and
| | - Ying Yan
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine and
| | - Xiaolu Zou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine and
| | - Chuchu Zhang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine and
| | - Heng Zhang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine and
| | - Ye Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine and
| | - Xutian Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine and
| | - Palhalmi Janos
- East-West BioMedicine Research and Development Center, Monorierdo, Pest Megye, Hungary
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiyu Gu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine and
| |
Collapse
|
135
|
Tomosyn-dependent regulation of synaptic transmission is required for a late phase of associative odor memory. Proc Natl Acad Sci U S A 2011; 108:18482-7. [PMID: 22042858 DOI: 10.1073/pnas.1110184108] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Synaptic vesicle secretion requires the assembly of fusogenic SNARE complexes. Consequently proteins that regulate SNARE complex formation can significantly impact synaptic strength. The SNARE binding protein tomosyn has been shown to potently inhibit exocytosis by sequestering SNARE proteins in nonfusogenic complexes. The tomosyn-SNARE interaction is regulated by protein kinase A (PKA), an enzyme implicated in learning and memory, suggesting tomosyn could be an important effector in PKA-dependent synaptic plasticity. We tested this hypothesis in Drosophila, in which the role of the PKA pathway in associative learning has been well established. We first determined that panneuronal tomosyn knockdown by RNAi enhanced synaptic strength at the Drosophila larval neuromuscular junction, by increasing the evoked response duration. We next assayed memory performance 3 min (early memory) and 3 h (late memory) after aversive olfactory learning. Whereas early memory was unaffected by tomosyn knockdown, late memory was reduced by 50%. Late memory is a composite of stable and labile components. Further analysis determined that tomosyn was specifically required for the anesthesia-sensitive, labile component, previously shown to require cAMP signaling via PKA in mushroom bodies. Together these data indicate that tomosyn has a conserved role in the regulation of synaptic transmission and provide behavioral evidence that tomosyn is involved in a specific component of late associative memory.
Collapse
|
136
|
Murmu MS, Stinnakre J, Réal E, Martin JR. Calcium-stores mediate adaptation in axon terminals of olfactory receptor neurons in Drosophila. BMC Neurosci 2011; 12:105. [PMID: 22024464 PMCID: PMC3226658 DOI: 10.1186/1471-2202-12-105] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/24/2011] [Indexed: 11/30/2022] Open
Abstract
Background In vertebrates and invertebrates, sensory neurons adapt to variable ambient conditions, such as the duration or repetition of a stimulus, a physiological mechanism considered as a simple form of non-associative learning and neuronal plasticity. Although various signaling pathways, as cAMP, cGMP, and the inositol 1,4,5-triphosphate receptor (InsP3R) play a role in adaptation, their precise mechanisms of action at the cellular level remain incompletely understood. Recently, in Drosophila, we reported that odor-induced Ca2+-response in axon terminals of olfactory receptor neurons (ORNs) is related to odor duration. In particular, a relatively long odor stimulus (such as 5 s) triggers the induction of a second component involving intracellular Ca2+-stores. Results We used a recently developed in-vivo bioluminescence imaging approach to quantify the odor-induced Ca2+-activity in the axon terminals of ORNs. Using either a genetic approach to target specific RNAs, or a pharmacological approach, we show that the second component, relying on the intracellular Ca2+-stores, is responsible for the adaptation to repetitive stimuli. In the antennal lobes (a region analogous to the vertebrate olfactory bulb) ORNs make synaptic contacts with second-order neurons, the projection neurons (PNs). These synapses are modulated by GABA, through either GABAergic local interneurons (LNs) and/or some GABAergic PNs. Application of GABAergic receptor antagonists, both GABAA or GABAB, abolishes the adaptation, while RNAi targeting the GABABR (a metabotropic receptor) within the ORNs, blocks the Ca2+-store dependent component, and consequently disrupts the adaptation. These results indicate that GABA exerts a feedback control. Finally, at the behavioral level, using an olfactory test, genetically impairing the GABABR or its signaling pathway specifically in the ORNs disrupts olfactory adapted behavior. Conclusion Taken together, our results indicate that a relatively long lasting form of adaptation occurs within the axon terminals of the ORNs in the antennal lobes, which depends on intracellular Ca2+-stores, attributable to a positive feedback through the GABAergic synapses.
Collapse
Affiliation(s)
- Meena S Murmu
- Imagerie Cérébrale Fonctionnelle et Comportements, Neurobiologie et Développement, CNRS, UPR-3294, 1 Avenue de la Terrasse, Gif-sur-Yvette Cedex, France
| | | | | | | |
Collapse
|
137
|
Singh CR, Watanabe R, Zhou D, Jennings MD, Fukao A, Lee B, Ikeda Y, Chiorini JA, Campbell SG, Ashe MP, Fujiwara T, Wek RC, Pavitt GD, Asano K. Mechanisms of translational regulation by a human eIF5-mimic protein. Nucleic Acids Res 2011; 39:8314-28. [PMID: 21745818 PMCID: PMC3201852 DOI: 10.1093/nar/gkr339] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/22/2011] [Accepted: 04/25/2011] [Indexed: 11/29/2022] Open
Abstract
The translation factor eIF5 is an important partner of eIF2, directly modulating its function in several critical steps. First, eIF5 binds eIF2/GTP/Met-tRNA(i)(Met) ternary complex (TC), promoting its recruitment to 40S ribosomal subunits. Secondly, its GTPase activating function promotes eIF2 dissociation for ribosomal subunit joining. Finally, eIF5 GDP dissociation inhibition (GDI) activity can antagonize eIF2 reactivation by competing with the eIF2 guanine exchange factor (GEF), eIF2B. The C-terminal domain (CTD) of eIF5, a W2-type HEAT domain, mediates its interaction with eIF2. Here, we characterize a related human protein containing MA3- and W2-type HEAT domains, previously termed BZW2 and renamed here as eIF5-mimic protein 1 (5MP1). Human 5MP1 interacts with eIF2 and eIF3 and inhibits general and gene-specific translation in mammalian systems. We further test whether 5MP1 is a mimic or competitor of the GEF catalytic subunit eIF2Bε or eIF5, using yeast as a model. Our results suggest that 5MP1 interacts with yeast eIF2 and promotes TC formation, but inhibits TC binding to the ribosome. Moreover, 5MP1 is not a GEF but a weak GDI for yeast eIF2. We propose that 5MP1 is a partial mimic and competitor of eIF5, interfering with the key steps by which eIF5 regulates eIF2 function.
Collapse
Affiliation(s)
- Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Ryosuke Watanabe
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Donghui Zhou
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Martin D. Jennings
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Akira Fukao
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Bumjun Lee
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Yuka Ikeda
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - John A. Chiorini
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Susan G. Campbell
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Mark P. Ashe
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Toshinobu Fujiwara
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Ronald C. Wek
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Graham D. Pavitt
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA, Faculty of Life Sciences, The University of Manchester, Manchester, M13 9PT, UK, Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan and NIDCR, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
138
|
Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, Hildebrand JG. The neurobiology of insect olfaction: sensory processing in a comparative context. Prog Neurobiol 2011; 95:427-47. [PMID: 21963552 DOI: 10.1016/j.pneurobio.2011.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 09/10/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
The simplicity and accessibility of the olfactory systems of insects underlie a body of research essential to understanding not only olfactory function but also general principles of sensory processing. As insect olfactory neurobiology takes advantage of a variety of species separated by millions of years of evolution, the field naturally has yielded some conflicting results. Far from impeding progress, the varieties of insect olfactory systems reflect the various natural histories, adaptations to specific environments, and the roles olfaction plays in the life of the species studied. We review current findings in insect olfactory neurobiology, with special attention to differences among species. We begin by describing the olfactory environments and olfactory-based behaviors of insects, as these form the context in which neurobiological findings are interpreted. Next, we review recent work describing changes in olfactory systems as adaptations to new environments or behaviors promoting speciation. We proceed to discuss variations on the basic anatomy of the antennal (olfactory) lobe of the brain and higher-order olfactory centers. Finally, we describe features of olfactory information processing including gain control, transformation between input and output by operations such as broadening and sharpening of tuning curves, the role of spiking synchrony in the antennal lobe, and the encoding of temporal features of encounters with an odor plume. In each section, we draw connections between particular features of the olfactory neurobiology of a species and the animal's life history. We propose that this perspective is beneficial for insect olfactory neurobiology in particular and sensory neurobiology in general.
Collapse
Affiliation(s)
- Joshua P Martin
- Department of Neuroscience, College of Science, University of Arizona, 1040 East Fourth Street, Tucson, AZ 85721-0077, USA.
| | | | | | | | | | | | | |
Collapse
|
139
|
Abstract
The Drosophila antennal lobe is organized into glomerular compartments, where olfactory receptor neurons synapse onto projection neurons. Projection neuron dendrites also receive input from local neurons, which interconnect glomeruli. In this study, we investigated how activity in this circuit changes over time when sensory afferents are chronically removed in vivo. In the normal circuit, excitatory connections between glomeruli are weak. However, after we chronically severed receptor neuron axons projecting to a subset of glomeruli, we found that odor-evoked lateral excitatory input to deafferented projection neurons was potentiated severalfold. This was caused, at least in part, by strengthened electrical coupling from excitatory local neurons onto projection neurons, as well as increased activity in excitatory local neurons. Merely silencing receptor neurons was not sufficient to elicit these changes, implying that severing receptor neuron axons is the relevant signal. When we expressed the neuroprotective gene Wallerian degeneration slow (Wld(S)) in receptor neurons before severing their axons, this blocked the induction of plasticity. Because expressing Wld(S) prevents severed axons from recruiting glia, this result suggests a role for glia. Consistent with this, we found that blocking endocytosis in ensheathing glia blocked the induction of plasticity. In sum, these results reveal a novel injury response whereby severed sensory axons recruit glia, which in turn signal to central neurons to upregulate their activity. By strengthening excitatory interactions between neurons in a deafferented brain region, this mechanism might help boost activity to compensate for lost sensory input.
Collapse
|
140
|
Plasticity of local GABAergic interneurons drives olfactory habituation. Proc Natl Acad Sci U S A 2011; 108:E646-54. [PMID: 21795607 DOI: 10.1073/pnas.1106411108] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Despite its ubiquity and significance, behavioral habituation is poorly understood in terms of the underlying neural circuit mechanisms. Here, we present evidence that habituation arises from potentiation of inhibitory transmission within a circuit motif commonly repeated in the nervous system. In Drosophila, prior odorant exposure results in a selective reduction of response to this odorant. Both short-term (STH) and long-term (LTH) forms of olfactory habituation require function of the rutabaga-encoded adenylate cyclase in multiglomerular local interneurons (LNs) that mediate GABAergic inhibition in the antennal lobe; LTH additionally requires function of the cAMP response element-binding protein (CREB2) transcription factor in LNs. The odorant selectivity of STH and LTH is mirrored by requirement for NMDA receptors and GABA(A) receptors in odorant-selective, glomerulus-specific projection neurons(PNs). The need for the vesicular glutamate transporter in LNs indicates that a subset of these GABAergic neurons also releases glutamate. LTH is associated with a reduction of odorant-evoked calcium fluxes in PNs as well as growth of the respective odorant-responsive glomeruli. These cellular changes use similar mechanisms to those required for behavioral habituation. Taken together with the observation that enhancement of GABAergic transmission is sufficient to attenuate olfactory behavior, these data indicate that habituation arises from glomerulus-selective potentiation of inhibitory synapses in the antennal lobe. We suggest that similar circuit mechanisms may operate in other species and sensory systems.
Collapse
|
141
|
Abstract
Great progress has been made in the field of insect olfaction in recent years. Receptors, neurons, and circuits have been defined in considerable detail, and the mechanisms by which they detect, encode, and process sensory stimuli are being unraveled. We provide a guide to recent progress in the field, with special attention to advances made in the genetic model organism Drosophila. We highlight key questions that merit additional investigation. We then present our view of how recent advances may be applied to the control of disease-carrying insects such as mosquitoes, which transmit disease to hundreds of millions of people each year. We suggest how progress in defining the basic mechanisms of insect olfaction may lead to means of disrupting host-seeking and other olfactory behaviors, thereby reducing the transmission of deadly diseases.
Collapse
|
142
|
Rath L, Giovanni Galizia C, Szyszka P. Multiple memory traces after associative learning in the honey bee antennal lobe. Eur J Neurosci 2011; 34:352-60. [PMID: 21692886 DOI: 10.1111/j.1460-9568.2011.07753.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the effect of associative learning on early sensory processing, by combining classical conditioning with in vivo calcium-imaging of secondary olfactory neurons, the projection neurons (PNs) in the honey bee antennal lobe (AL). We trained bees in a differential conditioning paradigm in which one odour (A+) was paired with a reward, while another odour (B-) was presented without a reward. Two to five hours after differential conditioning, the two odour-response patterns became more different in bees that learned to discriminate between A and B, but not in bees that did not discriminate. This learning-related change in neural odour representations can be traced back to glomerulus-specific neural plasticity, which depended on the response profile of the glomerulus before training. (i) Glomeruli responding to A but not to B generally increased in response strength. (ii) Glomeruli responding to B but not to A did not change in response strength. (iii) Glomeruli responding to A and B decreased in response strength. (iv) Glomeruli not responding to A or B increased in response strength. The data are consistent with a neural network model of the AL, which we based on two plastic synapse types and two well-known learning rules: associative, reinforcer-dependent Hebbian plasticity at synapses between olfactory receptor neurons (ORNs) and PNs; and reinforcer-independent Hebbian plasticity at synapses between local interneurons and ORNs. The observed changes strengthen the idea that odour learning optimizes odour representations, and facilitates the detection and discrimination of learned odours.
Collapse
Affiliation(s)
- Lisa Rath
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | | | | |
Collapse
|
143
|
Abstract
Synapse loss correlates with cognitive decline in aging and most neurological pathologies. Sensory perception changes often represent subtle dysfunctions that precede the onset of a neurodegenerative disease. However, a cause-effect relationship between synapse loss and sensory perception deficits is difficult to prove and quantify due to functional and structural adaptation of neural systems. Here we modified a PI3K/AKT/GSK3 signaling pathway to reduce the number of synapses--without affecting the number of cells--in five subsets of local interneurons of the Drosophila olfactory glomeruli and measured the behavioral effects on olfactory perception. The neuron subsets were chosen under the criteria of GABA or ChAT expression. The reduction of one subset of synapses, mostly inhibitory, converted the responses to all odorants and concentrations tested as repulsive, while the reduction of another subset, mostly excitatory, led to a shift toward attraction. However, the simultaneous reduction of both synapse subsets restored normal perception. One group of local interneurons proved unaffected by the induced synapse loss in the perception of some odorants, indicating a functional specialization of these cells. Using genetic tools for space and temporal control of synapse number decrease, we show that the perception effects are specific to the local interneurons, rather than the mushroom bodies, and are not based on major structural changes elicited during development. These findings demonstrate that synapse loss cause sensory perception changes and suggest that normal perception is based on a balance between excitation and inhibition.
Collapse
|
144
|
McDonnell MD, Ward LM. The benefits of noise in neural systems: bridging theory and experiment. Nat Rev Neurosci 2011; 12:415-26. [PMID: 21685932 DOI: 10.1038/nrn3061] [Citation(s) in RCA: 387] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
145
|
Davison IG, Ehlers MD. Neural circuit mechanisms for pattern detection and feature combination in olfactory cortex. Neuron 2011; 70:82-94. [PMID: 21482358 DOI: 10.1016/j.neuron.2011.02.047] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2011] [Indexed: 11/24/2022]
Abstract
Odors are initially encoded in the brain as a set of distinct physicochemical characteristics but are ultimately perceived as a unified sensory object--a "smell." It remains unclear how chemical features encoded by diverse odorant receptors and segregated glomeruli in the main olfactory bulb (MOB) are assembled into integrated cortical representations. Combining patterned optical microstimulation of MOB with in vivo electrophysiological recordings in anterior piriform cortex (PCx), we assessed how cortical neurons decode complex activity patterns distributed across MOB glomeruli. PCx firing was insensitive to single-glomerulus photostimulation. Instead, individual cells reported higher-order combinations of coactive glomeruli resembling odor-evoked sensory maps. Intracellular recordings revealed a corresponding circuit architecture providing each cortical neuron with weak synaptic input from a distinct subpopulation of MOB glomeruli. PCx neurons thus detect specific glomerular ensembles, providing an explicit neural representation of chemical feature combinations that are the hallmark of complex odor stimuli.
Collapse
Affiliation(s)
- Ian G Davison
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
146
|
Root CM, Ko KI, Jafari A, Wang JW. Presynaptic facilitation by neuropeptide signaling mediates odor-driven food search. Cell 2011; 145:133-44. [PMID: 21458672 DOI: 10.1016/j.cell.2011.02.008] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/02/2011] [Accepted: 02/03/2011] [Indexed: 01/09/2023]
Abstract
Internal physiological states influence behavioral decisions. We have investigated the underlying cellular and molecular mechanisms at the first olfactory synapse for starvation modulation of food-search behavior in Drosophila. We found that a local signal by short neuropeptide F (sNPF) and a global metabolic cue by insulin are integrated at specific odorant receptor neurons (ORNs) to modulate olfactory sensitivity. Results from two-photon calcium imaging show that starvation increases presynaptic activity via intraglomerular sNPF signaling. Expression of sNPF and its receptor (sNPFR1) in Or42b neurons is necessary for starvation-induced food-search behavior. Presynaptic facilitation in Or42b neurons is sufficient to mimic starvation-like behavior in fed flies. Furthermore, starvation elevates the transcription level of sNPFR1 but not that of sNPF, and insulin signaling suppresses sNPFR1 expression. Thus, starvation increases expression of sNPFR1 to change the odor map, resulting in more robust food-search behavior.
Collapse
Affiliation(s)
- Cory M Root
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
147
|
Störtkuhl KF, Fiala A. The Smell of Blue Light: A New Approach toward Understanding an Olfactory Neuronal Network. Front Neurosci 2011; 5:72. [PMID: 21647413 PMCID: PMC3103046 DOI: 10.3389/fnins.2011.00072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 05/06/2011] [Indexed: 11/13/2022] Open
Abstract
Olfaction is one of the most important senses throughout the animal kingdom. It enables animals to discriminate between a wide variety of attractive and repulsive odorants and often plays a decisive role in species specific communication. In recent years the analysis of olfactory systems both invertebrates and invertebrates has attracted much scientific interest. In this context a pivotal question is how the properties and connectivities of individual neurons contribute to a functioning neuronal network that mediates odor-guided behavior. As a novel approach to analyze the role of individual neurons within a circuitry, techniques have been established that make use of light-sensitive proteins. In this review we introduce a non-invasive, optogenetic technique which was used to manipulate the activity of individual neurons in the olfactory system of Drosophila melanogaster larvae. Both channelrhodopsin-2 and the photosensitive adenylyl cyclase PAC α in individual olfactory receptor neurons (ORNs) of the olfactory system of Drosophila larvae allows stimulating individual receptor neurons by light. Depending on which particular ORN is optogenetically activated, repulsion or attraction behavior can be induced, indicating which sensory neurons underlie which type of behavior.
Collapse
Affiliation(s)
- Klemens F Störtkuhl
- AG Physiology of Senses, Department of Biology and Biotechnology, Ruhr University Bochum Bochum, Germany
| | | |
Collapse
|
148
|
Lieber T, Kidd S, Struhl G. DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron 2011; 69:468-81. [PMID: 21315258 DOI: 10.1016/j.neuron.2010.12.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2010] [Indexed: 12/01/2022]
Abstract
Delta/Serrate/Lag2 (DSL) ligands and their Notch family receptors have profound and pervasive roles in development. They are also expressed in adult tissues, notably in mature neurons and glia in the brain, where their roles are unknown. Here, focusing on the sense of smell in adult Drosophila, we show that Notch is activated in select olfactory receptor neurons (ORNs) in an odorant-specific fashion. This response requires olfactory receptor activity and the Notch ligand Delta. We present evidence that Notch activation depends on synaptic transmission by the ORNs in which the receptors are active and is modulated by the activity of local interneurons in the antennal lobe. It is also subject to regulatory inputs from olfactory receptor activity in other ORNs. These findings identify a correlate of stimulus-dependent brain activity and potentially new forms of neural integration and plasticity.
Collapse
Affiliation(s)
- Toby Lieber
- Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, 701 W 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
149
|
Murmu MS, Stinnakre J, Martin JR. Presynaptic Ca2+ stores contribute to odor-induced responses in Drosophila olfactory receptor neurons. ACTA ACUST UNITED AC 2011; 213:4163-73. [PMID: 21112997 DOI: 10.1242/jeb.046474] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In both vertebrates and invertebrates, olfactory receptor neurons (ORNs) respond to several odors. They also adapt to stimulus variations, and this is considered to be a simple form of non-associative learning and neuronal plasticity. Different mechanisms have been described to support neuronal and/or synaptic plasticity. For example in vertebrates, presynaptic Ca(2+) stores relying on either the ryanodine receptor (RyR) or the inositol (1,4,5)-trisphosphate receptor (InsP(3)R) have been reported to participate in synaptic transmission, in hippocampal pyramidal neurons, and in basket cell-Purkinje cell synapses. However, in invertebrates, especially in sensory neurons such as ORNs, similar mechanisms have not yet been detected. In this study, using Drosophila and taking advantage of an in vivo bioluminescence Ca(2+)-imaging technique in combination with genetic and pharmacological tools, first we show that the GFP-aequorin Ca(2+) sensor is sensitive enough to detect odor-induced responses of various durations. Second, we show that for a relatively long (5 s) odor application, odor-induced Ca(2+) responses occurring in the axon terminals of ORNs involve intracellular Ca(2+) stores. This response is decreased by specifically targeting InsP(3)R or RyR by RNAi, or application of the specific blockers thapsigargin or ryanodine, suggesting that Ca(2+) stores serve to amplify the presynaptic signal. Furthermore, we show that disrupting the intracellular Ca(2+) stores in the ORNs has functional consequences since InsP(3)R- or RyR-RNAi expressing flies were defective in olfactory behavior. Altogether, our results indicate that for long odor applications in Drosophila, the olfactory response depends on intracellular Ca(2+) stores within the axon terminals of the ORNs.
Collapse
Affiliation(s)
- Meena Sriti Murmu
- Imagerie Cérébrale Fonctionnelle et Comportements, Neurobiologie et Developpement (N&D), CNRS, UPR-3294, 1 Avenue de la Terrasse, Bâtiment 32, 91198, Gif-sur-Yvette, France
| | | | | |
Collapse
|
150
|
Feldt S, Bonifazi P, Cossart R. Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends Neurosci 2011; 34:225-36. [PMID: 21459463 DOI: 10.1016/j.tins.2011.02.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 02/25/2011] [Accepted: 02/28/2011] [Indexed: 01/21/2023]
Abstract
Structure-function studies of neuronal networks have recently benefited from considerable progress in different areas of investigation. Advances in molecular genetics and imaging have allowed for the dissection of neuronal connectivity with unprecedented detail whereas in vivo recordings are providing much needed clues as to how sensory, motor and cognitive function is encoded in neuronal firing. However, bridging the gap between the cellular and behavioral levels will ultimately require an understanding of the functional organization of the underlying neuronal circuits. One way to unravel the complexity of neuronal networks is to understand how their connectivity emerges during brain maturation. In this review, we will describe how graph theory provides experimentalists with novel concepts that can be used to describe and interpret these developing connectivity schemes.
Collapse
Affiliation(s)
- Sarah Feldt
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 901, Marseille, 13009, France
| | | | | |
Collapse
|