101
|
Seguí N, Mina LB, Lázaro C, Sanz-Pamplona R, Pons T, Navarro M, Bellido F, López-Doriga A, Valdés-Mas R, Pineda M, Guinó E, Vidal A, Soto JL, Caldés T, Durán M, Urioste M, Rueda D, Brunet J, Balbín M, Blay P, Iglesias S, Garré P, Lastra E, Sánchez-Heras AB, Valencia A, Moreno V, Pujana MÁ, Villanueva A, Blanco I, Capellá G, Surrallés J, Puente XS, Valle L. Germline Mutations in FAN1 Cause Hereditary Colorectal Cancer by Impairing DNA Repair. Gastroenterology 2015; 149:563-6. [PMID: 26052075 DOI: 10.1053/j.gastro.2015.05.056] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 04/28/2015] [Accepted: 05/28/2015] [Indexed: 12/02/2022]
Abstract
Identification of genes associated with hereditary cancers facilitates management of patients with family histories of cancer. We performed exome sequencing of DNA from 3 individuals from a family with colorectal cancer who met the Amsterdam criteria for risk of hereditary nonpolyposis colorectal cancer. These individuals had mismatch repair-proficient tumors and each carried nonsense variant in the FANCD2/FANCI-associated nuclease 1 gene (FAN1), which encodes a nuclease involved in DNA inter-strand cross-link repair. We sequenced FAN1 in 176 additional families with histories of colorectal cancer and performed in vitro functional analyses of the mutant forms of FAN1 identified. We detected FAN1 mutations in approximately 3% of families who met the Amsterdam criteria and had mismatch repair-proficient cancers with no previously associated mutations. These findings link colorectal cancer predisposition to the Fanconi anemia DNA repair pathway, supporting the connection between genome integrity and cancer risk.
Collapse
Affiliation(s)
- Nuria Seguí
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Leonardo B Mina
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Conxi Lázaro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Rebeca Sanz-Pamplona
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain
| | - Tirso Pons
- Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Matilde Navarro
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Fernando Bellido
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Adriana López-Doriga
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain
| | - Rafael Valdés-Mas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Marta Pineda
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Elisabet Guinó
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain
| | - August Vidal
- Department of Pathology, Bellvitge University Hospital, IDIBELL, Hospitalet de Llobregat, Spain
| | - José Luís Soto
- Molecular Genetics Laboratory, Elche University Hospital, Elche, Spain
| | - Trinidad Caldés
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Hospital Clínico San Carlos, Madrid, Spain
| | - Mercedes Durán
- Instituto de Biología y Genética Molecular, IBGM-UVA-CSIC, Valladolid, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Human Cancer Genetics Program, Spanish National Cancer Centre and Center for Biomedical Network Research on Rare Diseases, Madrid, Spain
| | - Daniel Rueda
- Molecular Biology Laboratory, 12 de Octubre University Hospital, Madrid, Spain
| | - Joan Brunet
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBGi, Girona, Spain
| | - Milagros Balbín
- Laboratorio de Oncología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Pilar Blay
- Familial Cancer Unit, Department of Medical Oncology, Instituto Universitario de Oncología del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Silvia Iglesias
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Pilar Garré
- Laboratorio de Oncología Molecular, Servicio de Oncología Médica, Hospital Clínico San Carlos, Madrid, Spain
| | - Enrique Lastra
- Department of Oncology, Hospital General Yagüe, Burgos, Spain
| | | | - Alfonso Valencia
- Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Victor Moreno
- Unit of Biomarkers and Susceptibility, Catalan Institute of Oncology, IDIBELL and CIBERESP, Hospitalet de Llobregat, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Miguel Ángel Pujana
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Alberto Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Ignacio Blanco
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Gabriel Capellá
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, and Center for Biomedical Network Research on Rare Diseases (CIBERER), Barcelona, Spain
| | - Xose S Puente
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Laura Valle
- Hereditary Cancer Program, Catalan Institute of Oncology, IDIBELL, Hospitalet de Llobregat, Spain.
| |
Collapse
|
102
|
Abstract
Fanconi anemia (FA) is a rare recessive genetic disease characterized by congenital abnormalities, bone marrow failure and heightened cancer susceptibility in early adulthood. FA is caused by biallelic germ-line mutation of any one of 16 genes. While several functions for the FA proteins have been ascribed, the prevailing hypothesis is that the FA proteins function cooperatively in the FA-BRCA pathway to repair damaged DNA. A pivotal step in the activation of the FA-BRCA pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Despite their importance for DNA repair, the domain structure, regulation, and function of FANCD2 and FANCI remain poorly understood. In this review, we provide an overview of our current understanding of FANCD2 and FANCI, with an emphasis on their posttranslational modification and common and unique functions.
Collapse
Key Words
- AML , acute myeloid leukemia
- APC/C, anaphase-promoting complex/cyclosome
- APH, aphidicolin
- ARM, armadillo repeat domain
- AT, ataxia-telangiectasia
- ATM, ataxia-telangiectasia mutated
- ATR, ATM and Rad3-related
- BAC, bacterial-artificial-chromosome
- BS, Bloom syndrome
- CUE, coupling of ubiquitin conjugation to endoplasmic reticulum degradation
- ChIP-seq, CHIP sequencing
- CtBP, C-terminal binding protein
- CtIP, CtBP-interacting protein
- DNA interstrand crosslink repair
- DNA repair
- EPS15, epidermal growth factor receptor pathway substrate 15
- FA, Fanconi anemia
- FAN1, FANCD2-associated nuclease1
- FANCD2
- FANCI
- FISH, fluorescence in situ hybridization
- Fanconi anemia
- HECT, homologous to E6-AP Carboxy Terminus
- HJ, Holliday junction
- HR, homologous recombination
- MCM2-MCM7, minichromosome maintenance 2–7
- MEFs, mouse embryonic fibroblasts
- MMC, mitomycin C
- MRN, MRE11/RAD50/NBS1
- NLS, nuclear localization signal
- PCNA, proliferating cell nuclear antigen
- PIKK, phosphatidylinositol-3-OH-kinase-like family of protein kinases
- PIP-box, PCNA-interacting protein motif
- POL κ, DNA polymerase κ
- RACE, rapid amplification of cDNA ends
- RING, really interesting new gene
- RTK, receptor tyrosine kinase
- SCF, Skp1/Cullin/F-box protein complex
- SCKL1, seckel syndrome
- SILAC, stable isotope labeling with amino acids in cell culture
- SLD1/SLD2, SUMO-like domains
- SLIM, SUMO-like domain interacting motif
- TIP60, 60 kDa Tat-interactive protein
- TLS, Translesion DNA synthesis
- UAF1, USP1-associated factor 1
- UBD, ubiquitin-binding domain
- UBZ, ubiquitin-binding zinc finger
- UFB, ultra-fine DNA bridges
- UIM, ubiquitin-interacting motif
- ULD, ubiquitin-like domain
- USP1, ubiquitin-specific protease 1
- VRR-nuc, virus-type replication repair nuclease
- iPOND, isolation of proteins on nascent DNA
- ubiquitin
Collapse
Affiliation(s)
- Rebecca A Boisvert
- a Department of Cell and Molecular Biology ; University of Rhode Island ; Kingston , RI USA
| | | |
Collapse
|
103
|
Bogliolo M, Surrallés J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev 2015; 33:32-40. [PMID: 26254775 DOI: 10.1016/j.gde.2015.07.002] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 07/19/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Fanconi anemia (FA) is characterized by bone marrow failure, malformations, and chromosome fragility. We review the recent discovery of FA genes and efforts to develop genetic therapies for FA in the last five years. Because current data exclude FANCM as an FA gene, 15 genes remain bona fide FA genes and three (FANCO, FANCR and FANCS) cause an FA like syndrome. Monoallelic mutations in 6 FA associated genes (FANCD1, FANCJ, FANCM, FANCN, FANCO and FANCS) predispose to breast and ovarian cancer. The products of all these genes are involved in the repair of stalled DNA replication forks by unhooking DNA interstrand cross-links and promoting homologous recombination. The genetic characterization of patients with FA is essential for developing therapies, including hematopoietic stem cell transplantation from a savior sibling donor after embryo selection, gene therapy, or genome editing using genetic recombination or engineered nucleases. Newly acquired knowledge about FA promises to provide therapeutic strategies in the near future.
Collapse
Affiliation(s)
- Massimo Bogliolo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain
| | - Jordi Surrallés
- Genome Instability and DNA Repair Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Spain.
| |
Collapse
|
104
|
Pizzolato J, Mukherjee S, Schärer OD, Jiricny J. FANCD2-associated nuclease 1, but not exonuclease 1 or flap endonuclease 1, is able to unhook DNA interstrand cross-links in vitro. J Biol Chem 2015. [PMID: 26221031 DOI: 10.1074/jbc.m115.663666] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cisplatin and its derivatives, nitrogen mustards and mitomycin C, are used widely in cancer chemotherapy. Their efficacy is linked primarily to their ability to generate DNA interstrand cross-links (ICLs), which effectively block the progression of transcription and replication machineries. Release of this block, referred to as unhooking, has been postulated to require endonucleases that incise one strand of the duplex on either side of the ICL. Here we investigated how the 5' flap nucleases FANCD2-associated nuclease 1 (FAN1), exonuclease 1 (EXO1), and flap endonuclease 1 (FEN1) process a substrate reminiscent of a replication fork arrested at an ICL. We now show that EXO1 and FEN1 cleaved the substrate at the boundary between the single-stranded 5' flap and the duplex, whereas FAN1 incised it three to four nucleotides in the double-stranded region. This affected the outcome of processing of a substrate containing a nitrogen mustard-like ICL two nucleotides in the duplex region because FAN1, unlike EXO1 and FEN1, incised the substrate predominantly beyond the ICL and, therefore, failed to release the 5' flap. We also show that FAN1 was able to degrade a linear ICL substrate. This ability of FAN1 to traverse ICLs in DNA could help to elucidate its biological function, which is currently unknown.
Collapse
Affiliation(s)
- Julia Pizzolato
- From the Institute of Molecular Cancer Research, University of Zurich and
| | | | - Orlando D Schärer
- the Departments of Chemistry and Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-3400
| | - Josef Jiricny
- From the Institute of Molecular Cancer Research, University of Zurich and the Department of Biology, Swiss Institute of Technology (ETH) Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland, and
| |
Collapse
|
105
|
Molina B, Marchetti F, Gómez L, Ramos S, Torres L, Ortiz R, Altamirano-Lozano M, Carnevale A, Frias S. Hydroxyurea induces chromosomal damage in G2 and enhances the clastogenic effect of mitomycin C in Fanconi anemia cells. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:457-467. [PMID: 25663157 DOI: 10.1002/em.21938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Fanconi's anemia (FA) is a recessive disease; 16 genes are currently recognized in FA. FA proteins participate in the FA/BRCA pathway that plays a crucial role in the repair of DNA damage induced by crosslinking compounds. Hydroxyurea (HU) is an agent that induces replicative stress by inhibiting ribonucleotide reductase (RNR), which synthesizes deoxyribonucleotide triphosphates (dNTPs) necessary for DNA replication and repair. HU is known to activate the FA pathway; however, its clastogenic effects are not well characterized. We have investigated the effects of HU treatment alone or in sequential combination with mitomycin-C (MMC) on FA patient-derived lymphoblastoid cell lines from groups FA-A, B, C, D1/BRCA2, and E and on lymphocytes from two unclassified FA patients. All FA cells showed a significant increase (P < 0.05) in chromosomal aberrations following treatment with HU during the last 3 h before mitosis. Furthermore, when FA cells previously exposed to MMC were treated with HU, we observed an increase of MMC-induced DNA damage that was characterized by high occurrence of DNA breaks and a reduction in rejoined chromosomal aberrations. These findings show that exposure to HU during G2 induces chromosomal aberrations by a mechanism that is independent of its well-known role in replication fork stalling during S-phase and that HU interfered mainly with the rejoining process of DNA damage. We suggest that impaired oxidative stress response, lack of an adequate amount of dNTPs for DNA repair due to RNR inhibition, and interference with cell cycle control checkpoints underlie the clastogenic activity of HU in FA cells. Environ. Mol. Mutagen. 56:457-467, 2015. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bertha Molina
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
| | | | - Laura Gómez
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
| | - Sandra Ramos
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
| | - Leda Torres
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
| | - Rocio Ortiz
- Laboratorio de Citometría de Flujo, Universidad Autónoma Metropolitana, Iztapalapa, Mexico
| | | | - Alessandra Carnevale
- Subdirección de Genómica Poblacional, Instituto Nacional de Medicina Genómica, México
| | - Sara Frias
- Laboratorio de Citogenética, Instituto Nacional de Pediatría, México
- Departamento de Medicina, Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, México
| |
Collapse
|
106
|
Räschle M, Smeenk G, Hansen RK, Temu T, Oka Y, Hein MY, Nagaraj N, Long DT, Walter JC, Hofmann K, Storchova Z, Cox J, Bekker-Jensen S, Mailand N, Mann M. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science 2015; 348:1253671. [PMID: 25931565 DOI: 10.1126/science.1253671] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 03/19/2015] [Indexed: 12/15/2022]
Abstract
DNA interstrand cross-links (ICLs) block replication fork progression by inhibiting DNA strand separation. Repair of ICLs requires sequential incisions, translesion DNA synthesis, and homologous recombination, but the full set of factors involved in these transactions remains unknown. We devised a technique called chromatin mass spectrometry (CHROMASS) to study protein recruitment dynamics during perturbed DNA replication in Xenopus egg extracts. Using CHROMASS, we systematically monitored protein assembly and disassembly on ICL-containing chromatin. Among numerous prospective DNA repair factors, we identified SLF1 and SLF2, which form a complex with RAD18 and together define a pathway that suppresses genome instability by recruiting the SMC5/6 cohesion complex to DNA lesions. Our study provides a global analysis of an entire DNA repair pathway and reveals the mechanism of SMC5/6 relocalization to damaged DNA in vertebrate cells.
Collapse
Affiliation(s)
- Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Godelieve Smeenk
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Rebecca K Hansen
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Tikira Temu
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Yasuyoshi Oka
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - David T Long
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Howard Hughes Medical Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kay Hofmann
- Institute of Genetics, University of Cologne, 50674 Cologne, Germany
| | - Zuzana Storchova
- Maintenance of Genome Stability Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jürgen Cox
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Simon Bekker-Jensen
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Niels Mailand
- Ubiquitin Signaling Group, Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany. Novo Nordisk Foundation Center for Protein Research, Proteomics Program, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
107
|
Takahashi D, Sato K, Hirayama E, Takata M, Kurumizaka H. Human FAN1 promotes strand incision in 5'-flapped DNA complexed with RPA. J Biochem 2015; 158:263-70. [PMID: 25922199 DOI: 10.1093/jb/mvv043] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/09/2015] [Indexed: 12/21/2022] Open
Abstract
Fanconi anaemia (FA) is a human infantile recessive disorder. Seventeen FA causal proteins cooperatively function in the DNA interstrand crosslink (ICL) repair pathway. Dual DNA strand incisions around the crosslink are critical steps in ICL repair. FA-associated nuclease 1 (FAN1) is a DNA structure-specific endonuclease that is considered to be involved in DNA incision at the stalled replication fork. Replication protein A (RPA) rapidly assembles on the single-stranded DNA region of the stalled fork. However, the effect of RPA on the FAN1-mediated DNA incision has not been determined. In this study, we purified human FAN1, as a bacterially expressed recombinant protein. FAN1 exhibited robust endonuclease activity with 5'-flapped DNA, which is formed at the stalled replication fork. We found that FAN1 efficiently promoted DNA incision at the proper site of RPA-coated 5'-flapped DNA. Therefore, FAN1 possesses the ability to promote the ICL repair of 5'-flapped DNA covered by RPA.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Emiko Hirayama
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Yoshida-konoe, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan and
| |
Collapse
|
108
|
Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol 2015; 5:150018. [PMID: 25833379 PMCID: PMC4422126 DOI: 10.1098/rsob.150018] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.
Collapse
Affiliation(s)
- Jessica S Brown
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
109
|
Toma A, Takahashi TS, Sato Y, Yamagata A, Goto-Ito S, Nakada S, Fukuto A, Horikoshi Y, Tashiro S, Fukai S. Structural basis for ubiquitin recognition by ubiquitin-binding zinc finger of FAAP20. PLoS One 2015; 10:e0120887. [PMID: 25799058 PMCID: PMC4370504 DOI: 10.1371/journal.pone.0120887] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/26/2015] [Indexed: 02/07/2023] Open
Abstract
Several ubiquitin-binding zinc fingers (UBZs) have been reported to preferentially bind K63-linked ubiquitin chains. In particular, the UBZ domain of FAAP20 (FAAP20-UBZ), a member of the Fanconi anemia core complex, seems to recognize K63-linked ubiquitin chains, in order to recruit the complex to DNA interstrand crosslinks and mediate DNA repair. By contrast, it is reported that the attachment of a single ubiquitin to Rev1, a translesion DNA polymerase, increases binding of Rev1 to FAAP20. To clarify the specificity of FAAP20-UBZ, we determined the crystal structure of FAAP20-UBZ in complex with K63-linked diubiquitin at 1.9 Å resolution. In this structure, FAAP20-UBZ interacts only with one of the two ubiquitin moieties. Consistently, binding assays using surface plasmon resonance spectrometry showed that FAAP20-UBZ binds ubiquitin and M1-, K48- and K63-linked diubiquitin chains with similar affinities. Residues in the vicinity of Ala168 within the α-helix and the C-terminal Trp180 interact with the canonical Ile44-centered hydrophobic patch of ubiquitin. Asp164 within the α-helix and the C-terminal loop mediate a hydrogen bond network, which reinforces ubiquitin-binding of FAAP20-UBZ. Mutations of the ubiquitin-interacting residues disrupted binding to ubiquitin in vitro and abolished the accumulation of FAAP20 to DNA damage sites in vivo. Finally, structural comparison among FAAP20-UBZ, WRNIP1-UBZ and RAD18-UBZ revealed distinct modes of ubiquitin binding. UBZ family proteins could be divided into at least three classes, according to their ubiquitin-binding modes.
Collapse
Affiliation(s)
- Aya Toma
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8501, Japan
| | - Tomio S. Takahashi
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yusuke Sato
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8501, Japan
| | - Atsushi Yamagata
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8501, Japan
| | - Sakurako Goto-Ito
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8501, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Atsuhiko Fukuto
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Yasunori Horikoshi
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Satoshi Tashiro
- Department of Cellular Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Shuya Fukai
- Structural Biology Laboratory, Life Science Division, Synchrotron Radiation Research Organization and Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8501, Japan
- * E-mail:
| |
Collapse
|
110
|
Herrmann NJ, Knoll A, Puchta H. The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81. Nucleic Acids Res 2015; 43:3653-66. [PMID: 25779053 PMCID: PMC4402529 DOI: 10.1093/nar/gkv208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/01/2015] [Indexed: 01/06/2023] Open
Abstract
Fanconi anemia is a severe genetic disorder. Mutations in one of several genes lead to defects in DNA crosslink (CL) repair in human cells. An essential step in CL repair is the activation of the pathway by the monoubiquitination of the heterodimer FANCD2/FANCI, which recruits the nuclease FAN1 to the CL site. Surprisingly, FAN1 function is not conserved between different eukaryotes. No FAN1 homolog is present in Drosophila and Saccharomyces cerevisiae. The FAN1 homolog in Schizosaccharomyces pombe is involved in CL repair; a homolog is present in Xenopus but is not involved in CL repair. Here we show that a FAN1 homolog is present in plants and it is involved in CL repair in Arabidopsis thaliana. Both the virus-type replication-repair nuclease and the ubiquitin-binding ubiquitin-binding zinc finger domains are essential for this function. FAN1 likely acts upstream of two sub-pathways of CL repair. These pathways are defined by the Bloom syndrome homolog RECQ4A and the ATPase RAD5A, which is involved in error-free post-replicative repair. Mutations in both FAN1 and the endonuclease MUS81 resulted in greater sensitivity against CLs than in the respective single mutants. These results indicate that the two nucleases define two independent pathways of CL repair in plants.
Collapse
Affiliation(s)
- Natalie J Herrmann
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| |
Collapse
|
111
|
Rees JS, Lilley KS, Jackson AP. SILAC-iPAC: a quantitative method for distinguishing genuine from non-specific components of protein complexes by parallel affinity capture. J Proteomics 2014; 115:143-56. [PMID: 25534881 PMCID: PMC4329988 DOI: 10.1016/j.jprot.2014.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/28/2014] [Accepted: 12/11/2014] [Indexed: 01/17/2023]
Abstract
Pull-down assays can identify members of protein complexes but suffer from co-isolation of contaminants. The problem is particularly acute when the specifically interacting partners are of low-abundance and/or bind transiently with low affinity. To differentiate true interacting partners from contaminants, we have combined SILAC labelling with a proteomic method called “Interactomes by Parallel Affinity Capture” (iPAC). In our method, a cell-line stably expressing a doubly tagged target endogenous protein and its tag-less control cell-line are differentially SILAC labelled. Lysates from the two cell-lines are mixed and the tagged protein is independently purified for MS analysis using multiple affinity resins in parallel. This allows the quantitative identification of tagged proteins and their binding partners. SILAC–iPAC provides a rigorous and sensitive approach that can discriminate between genuine binding partners and contaminants, even when the contaminants in the pull-down are in large excess. We employed our method to examine the interacting partners of phosphatidyl inositol 5-phosphate 4-kinase 2β subunit (PI5P4K2β) and the Fanconi anaemia core complex in the chicken pre-B cell-line DT40. We confirmed known components of these two complexes, and we have identified new potential binding partners. Combining the iPAC approach with SILAC labelling provides a sensitive and fully quantitative method for the discrimination of specific interactions under conditions where low signal to noise ratios are unavoidable. In addition, our work provides the first characterisation of the most abundant proteins within the DT40 proteome and the non-specific DT40 ‘beadomes’ (non-specific proteins binding to beads) for common epitope tags. Given the importance and widespread use of the DT40 cell-line, these will be important resources for the cell biology and immunology communities. Biological significance SILAC–iPAC provides an improved method for the analysis of low-affinity and/or low abundance protein-protein interactions. We use it to clarify two examples where the nature of the protein complexes are known, or are currently unclear. The method is simple and quantitative and will be applicable to many problems in cell and molecular biology. We also report the first chicken beadomes. SILAC–iPAC; an improved AP-MS method to quantitatively detect low abundance proteins RUVBL1 and its partner RUVBL2 are novel interactors of the Fanconi anaemia complex. First characterisation of chicken DT40 beadomes using four common epitope tags
Collapse
Affiliation(s)
- Johanna S Rees
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK; Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QR, UK.
| | - Kathryn S Lilley
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge CB2 1QR, UK
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK.
| |
Collapse
|
112
|
Wang R, Persky NS, Yoo B, Ouerfelli O, Smogorzewska A, Elledge SJ, Pavletich NP. DNA repair. Mechanism of DNA interstrand cross-link processing by repair nuclease FAN1. Science 2014; 346:1127-30. [PMID: 25430771 DOI: 10.1126/science.1258973] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA interstrand cross-links (ICLs) are highly toxic lesions associated with cancer and degenerative diseases. ICLs can be repaired by the Fanconi anemia (FA) pathway and through FA-independent processes involving the FAN1 nuclease. In this work, FAN1-DNA crystal structures and biochemical data reveal that human FAN1 cleaves DNA successively at every third nucleotide. In vitro, this exonuclease mechanism allows FAN1 to excise an ICL from one strand through flanking incisions. DNA access requires a 5'-terminal phosphate anchor at a nick or a 1- or 2-nucleotide flap and is augmented by a 3' flap, suggesting that FAN1 action is coupled to DNA synthesis or recombination. FAN1's mechanism of ICL excision is well suited for processing other localized DNA adducts as well.
Collapse
Affiliation(s)
- Renjing Wang
- Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Nicole S Persky
- Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Barney Yoo
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, The Rockefeller University, New York, NY 10065, USA
| | - Stephen J Elledge
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA. Division of Genetics, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Nikola P Pavletich
- Structural Biology Program and Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
113
|
Gwon GH, Kim Y, Liu Y, Watson AT, Jo A, Etheridge TJ, Yuan F, Zhang Y, Kim Y, Carr AM, Cho Y. Crystal structure of a Fanconi anemia-associated nuclease homolog bound to 5' flap DNA: basis of interstrand cross-link repair by FAN1. Genes Dev 2014; 28:2276-90. [PMID: 25319828 PMCID: PMC4201288 DOI: 10.1101/gad.248492.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in FA genes responsible for processing DNA interstrand cross-links (ICLs). FA-associated nuclease (FAN1) is recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, Gwon et al. determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5′ flap DNA. The PaFAN1 structure provides insights into how FAN1 integrates with the FA complex to participate in ICL repair. Fanconi anemia (FA) is an autosomal recessive genetic disorder caused by defects in any of 15 FA genes responsible for processing DNA interstrand cross-links (ICLs). The ultimate outcome of the FA pathway is resolution of cross-links, which requires structure-selective nucleases. FA-associated nuclease 1 (FAN1) is believed to be recruited to lesions by a monoubiquitinated FANCI–FANCD2 (ID) complex and participates in ICL repair. Here, we determined the crystal structure of Pseudomonas aeruginosa FAN1 (PaFAN1) lacking the UBZ (ubiquitin-binding zinc) domain in complex with 5′ flap DNA. All four domains of the right-hand-shaped PaFAN1 are involved in DNA recognition, with each domain playing a specific role in bending DNA at the nick. The six-helix bundle that binds the junction connects to the catalytic viral replication and repair (VRR) nuclease (VRR nuc) domain, enabling FAN1 to incise the scissile phosphate a few bases distant from the junction. The six-helix bundle also inhibits the cleavage of intact Holliday junctions. PaFAN1 shares several conserved features with other flap structure-selective nucleases despite structural differences. A clamping motion of the domains around the wedge helix, which acts as a pivot, facilitates nucleolytic cleavage. The PaFAN1 structure provides insights into how archaeal Holliday junction resolvases evolved to incise 5′ flap substrates and how FAN1 integrates with the FA complex to participate in ICL repair.
Collapse
Affiliation(s)
- Gwang Hyeon Gwon
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Youngran Kim
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Yaqi Liu
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Adam T Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Aera Jo
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Thomas J Etheridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Fenghua Yuan
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | - YoungChang Kim
- Biosciences Division, Structural Biology Center, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Anthony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9RQ, United Kingdom
| | - Yunje Cho
- Department of Life Science, Pohang University of Science and Technology, Pohang 790-784, South Korea;
| |
Collapse
|
114
|
Zhao Q, Xue X, Longerich S, Sung P, Xiong Y. Structural insights into 5' flap DNA unwinding and incision by the human FAN1 dimer. Nat Commun 2014; 5:5726. [PMID: 25500724 PMCID: PMC4268874 DOI: 10.1038/ncomms6726] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/30/2014] [Indexed: 12/01/2022] Open
Abstract
Human FANCD2-associated nuclease 1 (FAN1) is a DNA structure-specific nuclease involved in the processing of DNA interstrand crosslinks (ICLs). FAN1 maintains genomic stability and prevents tissue decline in multiple organs, yet it confers ICL-induced anti-cancer drug resistance in several cancer subtypes. Here we report three crystal structures of human FAN1 in complex with a 5′ flap DNA substrate, showing that two FAN1 molecules form a head-to-tail dimer to locate the lesion, orient the DNA and unwind a 5′ flap for subsequent incision. Biochemical experiments further validate our model for FAN1 action, as structure-informed mutations that disrupt protein dimerization, substrate orientation or flap unwinding impair the structure-specific nuclease activity. Our work elucidates essential aspects of FAN1-DNA lesion recognition and a unique mechanism of incision. These structural insights shed light on the cellular mechanisms underlying organ degeneration protection and cancer drug resistance mediated by FAN1. FAN1 is a structure-specific nuclease that plays a major role in eliminating highly cytotoxic interstrand DNA crosslinks. Here, Zhao et al. present several crystal structures of FAN1 in complex with DNA substrates and biochemical analyses that establish how FAN1 functions to resolve interstrand DNA crosslinks.![]()
Collapse
Affiliation(s)
- Qi Zhao
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Simonne Longerich
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
115
|
Sato K, Ishiai M, Takata M, Kurumizaka H. Defective FANCI binding by a fanconi anemia-related FANCD2 mutant. PLoS One 2014; 9:e114752. [PMID: 25489943 PMCID: PMC4260917 DOI: 10.1371/journal.pone.0114752] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/13/2014] [Indexed: 12/24/2022] Open
Abstract
FANCD2 is a product of one of the genes associated with Fanconi anemia (FA), a rare recessive disease characterized by bone marrow failure, skeletal malformations, developmental defects, and cancer predisposition. FANCD2 forms a complex with FANCI (ID complex) and is monoubiquitinated, which facilitates the downstream interstrand crosslink (ICL) repair steps, such as ICL unhooking and nucleolytic end resection. In the present study, we focused on the chicken FANCD2 (cFANCD2) mutant harboring the Leu234 to Arg (L234R) substitution. cFANCD2 L234R corresponds to the human FANCD2 L231R mutation identified in an FA patient. We found that cFANCD2 L234R did not complement the defective ICL repair in FANCD2−/− DT40 cells. Purified cFANCD2 L234R did not bind to chicken FANCI, and its monoubiquitination was significantly deficient, probably due to the abnormal ID complex formation. In addition, the histone chaperone activity of cFANCD2 L234R was also defective. These findings may explain some aspects of Fanconi anemia pathogenesis by a FANCD2 missense mutation.
Collapse
Affiliation(s)
- Koichi Sato
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
116
|
Munoz IM, Szyniarowski P, Toth R, Rouse J, Lachaud C. Improved genome editing in human cell lines using the CRISPR method. PLoS One 2014; 9:e109752. [PMID: 25303670 PMCID: PMC4193831 DOI: 10.1371/journal.pone.0109752] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/09/2014] [Indexed: 12/26/2022] Open
Abstract
The Cas9/CRISPR system has become a popular choice for genome editing. In this system, binding of a single guide (sg) RNA to a cognate genomic sequence enables the Cas9 nuclease to induce a double-strand break at that locus. This break is next repaired by an error-prone mechanism, leading to mutation and gene disruption. In this study we describe a range of refinements of the method, including stable cell lines expressing Cas9, and a PCR based protocol for the generation of the sgRNA. We also describe a simple methodology that allows both elimination of Cas9 from cells after gene disruption and re-introduction of the disrupted gene. This advance enables easy assessment of the off target effects associated with gene disruption, as well as phenotype-based structure-function analysis. In our study, we used the Fan1 DNA repair gene as control in these experiments. Cas9/CRISPR-mediated Fan1 disruption occurred at frequencies of around 29%, and resulted in the anticipated spectrum of genotoxin hypersensitivity, which was rescued by re-introduction of Fan1.
Collapse
Affiliation(s)
- Ivan M. Munoz
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Piotr Szyniarowski
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Rachel Toth
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - John Rouse
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| | - Christophe Lachaud
- Medical Research Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
| |
Collapse
|
117
|
Osakabe A, Takahashi Y, Murakami H, Otawa K, Tachiwana H, Oma Y, Nishijima H, Shibahara KI, Kurumizaka H, Harata M. DNA binding properties of the actin-related protein Arp8 and its role in DNA repair. PLoS One 2014; 9:e108354. [PMID: 25299602 PMCID: PMC4191963 DOI: 10.1371/journal.pone.0108354] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 08/26/2014] [Indexed: 12/05/2022] Open
Abstract
Actin and actin-related proteins (Arps), which are members of the actin family, are essential components of many of these remodeling complexes. Actin, Arp4, Arp5, and Arp8 are found to be evolutionarily conserved components of the INO80 chromatin remodeling complex, which is involved in transcriptional regulation, DNA replication, and DNA repair. A recent report showed that Arp8 forms a module in the INO80 complex and this module can directly capture a nucleosome. In the present study, we showed that recombinant human Arp8 binds to DNAs, and preferentially binds to single-stranded DNA. Analysis of the binding of adenine nucleotides to Arp8 mutants suggested that the ATP-binding pocket, located in the evolutionarily conserved actin fold, plays a regulatory role in the binding of Arp8 to DNA. To determine the cellular function of Arp8, we derived tetracycline-inducible Arp8 knockout cells from a cultured human cell line. Analysis of results obtained after treating these cells with aphidicolin and camptothecin revealed that Arp8 is involved in DNA repair. Together with the previous observation that Arp8, but not γ-H2AX, is indispensable for recruiting INO80 complex to DSB in human, results of our study suggest an individual role for Arp8 in DNA repair.
Collapse
Affiliation(s)
- Akihisa Osakabe
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yuichiro Takahashi
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hirokazu Murakami
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kenji Otawa
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroaki Tachiwana
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yukako Oma
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hitoshi Nishijima
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Kei-ich Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- * E-mail: (HK); (MH)
| | - Masahiko Harata
- Laboratory of Molecular Biology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- * E-mail: (HK); (MH)
| |
Collapse
|
118
|
Zhu B, Yan K, Li L, Lin M, Zhang S, He Q, Zheng D, Yang H, Shao G. K63-linked ubiquitination of FANCG is required for its association with the Rap80-BRCA1 complex to modulate homologous recombination repair of DNA interstand crosslinks. Oncogene 2014; 34:2867-78. [PMID: 25132264 DOI: 10.1038/onc.2014.229] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/21/2014] [Accepted: 06/23/2014] [Indexed: 11/09/2022]
Abstract
DNA interstrand crosslinks (ICLs) are extremely deleterious lesions that are repaired by homologous recombination (HR) through coordination of Fanconi anemia (FA) proteins and breast cancer susceptibility gene 1 (BRCA1) product, but the exact role these proteins have remains unclear. Here we report that FANCG was modified by the addition of lysine63-linked polyubiquitin chains (K63Ub) in response to DNA damage. We show that FANCG K63Ub was dispensable for monoubiquitination of FANCD2, but was required for FANCG to interact with the Rap80-BRCA1 (receptor-associated protein 80-BRCA1) complex for subsequent modulation of HR repair of ICLs induced by mitomycin C. Mutation of three lysine residues within FANCG to arginine (K182, K258 and K347, 3KR) reduced FANCG K63Ub modification, as well as its interaction with the Rap80-BRCA1 complex, and therefore impeded HR repair. In addition, we demonstrated that K63Ub-modified FANCG was deubiquitinated by BRCC36 complex in vitro and in vivo. Inhibition of BRCC36 resulted in increased K63Ub modification of FANCG. Taken together, our results identify a new role of FANCG in HR repair of ICL through K63Ub-mediated interaction with the Rap80-BRCA1 complex.
Collapse
Affiliation(s)
- B Zhu
- 1] Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China [2] Institute of Systems Biology, Peking University, Beijing, China
| | - K Yan
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - L Li
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - M Lin
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - S Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Q He
- Center of Medical and Health Analysis, Peking University, Beijing, China
| | - D Zheng
- School of Medicine, Shenzhen University, Shenzhen, Guangdong, China
| | - H Yang
- Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - G Shao
- 1] Department of Cell Biology, School of Basic Medical Sciences, Peking University, Beijing, China [2] Institute of Systems Biology, Peking University, Beijing, China
| |
Collapse
|
119
|
FANCD2-controlled chromatin access of the Fanconi-associated nuclease FAN1 is crucial for the recovery of stalled replication forks. Mol Cell Biol 2014; 34:3939-54. [PMID: 25135477 DOI: 10.1128/mcb.00457-14] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is a cancer predisposition syndrome characterized by cellular hypersensitivity to DNA interstrand cross-links (ICLs). Within the FA pathway, an upstream core complex monoubiquitinates and recruits the FANCD2 protein to ICLs on chromatin. Ensuing DNA repair involves the Fanconi-associated nuclease 1 (FAN1), which interacts selectively with monoubiquitinated FANCD2 (FANCD2(Ub)) at ICLs. Importantly, FANCD2 has additional independent functions: it binds chromatin and coordinates the restart of aphidicolin (APH)-stalled replication forks in concert with the BLM helicase, while protecting forks from nucleolytic degradation by MRE11. We identified FAN1 as a new crucial replication fork recovery factor. FAN1 joins the BLM-FANCD2 complex following APH-mediated fork stalling in a manner dependent on MRE11 and FANCD2, followed by FAN1 nuclease-mediated fork restart. Surprisingly, APH-induced activation and chromatin recruitment of FAN1 occur independently of the FA core complex or the FAN1 UBZ domain, indicating that the FANCD2(Ub) isoform is dispensable for functional FANCD2-FAN1 cross talk during stalled fork recovery. In the absence of FANCD2, MRE11 exonuclease-promoted access of FAN1 to stalled forks results in severe FAN1-mediated nucleolytic degradation of nascent DNA strands. Thus, FAN1 nuclease activity at stalled replication forks requires tight regulation: too little inhibits fork restart, whereas too much causes fork degradation.
Collapse
|
120
|
Girard C, Crismani W, Froger N, Mazel J, Lemhemdi A, Horlow C, Mercier R. FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers. Nucleic Acids Res 2014; 42:9087-95. [PMID: 25038251 PMCID: PMC4132730 DOI: 10.1093/nar/gku614] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Genetic recombination is important for generating diversity and to ensure faithful segregation of chromosomes at meiosis. However, few crossovers (COs) are formed per meiosis despite an excess of DNA double-strand break precursors. This reflects the existence of active mechanisms that limit CO formation. We previously showed that AtFANCM is a meiotic anti-CO factor. The same genetic screen now identified AtMHF2 as another player of the same anti-CO pathway. FANCM and MHF2 are both Fanconi Anemia (FA) associated proteins, prompting us to test the other FA genes conserved in Arabidopsis for a role in CO control at meiosis. This revealed that among the FA proteins tested, only FANCM and its two DNA-binding co-factors MHF1 and MHF2 limit CO formation at meiosis.
Collapse
Affiliation(s)
- Chloe Girard
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Wayne Crismani
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Nicole Froger
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Julien Mazel
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Afef Lemhemdi
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Christine Horlow
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| | - Raphael Mercier
- INRA, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559,Saclay Plant Sciences, RD10, 78000 Versailles, France AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences,RD10, 78000 Versailles, France
| |
Collapse
|
121
|
Canaud G, Bonventre JV. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury. Nephrol Dial Transplant 2014; 30:575-83. [PMID: 25016609 DOI: 10.1093/ndt/gfu230] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
For several decades, acute kidney injury (AKI) was generally considered a reversible process leading to complete kidney recovery if the individual survived the acute illness. Recent evidence from epidemiologic studies and animal models, however, have highlighted that AKI can lead to the development of fibrosis and facilitate the progression of chronic renal failure. When kidney injury is mild and baseline function is normal, the repair process can be adaptive with few long-term consequences. When the injury is more severe, repeated, or to a kidney with underlying disease, the repair can be maladaptive and epithelial cell cycle arrest may play an important role in the development of fibrosis. Indeed, during the maladaptive repair after a renal insult, many tubular cells that are undergoing cell division spend a prolonged period in the G2/M phase of the cell cycle. These tubular cells recruit intracellular pathways leading to the synthesis and the secretion of profibrotic factors, which then act in a paracrine fashion on interstitial pericytes/fibroblasts to accelerate proliferation of these cells and production of interstitial matrix. Thus, the tubule cells assume a senescent secretory phenotype. Characteristic features of these cells may represent new biomarkers of fibrosis progression and the G2/M-arrested cells may represent a new therapeutic target to prevent, delay or arrest progression of chronic kidney disease. Here, we summarize recent advances in our understanding of the biology of the cell cycle and how cell cycle arrest links AKI to chronic kidney disease.
Collapse
Affiliation(s)
- Guillaume Canaud
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joseph V Bonventre
- Department of Medicine, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA Harvard Stem Cell Institute, Cambridge, MA, USA
| |
Collapse
|
122
|
Abstract
A critical step in DNA interstrand cross-link repair is the programmed collapse of replication forks that have stalled at an ICL. This event is regulated by the Fanconi anemia pathway, which suppresses bone marrow failure and cancer. In this perspective, we focus on the structure of forks that have stalled at ICLs, how these structures might be incised by endonucleases, and how incision is regulated by the Fanconi anemia pathway.
Collapse
Affiliation(s)
- Jieqiong Zhang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States; Howard Hughes Medical Institute.
| |
Collapse
|
123
|
Pennell S, Déclais AC, Li J, Haire LF, Berg W, Saldanha JW, Taylor IA, Rouse J, Lilley DMJ, Smerdon SJ. FAN1 activity on asymmetric repair intermediates is mediated by an atypical monomeric virus-type replication-repair nuclease domain. Cell Rep 2014; 8:84-93. [PMID: 24981866 PMCID: PMC4103454 DOI: 10.1016/j.celrep.2014.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/08/2014] [Accepted: 06/03/2014] [Indexed: 11/29/2022] Open
Abstract
FAN1 is a structure-selective DNA repair nuclease with 5' flap endonuclease activity, involved in the repair of interstrand DNA crosslinks. It is the only eukaryotic protein with a virus-type replication-repair nuclease ("VRR-Nuc") "module" that commonly occurs as a standalone domain in many bacteria and viruses. Crystal structures of three representatives show that they structurally resemble Holliday junction resolvases (HJRs), are dimeric in solution, and are able to cleave symmetric four-way junctions. In contrast, FAN1 orthologs are monomeric and cleave 5' flap structures in vitro, but not Holliday junctions. Modeling of the VRR-Nuc domain of FAN1 reveals that it has an insertion, which packs against the dimerization interface observed in the structures of the viral/bacterial VRR-Nuc proteins. We propose that these additional structural elements in FAN1 prevent dimerization and bias specificity toward flap structures.
Collapse
Affiliation(s)
- Simon Pennell
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK.
| | - Anne-Cécile Déclais
- CRUK Nucleic Acids Structure Research Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jiejin Li
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Lesley F Haire
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Wioletta Berg
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - José W Saldanha
- Division of Mathematical Biology, MRC National Institute for Medical Research, London NW7 1AA, UK
| | - Ian A Taylor
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - John Rouse
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - David M J Lilley
- CRUK Nucleic Acids Structure Research Group, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Stephen J Smerdon
- Division of Molecular Structure, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
124
|
Mattiroli F, Sixma TK. Lysine-targeting specificity in ubiquitin and ubiquitin-like modification pathways. Nat Struct Mol Biol 2014; 21:308-16. [PMID: 24699079 DOI: 10.1038/nsmb.2792] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/13/2014] [Indexed: 12/19/2022]
Abstract
Ubiquitin and ubiquitin-like modifications are central to virtually all cellular signaling pathways. They occur primarily on lysine residues of target proteins and stimulate a large number of downstream signals. The diversity of these signals depends on the type, location and dynamics of the modification, but the role of the exact site of modification and the selectivity for specific lysines are poorly understood. Here we review the current literature on lysine specificity in these modifications, and we highlight the known signaling mechanisms and the open questions that pose future challenges to ubiquitin research.
Collapse
Affiliation(s)
- Francesca Mattiroli
- 1] Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands. [2]
| | - Titia K Sixma
- Division of Biochemistry, Cancer Genomics Center, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
125
|
Sokratous K, Hadjisavvas A, Diamandis EP, Kyriacou K. The role of ubiquitin-binding domains in human pathophysiology. Crit Rev Clin Lab Sci 2014; 51:280-90. [PMID: 24901807 DOI: 10.3109/10408363.2014.915287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ubiquitination, a fundamental post-translational modification (PTM) resulting in the covalent attachment of ubiquitin (Ub) to a target protein, is currently implicated in several key cellular processes. Although ubiquitination was initially associated with protein degradation, it is becoming increasingly evident that proteins labeled with polyUb chains of specific topology and length are activated in an ever-expanding repertoire of specific cellular processes. In addition to their involvement in the classical protein degradation pathways they are involved in DNA repair, kinase regulation and nuclear factor-κB (NF-κB) signaling. The sorting and processing of distinct Ub signals is mediated by small protein motifs, known as Ub-binding domains (UBDs), which are found in proteins that execute disparate biological functions. The involvement of UBDs in several biological pathways has been revealed by several studies which have highlighted the vital role of UBDs in cellular homeostasis. Importantly, functional impairment of UBDs in key regulatory pathways has been related to the development of pathophysiological conditions, including immune disorders and cancer. In this review, we present an up-to-date account of the crucial role of UBDs and their functions, with a special emphasis on their functional impairment in key biological pathways and the pathogenesis of several human diseases. The still under-investigated topic of Ub-UBD interactions as a target for developing novel therapeutic strategies against many diseases is also discussed.
Collapse
|
126
|
Huang Y, Leung JWC, Lowery M, Matsushita N, Wang Y, Shen X, Huong D, Takata M, Chen J, Li L. Modularized functions of the Fanconi anemia core complex. Cell Rep 2014; 7:1849-57. [PMID: 24910428 DOI: 10.1016/j.celrep.2014.04.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 03/04/2014] [Accepted: 04/15/2014] [Indexed: 10/25/2022] Open
Abstract
The Fanconi anemia (FA) core complex provides the essential E3 ligase function for spatially defined FANCD2 ubiquitination and FA pathway activation. Of the seven FA gene products forming the core complex, FANCL possesses a RING domain with demonstrated E3 ligase activity. The other six components do not have clearly defined roles. Through epistasis analyses, we identify three functional modules in the FA core complex: a catalytic module consisting of FANCL, FANCB, and FAAP100 is absolutely required for the E3 ligase function, and the FANCA-FANCG-FAAP20 and the FANCC-FANCE-FANCF modules provide nonredundant and ancillary functions that help the catalytic module bind chromatin or sites of DNA damage. Disruption of the catalytic module causes complete loss of the core complex function, whereas loss of any ancillary module component does not. Our work reveals the roles of several FA gene products with previously undefined functions and a modularized assembly of the FA core complex.
Collapse
Affiliation(s)
- Yaling Huang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Justin W C Leung
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Megan Lowery
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nobuko Matsushita
- Laboratory of Molecular Biochemistry, School of Life Science, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Yucai Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Do Huong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effect Studies, Radiation Biology Center, Kyoto University, Kyoto 606-8501, Japan
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
127
|
Li J, Pang Q. Oxidative stress-associated protein tyrosine kinases and phosphatases in Fanconi anemia. Antioxid Redox Signal 2014; 20:2290-301. [PMID: 24206276 PMCID: PMC3995293 DOI: 10.1089/ars.2013.5715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Fanconi anemia (FA) is a genetic disorder featuring chromosomal instability, developmental defects, progressive bone marrow failure, and predisposition to cancer. Besides the predominant role in DNA damage response and/or repair, many studies have linked FA proteins to oxidative stress. Oxidative stress, defined as imbalance in pro-oxidant and antioxidant homeostasis, has been considered to contribute to disease development, including FA. RECENT ADVANCES A variety of signaling pathways may be influenced by oxidative stress, particularly the equilibrium between protein kinases and phosphatases, consequently leading to an aberrant phosphorylation state of cellular proteins. Dysfunction of kinases/phosphatases has been implicated in the pathophysiology of human diseases. In FA, evidence is emerging that links abnormal phosphorylation/de-phosphorylation of signaling molecules to clinical complications and malformations. CRITICAL ISSUES In this study, we review the recent findings on the oxidative stress-related kinases and phosphatases, particularly tyrosine phosphatases in FA. FUTURE DIRECTIONS Understanding the role of oxidative stress-related kinases and phosphatases in FA may provide unique and generic possibilities for the future development of therapeutic strategies by targeting the dysregulated protein kinases and phosphatases in a clinical setting.
Collapse
Affiliation(s)
- Jie Li
- 1 Division of Neurosurgery, Center for Theoretic and Applied Neuro-Oncology, Moores Cancer Center, University of California , San Diego, La Jolla, California
| | | |
Collapse
|
128
|
Hodskinson MRG, Silhan J, Crossan GP, Garaycoechea JI, Mukherjee S, Johnson CM, Schärer OD, Patel KJ. Mouse SLX4 is a tumor suppressor that stimulates the activity of the nuclease XPF-ERCC1 in DNA crosslink repair. Mol Cell 2014; 54:472-84. [PMID: 24726326 PMCID: PMC4017094 DOI: 10.1016/j.molcel.2014.03.014] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/21/2014] [Accepted: 02/28/2014] [Indexed: 11/18/2022]
Abstract
SLX4 binds to three nucleases (XPF-ERCC1, MUS81-EME1, and SLX1), and its deficiency leads to genomic instability, sensitivity to DNA crosslinking agents, and Fanconi anemia. However, it is not understood how SLX4 and its associated nucleases act in DNA crosslink repair. Here, we uncover consequences of mouse Slx4 deficiency and reveal its function in DNA crosslink repair. Slx4-deficient mice develop epithelial cancers and have a contracted hematopoietic stem cell pool. The N-terminal domain of SLX4 (mini-SLX4) that only binds to XPF-ERCC1 is sufficient to confer resistance to DNA crosslinking agents. Recombinant mini-SLX4 enhances XPF-ERCC1 nuclease activity up to 100-fold, directing specificity toward DNA forks. Mini-SLX4-XPF-ERCC1 also vigorously stimulates dual incisions around a DNA crosslink embedded in a synthetic replication fork, an essential step in the repair of this lesion. These observations define vertebrate SLX4 as a tumor suppressor, which activates XPF-ERCC1 nuclease specificity in DNA crosslink repair.
Collapse
Affiliation(s)
| | - Jan Silhan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Juan I Garaycoechea
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Shivam Mukherjee
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | - Orlando D Schärer
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794-8651, USA
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK; Department of Medicine, Level 5, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
129
|
Klein Douwel D, Boonen RACM, Long DT, Szypowska AA, Räschle M, Walter JC, Knipscheer P. XPF-ERCC1 acts in Unhooking DNA interstrand crosslinks in cooperation with FANCD2 and FANCP/SLX4. Mol Cell 2014; 54:460-71. [PMID: 24726325 DOI: 10.1016/j.molcel.2014.03.015] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 01/17/2014] [Accepted: 02/28/2014] [Indexed: 12/26/2022]
Abstract
DNA interstrand crosslinks (ICLs), highly toxic lesions that covalently link the Watson and Crick strands of the double helix, are repaired by a complex, replication-coupled pathway in higher eukaryotes. The earliest DNA processing event in ICL repair is the incision of parental DNA on either side of the ICL ("unhooking"), which allows lesion bypass. Incisions depend critically on the Fanconi anemia pathway, whose activation involves ubiquitylation of the FANCD2 protein. Using Xenopus egg extracts, which support replication-coupled ICL repair, we show that the 3' flap endonuclease XPF-ERCC1 cooperates with SLX4/FANCP to carry out the unhooking incisions. Efficient recruitment of XPF-ERCC1 and SLX4 to the ICL depends on FANCD2 and its ubiquitylation. These data help define the molecular mechanism by which the Fanconi anemia pathway promotes a key event in replication-coupled ICL repair.
Collapse
Affiliation(s)
- Daisy Klein Douwel
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Rick A C M Boonen
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - David T Long
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Anna A Szypowska
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Markus Räschle
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Puck Knipscheer
- Hubrecht Institute-KNAW, University Medical Center Utrecht and Cancer Genomics Netherlands, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands.
| |
Collapse
|
130
|
MacKay C, Carroll E, Ibrahim AFM, Garg A, Inman GJ, Hay RT, Alpi AF. E3 ubiquitin ligase HOIP attenuates apoptotic cell death induced by cisplatin. Cancer Res 2014; 74:2246-2257. [PMID: 24686174 DOI: 10.1158/0008-5472.can-13-2131] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The genotoxin cisplatin is commonly used in chemotherapy to treat solid tumors, yet our understanding of the mechanism underlying the drug response is limited. In a focused siRNA screen, using an siRNA library targeting genes involved in ubiquitin and ubiquitin-like signaling, we identified the E3 ubiquitin ligase HOIP as a key regulator of cisplatin-induced genotoxicity. HOIP forms, with SHARPIN and HOIL-1L, the linear ubiquitin assembly complex (LUBAC). We show that cells deficient in the HOIP ligase complex exhibit hypersensitivity to cisplatin. This is due to a dramatic increase in caspase-8/caspase-3-mediated apoptosis that is strictly dependent on ATM-, but not ATR-mediated DNA damage checkpoint activation. Moreover, basal and cisplatin-induced activity of the stress response kinase JNK is enhanced in HOIP-depleted cells and, conversely, JNK inhibition can increase cellular resistance to cisplatin and reverse the apoptotic hyperactivation in HOIP-depleted cells. Furthermore, we show that HOIP depletion sensitizes cancer cells, derived from carcinomas of various origins, through an enhanced apoptotic cell death response. We also provide evidence that ovarian cancer cells classified as cisplatin-resistant can regain sensitivity following HOIP downregulation. Cumulatively, our study identifies a HOIP-regulated antiapoptotic signaling pathway, and we envisage HOIP as a potential target for the development of combinatorial chemotherapies to potentiate the efficacy of platinum-based anticancer drugs.
Collapse
Affiliation(s)
- Craig MacKay
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Eilís Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Adel F M Ibrahim
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Amit Garg
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| | - Gareth J Inman
- Division of Cancer Research, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ronald T Hay
- Wellcome Trust Centre for Gene Regulation and Expression, University of Dundee, UK
| | - Arno F Alpi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Science, University of Dundee, UK
| |
Collapse
|
131
|
Yeo JE, Lee EH, Hendrickson EA, Sobeck A. CtIP mediates replication fork recovery in a FANCD2-regulated manner. Hum Mol Genet 2014; 23:3695-705. [PMID: 24556218 DOI: 10.1093/hmg/ddu078] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fanconi anemia (FA) is a chromosome instability syndrome characterized by increased cancer predisposition. Within the FA pathway, an upstream FA core complex mediates monoubiquitination and recruitment of the central FANCD2 protein to sites of stalled replication forks. Once recruited, FANCD2 fulfills a dual role towards replication fork recovery: (i) it cooperates with BRCA2 and RAD51 to protect forks from nucleolytic degradation and (ii) it recruits the BLM helicase to promote replication fork restart while suppressing new origin firing. Intriguingly, FANCD2 and its interaction partners are also involved in homologous recombination (HR) repair of DNA double-strand breaks, hinting that FANCD2 utilizes HR proteins to mediate replication fork recovery. One such candidate is CtIP (CtBP-interacting protein), a key HR repair factor that functions in complex with BRCA1 and MRE11, but has not been investigated as putative player in the replication stress response. Here, we identify CtIP as a novel interaction partner of FANCD2. CtIP binds and stabilizes FANCD2 in a DNA damage- and FA core complex-independent manner, suggesting that FANCD2 monoubiquitination is dispensable for its interaction with CtIP. Following cellular treatment with a replication inhibitor, aphidicolin, FANCD2 recruits CtIP to transiently stalled, as well as collapsed, replication forks on chromatin. At stalled forks, CtIP cooperates with FANCD2 to promote fork restart and the suppression of new origin firing. Both functions are dependent on BRCA1 that controls the step-wise recruitment of MRE11, FANCD2 and finally CtIP to stalled replication forks, followed by their concerted actions to promote fork recovery.
Collapse
Affiliation(s)
- Jung Eun Yeo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eu Han Lee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
132
|
Ionita-Laza I, Xu B, Makarov V, Buxbaum JD, Roos JL, Gogos JA, Karayiorgou M. Scan statistic-based analysis of exome sequencing data identifies FAN1 at 15q13.3 as a susceptibility gene for schizophrenia and autism. Proc Natl Acad Sci U S A 2014; 111:343-8. [PMID: 24344280 PMCID: PMC3890869 DOI: 10.1073/pnas.1309475110] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We used a family-based cluster detection approach designed to localize significant rare disease-risk variants clusters within a region of interest to systematically search for schizophrenia (SCZ) susceptibility genes within 49 genomic loci previously implicated by de novo copy number variants. Using two independent whole-exome sequencing family datasets and a follow-up autism spectrum disorder (ASD) case/control whole-exome sequencing dataset, we identified variants in one gene, Fanconi-associated nuclease 1 (FAN1), as being associated with both SCZ and ASD. FAN1 is located in a region on chromosome 15q13.3 implicated by a recurrent copy number variant, which predisposes to an array of psychiatric and neurodevelopmental phenotypes. In both SCZ and ASD datasets, rare nonsynonymous risk variants cluster significantly in affected individuals within a 20-kb window that spans several key functional domains of the gene. Our finding suggests that FAN1 is a key driver in the 15q13.3 locus for the associated psychiatric and neurodevelopmental phenotypes. FAN1 encodes a DNA repair enzyme, thus implicating abnormalities in DNA repair in the susceptibility to SCZ or ASD.
Collapse
Affiliation(s)
| | | | | | - Joseph D. Buxbaum
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029; and
| | - J. Louw Roos
- Weskoppies Hospital, Pretoria 0001, Republic of South Africa
| | - Joseph A. Gogos
- Neuroscience
- Physiology, and
- Cellular Biophysics, Columbia University, New York, NY 10032
| | | |
Collapse
|
133
|
Thomas Y, Peter M, Mechali F, Blanchard JM, Coux O, Baldin V. Kizuna is a novel mitotic substrate for CDC25B phosphatase. Cell Cycle 2014; 13:3867-77. [PMID: 25558830 PMCID: PMC4615109 DOI: 10.4161/15384101.2014.972882] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022] Open
Abstract
CDC25 dual-specificity phosphatases play a central role in cell cycle control through the activation of Cyclin-Dependent Kinases (CDKs). Expression during mitosis of a stabilized CDC25B mutant (CDC25B-DDA), which cannot interact with the F-box protein βTrCP for proteasome-dependent degradation, causes mitotic defects and chromosome segregation errors in mammalian cells. We found, using the same CDC25B mutant, that stabilization and failure to degrade CDC25B during mitosis lead to the appearance of multipolar spindle cells resulting from a fragmentation of pericentriolar material (PCM) and abolish mitotic Plk1-dependent phosphorylation of Kizuna (Kiz), which is essential for the function of Kiz in maintaining spindle pole integrity. Thus, in mitosis Kiz is a new substrate of CDC25B whose dephosphorylation following CDC25B stabilization leads to the formation of multipolar spindles. Furthermore, endogenous Kiz and CDC25B interact only in mitosis, suggesting that Kiz phosphorylation depends on a balance between CDC25B and Plk1 activities. Our data identify a novel mitotic substrate of CDC25B phosphatase that plays a key role in mitosis control.
Collapse
Affiliation(s)
- Yann Thomas
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
- The MRC Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland
| | - Marion Peter
- Université Montpellier 1; Montpellier, France
- The MRC Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland
- Institut de Génétique Moléculaire de Montpellier (IGMM); Center National de la Recherche Scientifique (CNRS); Montpellier, France
| | - Francisca Mechali
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
| | - Jean-Marie Blanchard
- Université Montpellier 1; Montpellier, France
- The MRC Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland
- Institut de Génétique Moléculaire de Montpellier (IGMM); Center National de la Recherche Scientifique (CNRS); Montpellier, France
| | - Olivier Coux
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
| | - Véronique Baldin
- Centre de Recherche de Biochimie Macromoléculaire (CRBM);; Montpellier, France
- Université Montpellier 2; Montpellier, France
- Université Montpellier 1; Montpellier, France
| |
Collapse
|
134
|
Walden H, Deans AJ. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu Rev Biophys 2014; 43:257-78. [PMID: 24773018 DOI: 10.1146/annurev-biophys-051013-022737] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.
Collapse
Affiliation(s)
- Helen Walden
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | | |
Collapse
|
135
|
Fontebasso Y, Etheridge T, Oliver A, Murray J, Carr A. The conserved Fanconi anemia nuclease Fan1 and the SUMO E3 ligase Pli1 act in two novel Pso2-independent pathways of DNA interstrand crosslink repair in yeast. DNA Repair (Amst) 2013; 12:1011-23. [PMID: 24192486 PMCID: PMC4045212 DOI: 10.1016/j.dnarep.2013.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 10/26/2022]
Abstract
DNA interstrand cross-links (ICLs) represent a physical barrier to the progression of cellular machinery involved in DNA metabolism. Thus, this type of adduct represents a serious threat to genomic stability and as such, several DNA repair pathways have evolved in both higher and lower eukaryotes to identify this type of damage and restore the integrity of the genetic material. Human cells possess a specialized ICL-repair system, the Fanconi anemia (FA) pathway. Conversely yeasts rely on the concerted action of several DNA repair systems. Recent work in higher eukaryotes identified and characterized a novel conserved FA component, FAN1 (Fanconi anemia-associated nuclease 1, or FANCD2/FANCI-associated nuclease 1). In this study, we characterize Fan1 in the yeast Schizosaccharomyces pombe. Using standard genetics, we demonstrate that Fan1 is a key component of a previously unidentified ICL-resolution pathway. Using high-throughput synthetic genetic arrays, we also demonstrate the existence of a third pathway of ICL repair, dependent on the SUMO E3 ligase Pli1. Finally, using sequence-threaded homology models, we predict and validate key residues essential for Fan1 activity in ICL repair.
Collapse
Affiliation(s)
- Y. Fontebasso
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - T.J. Etheridge
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| | - A.W. Oliver
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| | - J.M. Murray
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| | - A.M. Carr
- Genome Damage and Stability Centre, University of Sussex, Brighton, East Sussex BN1 9RQ, UK
| |
Collapse
|
136
|
Boisvert RA, Rego MA, Azzinaro PA, Mauro M, Howlett NG. Coordinate nuclear targeting of the FANCD2 and FANCI proteins via a FANCD2 nuclear localization signal. PLoS One 2013; 8:e81387. [PMID: 24278431 PMCID: PMC3836817 DOI: 10.1371/journal.pone.0081387] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/12/2013] [Indexed: 12/21/2022] Open
Abstract
Fanconi anemia (FA) is a rare recessive disease, characterized by congenital defects, bone marrow failure, and increased cancer susceptibility. FA is caused by biallelic mutation of any one of sixteen genes. The protein products of these genes function cooperatively in the FA-BRCA pathway to repair DNA interstrand crosslinks (ICLs). A central step in the activation of this pathway is the monoubiquitination of the FANCD2 and FANCI proteins. Monoubiquitinated FANCD2 and FANCI localize to discrete chromatin regions where they function in ICL repair. Despite their critical role in ICL repair, very little is known about the structure, function, and regulation of the FANCD2 and FANCI proteins, or how they are targeted to the nucleus and chromatin. In this study, we describe the functional characterization of an amino-terminal FANCD2 nuclear localization signal (NLS). We demonstrate that the amino terminal 58 amino acids of FANCD2 can promote the nuclear expression of GFP and is necessary for the nuclear localization of FANCD2. Importantly, mutation of this FANCD2 NLS reveals that intact FANCD2 is required for the nuclear localization of a subset of FANCI. In addition, the NLS is necessary for the efficient monoubiquitination of FANCD2 and FANCI and, consequently, for their localization to chromatin. As a result, FANCD2 NLS mutants fail to rescue the ICL sensitivity of FA-D2 patient cells. Our studies yield important insight into the domain structure of the poorly characterized FANCD2 protein, and reveal a previously unknown mechanism for the coordinate nuclear import of a subset of FANCD2 and FANCI, a key early step in the cellular ICL response.
Collapse
Affiliation(s)
- Rebecca A Boisvert
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, Rhode Island, United States of America
| | | | | | | | | |
Collapse
|
137
|
Clauson C, Schärer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 2013; 5:a012732. [PMID: 24086043 DOI: 10.1101/cshperspect.a012732] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA interstrand cross-links (ICLs) are lesions caused by a variety of endogenous metabolites, environmental exposures, and cancer chemotherapeutic agents that have two reactive groups. The common feature of these diverse lesions is that two nucleotides on opposite strands are covalently joined. ICLs prevent the separation of two DNA strands and therefore essential cellular processes including DNA replication and transcription. ICLs are mainly detected in S phase when a replication fork stalls at an ICL. Damage signaling and repair of ICLs are promoted by the Fanconi anemia pathway and numerous posttranslational modifications of DNA repair and chromatin structural proteins. ICLs are also detected and repaired in nonreplicating cells, although the mechanism is less clear. A unique feature of ICL repair is that both strands of DNA must be incised to completely remove the lesion. This is accomplished in sequential steps to prevent creating multiple double-strand breaks. Unhooking of an ICL from one strand is followed by translesion synthesis to fill the gap and create an intact duplex DNA, harboring a remnant of the ICL. Removal of the lesion from the second strand is likely accomplished by nucleotide excision repair. Inadequate repair of ICLs is particularly detrimental to rapidly dividing cells, explaining the bone marrow failure characteristic of Fanconi anemia and why cross-linking agents are efficacious in cancer therapy. Herein, recent advances in our understanding of ICLs and the biological responses they trigger are discussed.
Collapse
Affiliation(s)
- Cheryl Clauson
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | | | | |
Collapse
|
138
|
Wang Y, Han X, Wu F, Leung JW, Lowery MG, Do H, Chen J, Shi C, Tian C, Li L, Gong W. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response. Cell Res 2013; 23:1215-28. [PMID: 23999858 DOI: 10.1038/cr.2013.124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/26/2013] [Accepted: 08/07/2013] [Indexed: 02/02/2023] Open
Abstract
The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation.
Collapse
Affiliation(s)
- Yucai Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Tampe B, Zeisberg M. Contribution of genetics and epigenetics to progression of kidney fibrosis. Nephrol Dial Transplant 2013; 29 Suppl 4:iv72-9. [PMID: 23975750 DOI: 10.1093/ndt/gft025] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) which can lead to end-stage renal failure remains a principal challenge in Nephrology. While mechanistic studies provided extensive insights into the common pathways of fibrogenesis which underlie the progression of CKD, these pre-clinical studies fail to fully explain the vastly different progression slopes of individual patients. Recent studies provide evidence that genetic polymorphisms and epigenetic variations determine the individual susceptibility of patients to develop chronic progressive kidney disease. Here, we review recent insights that were provided by genome-wide association studies (GWASs), gene-linkage studies and epigenome analysis. The progression of CKD towards end-stage renal failure remains a principal unsolved problem in Nephrology as effective therapies and predictive tests are still not available [ 1, 2]. Chronic progressive kidney disease is caused by a wide range of diseases, with diabetes mellitus, hypertension and primary glomerulopathies being the most common causes in the Western world [ 3]. Infections, physical obstruction, interstitial nephritides and genetic cystic kidney diseases are also common causes of end-stage renal disease (ESRD) [ 3]. Regardless of the primary underlying disease, chronically injured kidneys are histomorphologically characterized by tubulointerstitial fibrosis [ 1]. In fact, the extent of tubulointerstitial fibrosis is the best predictor for kidney survival, irrespective of the underlying disease. For this reason, fibrosis is considered the common pathway of chronic progressive kidney disease [ 1]. Fibrogenesis is a pathological scarring process which involves accumulation of activated fibroblasts, excessive deposition of extracellular matrix, failed regeneration of tubular epithelium, microvascular rarefaction and (mostly sterile) inflammation [ 4]. Fibrogenesis depends on a complex interaction of the involved cell types which is orchestrated by an extensive network of growth factors and signalling pathways (which are reviewed extensively elsewhere) [ 1]. In view of the detailed mechanistic knowledge of the pathways that orchestrate renal fibrogenesis, it is puzzling why progression rates of CKD differ dramatically among patients with identical underlying diseases [ 1, 2]. The fibrotic pathways are known, but the switches that control their intensities and which determine the speed at which fibrosis moves along the progression slope are not yet understood [ 1, 2]. The concept that genetic polymorphisms are the basis for individual progression rates of CKD is an obvious and attractive one. Distinct susceptibilities of different mouse and rat strains to experimental CKD are a strong testament of the impact of genetic variations on renal fibrogenesis. Identification of the underlying genetic polymorphisms and mechanistic proof of their involvement in the progression of CKD, however, is an ongoing challenge. There are two basic approaches: one strategy is to perform unbiased screening to identify genes which are associated with chronic progressive kidney disease and to then prove their mechanistic relevance in experimental studies ('genotype to phenotype approach'). The second strategy is to selectively analyse polymorphisms of genes which have been identified in mechanistic studies as drivers of renal fibrogenesis with regard to their association with CKD (phenotype to genotype approach). The puzzling observation, however, is that genetic analysis and mechanistic studies so far rarely complement each other. The current state of affairs is reviewed in more detail below.
Collapse
Affiliation(s)
- Björn Tampe
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Göttingen, Germany
| |
Collapse
|
140
|
Pfäffle HN, Wang M, Gheorghiu L, Ferraiolo N, Greninger P, Borgmann K, Settleman J, Benes CH, Sequist LV, Zou L, Willers H. EGFR-activating mutations correlate with a Fanconi anemia-like cellular phenotype that includes PARP inhibitor sensitivity. Cancer Res 2013; 73:6254-63. [PMID: 23966292 DOI: 10.1158/0008-5472.can-13-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In patients with lung cancer whose tumors harbor activating mutations in the EGF receptor (EGFR), increased responses to platinum-based chemotherapies are seen compared with wild-type cancers. However, the mechanisms underlying this association have remained elusive. Here, we describe a cellular phenotype of cross-linker sensitivity in a subset of EGFR-mutant lung cancer cell lines that is reminiscent of the defects seen in cells impaired in the Fanconi anemia pathway, including a pronounced G2-M cell-cycle arrest and chromosomal radial formation. We identified a defect downstream of FANCD2 at the level of recruitment of FAN1 nuclease and DNA interstrand cross-link (ICL) unhooking. The effect of EGFR mutation was epistatic with FANCD2. Consistent with the known role of FANCD2 in promoting RAD51 foci formation and homologous recombination repair (HRR), EGFR-mutant cells also exhibited an impaired RAD51 foci response to ICLs, but not to DNA double-strand breaks. EGFR kinase inhibition affected RAD51 foci formation neither in EGFR-mutant nor wild-type cells. In contrast, EGFR depletion or overexpression of mutant EGFR in wild-type cells suppressed RAD51 foci, suggesting an EGFR kinase-independent regulation of DNA repair. Interestingly, EGFR-mutant cells treated with the PARP inhibitor olaparib also displayed decreased FAN1 foci induction, coupled with a putative block in a late HRR step. As a result, EGFR-mutant lung cancer cells exhibited olaparib sensitivity in vitro and in vivo. Our findings provide insight into the mechanisms of cisplatin and PARP inhibitor sensitivity of EGFR-mutant cells, yielding potential therapeutic opportunities for further treatment individualization in this genetically defined subset of lung cancer.
Collapse
Affiliation(s)
- Heike N Pfäffle
- Authors' Affiliations: Laboratory of Cellular & Molecular Radiation Oncology, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown; Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston; and Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, Massachusetts; Research Oncology, Genentech, Inc., South San Francisco, California; Department of Pharmaceutical Biology, Ludwig Maximilian University of Munich, Munich; and Center for Oncology, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Williams HL, Gottesman ME, Gautier J. The differences between ICL repair during and outside of S phase. Trends Biochem Sci 2013; 38:386-93. [PMID: 23830640 DOI: 10.1016/j.tibs.2013.05.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/14/2013] [Accepted: 05/29/2013] [Indexed: 12/11/2022]
Abstract
DNA interstrand crosslinks (ICLs) are complex lesions that block essential DNA transactions including DNA replication, recombination, and RNA transcription. Naturally occurring ICLs are rare, yet these lesions are the major cause of toxicity following treatment with several classes of crosslinking cancer chemotherapeutic drugs. ICLs are repaired during and outside of S phase by pathways with overlapping as well as distinct features. Here, we discuss some recent insights into the mechanisms of replication-dependent and replication-independent repair of ICLs with special emphasis on the differences between these repair pathways.
Collapse
Affiliation(s)
- Hannah L Williams
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
142
|
Wienk H, Slootweg JC, Speerstra S, Kaptein R, Boelens R, Folkers GE. The Fanconi anemia associated protein FAAP24 uses two substrate specific binding surfaces for DNA recognition. Nucleic Acids Res 2013; 41:6739-49. [PMID: 23661679 PMCID: PMC3711432 DOI: 10.1093/nar/gkt354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
To maintain the integrity of the genome, multiple DNA repair systems exist to repair damaged DNA. Recognition of altered DNA, including bulky adducts, pyrimidine dimers and interstrand crosslinks (ICL), partially depends on proteins containing helix-hairpin-helix (HhH) domains. To understand how ICL is specifically recognized by the Fanconi anemia proteins FANCM and FAAP24, we determined the structure of the HhH domain of FAAP24. Although it resembles other HhH domains, the FAAP24 domain contains a canonical hairpin motif followed by distorted motif. The HhH domain can bind various DNA substrates; using nuclear magnetic resonance titration experiments, we demonstrate that the canonical HhH motif is required for double-stranded DNA (dsDNA) binding, whereas the unstructured N-terminus can interact with single-stranded DNA. Both DNA binding surfaces are used for binding to ICL-like single/double-strand junction-containing DNA substrates. A structural model for FAAP24 bound to dsDNA has been made based on homology with the translesion polymerase iota. Site-directed mutagenesis, sequence conservation and charge distribution support the dsDNA-binding model. Analogous to other HhH domain-containing proteins, we suggest that multiple FAAP24 regions together contribute to binding to single/double-strand junction, which could contribute to specificity in ICL DNA recognition.
Collapse
Affiliation(s)
- Hans Wienk
- Bijvoet Center For Biomolecular Research, NMR Spectroscopy, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
143
|
Chaudhury I, Sareen A, Raghunandan M, Sobeck A. FANCD2 regulates BLM complex functions independently of FANCI to promote replication fork recovery. Nucleic Acids Res 2013; 41:6444-59. [PMID: 23658231 PMCID: PMC3711430 DOI: 10.1093/nar/gkt348] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fanconi Anemia (FA) and Bloom Syndrome share overlapping phenotypes including spontaneous chromosomal abnormalities and increased cancer predisposition. The FA protein pathway comprises an upstream core complex that mediates recruitment of two central players, FANCD2 and FANCI, to sites of stalled replication forks. Successful fork recovery depends on the Bloom’s helicase BLM that participates in a larger protein complex (‘BLMcx’) containing topoisomerase III alpha, RMI1, RMI2 and replication protein A. We show that FANCD2 is an essential regulator of BLMcx functions: it maintains BLM protein stability and is crucial for complete BLMcx assembly; moreover, it recruits BLMcx to replicating chromatin during normal S-phase and mediates phosphorylation of BLMcx members in response to DNA damage. During replication stress, FANCD2 and BLM cooperate to promote restart of stalled replication forks while suppressing firing of new replication origins. In contrast, FANCI is dispensable for FANCD2-dependent BLMcx regulation, demonstrating functional separation of FANCD2 from FANCI.
Collapse
Affiliation(s)
- Indrajit Chaudhury
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
144
|
A proteome-wide visual screen identifies fission yeast proteins localizing to DNA double-strand breaks. DNA Repair (Amst) 2013; 12:433-43. [PMID: 23628481 DOI: 10.1016/j.dnarep.2013.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 03/18/2013] [Accepted: 04/03/2013] [Indexed: 11/23/2022]
Abstract
DNA double-strand breaks (DSBs) are a major threat to genome integrity. Proteins involved in DNA damage checkpoint signaling and DSB repair often relocalize and concentrate at DSBs. Here, we used an ORFeome library of the fission yeast Schizosaccharomyces pombe to systematically identify proteins targeted to DSBs. We found 51 proteins that, when expressed from a strong exogenous promoter on the ORFeome plasmids, were able to form a distinct nuclear focus at an HO endonuclease-induced DSB. The majority of these proteins have known connections to DNA damage response, but few have been visualized at a specific DSB before. Among the screen hits, 37 can be detected at DSBs when expressed from native promoters. We classified them according to the focus emergence timing of the endogenously tagged proteins. Eight of these 37 proteins are yet unnamed. We named these eight proteins DNA-break-localizing proteins (Dbls) and performed preliminary functional analysis on two of them, Dbl1 (SPCC2H8.05c) and Dbl2 (SPCC553.01c). We found that Dbl1 and Dbl2 contribute to the normal DSB targeting of checkpoint protein Rad26 (homolog of human ATRIP) and DNA repair helicase Fml1 (homolog of human FANCM), respectively. As the first proteome-wide inventory of DSB-localizing proteins, our screen result will be a useful resource for understanding the mechanisms of eukaryotic DSB response.
Collapse
|
145
|
A protein prioritization approach tailored for the FA/BRCA pathway. PLoS One 2013; 8:e62017. [PMID: 23620800 PMCID: PMC3631253 DOI: 10.1371/journal.pone.0062017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/15/2013] [Indexed: 11/22/2022] Open
Abstract
Fanconi anemia (FA) is a heterogeneous recessive disorder associated with a markedly elevated risk to develop cancer. To date sixteen FA genes have been identified, three of which predispose heterozygous mutation carriers to breast cancer. The FA proteins work together in a genome maintenance pathway, the so-called FA/BRCA pathway which is important during the S phase of the cell cycle. Since not all FA patients can be linked to (one of) the sixteen known complementation groups, new FA genes remain to be identified. In addition the complex FA network remains to be further unravelled. One of the FA genes, FANCI, has been identified via a combination of bioinformatic techniques exploiting FA protein properties and genetic linkage. The aim of this study was to develop a prioritization approach for proteins of the entire human proteome that potentially interact with the FA/BRCA pathway or are novel candidate FA genes. To this end, we combined the original bioinformatics approach based on the properties of the first thirteen FA proteins identified with publicly available tools for protein-protein interactions, literature mining (Nermal) and a protein function prediction tool (FuncNet). Importantly, the three newest FA proteins FANCO/RAD51C, FANCP/SLX4, and XRCC2 displayed scores in the range of the already known FA proteins. Likewise, a prime candidate FA gene based on next generation sequencing and having a very low score was subsequently disproven by functional studies for the FA phenotype. Furthermore, the approach strongly enriches for GO terms such as DNA repair, response to DNA damage stimulus, and cell cycle-regulated genes. Additionally, overlaying the top 150 with a haploinsufficiency probability score, renders the approach more tailored for identifying breast cancer related genes. This approach may be useful for prioritization of putative novel FA or breast cancer genes from next generation sequencing efforts.
Collapse
|
146
|
Affiliation(s)
- Helle D Ulrich
- Cancer Research UK London Research Institute, Clare Hall Laboratories, Blanche Lane, South Mimms, Hertfordshire EN6 3LD, UK.
| |
Collapse
|
147
|
Abstract
The mismatch repair (MMR) system detects non-Watson-Crick base pairs and strand misalignments arising during DNA replication and mediates their removal by catalyzing excision of the mispair-containing tract of nascent DNA and its error-free resynthesis. In this way, MMR improves the fidelity of replication by several orders of magnitude. It also addresses mispairs and strand misalignments arising during recombination and prevents synapses between nonidentical DNA sequences. Unsurprisingly, MMR malfunction brings about genomic instability that leads to cancer in mammals. But MMR proteins have recently been implicated also in other processes of DNA metabolism, such as DNA damage signaling, antibody diversification, and repair of interstrand cross-links and oxidative DNA damage, in which their functions remain to be elucidated. This article reviews the progress in our understanding of the mechanism of replication error repair made during the past decade.
Collapse
Affiliation(s)
- Josef Jiricny
- Institute of Molecular Cancer Research, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
148
|
Lee H, Alpi AF, Park MS, Rose A, Koo HS. C. elegans ring finger protein RNF-113 is involved in interstrand DNA crosslink repair and interacts with a RAD51C homolog. PLoS One 2013; 8:e60071. [PMID: 23555887 PMCID: PMC3610817 DOI: 10.1371/journal.pone.0060071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/21/2013] [Indexed: 12/27/2022] Open
Abstract
The Fanconi anemia (FA) pathway recognizes interstrand DNA crosslinks (ICLs) and contributes to their conversion into double-strand DNA breaks, which can be repaired by homologous recombination. Seven orthologs of the 15 proteins associated with Fanconi anemia are functionally conserved in the model organism C. elegans. Here we report that RNF-113, a ubiquitin ligase, is required for RAD-51 focus formation after inducing ICLs in C. elegans. However, the formation of foci of RPA-1 or FCD-2/FANCD2 in the FA pathway was not affected by depletion of RNF-113. Nevertheless, the RPA-1 foci formed did not disappear with time in the depleted worms, implying serious defects in ICL repair. As a result, RNF-113 depletion increased embryonic lethality after ICL treatment in wild-type worms, but it did not increase the ICL-induced lethality of rfs-1/rad51C mutants. In addition, the persistence of RPA-1 foci was suppressed in doubly-deficient rnf-113;rfs-1 worms, suggesting that there is an epistatic interaction between the two genes. These results lead us to suggest that RNF-113 and RFS-1 interact to promote the displacement of RPA-1 by RAD-51 on single-stranded DNA derived from ICLs.
Collapse
Affiliation(s)
- Hyojin Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Arno F. Alpi
- Scottish Institute for Cell Signaling, University of Dundee, Dundee, United Kingdom
| | - Mi So Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Ann Rose
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Hyeon-Sook Koo
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
149
|
Kottemann MC, Smogorzewska A. Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature 2013; 493:356-63. [PMID: 23325218 DOI: 10.1038/nature11863] [Citation(s) in RCA: 457] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/08/2012] [Indexed: 12/16/2022]
Abstract
The function of Fanconi anaemia proteins is to maintain genomic stability. Their main role is in the repair of DNA interstrand crosslinks, which, by covalently binding the Watson and the Crick strands of DNA, impede replication and transcription. Inappropriate repair of interstrand crosslinks causes genomic instability, leading to cancer; conversely, the toxicity of crosslinking agents makes them a powerful chemotherapeutic. Fanconi anaemia proteins can promote stem-cell function, prevent tumorigenesis, stabilize replication forks and inhibit inaccurate repair. Recent advances have identified endogenous aldehydes as possible culprits of DNA damage that may induce the phenotypes seen in patients with Fanconi anaemia.
Collapse
Affiliation(s)
- Molly C Kottemann
- Laboratory of Genome Maintenance, The Rockefeller University, New York 10065, USA
| | | |
Collapse
|
150
|
The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol Cell Biol 2013; 33:1632-44. [PMID: 23401855 DOI: 10.1128/mcb.01503-12] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The minichromosome maintenance protein homologs MCM8 and MCM9 have previously been implicated in DNA replication elongation and prereplication complex (pre-RC) formation, respectively. We found that MCM8 and MCM9 physically associate with each other and that MCM8 is required for the stability of MCM9 protein in mammalian cells. Depletion of MCM8 or MCM9 in human cancer cells or the loss of function MCM9 mutation in mouse embryo fibroblasts sensitizes cells to the DNA interstrand cross-linking (ICL) agent cisplatin. Consistent with a role in the repair of ICLs by homologous recombination (HR), knockdown of MCM8 or MCM9 significantly reduces HR repair efficiency. Chromatin immunoprecipitation analysis using human DR-GFP cells or Xenopus egg extract demonstrated that MCM8 and MCM9 proteins are rapidly recruited to DNA damage sites and promote RAD51 recruitment. Thus, these two metazoan-specific MCM homologs are new components of HR and may represent novel targets for treating cancer in combination with DNA cross-linking agents.
Collapse
|