101
|
Minakshi R, Rahman S, Jan AT, Archana A, Kim J. Implications of aging and the endoplasmic reticulum unfolded protein response on the molecular modality of breast cancer. Exp Mol Med 2017; 49:e389. [PMID: 29123254 PMCID: PMC5704197 DOI: 10.1038/emm.2017.215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/12/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
The endoplasmic reticulum (ER) is an important subcellular organelle that is involved in numerous activities required to achieve and maintain functional proteins in addition to its role in the biosynthesis of lipids and as a repository of intracellular Ca2+. The inability of the ER to cope with protein folding beyond its capacity causes disturbances that evoke ER stress. Cells possess molecular mechanisms aimed at clearing unwanted cargo from the ER lumen as an adaptive response, but failing to do so navigates the system towards cell death. This systemic approach is called the unfolded protein response. Aging insults cells through various perturbations in homeostasis that involve curtailing ER function by mitigating the expression of its resident chaperones and enzymes. Here the unfolded protein response (UPR) cannot protect the cell due to the weakening of its protective arm, which exacerbates imbalanced homeostasis. Aging predisposed breast malignancy activates the UPR, but tumor cells maneuver the mechanistic details of the UPR, favoring tumorigenesis and thereby eliciting a treacherous condition. Tumor cells exploit UPR pathways via crosstalk involving various signaling cascades that usher tumor cells to immortality. This review aims to present a collection of data that can delineate the missing links of molecular signatures between aging and breast cancer.
Collapse
Affiliation(s)
- Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| | - Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Ayyagari Archana
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
102
|
Rahman S, Jan AT, Ayyagari A, Kim J, Kim J, Minakshi R. Entanglement of UPR ER in Aging Driven Neurodegenerative Diseases. Front Aging Neurosci 2017; 9:341. [PMID: 29114219 PMCID: PMC5660724 DOI: 10.3389/fnagi.2017.00341] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/09/2017] [Indexed: 12/15/2022] Open
Abstract
The endoplasmic reticulum (ER) is an indispensable cellular organelle that remains highly active in neuronal cells. The ER bears the load of maintaining protein homeostasis in the cellular network by managing the folding of incoming nascent peptides; however, the stress imposed by physiological/environmental factors can cause ER dysfunctions that lead to the activation of ER unfolded protein response (UPRER). Aging leads to deterioration of several cellular pathways and therefore weakening of the UPRER. The decline in functioning of the UPRER during aging results in accumulation of misfolded proteins that becomes intracellular inclusions in neuronal cells, resulting in toxicity manifested as neurodegenerative diseases. With ascension in cases of neurodegenerative diseases, understanding the enigma behind aging driven UPRER dysfunction may lead to possible treatments.
Collapse
Affiliation(s)
- Safikur Rahman
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Arif Tasleem Jan
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Archana Ayyagari
- Department of Microbiology, Swami Shraddhanand College, University of Delhi, New Delhi, India
| | - Jiwoo Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Jihoe Kim
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Rinki Minakshi
- Institute of Home Economics, University of Delhi, New Delhi, India
| |
Collapse
|
103
|
Watts JL, Ristow M. Lipid and Carbohydrate Metabolism in Caenorhabditis elegans. Genetics 2017; 207:413-446. [PMID: 28978773 PMCID: PMC5629314 DOI: 10.1534/genetics.117.300106] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/02/2017] [Indexed: 12/14/2022] Open
Abstract
Lipid and carbohydrate metabolism are highly conserved processes that affect nearly all aspects of organismal biology. Caenorhabditis elegans eat bacteria, which consist of lipids, carbohydrates, and proteins that are broken down during digestion into fatty acids, simple sugars, and amino acid precursors. With these nutrients, C. elegans synthesizes a wide range of metabolites that are required for development and behavior. In this review, we outline lipid and carbohydrate structures as well as biosynthesis and breakdown pathways that have been characterized in C. elegans We bring attention to functional studies using mutant strains that reveal physiological roles for specific lipids and carbohydrates during development, aging, and adaptation to changing environmental conditions.
Collapse
Affiliation(s)
- Jennifer L Watts
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, Washington 99164
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology Zurich, 8603 Schwerzenbach-Zurich, Switzerland
| |
Collapse
|
104
|
Ding AJ, Zheng SQ, Huang XB, Xing TK, Wu GS, Sun HY, Qi SH, Luo HR. Current Perspective in the Discovery of Anti-aging Agents from Natural Products. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:335-404. [PMID: 28567542 PMCID: PMC5655361 DOI: 10.1007/s13659-017-0135-9] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/16/2017] [Indexed: 05/18/2023]
Abstract
Aging is a process characterized by accumulating degenerative damages, resulting in the death of an organism ultimately. The main goal of aging research is to develop therapies that delay age-related diseases in human. Since signaling pathways in aging of Caenorhabditis elegans (C. elegans), fruit flies and mice are evolutionarily conserved, compounds extending lifespan of them by intervening pathways of aging may be useful in treating age-related diseases in human. Natural products have special resource advantage and with few side effect. Recently, many compounds or extracts from natural products slowing aging and extending lifespan have been reported. Here we summarized these compounds or extracts and their mechanisms in increasing longevity of C. elegans or other species, and the prospect in developing anti-aging medicine from natural products.
Collapse
Affiliation(s)
- Ai-Jun Ding
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Shan-Qing Zheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Xiao-Bing Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ti-Kun Xing
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Gui-Sheng Wu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Hua-Ying Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Shu-Hua Qi
- Guangdong Key Laboratory of Marine Material Medical, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, Guangdong, China
| | - Huai-Rong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Key Laboratory for Aging and Regenerative Medicine, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, 134 Lanhei Road, Kunming, 650201, Yunnan, China.
| |
Collapse
|
105
|
Avril T, Vauléon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis 2017; 6:e373. [PMID: 28846078 PMCID: PMC5608920 DOI: 10.1038/oncsis.2017.72] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/01/2017] [Accepted: 07/07/2017] [Indexed: 02/07/2023] Open
Abstract
The unfolded protein response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress. During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply) challenges, with which they must cope to survive. Moreover, chemotherapy represents an additional extrinsic challenge that cancer cells are facing and to which they adapt in the case of resistance. As of today, resistance to chemotherapy and targeted therapies is one of the important issues that oncologists have to deal with for treating cancer patients. In this review, we first describe the key molecular mechanisms controlling the UPR and their implication in solid cancers. Then, we review the literature that connects cancer chemotherapy resistance mechanisms and activation of the UPR. Finally, we discuss the possible applications of targeting the UPR to bypass drug resistance.
Collapse
Affiliation(s)
- T Avril
- INSERM U1242, 'Chemistry, Oncogenesis, Stress, Signaling', Université de Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - E Vauléon
- INSERM U1242, 'Chemistry, Oncogenesis, Stress, Signaling', Université de Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| | - E Chevet
- INSERM U1242, 'Chemistry, Oncogenesis, Stress, Signaling', Université de Rennes 1, Rennes, France.,Centre de Lutte contre le Cancer Eugène Marquis, Rennes, France
| |
Collapse
|
106
|
Quantitative time-resolved chemoproteomics reveals that stable O-GlcNAc regulates box C/D snoRNP biogenesis. Proc Natl Acad Sci U S A 2017; 114:E6749-E6758. [PMID: 28760965 DOI: 10.1073/pnas.1702688114] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
O-linked GlcNAcylation (O-GlcNAcylation), a ubiquitous posttranslational modification on intracellular proteins, is dynamically regulated in cells. To analyze the turnover dynamics of O-GlcNAcylated proteins, we developed a quantitative time-resolved O-linked GlcNAc proteomics (qTOP) strategy based on metabolic pulse-chase labeling with an O-GlcNAc chemical reporter and stable isotope labeling with amino acids in cell culture (SILAC). Applying qTOP, we quantified the turnover rates of 533 O-GlcNAcylated proteins in NIH 3T3 cells and discovered that about 14% exhibited minimal removal of O-GlcNAc or degradation of protein backbones. The stability of those hyperstable O-GlcNAcylated proteins was more sensitive to O-GlcNAcylation inhibition compared with the more dynamic populations. Among the hyperstable population were three core proteins of box C/D small nucleolar ribonucleoprotein complexes (snoRNPs): fibrillarin (FBL), nucleolar protein 5A (NOP56), and nucleolar protein 5 (NOP58). We showed that O-GlcNAcylation stabilized these proteins and was essential for snoRNP assembly. Blocking O-GlcNAcylation on FBL altered the 2'-O-methylation of rRNAs and impaired cancer cell proliferation and tumor formation in vivo.
Collapse
|
107
|
Clinical effects of chemical exposures on mitochondrial function. Toxicology 2017; 391:90-99. [PMID: 28757096 DOI: 10.1016/j.tox.2017.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/07/2017] [Accepted: 07/17/2017] [Indexed: 12/16/2022]
Abstract
Mitochondria are critical for the provision of ATP for cellular energy requirements. Tissue and organ functions are dependent on adequate ATP production, especially when energy demand is high. Mitochondria also play a role in a vast array of important biochemical pathways including apoptosis, generation and detoxification of reactive oxygen species, intracellular calcium regulation, steroid hormone and heme synthesis, and lipid metabolism. The complexity of mitochondrial structure and function facilitates its diverse roles but also enhances its vulnerability. Primary disorders of mitochondrial bioenergetics, or Primary Mitochondrial Diseases (PMD) are due to inherited genetic defects in the nuclear or mitochondrial genomes that result in defective oxidative phosphorylation capacity and cellular energy production. Secondary mitochondrial dysfunction is observed in a wide range of diseases such as Alzheimer's and Parkinson's disease. Several lines of evidence suggest that environmental exposures cause substantial mitochondrial dysfunction. Whereby literature from experimental and human studies on exposures associated with Alzheimer's and Parkinson's diseases exist, the significance of exposures as potential triggers in Primary Mitochondrial Disease (PMD) is an emerging clinical question that has not been systematically studied.
Collapse
|
108
|
Johnston WL, Krizus A, Ramani AK, Dunham W, Youn JY, Fraser AG, Gingras AC, Dennis JW. C. elegans SUP-46, an HNRNPM family RNA-binding protein that prevents paternally-mediated epigenetic sterility. BMC Biol 2017; 15:61. [PMID: 28716093 PMCID: PMC5513350 DOI: 10.1186/s12915-017-0398-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In addition to DNA, gametes contribute epigenetic information in the form of histones and non-coding RNA. Epigenetic programs often respond to stressful environmental conditions and provide a heritable history of ancestral stress that allows for adaptation and propagation of the species. In the nematode C. elegans, defective epigenetic transmission often manifests as progressive germline mortality. We previously isolated sup-46 in a screen for suppressors of the hexosamine pathway gene mutant, gna-2(qa705). In this study, we examine the role of SUP-46 in stress resistance and progressive germline mortality. RESULTS We identified SUP-46 as an HNRNPM family RNA-binding protein, and uncovered a highly novel role for SUP-46 in preventing paternally-mediated progressive germline mortality following mating. Proximity biotinylation profiling of human homologs (HNRNPM, MYEF2) identified proteins of ribonucleoprotein complexes previously shown to contain non-coding RNA. Like HNRNPM and MYEF2, SUP-46 was associated with multiple RNA granules, including stress granules, and also formed granules on active chromatin. SUP-46 depletion disrupted germ RNA granules and caused ectopic sperm, increased sperm transcripts, and chronic heat stress sensitivity. SUP-46 was also required for resistance to acute heat stress, and a conserved "MYEF2" motif was identified that was needed for stress resistance. CONCLUSIONS In mammals, non-coding RNA from the sperm of stressed males has been shown to recapitulate paternal stress phenotypes in the offspring. Our results suggest that HNRNPM family proteins enable stress resistance and paternally-mediated epigenetic transmission that may be conserved across species.
Collapse
Affiliation(s)
- Wendy L. Johnston
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Aldis Krizus
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Arun K. Ramani
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Wade Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Ji Young Youn
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Andrew G. Fraser
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- The Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - James W. Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
109
|
Vincenz-Donnelly L, Hipp MS. The endoplasmic reticulum: A hub of protein quality control in health and disease. Free Radic Biol Med 2017; 108:383-393. [PMID: 28363604 DOI: 10.1016/j.freeradbiomed.2017.03.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 01/03/2023]
Abstract
One third of the eukaryotic proteome is synthesized at the endoplasmic reticulum (ER), whose unique properties provide a folding environment substantially different from the cytosol. A healthy, balanced proteome in the ER is maintained by a network of factors referred to as the ER quality control (ERQC) machinery. This network consists of various protein folding chaperones and modifying enzymes, and is regulated by stress response pathways that prevent the build-up as well as the secretion of potentially toxic and aggregation-prone misfolded protein species. Here, we describe the components of the ERQC machinery, investigate their response to different forms of stress, and discuss the consequences of ERQC break-down.
Collapse
Affiliation(s)
- Lisa Vincenz-Donnelly
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| | - Mark S Hipp
- Max Planck Institute of Biochemistry, Department of Cellular Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
110
|
|
111
|
Endoplasmic Reticulum Stress Caused by Lipoprotein Accumulation Suppresses Immunity against Bacterial Pathogens and Contributes to Immunosenescence. mBio 2017; 8:mBio.00778-17. [PMID: 28559483 PMCID: PMC5449662 DOI: 10.1128/mbio.00778-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The unfolded protein response (UPR) is a stress response pathway that is activated upon increased unfolded and/or misfolded proteins in the endoplasmic reticulum (ER), and enhanced ER stress response prolongs life span and improves immunity. However, the mechanism by which ER stress affects immunity remains poorly understood. Using the nematode Caenorhabditis elegans, we show that mutations in the lipoproteins vitellogenins, which are homologs of human apolipoprotein B-100, resulted in upregulation of the UPR. Lipoprotein accumulation in the intestine adversely affects the immune response and the life span of the organism, suggesting that it could be a contributing factor to immunosenescence. We show that lipoprotein accumulation inhibited the expression of several immune genes encoding proteins secreted by the intestinal cells in an IRE-1-independent manner. Our studies provide a mechanistic explanation for adverse effects caused by protein aggregation and ER stress on immunity and highlight the role of an IRE-1-independent pathway in the suppression of the expression of genes encoding secreted proteins. Increased accumulation of unfolded and/or misfolded proteins in the endoplasmic reticulum (ER) leads to enhanced ER stress. However, the mechanism(s) by which ER stress affects immunity remain understudied. Using the nematode C. elegans, we showed that mutations in lipoproteins lead to their accumulation in the intestine, causing ER stress and adversely affecting the life span of the organisms and their resistance to pathogen infection. Our results indicate that the ER stress caused by lipoprotein accumulation significantly reduced the levels of expression of genes encoding secreted immune effectors, contributing to immunosenescence. It is known that ER stress may suppress gene expression via IRE-1, which is a sensor of ER stress. The novel mechanism uncovered in our study is IRE-1 independent, which highlights the role of a novel process by which ER stress suppresses innate immunity.
Collapse
|
112
|
Lee D, Son HG, Jung Y, Lee SJV. The role of dietary carbohydrates in organismal aging. Cell Mol Life Sci 2017; 74:1793-1803. [PMID: 27942749 PMCID: PMC11107617 DOI: 10.1007/s00018-016-2432-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/21/2016] [Accepted: 12/05/2016] [Indexed: 12/22/2022]
Abstract
Carbohydrates are essential nutrients that are used as a primary source of energy. Carbohydrate utilization should be properly controlled, as abnormal regulation of carbohydrate metabolism is associated with diseases, such as diabetes, cardiovascular diseases, and stroke. These metabolic syndromes have become a serious problem in developed countries, and there is an increased need for research examining the influence of carbohydrates on animal physiology. Diets enriched in glucose, a major carbohydrate, are also associated with accelerated aging in several model organisms, including yeast and Caenorhabditis elegans (C. elegans). Genetic factors that mediate the effects of high glucose diets on aging have been identified during the last decade, mostly through the use of C. elegans. In this review, we describe studies that determine the effects of carbohydrate-enriched diets on aging by focusing on the mechanisms through which evolutionarily conserved pathways mediate the lifespan-altering effects of glucose in C. elegans. These include the insulin/insulin-like growth factor-1, sterol-regulatory element-binding protein, and AMP-activated protein kinase signaling pathways. We also discuss the effects of various carbohydrates and carbohydrate-derived metabolites on aging in model organisms and cultured mammalian cells. Finally, we discuss how dietary carbohydrates influence health and aging in humans.
Collapse
Affiliation(s)
- Dongyeop Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea
| | - Heehwa G Son
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea
| | - Yoonji Jung
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea
| | - Seung-Jae V Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Gyeongbuk, South Korea.
| |
Collapse
|
113
|
Pagliassotti MJ, Estrada AL, Hudson WM, Wei Y, Wang D, Seals DR, Zigler ML, LaRocca TJ. Trehalose supplementation reduces hepatic endoplasmic reticulum stress and inflammatory signaling in old mice. J Nutr Biochem 2017; 45:15-23. [PMID: 28431320 DOI: 10.1016/j.jnutbio.2017.02.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 02/17/2017] [Indexed: 10/19/2022]
Abstract
The accumulation of damaged proteins can perturb cellular homeostasis and provoke aging and cellular damage. Quality control systems, such as the unfolded protein response (UPR), inflammatory signaling and protein degradation, mitigate the residence time of damaged proteins. In the present study, we have examined the UPR and inflammatory signaling in the liver of young (~6 months) and old (~28 months) mice (n=8/group), and the ability of trehalose, a compound linked to increased protein stability and autophagy, to counteract age-induced effects on these systems. When used, trehalose was provided for 4 weeks in the drinking water immediately prior to sacrifice (n=7/group). Livers from old mice were characterized by activation of the UPR, increased inflammatory signaling and indices of liver injury. Trehalose treatment reduced the activation of the UPR and inflammatory signaling, and reduced liver injury. Reductions in proteins involved in autophagy and proteasome activity observed in old mice were restored following trehalose treatment. The autophagy marker, LC3B-II, was increased in old mice treated with trehalose. Metabolomics analyses demonstrated that reductions in hexosamine biosynthetic pathway metabolites and nicotinamide in old mice were restored following trehalose treatment. Trehalose appears to be an effective intervention to reduce age-associated liver injury and mitigate the need for activation of quality control systems that respond to disruption of proteostasis.
Collapse
Affiliation(s)
- Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA.
| | - Andrea L Estrada
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - William M Hudson
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Dong Wang
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523-1571, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Melanie L Zigler
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
114
|
Abstract
Human beings are subjected to aging and age-associated diseases. Life expectancy has improved impressively in the last century due to social and economic development, but despite increasing improvement is still more limited than average in those ones with chronic diseases such as treated HIV infection. There has been a substantial research on the underlying factors responsible for aging both in the general and the HIV-infected populations. Several specific targets for potential intervention have been identified but studies so far have been limited to small experiments in cultured cells or living beings other than humans such as mice or flies. Time has come for designing and developing human studies with those candidate therapies showing most promising benefits and least potential toxicities to treat age-related diseases.
Collapse
Affiliation(s)
- Esteban Martinez
- a Infectious Diseases Unit , Hospital Clínic, University of Barcelona , Barcelona , Spain
| |
Collapse
|
115
|
Metabolomics: A Primer. Trends Biochem Sci 2017; 42:274-284. [PMID: 28196646 DOI: 10.1016/j.tibs.2017.01.004] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/13/2016] [Accepted: 01/12/2017] [Indexed: 02/08/2023]
Abstract
Metabolomics generates a profile of small molecules that are derived from cellular metabolism and can directly reflect the outcome of complex networks of biochemical reactions, thus providing insights into multiple aspects of cellular physiology. Technological advances have enabled rapid and increasingly expansive data acquisition with samples as small as single cells; however, substantial challenges in the field remain. In this primer we provide an overview of metabolomics, especially mass spectrometry (MS)-based metabolomics, which uses liquid chromatography (LC) for separation, and discuss its utilities and limitations. We identify and discuss several areas at the frontier of metabolomics. Our goal is to give the reader a sense of what might be accomplished when conducting a metabolomics experiment, now and in the near future.
Collapse
|
116
|
Sasaki Y, Ikeda Y, Iwabayashi M, Akasaki Y, Ohishi M. The Impact of Autophagy on Cardiovascular Senescence and Diseases. Int Heart J 2017; 58:666-673. [DOI: 10.1536/ihj.17-246] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Yuichi Sasaki
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Yoshiyuki Ikeda
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Masaaki Iwabayashi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Yuichi Akasaki
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| | - Mitsuru Ohishi
- Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Sciences, Kagoshima University
| |
Collapse
|
117
|
Construction Formula of Biological Age Using the Principal Component Analysis. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4697017. [PMID: 28050560 PMCID: PMC5168481 DOI: 10.1155/2016/4697017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/17/2016] [Indexed: 11/18/2022]
Abstract
The biological age (BA) equation is a prediction model that utilizes an algorithm to combine various biological markers of ageing. Different from traditional concepts, the BA equation does not emphasize the importance of a golden index but focuses on using indices of vital organs to represent the senescence of whole body. This model has been used to assess the ageing process in a more precise way and may predict possible diseases better as compared with the chronological age (CA). The principal component analysis (PCA) is applied as one of the common and frequently used methods in the construction of the BA formula. Compared with other methods, PCA has its own study procedures and features. Herein we summarize the up-to-date knowledge about the BA formula construction and discuss the influential factors, so as to give an overview of BA estimate by PCA, including composition of samples, choices of test items, and selection of ageing biomarkers. We also discussed the advantages and disadvantages of PCA with reference to the construction mechanism, accuracy, and practicability of several common methods in the construction of the BA formula.
Collapse
|
118
|
Kim Y, Nam HG, Valenzano DR. The short-lived African turquoise killifish: an emerging experimental model for ageing. Dis Model Mech 2016; 9:115-29. [PMID: 26839399 PMCID: PMC4770150 DOI: 10.1242/dmm.023226] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human ageing is a fundamental biological process that leads to functional decay, increased risk for various diseases and, ultimately, death. Some of the basic biological mechanisms underlying human ageing are shared with other organisms; thus, animal models have been invaluable in providing key mechanistic and molecular insights into the common bases of biological ageing. In this Review, we briefly summarise the major applications of the most commonly used model organisms adopted in ageing research and highlight their relevance in understanding human ageing. We compare the strengths and limitations of different model organisms and discuss in detail an emerging ageing model, the short-lived African turquoise killifish. We review the recent progress made in using the turquoise killifish to study the biology of ageing and discuss potential future applications of this promising animal model.
Collapse
Affiliation(s)
- Yumi Kim
- Max Planck Institute for Biology of Ageing, D50931, Cologne, Germany Department of New Biology, DGIST, 711-873, Daegu, Republic of Korea
| | - Hong Gil Nam
- Department of New Biology, DGIST, 711-873, Daegu, Republic of Korea Center for Plant Aging Research, Institute for Basic Science, 711-873, Daegu, Republic of Korea
| | | |
Collapse
|
119
|
Kim DK, Kim TH, Lee SJ. Mechanisms of aging-related proteinopathies in Caenorhabditis elegans. Exp Mol Med 2016; 48:e263. [PMID: 27713398 PMCID: PMC5099420 DOI: 10.1038/emm.2016.109] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/05/2016] [Accepted: 07/12/2016] [Indexed: 12/24/2022] Open
Abstract
Aging is the most important risk factor for human neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. Pathologically, these diseases are characterized by the deposition of specific protein aggregates in neurons and glia, representing the impairment of neuronal proteostasis. However, the mechanism by which aging affects the proteostasis system and promotes protein aggregation remains largely unknown. The short lifespan and ample genetic resources of Caenorhabditis elegans (C. elegans) have made this species a favorite model organism for aging research, and the development of proteinopathy models in this organism has helped us to understand how aging processes affect protein aggregation and neurodegeneration. Here, we review the recent literature on proteinopathies in C. elegans models and discuss the insights we have gained into the mechanisms of how aging processes are integrated into the pathogenesis of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Science and Technology, Konkuk University, Seoul, Korea
| | - Tae Ho Kim
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Department of Medicine, Inha University School of Medicine, Incheon, Korea
| | - Seung-Jae Lee
- Department of Biomedical Sciences, Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
120
|
Cattie DJ, Richardson CE, Reddy KC, Ness-Cohn EM, Droste R, Thompson MK, Gilbert WV, Kim DH. Mutations in Nonessential eIF3k and eIF3l Genes Confer Lifespan Extension and Enhanced Resistance to ER Stress in Caenorhabditis elegans. PLoS Genet 2016; 12:e1006326. [PMID: 27690135 PMCID: PMC5045169 DOI: 10.1371/journal.pgen.1006326] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/26/2016] [Indexed: 11/18/2022] Open
Abstract
The translation initiation factor eIF3 is a multi-subunit protein complex that coordinates the assembly of the 43S pre-initiation complex in eukaryotes. Prior studies have demonstrated that not all subunits of eIF3 are essential for the initiation of translation, suggesting that some subunits may serve regulatory roles. Here, we show that loss-of-function mutations in the genes encoding the conserved eIF3k and eIF3l subunits of the translation initiation complex eIF3 result in a 40% extension in lifespan and enhanced resistance to endoplasmic reticulum (ER) stress in Caenorhabditis elegans. In contrast to previously described mutations in genes encoding translation initiation components that confer lifespan extension in C. elegans, loss-of-function mutations in eif-3.K or eif-3.L are viable, and mutants show normal rates of growth and development, and have wild-type levels of bulk protein synthesis. Lifespan extension resulting from EIF-3.K or EIF-3.L deficiency is suppressed by a mutation in the Forkhead family transcription factor DAF-16. Mutations in eif-3.K or eif-3.L also confer enhanced resistance to ER stress, independent of IRE-1-XBP-1, ATF-6, and PEK-1, and independent of DAF-16. Our data suggest a pivotal functional role for conserved eIF3k and eIF3l accessory subunits of eIF3 in the regulation of cellular and organismal responses to ER stress and aging.
Collapse
Affiliation(s)
- Douglas J. Cattie
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Claire E. Richardson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Kirthi C. Reddy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Elan M. Ness-Cohn
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Rita Droste
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Mary K. Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Wendy V. Gilbert
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Dennis H. Kim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
121
|
Hazari YM, Bashir A, Haq EU, Fazili KM. Emerging tale of UPR and cancer: an essentiality for malignancy. Tumour Biol 2016; 37:14381-14390. [PMID: 27629140 DOI: 10.1007/s13277-016-5343-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/06/2016] [Indexed: 12/11/2022] Open
Abstract
A set of cellular response to counter any alteration in homeostasis of a cell originating at endoplasmic reticulum is collectively termed as unfolded protein response (UPR). It initially is adaptive in nature as to restore cellular normalcy failing in course often activates pro-apoptotic signaling pathway resulting in cell death. UPR has emerged as an essential adaptation mechanism that cross talk with various cellular processes for cancer pathogenesis. Interestingly, it plays diverse role in plethora of signaling pathways instrumental in transformation, cell invasion, cell migration, metastasis, neovascularization, proliferation, and maintenance of energy metabolism of cancerous cells. In cancerous cells, it is triggered by change in microenvironment of a cell usually driven by hypoxia, acidosis, and nutrient deprivation, which often leads to positive selection pressure involving the reprogramming of energy metabolism which promotes channelization of limited metabolites into the hexosamine biosynthetic pathway (HBP). Substantial evidences suggest the role of UPR in oncogene (Myc, mTOR, RAS, HER2) driven cancer transformation and progression. In this review, we have comprehensively underlined the role played by UPR in adaptation, transformation, proliferation, invasion, and metastasis of cancerous cells.
Collapse
Affiliation(s)
- Younis Mohammad Hazari
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Arif Bashir
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Ehtisham Ul Haq
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Khalid Majid Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
122
|
Chen WY, Yang RC, Wang HM, Zhang L, Hu K, Li CH, You R, Yin L, Guan YQ. Self-Assembled Heterojunction Carbon Nanotubes Synergizing with Photoimmobilized IGF-1 Inhibit Cellular Senescence. Adv Healthc Mater 2016; 5:2413-26. [PMID: 27385628 DOI: 10.1002/adhm.201600359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/03/2016] [Indexed: 12/11/2022]
Abstract
Synthesis of artificial and functional structures for bone tissue engineering has been well recognized but the associated cell senescence issue remains much less concerned so far. In this work, surface-modified polycaprolactone-polylactic acid scaffolds using self-assembled heterojunction carbon nanotubes (sh-CNTs) combined with insulin-like growth factor-1 are synthesized and a series of structural and biological characterizations are carried out, with particular attention to cell senescence mechanism. It is revealed that the modified scaffolds can up-regulate the expressions of alkaline phosphates and bone morphogenetic proteins while down-regulate the expressions of senescence-related proteins in mesenchymal stem cells, demonstrating the highly preferred anti-senescence functionality of the sh-CNTs modified scaffolds in bone tissue engineering. Furthermore, it is also found that with sh-CNTs, scaffolds can accelerate bone healing with extremely low toxicity in vivo.
Collapse
Affiliation(s)
- Wu-Ya Chen
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Run-Cai Yang
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Hui-Min Wang
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Li Zhang
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Kaikai Hu
- College of Biophotonics; South China Normal University; Guangzhou 510631 P. R. China
| | - Chu-Hua Li
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Rong You
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Liang Yin
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
| | - Yan-Qing Guan
- School of Life Science; South China Normal University; Guangzhou 510631 P. R. China
- College of Biophotonics; South China Normal University; Guangzhou 510631 P. R. China
| |
Collapse
|
123
|
mTORC2 Responds to Glutamine Catabolite Levels to Modulate the Hexosamine Biosynthesis Enzyme GFAT1. Mol Cell 2016; 63:811-26. [PMID: 27570073 DOI: 10.1016/j.molcel.2016.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/24/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022]
Abstract
Highly proliferating cells are particularly dependent on glucose and glutamine for bioenergetics and macromolecule biosynthesis. The signals that respond to nutrient fluctuations to maintain metabolic homeostasis remain poorly understood. Here, we found that mTORC2 is activated by nutrient deprivation due to decreasing glutamine catabolites. We elucidate how mTORC2 modulates a glutamine-requiring biosynthetic pathway, the hexosamine biosynthesis pathway (HBP) via regulation of expression of glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1), the rate-limiting enzyme of the HBP. GFAT1 expression is dependent on sufficient amounts of glutaminolysis catabolites particularly α-ketoglutarate, which are generated in an mTORC2-dependent manner. Additionally, mTORC2 is essential for proper expression and nuclear accumulation of the GFAT1 transcriptional regulator, Xbp1s. Thus, while mTORC1 senses amino acid abundance to promote anabolism, mTORC2 responds to declining glutamine catabolites in order to restore metabolic homeostasis. Our findings uncover the role of mTORC2 in metabolic reprogramming and have implications for understanding insulin resistance and tumorigenesis.
Collapse
|
124
|
Johnsen M, Späth MR, Denzel MS, Göbel H, Kubacki T, Hoyer KJR, Hinze Y, Benzing T, Schermer B, Antebi A, Burst V, Müller RU. Oral Supplementation of Glucosamine Fails to Alleviate Acute Kidney Injury in Renal Ischemia-Reperfusion Damage. PLoS One 2016; 11:e0161315. [PMID: 27557097 PMCID: PMC4996512 DOI: 10.1371/journal.pone.0161315] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/03/2016] [Indexed: 01/23/2023] Open
Abstract
Acute kidney injury is a leading contributor to morbidity and mortality in the ageing population. Proteotoxic stress response pathways have been suggested to contribute to the development of acute renal injury. Recent evidence suggests that increased synthesis of N-glycan precursors in the hexosamine pathway as well as feeding of animals with aminosugars produced in the hexosamine pathway may increase stress resistance through reducing proteotoxic stress and alleviate pathology in model organisms. As feeding of the hexosamine pathway metabolite glucosamine to aged mice increased their life expectancy we tested whether supplementation of this aminosugar may also protect mice from acute kidney injury after renal ischemia and reperfusion. Animals were fed for 4 weeks ad libitum with standard chow or standard chow supplemented with 0.5% N-acetylglucosamine. Preconditioning with caloric restriction for four weeks prior to surgery served as a positive control for protective dietary effects. Whereas caloric restriction demonstrated the known protective effect both on renal function as well as survival in the treated animals, glucosamine supplementation failed to promote any protection from ischemia-reperfusion injury. These data show that although hexosamine pathway metabolites have a proven role in enhancing protein quality control and survival in model organisms oral glucosamine supplementation at moderate doses that would be amenable to humans does not promote protection from ischemia-reperfusion injury of the kidney.
Collapse
Affiliation(s)
- Marc Johnsen
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Martin Richard Späth
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Martin S. Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Heike Göbel
- Institute for Pathology, Diagnostic and Experimental Nephropathology Unit, University of Cologne, Cologne, Germany
| | - Torsten Kubacki
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Karla Johanna Ruth Hoyer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Yvonne Hinze
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Volker Burst
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- * E-mail: (RUM); (VB)
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- Systems Biology of Ageing Cologne, University of Cologne, Cologne, Germany
- * E-mail: (RUM); (VB)
| |
Collapse
|
125
|
Thinon E, Morales-Sanfrutos J, Mann DJ, Tate EW. N-Myristoyltransferase Inhibition Induces ER-Stress, Cell Cycle Arrest, and Apoptosis in Cancer Cells. ACS Chem Biol 2016; 11:2165-76. [PMID: 27267252 PMCID: PMC5077176 DOI: 10.1021/acschembio.6b00371] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022]
Abstract
N-Myristoyltransferase (NMT) covalently attaches a C14 fatty acid to the N-terminal glycine of proteins and has been proposed as a therapeutic target in cancer. We have recently shown that selective NMT inhibition leads to dose-responsive loss of N-myristoylation on more than 100 protein targets in cells, and cytotoxicity in cancer cells. N-myristoylation lies upstream of multiple pro-proliferative and oncogenic pathways, but to date the complex substrate specificity of NMT has limited determination of which diseases are most likely to respond to a selective NMT inhibitor. We describe here the phenotype of NMT inhibition in HeLa cells and show that cells die through apoptosis following or concurrent with accumulation in the G1 phase. We used quantitative proteomics to map protein expression changes for more than 2700 proteins in response to treatment with an NMT inhibitor in HeLa cells and observed down-regulation of proteins involved in cell cycle regulation and up-regulation of proteins involved in the endoplasmic reticulum stress and unfolded protein response, with similar results in breast (MCF-7, MDA-MB-231) and colon (HCT116) cancer cell lines. This study describes the cellular response to NMT inhibition at the proteome level and provides a starting point for selective targeting of specific diseases with NMT inhibitors, potentially in combination with other targeted agents.
Collapse
Affiliation(s)
- Emmanuelle Thinon
- Department
of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
- Department
of Life Sciences, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | - Julia Morales-Sanfrutos
- Department
of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | - David J. Mann
- Department
of Life Sciences, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
- Institute
of Chemical Biology, Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| | - Edward W. Tate
- Department
of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
- Institute
of Chemical Biology, Department of Chemistry, Imperial College London, Exhibition Road, London SW72AZ, United Kingdom
| |
Collapse
|
126
|
Kim DK, Lim HS, Kawasaki I, Shim YH, Vaikath NN, El-Agnaf OMA, Lee HJ, Lee SJ. Anti-aging treatments slow propagation of synucleinopathy by restoring lysosomal function. Autophagy 2016; 12:1849-1863. [PMID: 27485532 DOI: 10.1080/15548627.2016.1207014] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Aging is the major risk factor for neurodegenerative diseases that are also associated with impaired proteostasis, resulting in abnormal accumulation of protein aggregates. However, the role of aging in development and progression of disease remains elusive. Here, we used Caenorhabditis elegans models to show that aging-promoting genetic variations accelerated the rate of cell-to-cell transmission of SNCA/α-synuclein aggregates, hallmarks of Parkinson disease, and the progression of disease phenotypes, such as nerve degeneration, behavioral deficits, and reduced life span. Genetic and pharmacological anti-aging manipulations slowed the spread of aggregates and the associated phenotypes. Lysosomal degradation was significantly impaired in aging models, while anti-aging treatments reduced the impairment. Transgenic expression of hlh-30p::hlh-30, the master controller of lysosomal biogenesis, alleviated intercellular transmission of aggregates in the aging model. Our results demonstrate that the rate of aging closely correlates with the rate of aggregate propagation and that general anti-aging treatments can slow aggregate propagation and associated disease progression by restoring lysosomal function.
Collapse
Affiliation(s)
- Dong-Kyu Kim
- a Department of Biomedical Sciences and Neuroscience Research Institute , Seoul National University College of Medicine , Seoul , Korea.,b Department of Biomedical Science and Technology , Konkuk University , Seoul , Korea
| | - Hee-Sun Lim
- b Department of Biomedical Science and Technology , Konkuk University , Seoul , Korea
| | - Ichiro Kawasaki
- c Department of Bioscience and Biotechnoloy and Institute of KU Biotechnology, Konkuk University , Seoul , Korea
| | - Yhong-Hee Shim
- c Department of Bioscience and Biotechnoloy and Institute of KU Biotechnology, Konkuk University , Seoul , Korea
| | - Nishant N Vaikath
- d Department of Biochemistry , College of Medicine and Health Science, United Arab University , Al Ain , United Arab Emirates
| | - Omar M A El-Agnaf
- e Neurological Disorders Center, Qatar Biomedical Research Institute (QBRI), and College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Qatar Foundation , Doha , Qatar
| | - He-Jin Lee
- f Department of Anatomy , School of Medicine, Konkuk University , Seoul , Korea
| | - Seung-Jae Lee
- a Department of Biomedical Sciences and Neuroscience Research Institute , Seoul National University College of Medicine , Seoul , Korea
| |
Collapse
|
127
|
Metabolic Control of Longevity. Cell 2016; 166:802-821. [DOI: 10.1016/j.cell.2016.07.031] [Citation(s) in RCA: 489] [Impact Index Per Article: 61.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/15/2016] [Accepted: 07/20/2016] [Indexed: 12/19/2022]
|
128
|
Inhibition of telomerase causes vulnerability to endoplasmic reticulum stress-induced neuronal cell death. Neurosci Lett 2016; 629:241-244. [PMID: 27443785 DOI: 10.1016/j.neulet.2016.07.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/27/2016] [Accepted: 07/16/2016] [Indexed: 01/01/2023]
Abstract
Endoplasmic reticulum (ER) stress is implicated in several diseases, such as cancer and neurodegenerative diseases. In the present study, we investigated the possible involvement of telomerase in ER stress-induced cell death. ER stress-induced cell death was ameliorated in telomerase reverse transcriptase (TERT) over-expressing MCF7 cells (MCF7-TERT cell). Telomerase specific inhibitor, BIBR1532, reversed the inhibitory effect of TERT on ER stress-induced cell death in MCF7-TERT cells. These findings suggest that BIBR1532 may specifically inhibit telomerase activity, thereby inducing cell death in ER stress-exposed cells. TERT was expressed in the SH-SY5Y neuroblastoma cell line. To analyze the possible involvement of telomerase in ER stress-induced neuronal cell death, we treated SH-SY5Y neuroblastoma cells with BIBR1532 and analyzed ER stress-induced cell death. We found that BIBR1532 significantly enhanced the ER stress-induced neuronal cell death. These findings suggest that inhibition of telomerase activity may enhance vulnerability to neuronal cell death caused by ER stress.
Collapse
|
129
|
Le Reste PJ, Avril T, Quillien V, Morandi X, Chevet E. Reprint of: Signaling the Unfolded Protein Response in primary brain cancers. Brain Res 2016; 1648:542-552. [PMID: 27362469 DOI: 10.1016/j.brainres.2016.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 11/15/2022]
Abstract
The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Pierre-Jean Le Reste
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France; Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France
| | - Tony Avril
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Véronique Quillien
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Morandi
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France
| | - Eric Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
130
|
Toyoda Y, Takada T, Miyata H, Ishikawa T, Suzuki H. Regulation of the Axillary Osmidrosis-Associated ABCC11 Protein Stability by N-Linked Glycosylation: Effect of Glucose Condition. PLoS One 2016; 11:e0157172. [PMID: 27281343 PMCID: PMC4900533 DOI: 10.1371/journal.pone.0157172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/25/2016] [Indexed: 01/09/2023] Open
Abstract
ATP-binding cassette C11 (ABCC11) is a plasma membrane protein involved in the transport of a variety of lipophilic anions. ABCC11 wild-type is responsible for the high-secretion phenotypes in human apocrine glands, such as that of wet-type ear wax, and the risk of axillary osmidrosis. We have previously reported that mature ABCC11 is a glycoprotein containing two N-linked glycans at Asn838 and Asn844. However, little is known about the role of N-linked glycosylation in the regulation of ABCC11 protein. In the current study, we investigated the effects of N-linked glycosylation on the protein level and localization of ABCC11 using polarized Madin-Darby canine kidney II cells. When the N-linked glycosylation in ABCC11-expressing cells was chemically inhibited by tunicamycin treatment, the maturation of ABCC11 was suppressed and its protein level was significantly decreased. Immunoblotting analyses demonstrated that the protein level of the N-linked glycosylation-deficient mutant (N838Q and N844Q: Q838/844) was about half of the ABCC11 wild-type level. Further biochemical studies with the Q838/844 mutant showed that this glycosylation-deficient ABCC11 was degraded faster than wild-type probably due to the enhancement of the MG132-sensitive protein degradation pathway. Moreover, the incubation of ABCC11 wild-type-expressing cells in a low-glucose condition decreased mature, glycosylated ABCC11, compared with the high-glucose condition. On the other hand, the protein level of the Q838/844 mutant was not affected by glucose condition. These results suggest that N-linked glycosylation is important for the protein stability of ABCC11, and physiological alteration in glucose may affect the ABCC11 protein level and ABCC11-related phenotypes in humans, such as axillary osmidrosis.
Collapse
Affiliation(s)
- Yu Toyoda
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
- * E-mail:
| | - Tappei Takada
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | - Hiroshi Miyata
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| | | | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
131
|
Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. Aging and Autophagy in the Heart. Circ Res 2016; 118:1563-76. [PMID: 27174950 PMCID: PMC4869999 DOI: 10.1161/circresaha.116.307474] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/15/2016] [Indexed: 12/15/2022]
Abstract
The aging population is increasing in developed countries. Because the incidence of cardiac disease increases dramatically with age, it is important to understand the molecular mechanisms through which the heart becomes either more or less susceptible to stress. Cardiac aging is characterized by the presence of hypertrophy, fibrosis, and accumulation of misfolded proteins and dysfunctional mitochondria. Macroautophagy (hereafter referred to as autophagy) is a lysosome-dependent bulk degradation mechanism that is essential for intracellular protein and organelle quality control. Autophagy and autophagic flux are generally decreased in aging hearts, and murine autophagy loss-of-function models develop exacerbated cardiac dysfunction that is accompanied by the accumulation of misfolded proteins and dysfunctional organelles. On the contrary, stimulation of autophagy generally improves cardiac function in mouse models of protein aggregation by removing accumulated misfolded proteins, dysfunctional mitochondria, and damaged DNA, thereby improving the overall cellular environment and alleviating aging-associated pathology in the heart. Increasing lines of evidence suggest that autophagy is required for many mechanisms that mediate lifespan extension, such as caloric restriction, in various organisms. These results raise the exciting possibility that autophagy may play an important role in combating the adverse effects of aging in the heart. In this review, we discuss the role of autophagy in the heart during aging, how autophagy alleviates age-dependent changes in the heart, and how the level of autophagy in the aging heart can be restored.
Collapse
Affiliation(s)
- Akihiro Shirakabe
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (A.S., Y.I., S.S., D.K.Z., J.S.); Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Science, Kagoshima University, Japan (Y.I.); Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy (S.S.); and Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S.)
| | - Yoshiyuki Ikeda
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (A.S., Y.I., S.S., D.K.Z., J.S.); Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Science, Kagoshima University, Japan (Y.I.); Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy (S.S.); and Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S.)
| | - Sebastiano Sciarretta
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (A.S., Y.I., S.S., D.K.Z., J.S.); Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Science, Kagoshima University, Japan (Y.I.); Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy (S.S.); and Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S.)
| | - Daniela K Zablocki
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (A.S., Y.I., S.S., D.K.Z., J.S.); Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Science, Kagoshima University, Japan (Y.I.); Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy (S.S.); and Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S.)
| | - Junichi Sadoshima
- From the Department of Cell Biology and Molecular Medicine, Rutgers-New Jersey Medical School, Newark (A.S., Y.I., S.S., D.K.Z., J.S.); Department of Cardiovascular Medicine and Hypertension, Graduate School of Medical and Dental Science, Kagoshima University, Japan (Y.I.); Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy (S.S.); and Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli, Italy (S.S.).
| |
Collapse
|
132
|
Abstract
The aging process is characterized by tissue decline and the onset of age-associated disease. It is not, however, immutable, and aging can be modulated by various genetic and environmental means. One of the interventions that can modulate lifespan is the activation of cellular stress responses, including the unfolded protein response in the endoplasmic reticulum (UPRER). The ability to activate the UPRER declines with age, while its constitutive activation can extend longevity. It also plays complex roles in the onset and progression of many age-related diseases. Understanding how the UPRER changes with age, and how this impacts upon disease development, may open new therapeutic avenues for the treatment of a range of age-associated diseases. This article is part of a Special Issue entitled SI:ER stress.
Collapse
|
133
|
Le Reste PJ, Avril T, Quillien V, Morandi X, Chevet E. Signaling the Unfolded Protein Response in primary brain cancers. Brain Res 2016; 1642:59-69. [PMID: 27016056 DOI: 10.1016/j.brainres.2016.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 12/14/2022]
Abstract
The Unfolded Protein Response (UPR) is an adaptive cellular program used by eukaryotic cells to cope with protein misfolding stress in the Endoplasmic Reticulum (ER). During tumor development, cancer cells are facing intrinsic (oncogene activation) and extrinsic (limiting nutrient or oxygen supply; exposure to chemotherapies) challenges, with which they must cope to survive. Primary brain tumors are relatively rare but deadly and present a significant challenge in the determination of risk factors in the population. These tumors are inherently difficult to cure because of their protected location in the brain. As such surgery, radiation and chemotherapy options carry potentially lasting patient morbidity and incomplete tumor cure. Some of these tumors, such as glioblastoma, were reported to present features of ER stress and to depend on UPR activation to sustain growth, but to date there is no clear general representation of the ER stress status in primary brain tumors. In this review, we describe the key molecular mechanisms controlling the UPR and their implication in cancers. Then we extensively review the literature reporting the status of ER stress in various primary brain tumors and discuss the potential impact of such observation on patient stratification and on the possibility of developing appropriate targeted therapies using the UPR as therapeutic target.
Collapse
Affiliation(s)
- Pierre-Jean Le Reste
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France; Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France
| | - Tony Avril
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Véronique Quillien
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France
| | - Xavier Morandi
- Department of Neurosurgery, University Hospital Pontchaillou, Rennes, France
| | - Eric Chevet
- Inserm ERL440 "Oncogenesis, Stress, Signaling", Université de Rennes 1, Rennes, France; Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France.
| |
Collapse
|
134
|
Johnston BA, Hooks KB, McKinstry M, Snow JW. Divergent forms of endoplasmic reticulum stress trigger a robust unfolded protein response in honey bees. JOURNAL OF INSECT PHYSIOLOGY 2016; 86:1-10. [PMID: 26699660 DOI: 10.1016/j.jinsphys.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/04/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Honey bee colonies in the United States have suffered from an increased rate of die-off in recent years, stemming from a complex set of interacting stresses that remain poorly described. While we have some understanding of the physiological stress responses in the honey bee, our molecular understanding of honey bee cellular stress responses is incomplete. Thus, we sought to identify and began functional characterization of the components of the UPR in honey bees. The IRE1-dependent splicing of the mRNA for the transcription factor Xbp1, leading to translation of an isoform with more transactivation potential, represents the most conserved of the UPR pathways. Honey bees and other Apoidea possess unique features in the Xbp1 mRNA splice site, which we reasoned could have functional consequences for the IRE1 pathway. However, we find robust induction of target genes upon UPR stimulation. In addition, the IRE1 pathway activation, as assessed by splicing of Xbp1 mRNA upon UPR, is conserved. By providing foundational knowledge about the UPR in the honey bee and the relative sensitivity of this species to divergent stresses, this work stands to improve our understanding of the mechanistic underpinnings of honey bee health and disease.
Collapse
Affiliation(s)
- Brittany A Johnston
- Biology Department, Barnard College, New York, NY 10027, USA; Biology Department, The City College of New York - CUNY, New York, NY 10031, USA
| | - Katarzyna B Hooks
- Faculty of Life Sciences, University of Manchester, Manchester, UK; U1053 INSERM, Université de Bordeaux, France
| | - Mia McKinstry
- Biology Department, Barnard College, New York, NY 10027, USA
| | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY 10027, USA.
| |
Collapse
|
135
|
Gomes LC, Odedra D, Dikic I, Pohl C. Autophagy and modular restructuring of metabolism control germline tumor differentiation and proliferation in C. elegans. Autophagy 2016; 12:529-46. [PMID: 26759963 PMCID: PMC4835962 DOI: 10.1080/15548627.2015.1136771] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Autophagy can act either as a tumor suppressor or as a survival mechanism for established tumors. To understand how autophagy plays this dual role in cancer, in vivo models are required. By using a highly heterogeneous C. elegans germline tumor, we show that autophagy-related proteins are expressed in a specific subset of tumor cells, neurons. Inhibition of autophagy impairs neuronal differentiation and increases tumor cell number, resulting in a shorter life span of animals with tumors, while induction of autophagy extends their life span by impairing tumor proliferation. Fasting of animals with fully developed tumors leads to a doubling of their life span, which depends on modular changes in transcription including switches in transcription factor networks and mitochondrial metabolism. Hence, our results suggest that metabolic restructuring, cell-type specific regulation of autophagy and neuronal differentiation constitute central pathways preventing growth of heterogeneous tumors.
Collapse
Affiliation(s)
- Ligia C Gomes
- a Buchmann Institute for Molecular Life Sciences, Goethe University , Frankfurt (Main) , Germany.,b Institute of Biochemistry II, School of Medicine, Goethe University , Frankfurt (Main) , Germany
| | - Devang Odedra
- a Buchmann Institute for Molecular Life Sciences, Goethe University , Frankfurt (Main) , Germany.,b Institute of Biochemistry II, School of Medicine, Goethe University , Frankfurt (Main) , Germany
| | - Ivan Dikic
- a Buchmann Institute for Molecular Life Sciences, Goethe University , Frankfurt (Main) , Germany.,b Institute of Biochemistry II, School of Medicine, Goethe University , Frankfurt (Main) , Germany.,c Department of Immunology and Medical Genetics , University of Split, School of Medicine , Split , Croatia
| | - Christian Pohl
- a Buchmann Institute for Molecular Life Sciences, Goethe University , Frankfurt (Main) , Germany.,b Institute of Biochemistry II, School of Medicine, Goethe University , Frankfurt (Main) , Germany
| |
Collapse
|
136
|
Low dose tunicamycin enhances atherosclerotic plaque stability by inducing autophagy. Biochem Pharmacol 2016; 100:51-60. [DOI: 10.1016/j.bcp.2015.11.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 11/18/2015] [Indexed: 11/19/2022]
|
137
|
Castrillo JI, Oliver SG. Alzheimer's as a Systems-Level Disease Involving the Interplay of Multiple Cellular Networks. Methods Mol Biol 2016; 1303:3-48. [PMID: 26235058 DOI: 10.1007/978-1-4939-2627-5_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD), and many neurodegenerative disorders, are multifactorial in nature. They involve a combination of genomic, epigenomic, interactomic and environmental factors. Progress is being made, and these complex diseases are beginning to be understood as having their origin in altered states of biological networks at the cellular level. In the case of AD, genomic susceptibility and mechanisms leading to (or accompanying) the impairment of the central Amyloid Precursor Protein (APP) processing and tau networks are widely accepted as major contributors to the diseased state. The derangement of these networks may result in both the gain and loss of functions, increased generation of toxic species (e.g., toxic soluble oligomers and aggregates) and imbalances, whose effects can propagate to supra-cellular levels. Although well sustained by empirical data and widely accepted, this global perspective often overlooks the essential roles played by the main counteracting homeostatic networks (e.g., protein quality control/proteostasis, unfolded protein response, protein folding chaperone networks, disaggregases, ER-associated degradation/ubiquitin proteasome system, endolysosomal network, autophagy, and other stress-protective and clearance networks), whose relevance to AD is just beginning to be fully realized. In this chapter, an integrative perspective is presented. Alzheimer's disease is characterized to be a result of: (a) intrinsic genomic/epigenomic susceptibility and, (b) a continued dynamic interplay between the deranged networks and the central homeostatic networks of nerve cells. This interplay of networks will underlie both the onset and rate of progression of the disease in each individual. Integrative Systems Biology approaches are required to effect its elucidation. Comprehensive Systems Biology experiments at different 'omics levels in simple model organisms, engineered to recapitulate the basic features of AD may illuminate the onset and sequence of events underlying AD. Indeed, studies of models of AD in simple organisms, differentiated cells in culture and rodents are beginning to offer hope that the onset and progression of AD, if detected at an early stage, may be stopped, delayed, or even reversed, by activating or modulating networks involved in proteostasis and the clearance of toxic species. In practice, the incorporation of next-generation neuroimaging, high-throughput and computational approaches are opening the way towards early diagnosis well before irreversible cell death. Thus, the presence or co-occurrence of: (a) accumulation of toxic Aβ oligomers and tau species; (b) altered splicing and transcriptome patterns; (c) impaired redox, proteostatic, and metabolic networks together with, (d) compromised homeostatic capacities may constitute relevant 'AD hallmarks at the cellular level' towards reliable and early diagnosis. From here, preventive lifestyle changes and tailored therapies may be investigated, such as combined strategies aimed at both lowering the production of toxic species and potentiating homeostatic responses, in order to prevent or delay the onset, and arrest, alleviate, or even reverse the progression of the disease.
Collapse
Affiliation(s)
- Juan I Castrillo
- Department of Biochemistry & Cambridge Systems Biology Centre, University of Cambridge, Sanger Building, 80 Tennis Court Road, Cambridge, CB2 1GA, UK,
| | | |
Collapse
|
138
|
Alejandro EU, Bozadjieva N, Kumusoglu D, Abdulhamid S, Levine H, Haataja L, Vadrevu S, Satin LS, Arvan P, Bernal-Mizrachi E. Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and β Cell Failure. Cell Rep 2015; 13:2527-2538. [PMID: 26673325 PMCID: PMC4839001 DOI: 10.1016/j.celrep.2015.11.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/22/2015] [Accepted: 11/03/2015] [Indexed: 11/30/2022] Open
Abstract
Nutrient levels dictate the activity of O-linked N-acetylglucosamine transferase (OGT) to regulate O-GlcNAcylation, a post-translational modification mechanism to "fine-tune" intracellular signaling and metabolic status. However, the requirement of O-GlcNAcylation for maintaining glucose homeostasis by regulating pancreatic β cell mass and function is unclear. Here, we reveal that mice lacking β cell OGT (βOGT-KO) develop diabetes and β cell failure. βOGT-KO mice demonstrated increased ER stress and distended ER architecture, and these changes ultimately caused the loss of β cell mass due to ER-stress-induced apoptosis and decreased proliferation. Akt1/2 signaling was also dampened in βOGT-KO islets. The mechanistic role of these processes was demonstrated by rescuing the phenotype of βOGT-KO mice with concomitant Chop gene deletion or genetic reconstitution of Akt2. These findings identify OGT as a regulator of β cell mass and function and provide a direct link between O-GlcNAcylation and β cell survival by regulation of ER stress responses and modulation of Akt1/2 signaling.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Nadejda Bozadjieva
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Doga Kumusoglu
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Sarah Abdulhamid
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Hannah Levine
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Leena Haataja
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Suryakiran Vadrevu
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Leslie S Satin
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Peter Arvan
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI 48109-0678, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI 48109-0678, USA.
| |
Collapse
|
139
|
Dewal MB, DiChiara AS, Antonopoulos A, Taylor RJ, Harmon CJ, Haslam SM, Dell A, Shoulders MD. XBP1s Links the Unfolded Protein Response to the Molecular Architecture of Mature N-Glycans. CHEMISTRY & BIOLOGY 2015; 22:1301-12. [PMID: 26496683 PMCID: PMC4621487 DOI: 10.1016/j.chembiol.2015.09.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022]
Abstract
The molecular architecture of the mature N-glycome is dynamic, with consequences for both normal and pathologic processes. Elucidating cellular mechanisms that modulate the N-linked glycome is, therefore, crucial. The unfolded protein response (UPR) is classically responsible for maintaining proteostasis in the secretory pathway by defining levels of chaperones and quality control proteins. Here, we employ chemical biology methods for UPR regulation to show that stress-independent activation of the UPR's XBP1s transcription factor also induces a panel of N-glycan maturation-related enzymes. The downstream consequence is a distinctive shift toward specific hybrid and complex N-glycans on N-glycoproteins produced from XBP1s-activated cells, which we characterize by mass spectrometry. Pulse-chase studies attribute this shift specifically to altered N-glycan processing, rather than to changes in degradation or secretion rates. Our findings implicate XBP1s in a new role for N-glycoprotein biosynthesis, unveiling an important link between intracellular stress responses and the molecular architecture of extracellular N-glycoproteins.
Collapse
Affiliation(s)
- Mahender B Dewal
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Andrew S DiChiara
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | - Rebecca J Taylor
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Chyleigh J Harmon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
140
|
Zhang R, Chen HZ, Liu DP. The Four Layers of Aging. Cell Syst 2015; 1:180-6. [PMID: 27135911 DOI: 10.1016/j.cels.2015.09.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/06/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023]
Abstract
Instead of considering aging in terms of discrete hallmarks, we suggest that it operates in four layers, each at a different biological scale. Malfunctions within each layer-and connections between them-produce the aged phenotype and its associated susceptibility to disease.
Collapse
Affiliation(s)
- Ran Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China
| | - Hou-Zao Chen
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China.
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, P.R. China.
| |
Collapse
|
141
|
Longo VD, Antebi A, Bartke A, Barzilai N, Brown‐Borg HM, Caruso C, Curiel TJ, Cabo R, Franceschi C, Gems D, Ingram DK, Johnson TE, Kennedy BK, Kenyon C, Klein S, Kopchick JJ, Lepperdinger G, Madeo F, Mirisola MG, Mitchell JR, Passarino G, Rudolph KL, Sedivy JM, Shadel GS, Sinclair DA, Spindler SR, Suh Y, Vijg J, Vinciguerra M, Fontana L. Interventions to Slow Aging in Humans: Are We Ready? Aging Cell 2015; 14:497-510. [PMID: 25902704 PMCID: PMC4531065 DOI: 10.1111/acel.12338] [Citation(s) in RCA: 370] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2015] [Indexed: 12/17/2022] Open
Abstract
The workshop entitled ‘Interventions to Slow Aging in Humans: Are We Ready?’ was held in Erice, Italy, on October 8–13, 2013, to bring together leading experts in the biology and genetics of aging and obtain a consensus related to the discovery and development of safe interventions to slow aging and increase healthy lifespan in humans. There was consensus that there is sufficient evidence that aging interventions will delay and prevent disease onset for many chronic conditions of adult and old age. Essential pathways have been identified, and behavioral, dietary, and pharmacologic approaches have emerged. Although many gene targets and drugs were discussed and there was not complete consensus about all interventions, the participants selected a subset of the most promising strategies that could be tested in humans for their effects on healthspan. These were: (i) dietary interventions mimicking chronic dietary restriction (periodic fasting mimicking diets, protein restriction, etc.); (ii) drugs that inhibit the growth hormone/IGF-I axis; (iii) drugs that inhibit the mTOR–S6K pathway; or (iv) drugs that activate AMPK or specific sirtuins. These choices were based in part on consistent evidence for the pro-longevity effects and ability of these interventions to prevent or delay multiple age-related diseases and improve healthspan in simple model organisms and rodents and their potential to be safe and effective in extending human healthspan. The authors of this manuscript were speakers and discussants invited to the workshop. The following summary highlights the major points addressed and the conclusions of the meeting.
Collapse
|
142
|
Harada Y, Hirayama H, Suzuki T. Generation and degradation of free asparagine-linked glycans. Cell Mol Life Sci 2015; 72:2509-33. [PMID: 25772500 PMCID: PMC11113800 DOI: 10.1007/s00018-015-1881-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Asparagine (N)-linked protein glycosylation, which takes place in the eukaryotic endoplasmic reticulum (ER), is important for protein folding, quality control and the intracellular trafficking of secretory and membrane proteins. It is known that, during N-glycosylation, considerable amounts of lipid-linked oligosaccharides (LLOs), the glycan donor substrates for N-glycosylation, are hydrolyzed to form free N-glycans (FNGs) by unidentified mechanisms. FNGs are also generated in the cytosol by the enzymatic deglycosylation of misfolded glycoproteins during ER-associated degradation. FNGs derived from LLOs and misfolded glycoproteins are eventually merged into one pool in the cytosol and the various glycan structures are processed to a near homogenous glycoform. This article summarizes the current state of our knowledge concerning the formation and catabolism of FNGs.
Collapse
Affiliation(s)
- Yoichiro Harada
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Hiroto Hirayama
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| | - Tadashi Suzuki
- Glycometabolome Team, Systems Glycobiology Research Group, RIKEN-Max Planck Joint Research Center, Global Research Cluster, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 Japan
| |
Collapse
|
143
|
Vasseur S, Manié SN. ER stress and hexosamine pathway during tumourigenesis: A pas de deux? Semin Cancer Biol 2015; 33:34-9. [PMID: 25931390 DOI: 10.1016/j.semcancer.2015.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/16/2015] [Indexed: 12/28/2022]
Abstract
Both the hexosamine biosynthetic pathway (HBP) and the endoplasmic reticulum (ER) are considered sensors for the nutritional state of the cell. The former is a branch of the glucose metabolic pathway that provides donor molecules for glycosylation processes, whereas the second requires co-translational N-glycosylation to ensure proper protein folding. It has become clear that the microenvironment of solid tumours, characterised by poor oxygen and nutrient supply, challenges optimal functions of the ER and the HBP. Here, we review recent advances demonstrating that the ER stress (ERS) response and HBP pathways are interconnected to promote cell viability. We then develop the idea that communication between ER and HBP is a survival feature of neoplastic cells that plays a prominent role during tumourigenesis.
Collapse
Affiliation(s)
- Sophie Vasseur
- INSERM U1068, Centre de Recherche en Cancérologie de Marseille, France; Institut Paoli-Calmettes, France; CNRS, UMR7258, F-13009 Marseille, France; Université Aix-Marseille, F-13284 Marseille, France
| | - Serge N Manié
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69000 Lyon, France; Université de Lyon, Université Lyon 1, F-69000 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France.
| |
Collapse
|
144
|
Periz G, Lu J, Zhang T, Kankel MW, Jablonski AM, Kalb R, McCampbell A, Wang J. Regulation of protein quality control by UBE4B and LSD1 through p53-mediated transcription. PLoS Biol 2015; 13:e1002114. [PMID: 25837623 PMCID: PMC4383508 DOI: 10.1371/journal.pbio.1002114] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/23/2015] [Indexed: 02/08/2023] Open
Abstract
Protein quality control is essential for clearing misfolded and aggregated proteins from the cell, and its failure is associated with many neurodegenerative disorders. Here, we identify two genes, ufd-2 and spr-5, that when inactivated, synergistically and robustly suppress neurotoxicity associated with misfolded proteins in Caenorhabditis elegans. Loss of human orthologs ubiquitination factor E4 B (UBE4B) and lysine-specific demethylase 1 (LSD1), respectively encoding a ubiquitin ligase and a lysine-specific demethylase, promotes the clearance of misfolded proteins in mammalian cells by activating both proteasomal and autophagic degradation machineries. An unbiased search in this pathway reveals a downstream effector as the transcription factor p53, a shared substrate of UBE4B and LSD1 that functions as a key regulator of protein quality control to protect against proteotoxicity. These studies identify a new protein quality control pathway via regulation of transcription factors and point to the augmentation of protein quality control as a wide-spectrum antiproteotoxicity strategy. A new protein quality control regulatory pathway is identified in which a ubiquitin ligase and a lysine-specific demethylase act together on the transcription factor p53 to control protein degradation systems. To function properly, proteins must assume their correct three-dimensional shapes. There are numerous mechanisms within the cell, collectively referred to as protein quality control (PQC), that verify proper folding. If abnormal folding is detected, PQC can either help the protein to refold or target it for degradation. Failures in protein folding and PQC lead to the accumulation of misfolded proteins, which often self-associate into large aggregations that are thought to be the underlying cause of several neurodegenerative diseases. In this study, we use the roundworm Caenorhabditis elegans as a model to understand how cells handle disease-associated misfolded proteins. In a large-scale genetic screen, we discovered two suppressor genes, ufd-2 and spr-5, which encode a ubiquitin ligase and a lysine-specific demethylase, respectively. When these two proteins are inactivated, we observe a marked reduction in the toxicity of several misfolded proteins. ufd-2 and spr-5 are conserved in humans (UBE4B and LSD1, respectively), as are their effects on misfolded proteins. We show that UBE4B and LSD1 regulate the activity of protein degradation machineries including the proteasome and autophagosomes. Using microarrays and biochemical analyses, we identify p53 as a key downstream transcription factor that mediates the action of UBE4B and LSD1 on protein clearance. This work establishes p53 as a regulator of proteome integrity and uncovers a new protein quality control pathway that could potentially be exploited to increase the degradation of misfolded proteins in diseased cells.
Collapse
Affiliation(s)
- Goran Periz
- Department of Biochemistry and Molecular Biology and Department of Neuroscience, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Jiayin Lu
- Department of Biochemistry and Molecular Biology and Department of Neuroscience, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology and Department of Neuroscience, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mark W. Kankel
- Biogen Idec, Cambridge, Massachusetts, United States of America
| | - Angela M. Jablonski
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Kalb
- Department of Neurology and Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | | | - Jiou Wang
- Department of Biochemistry and Molecular Biology and Department of Neuroscience, Bloomberg School of Public Health and School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
145
|
The aggregation-prone intracellular serpin SRP-2 fails to transit the ER in Caenorhabditis elegans. Genetics 2015; 200:207-19. [PMID: 25786854 DOI: 10.1534/genetics.115.176180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/17/2015] [Indexed: 11/18/2022] Open
Abstract
Familial encephalopathy with neuroserpin inclusions bodies (FENIB) is a serpinopathy that induces a rare form of presenile dementia. Neuroserpin contains a classical signal peptide and like all extracellular serine proteinase inhibitors (serpins) is secreted via the endoplasmic reticulum (ER)-Golgi pathway. The disease phenotype is due to gain-of-function missense mutations that cause neuroserpin to misfold and aggregate within the ER. In a previous study, nematodes expressing a homologous mutation in the endogenous Caenorhabditis elegans serpin, srp-2, were reported to model the ER proteotoxicity induced by an allele of mutant neuroserpin. Our results suggest that SRP-2 lacks a classical N-terminal signal peptide and is a member of the intracellular serpin family. Using confocal imaging and an ER colocalization marker, we confirmed that GFP-tagged wild-type SRP-2 localized to the cytosol and not the ER. Similarly, the aggregation-prone SRP-2 mutant formed intracellular inclusions that localized to the cytosol. Interestingly, wild-type SRP-2, targeted to the ER by fusion to a cleavable N-terminal signal peptide, failed to be secreted and accumulated within the ER lumen. This ER retention phenotype is typical of other obligate intracellular serpins forced to translocate across the ER membrane. Neuroserpin is a secreted protein that inhibits trypsin-like proteinase. SRP-2 is a cytosolic serpin that inhibits lysosomal cysteine peptidases. We concluded that SRP-2 is neither an ortholog nor a functional homolog of neuroserpin. Furthermore, animals expressing an aggregation-prone mutation in SRP-2 do not model the ER proteotoxicity associated with FENIB.
Collapse
|
146
|
Drosophila melanogaster activating transcription factor 4 regulates glycolysis during endoplasmic reticulum stress. G3-GENES GENOMES GENETICS 2015; 5:667-75. [PMID: 25681259 PMCID: PMC4390581 DOI: 10.1534/g3.115.017269] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Endoplasmic reticulum (ER) stress results from an imbalance between the load of proteins entering the secretory pathway and the ability of the ER to fold and process them. The response to ER stress is mediated by a collection of signaling pathways termed the unfolded protein response, which plays important roles in development and disease. Here we show that in Drosophila melanogaster S2 cells, ER stress induces a coordinated change in the expression of genes involved in carbon metabolism. Genes encoding enzymes that carry out glycolysis were up-regulated, whereas genes encoding proteins in the tricarboxylic acid cycle and respiratory chain complexes were down-regulated. The unfolded protein response transcription factor Atf4 was necessary for the up-regulation of glycolytic enzymes and Lactate dehydrogenase (Ldh). Furthermore, Atf4 binding motifs in promoters for these genes could partially account for their regulation during ER stress. Finally, flies up-regulated Ldh and produced more lactate when subjected to ER stress. Together, these results suggest that Atf4 mediates a shift from a metabolism based on oxidative phosphorylation to one more heavily reliant on glycolysis, reminiscent of aerobic glycolysis or the Warburg effect observed in cancer and other proliferative cells.
Collapse
|
147
|
Abstract
The prevalence of heart disease, especially heart failure, continues to increase, and cardiovascular disease remains the leading cause of death worldwide. As cardiomyocytes are essentially irreplaceable, protein quality control is pivotal to cellular homeostasis and, ultimately, cardiac performance. Three evolutionarily conserved mechanisms-autophagy, the unfolded protein response, and the ubiquitin-proteasome system-act in concert to degrade misfolded proteins and eliminate defective organelles. Recent advances have revealed that these mechanisms are intimately associated with cellular metabolism. Going forward, comprehensive understanding of the role of protein quality control mechanisms in cardiac pathology will require integration of metabolic pathways and metabolic control.
Collapse
Affiliation(s)
- Zhao V Wang
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| |
Collapse
|
148
|
Lee D, Hwang W, Artan M, Jeong DE, Lee SJ. Effects of nutritional components on aging. Aging Cell 2015; 14:8-16. [PMID: 25339542 PMCID: PMC4326908 DOI: 10.1111/acel.12277] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2014] [Indexed: 12/11/2022] Open
Abstract
Nutrients including carbohydrates, proteins, lipids, vitamins, and minerals regulate various physiological processes and are essential for the survival of organisms. Reduced overall caloric intake delays aging in various organisms. However, the role of each nutritional component in the regulation of lifespan is not well established. In this review, we describe recent studies focused on the regulatory role of each type of nutrient in aging. Moreover, we will discuss how the amount or composition of each nutritional component may influence longevity or health in humans.
Collapse
Affiliation(s)
- Dongyeop Lee
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Wooseon Hwang
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Murat Artan
- Information Technology Convergence Engineering; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Dae-Eun Jeong
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
| | - Seung-Jae Lee
- Department of Life Sciences; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
- Information Technology Convergence Engineering; Pohang University of Science and Technology; Pohang Gyeongbuk South Korea
- School of Interdisciplinary Bioscience and Bioengineering; Pohang University of Science and Technology; Pohang Gyeongbuk 790-784 South Korea
| |
Collapse
|
149
|
RTCB-1 mediates neuroprotection via XBP-1 mRNA splicing in the unfolded protein response pathway. J Neurosci 2015; 34:16076-85. [PMID: 25429148 DOI: 10.1523/jneurosci.1945-14.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Parkinson's disease (PD), the second most prevalent neurodegenerative disorder, is characterized by the degeneration of dopamine (DA) neurons and age-dependent formation of protein inclusions that contain the α-synuclein (α-syn) protein. RNA interference (RNAi) screening using Caenorhabditis elegans identified RTCB-1, an uncharacterized gene product, as one of several significant modifiers of α-syn protein misfolding. RTCB-1 is the worm ortholog of the human HSPC117 protein, a component of RNA trafficking granules in mammalian neurons. Here we show that RTCB-1 protects C. elegans DA neurons from age-dependent degeneration induced by human α-syn. Moreover, neuronal-specific RNAi depletion of rtcb-1 enhanced α-syn-induced degeneration. Similar results were obtained when worms were exposed to the DA neurotoxin 6-hydroxydopamine. HSPC117 has been characterized recently as an essential subunit of the human tRNA splicing ligase complex. tRNA ligases have alternative functions in RNA repair and nonconventional mRNA splicing events. For example, in yeast, unconventional splicing of HAC1, a transcription factor that controls the unfolded protein response (UPR), is mediated by a tRNA ligase. In C. elegans, we demonstrate that RTCB-1 is necessary for xbp-1 (worm homolog of HAC1) mRNA splicing. Moreover, using a RNA ligase-dead mutant, we determine that the ligase activity of worm RTCB-1 is required for its neuroprotective role, which, in turn, is mediated through XBP-1 in the UPR pathway. Collectively, these studies highlight the mechanistic intersection of RNA processing and proteostasis in mediating neuroprotection.
Collapse
|
150
|
Guo B, Liang Q, Li L, Hu Z, Wu F, Zhang P, Ma Y, Zhao B, Kovács AL, Zhang Z, Feng D, Chen S, Zhang H. O-GlcNAc-modification of SNAP-29 regulates autophagosome maturation. Nat Cell Biol 2014; 16:1215-26. [PMID: 25419848 DOI: 10.1038/ncb3066] [Citation(s) in RCA: 218] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 10/16/2014] [Indexed: 12/15/2022]
Abstract
The mechanism by which nutrient status regulates the fusion of autophagosomes with endosomes/lysosomes is poorly understood. Here, we report that O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) mediates O-GlcNAcylation of the SNARE protein SNAP-29 and regulates autophagy in a nutrient-dependent manner. In mammalian cells, OGT knockdown, or mutating the O-GlcNAc sites in SNAP-29, promotes the formation of a SNAP-29-containing SNARE complex, increases fusion between autophagosomes and endosomes/lysosomes, and promotes autophagic flux. In Caenorhabditis elegans, depletion of ogt-1 has a similar effect on autophagy; moreover, expression of an O-GlcNAc-defective SNAP-29 mutant facilitates autophagic degradation of protein aggregates. O-GlcNAcylated SNAP-29 levels are reduced during starvation in mammalian cells and in C. elegans. Our study reveals a mechanism by which O-GlcNAc-modification integrates nutrient status with autophagosome maturation.
Collapse
Affiliation(s)
- Bin Guo
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianqian Liang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhe Hu
- Institute of Neurology, Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Fan Wu
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peipei Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongfen Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Bin Zhao
- Institute of Neurology, Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - Attila L Kovács
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest 1117, Hungary
| | - Zhiyuan Zhang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Du Feng
- Institute of Neurology, Key Laboratory of Age-Associated Cardiac-Cerebral Vascular Disease of Guangdong Province, Affiliated Hospital of Guangdong Medical College, Zhanjiang 524001, China
| | - She Chen
- National Institute of Biological Sciences, Beijing 102206, China
| | - Hong Zhang
- State Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|