101
|
Liu MC, Liao WY, Buckley KM, Yang SY, Rast JP, Fugmann SD. AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nat Commun 2018; 9:1948. [PMID: 29769532 PMCID: PMC5956068 DOI: 10.1038/s41467-018-04273-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 04/17/2018] [Indexed: 12/26/2022] Open
Abstract
In the course of both innate and adaptive immunity, cytidine deaminases within the activation induced cytidine deaminase (AID)/apolipoprotein B editing complex (APOBEC) family modulate immune responses by mutating specific nucleic acid sequences of hosts and pathogens. The evolutionary emergence of these mediators, however, seems to coincide precisely with the emergence of adaptive immunity in vertebrates. Here, we show a family of genes in species within two divergent invertebrate phyla-the echinoderm Strongylocentrotus purpuratus and the brachiopod Lingula anatina-that encode proteins with similarities in amino acid sequence and enzymatic activities to the vertebrate AID/APOBECs. The expression of these invertebrate factors is enriched in tissues undergoing constant, direct interactions with microbes and can be induced upon pathogen challenge. Our findings suggest that AID/APOBEC proteins, and their function in immunity, emerged far earlier than previously thought. Thus, cytidine deamination is probably an ancient innate immune mechanism that predates the protostome/deuterostome divergence.
Collapse
Affiliation(s)
- Mei-Chen Liu
- Department of Biomedical Sciences, Chang Gung University, 259 Wenhua 1st Rd, Kwei-Shan District, Tao-Yuan, 333, Taiwan
| | - Wen-Yun Liao
- Department of Biomedical Sciences, Chang Gung University, 259 Wenhua 1st Rd, Kwei-Shan District, Tao-Yuan, 333, Taiwan
| | - Katherine M Buckley
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, MG5 1LC, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA, 15213, USA
| | - Shu Yuan Yang
- Department of Biomedical Sciences, Chang Gung University, 259 Wenhua 1st Rd, Kwei-Shan District, Tao-Yuan, 333, Taiwan
- Division of Biochemistry, Molecular and Cellular Biology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-Shan District, Tao-Yuan, 333, Taiwan
- Department of Pathology, Chang Gung Memorial Hospital, Tao-Yuan, 333, Taiwan
| | - Jonathan P Rast
- Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, MG5 1LC, ON, Canada
- Department of Immunology, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Pathology & Laboratory Medicine, Emory University School of Medicine, 1462 Clifton Road, Atlanta, GA, 30322, USA
| | - Sebastian D Fugmann
- Department of Biomedical Sciences, Chang Gung University, 259 Wenhua 1st Rd, Kwei-Shan District, Tao-Yuan, 333, Taiwan.
- Division of Microbiology, Graduate Institute of Biomedical Sciences, Chang Gung University, Kwei-Shan District, Tao-Yuan, 333, Taiwan.
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Kwei-Shan District, Tao-Yuan, 333, Taiwan.
- Department of General Surgery, Chang Gung Memorial Hospital, Tao-Yuan, 333, Taiwan.
| |
Collapse
|
102
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
103
|
Kim MS, Chuenchor W, Chen X, Cui Y, Zhang X, Zhou ZH, Gellert M, Yang W. Cracking the DNA Code for V(D)J Recombination. Mol Cell 2018; 70:358-370.e4. [PMID: 29628308 DOI: 10.1016/j.molcel.2018.03.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/25/2018] [Accepted: 03/02/2018] [Indexed: 01/18/2023]
Abstract
To initiate V(D)J recombination for generating the adaptive immune response of vertebrates, RAG1/2 recombinase cleaves DNA at a pair of recombination signal sequences, the 12- and 23-RSS. We have determined crystal and cryo-EM structures of RAG1/2 with DNA in the pre-reaction and hairpin-forming complexes up to 2.75 Å resolution. Both protein and DNA exhibit structural plasticity and undergo dramatic conformational changes. Coding-flank DNAs extensively rotate, shift, and deform for nicking and hairpin formation. Two intertwined RAG1 subunits crisscross four times between the asymmetric pair of severely bent 12/23-RSS DNAs. Location-sensitive bending of 60° and 150° in 12- and 23-RSS spacers, respectively, must occur for RAG1/2 to capture the nonamers and pair the heptamers for symmetric double-strand breakage. DNA pairing is thus sequence-context dependent and structure specific, which partly explains the "beyond 12/23" restriction. Finally, catalysis in crystallo reveals the process of DNA hairpin formation and its stabilization by interleaved base stacking.
Collapse
Affiliation(s)
- Min-Sung Kim
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA; Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | | | - Xuemin Chen
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA
| | - Yanxiang Cui
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Xing Zhang
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA; Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Z Hong Zhou
- The California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Martin Gellert
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA.
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
104
|
Sniezewski L, Janik S, Laszkiewicz A, Majkowski M, Kisielow P, Cebrat M. The evolutionary conservation of the bidirectional activity of the NWC gene promoter in jawed vertebrates and the domestication of the RAG transposon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:105-115. [PMID: 29175053 DOI: 10.1016/j.dci.2017.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/21/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
The RAG-1 and RAG-2 genes form a recombinase complex that is indispensable for V(D)J recombination, which generates the diversity of immunoglobulins and T-cell receptors. It is widely accepted that the presence of RAGs in the genomes of jawed vertebrates and other lineages is a result of the horizontal transfer of a mobile genetic element. While a substantial amount of evidence has been gathered that clarifies the nature of the RAG transposon, far less attention has been paid to the genomic site of its integration in various host organisms. In all genomes of the jawed vertebrates that have been studied to date, the RAG genes are located in close proximity to the NWC gene. We have previously shown that the promoter of the murine NWC genes exhibits a bidirectional activity, which may have facilitated the integration and survival of the RAG transposon in the host genome. In this study, we characterise the promoters of the NWC homologues that are present in the representatives of other jawed vertebrates (H. sapiens, X. tropicalis and D. rerio). We show that the features that are characteristic for promoters as the hosts of a successful transposon integration (in terms of the arrangement, bidirectional and constitutive activity and the involvement of the Zfp143 transcription factor in the promoter regulation) are evolutionarily conserved, which indicates that the presence of RAG genes in jawed vertebrates is a direct result of a successful transposon integration into the NWC locus.
Collapse
Affiliation(s)
- Lukasz Sniezewski
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Sylwia Janik
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Agnieszka Laszkiewicz
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Michal Majkowski
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Pawel Kisielow
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland; Laboratory of Tumor Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | - Malgorzata Cebrat
- Laboratory of Molecular and Cellular Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland.
| |
Collapse
|
105
|
Hosaka A, Kakutani T. Transposable elements, genome evolution and transgenerational epigenetic variation. Curr Opin Genet Dev 2018. [DOI: 10.1016/j.gde.2018.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
106
|
Chen R, Zhang L, Qi J, Zhang N, Zhang L, Yao S, Wu Y, Jiang B, Wang Z, Yuan H, Zhang Q, Xia C. Discovery and Analysis of Invertebrate IgV J-C2 Structure from Amphioxus Provides Insight into the Evolution of the Ig Superfamily. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29514951 DOI: 10.4049/jimmunol.1700906] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The emergence of adaptive immunity in jawed vertebrates depended on the appearance of variable immune receptors, BCRs and TCRs, which exhibit variable-J-constant (VJ-C)-type Ig superfamily folds. Hitherto, however, the structures of IgV-J-IgC-type molecules had never been characterized in invertebrates, leaving the origin of BCR/TCR-type molecules unknown. Using x-ray crystallography, the structure of a VJ-C2 molecule, named AmpIgVJ-C2, was determined in amphioxus (Branchiostoma floridae). The first domain shows typical V folding, including the hydrophobic core, CDR analogs, and eight conserved residues. The second domain is a C2-type Ig superfamily domain, as defined by its short length and the absence of β-strand D- and C1-typical motifs. AmpIgVJ-C2 molecules form homodimers, using "three-layer packing dimerization," as described for TCRs and BCRs. The AmpIgVJ-C2 V domain harbors a diglycine motif in β-strand G and forms a β-bulge structure participating in V-V intermolecular interaction. By immunohistochemistry, AmpIgVJ-C2 molecules were primarily found in mucosal tissues, whereas PCR and sequence analysis indicated considerable genetic variation at the single-gene level; these findings would be consistent with an immune function and a basic ability to adapt to binding different immune targets. Our results show a BCR/TCR-ancestral like molecule in amphioxus and help us to understand the evolution of the adaptive immune system.
Collapse
Affiliation(s)
- Rong Chen
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China.,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-products, Xuanwu District, Nanjing 210014, China
| | - Lijie Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Jianxun Qi
- Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology Immunology, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Nianzhi Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Ling Zhang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Shugang Yao
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Yanan Wu
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Bo Jiang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Zhenbao Wang
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Hongyu Yuan
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| | - Qiujin Zhang
- College of Life Sciences, Fujian Normal University, Fujian 350117, China; and
| | - Chun Xia
- Department of Microbiology and Immunology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China; .,Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing 100094, China
| |
Collapse
|
107
|
Bayersdorf R, Fruscalzo A, Catania F. Linking autoimmunity to the origin of the adaptive immune system. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:2-12. [PMID: 29423226 PMCID: PMC5793817 DOI: 10.1093/emph/eoy001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In jawed vertebrates, the adaptive immune system (AIS) cooperates with the innate immune system (IIS) to protect hosts from infections. Although targeting non-self-components, the AIS also generates self-reactive antibodies which, when inadequately counter-selected, can give rise to autoimmune diseases (ADs). ADs are on the rise in western countries. Why haven’t ADs been eliminated during the evolution of a ∼500 million-year old system? And why have they become more frequent in recent decades? Self-recognition is an attribute of the phylogenetically more ancient IIS and empirical data compellingly show that some self-reactive antibodies, which are classifiable as elements of the IIS rather then the AIS, may protect from (rather than cause) ADs. Here, we propose that the IIS’s self-recognition system originally fathered the AIS and, as a consequence of this relationship, its activity is dampened in hygienic environments. Rather than a mere breakdown or failure of the mechanisms of self-tolerance, ADs might thus arise from architectural constraints.
Collapse
Affiliation(s)
- Robert Bayersdorf
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| | - Arrigo Fruscalzo
- Clinic of Obstetrics and Gynecology, St Franziskus Hospital, 59227 Ahlen, Germany.,Department of Obstetrics and Gynecology, University Hospital of Münster, 48149 Münster, Germany
| | - Francesco Catania
- Institute for Evolution and Biodiversity, University of Münster, 48149 Münster, Germany
| |
Collapse
|
108
|
Kojima KK. Human transposable elements in Repbase: genomic footprints from fish to humans. Mob DNA 2018; 9:2. [PMID: 29308093 PMCID: PMC5753468 DOI: 10.1186/s13100-017-0107-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/20/2017] [Indexed: 01/21/2023] Open
Abstract
Repbase is a comprehensive database of eukaryotic transposable elements (TEs) and repeat sequences, containing over 1300 human repeat sequences. Recent analyses of these repeat sequences have accumulated evidences for their contribution to human evolution through becoming functional elements, such as protein-coding regions or binding sites of transcriptional regulators. However, resolving the origins of repeat sequences is a challenge, due to their age, divergence, and degradation. Ancient repeats have been continuously classified as TEs by finding similar TEs from other organisms. Here, the most comprehensive picture of human repeat sequences is presented. The human genome contains traces of 10 clades (L1, CR1, L2, Crack, RTE, RTEX, R4, Vingi, Tx1 and Penelope) of non-long terminal repeat (non-LTR) retrotransposons (long interspersed elements, LINEs), 3 types (SINE1/7SL, SINE2/tRNA, and SINE3/5S) of short interspersed elements (SINEs), 1 composite retrotransposon (SVA) family, 5 classes (ERV1, ERV2, ERV3, Gypsy and DIRS) of LTR retrotransposons, and 12 superfamilies (Crypton, Ginger1, Harbinger, hAT, Helitron, Kolobok, Mariner, Merlin, MuDR, P, piggyBac and Transib) of DNA transposons. These TE footprints demonstrate an evolutionary continuum of the human genome.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, 465 Fairchild Drive, Suite 201, Mountain View, CA 94043 USA.,Department of Life Sciences, National Cheng Kung University, No. 1, Daxue Rd, East District, Tainan, 701 Taiwan
| |
Collapse
|
109
|
Shukla A, Chatterjee A, Kondabagil K. The number of genes encoding repeat domain-containing proteins positively correlates with genome size in amoebal giant viruses. Virus Evol 2018; 4:vex039. [PMID: 29308275 PMCID: PMC5753266 DOI: 10.1093/ve/vex039] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Curiously, in viruses, the virion volume appears to be predominantly driven by genome length rather than the number of proteins it encodes or geometric constraints. With their large genome and giant particle size, amoebal viruses (AVs) are ideally suited to study the relationship between genome and virion size and explore the role of genome plasticity in their evolutionary success. Different genomic regions of AVs exhibit distinct genealogies. Although the vertically transferred core genes and their functions are universally conserved across the nucleocytoplasmic large DNA virus (NCLDV) families and are essential for their replication, the horizontally acquired genes are variable across families and are lineage-specific. When compared with other giant virus families, we observed a near–linear increase in the number of genes encoding repeat domain-containing proteins (RDCPs) with the increase in the genome size of AVs. From what is known about the functions of RDCPs in bacteria and eukaryotes and their prevalence in the AV genomes, we envisage important roles for RDCPs in the life cycle of AVs, their genome expansion, and plasticity. This observation also supports the evolution of AVs from a smaller viral ancestor by the acquisition of diverse gene families from the environment including RDCPs that might have helped in host adaption.
Collapse
Affiliation(s)
- Avi Shukla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Anirvan Chatterjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
110
|
Lv Z, Qiu L, Wang M, Jia Z, Wang W, Xin L, Liu Z, Wang L, Song L. Comparative study of three C1q domain containing proteins from pacific oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 78:42-51. [PMID: 28923592 DOI: 10.1016/j.dci.2017.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 06/23/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
C1q domain containing proteins (C1qDCs) are a family of proteins containing a globular head C1q domain (ghC1q) in C-terminus, which serve as pattern recognition receptors (PRRs) and mediate a series of immune responses. In the present study, three C1qDC proteins from pacific oyster Crassostrea gigas (CgC1qDC-2, CgC1qDC-3, CgC1qDC-4) were characterized and comparatively investigated to understand their roles in the immune response. All the three recombinant CgC1qDC proteins (rCgC1qDCs) could bind lipopolysaccharide (LPS) significantly but they could not bind lipoteichoic acid (LTA), β-1,3-glucan (GLU), mannan (MAN), and polyinosinic-polycytidylic acid (Poly I:C). Correspondingly, they all exhibited higher binding activities towards Gram-negative bacteria Vibrio anguillarum and V. splendidus. Moreover, they could enhance the phagocytosis of oyster hemocytes, and the enhancements towards Gram-negative bacteria were significantly higher than that towards Gram-positive bacteria (p < 0.01). The LPS binding affinity of rCgC1qDC-3 (KD = 8.74 × 10-7 M) was higher than that of rCgC1qDC-2 (KD = 7.76 × 10-5 M) and rCgC1qDC-4 (KD = 1.09 × 10-5 M). Meanwhile, rCgC1qDC-3 exhibited significantly higher enhancement on phagocytosis of oyster hemocytes towards Gram-negative bacteria than that of rCgC1qDC-2 and rCgC1qDC-4 (p < 0.05). After the secondary challenge with V. splendidus, the up-regulations of CgC1qDC-2 and CgC1qDC-4 mRNA in hemocytes occurred at 6 h, while that of CgC1qDC-3 was observed at 3 h and lasted for 24 h. And CgC1qDC-3 responded with high mRNA level for tested 24 h upon the secondary challenge with V. anguillarum as well. These results collectively suggested that three CgC1qDCs could serve as PRRs to specifically recognize certain Gram-negative bacteria and opsonins to enhance phagocytosis. CgC1qDC-3, with higher binding affinity to LPS, stronger opsonization and more rapid and persistent mRNA expression response upon the secondary challenge with homologous Vibrios, might exert efficient functions in the immune responses against invading pathogens.
Collapse
Affiliation(s)
- Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihao Jia
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lusheng Xin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling Wang
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Linsheng Song
- Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
111
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
112
|
Zhang QL, Xu B, Wang XQ, Yuan ML, Chen JY. Genome-wide comparison of the protein-coding repertoire reveals fast evolution of immune-related genes in cephalochordates and Osteichthyes superclass. Oncotarget 2017; 9:83-95. [PMID: 29416598 PMCID: PMC5787515 DOI: 10.18632/oncotarget.22749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/11/2017] [Indexed: 11/25/2022] Open
Abstract
Amphioxus is used to investigate the origin and evolution of vertebrates. To better understand the characteristics of genome evolution from cephalochordates to Osteichthyes, we conducted a genome-wide pairwise comparison of protein-coding genes within amphioxus (a comparable group) and parallel analyses within Osteichthyes (two comparable groups). A batch of fast-evolving genes in each comparable group was identified. Of these genes, the most fast-evolving genes (top 20) were scrutinized, most of which were involved in immune system. An analysis of the fast-evolving genes showed that they were enriched into gene ontology (GO) terms and pathways primarily involved in immune-related functions. Similarly, this phenomenon was detected within Osteichthyes, and more well-known and abundant GO terms and pathways involving innate immunity were found in Osteichthyes than in cephalochordates. Next, we measured the expression responses of four genes belonging to metabolism or energy production-related pathways to lipopolysaccharide challenge in the muscle, intestine or skin of B. belcheri; three of these genes (HMGCL, CYBS and MDH2) showed innate immune responses. Additionally, some genes involved in adaptive immunity showed fast evolution in Osteichthyes, such as those involving "intestinal immune network for IgA production" or "T-cell receptor signaling pathway". In this study, the fast evolution of immune-related genes in amphioxus and Osteichthyes was determined, providing insights into the evolution of immune-related genes in chordates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Bin Xu
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China
| | - Xiu-Qiang Wang
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| | - Ming-Long Yuan
- State Key Laboratory of Grassland Agro-Ecosystems,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jun-Yuan Chen
- LPS of Nanjing Institute of Geology and Palaeontology, CAS, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
113
|
Boehm T, Hirano M, Holland SJ, Das S, Schorpp M, Cooper MD. Evolution of Alternative Adaptive Immune Systems in Vertebrates. Annu Rev Immunol 2017; 36:19-42. [PMID: 29144837 DOI: 10.1146/annurev-immunol-042617-053028] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adaptive immunity in jawless fishes is based on antigen recognition by three types of variable lymphocyte receptors (VLRs) composed of variable leucine-rich repeats, which are differentially expressed by two T-like lymphocyte lineages and one B-like lymphocyte lineage. The T-like cells express either VLRAs or VLRCs of yet undefined antigen specificity, whereas the VLRB antibodies secreted by B-like cells bind proteinaceous and carbohydrate antigens. The incomplete VLR germline genes are assembled into functional units by a gene conversion-like mechanism that employs flanking variable leucine-rich repeat sequences as templates in association with lineage-specific expression of cytidine deaminases. B-like cells develop in the hematopoietic typhlosole and kidneys, whereas T-like cells develop in the thymoid, a thymus-equivalent region at the gill fold tips. Thus, the dichotomy between T-like and B-like cells and the presence of dedicated lymphopoietic tissues emerge as ancestral vertebrate features, whereas the somatic diversification of structurally distinct antigen receptor genes evolved independently in jawless and jawed vertebrates.
Collapse
Affiliation(s)
- Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; , ,
| | - Masayuki Hirano
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA; , ,
| | - Stephen J Holland
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; , ,
| | - Sabyasachi Das
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA; , ,
| | - Michael Schorpp
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; , ,
| | - Max D Cooper
- Emory Vaccine Center and Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia 30322, USA; , ,
| |
Collapse
|
114
|
Morales Poole JR, Paganini J, Pontarotti P. Convergent evolution of the adaptive immune response in jawed vertebrates and cyclostomes: An evolutionary biology approach based study. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 75:120-126. [PMID: 28232131 DOI: 10.1016/j.dci.2017.02.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Two different adaptive immune systems (AIS) are present in the two phyla of vertebrates (jawed vertebrates and cyclostomes). The jawed vertebrate system is based on IG/TCR/RAG/MHC while the cyclostome system is based on VLRCs and AID-like enzymes both systems using homologous Cell types (B-cell and B-cell Like, T-cell and T-cell like). We will present our current view of the evolution of these two AISs and present alternative hypotheses that could explain the apparent convergent evolution of the two systems. We will also discuss why comparative immunology analyses should be based on evolutionary biology approaches and not on the scale of progress one.
Collapse
Affiliation(s)
- Jose Ricardo Morales Poole
- Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, équipe évolution biologique modélisation, 13453, Marseille, France
| | | | - Pierre Pontarotti
- Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, équipe évolution biologique modélisation, 13453, Marseille, France.
| |
Collapse
|
115
|
Zhang QL, Zhu QH, Xie ZQ, Xu B, Wang XQ, Chen JY. Genome-wide gene expression analysis of amphioxus (Branchiostoma belcheri) following lipopolysaccharide challenge using strand-specific RNA-seq. RNA Biol 2017; 14:1799-1809. [PMID: 28837390 PMCID: PMC5731807 DOI: 10.1080/15476286.2017.1367890] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Amphioxus is the closest living proxy for exploring the evolutionary origin of the immune system in vertebrates. To understand the immune responses of amphioxus to lipopolysaccharide (LPS), 5 ribosomal RNA (rRNA)-depleted libraries of amphioxus were constructed, including one control (0 h) library and 4 treatment libraries at 6, 12, 24, and 48 h post-injection (hpi) with LPS. The transcriptome of Branchiostoma belcheri was analyzed using strand-specific RNA sequencing technology (RNA-seq). A total of 6161, 6665, 7969, and 6447 differentially expressed genes (DEGs) were detected at 6, 12, 24, and 48 hpi, respectively, compared with expression levels at 0 h. We identified amphioxus genes active during the acute-phase response to LPS at different time points after stimulation. Moreover, to better visualize the resolution phase of the immune process during immune response, we identified 6057 and 5235 DEGs at 48 hpi by comparing with 6 and 24 hpi, respectively. Through real-time quantitative PCR (qRT-PCR) analysis of 12 selected DEGs, we demonstrated the accuracy of the RNA-seq data in this study. Functional enrichment analysis of DEGs demonstrated that most terms were related to defense and immune responses, disease and infection, cell apoptosis, and metabolism and catalysis. Subsequently, we identified 1330, 485, 670, 911, and 1624 time-specific genes (TSGs) at 0, 6, 12, 24, and 48 hpi. Time-specific terms at each of 5 time points were primarily involved in development, immune signaling, signal transduction, DNA repair and stability, and metabolism and catalysis, respectively. As this is the first study to report the transcriptome of an organism with primitive immunity following LPS challenge at multiple time points, it provides gene expression information for further research into the evolution of immunity in vertebrates.
Collapse
Affiliation(s)
- Qi-Lin Zhang
- a LPS , Nanjing Institute of Geology and Paleontology, Chinese Academy of Science , Nanjing , China ; State Key Laboratory of Pharmaceutical Biotechnology , School of Life Science, Nanjing University , Nanjing , China
| | | | - Zheng-Qing Xie
- a LPS , Nanjing Institute of Geology and Paleontology, Chinese Academy of Science , Nanjing , China ; State Key Laboratory of Pharmaceutical Biotechnology , School of Life Science, Nanjing University , Nanjing , China
| | - Bin Xu
- a LPS , Nanjing Institute of Geology and Paleontology, Chinese Academy of Science , Nanjing , China ; State Key Laboratory of Pharmaceutical Biotechnology , School of Life Science, Nanjing University , Nanjing , China
| | - Xiu-Qiang Wang
- a LPS , Nanjing Institute of Geology and Paleontology, Chinese Academy of Science , Nanjing , China ; State Key Laboratory of Pharmaceutical Biotechnology , School of Life Science, Nanjing University , Nanjing , China
| | - Jun-Yuan Chen
- a LPS , Nanjing Institute of Geology and Paleontology, Chinese Academy of Science , Nanjing , China ; State Key Laboratory of Pharmaceutical Biotechnology , School of Life Science, Nanjing University , Nanjing , China
| |
Collapse
|
116
|
Jangam D, Feschotte C, Betrán E. Transposable Element Domestication As an Adaptation to Evolutionary Conflicts. Trends Genet 2017; 33:817-831. [PMID: 28844698 DOI: 10.1016/j.tig.2017.07.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/26/2022]
Abstract
Transposable elements (TEs) are selfish genetic units that typically encode proteins that enable their proliferation in the genome and spread across individual hosts. Here we review a growing number of studies that suggest that TE proteins have often been co-opted or 'domesticated' by their host as adaptations to a variety of evolutionary conflicts. In particular, TE-derived proteins have been recurrently repurposed as part of defense systems that protect prokaryotes and eukaryotes against the proliferation of infectious or invasive agents, including viruses and TEs themselves. We argue that the domestication of TE proteins may often be the only evolutionary path toward the mitigation of the cost incurred by their own selfish activities.
Collapse
Affiliation(s)
- Diwash Jangam
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA
| | - Cédric Feschotte
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA; Present address: Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Esther Betrán
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
117
|
Affiliation(s)
- Haig H Kazazian
- From the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (H.H.K.), and the Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor (J.V.M.)
| | - John V Moran
- From the McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore (H.H.K.), and the Departments of Human Genetics and Internal Medicine, University of Michigan Medical School, Ann Arbor (J.V.M.)
| |
Collapse
|
118
|
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
Affiliation(s)
- Kathleen H Burns
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
119
|
Smith LC, Lun CM. The SpTransformer Gene Family (Formerly Sp185/333) in the Purple Sea Urchin and the Functional Diversity of the Anti-Pathogen rSpTransformer-E1 Protein. Front Immunol 2017; 8:725. [PMID: 28713368 PMCID: PMC5491942 DOI: 10.3389/fimmu.2017.00725] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/08/2017] [Indexed: 12/12/2022] Open
Abstract
The complex innate immune system of sea urchins is underpinned by several multigene families including the SpTransformer family (SpTrf; formerly Sp185/333) with estimates of ~50 members, although the family size is likely variable among individuals of Strongylocentrotus purpuratus. The genes are small with similar structure, are tightly clustered, and have several types of repeats in the second of two exons and that surround each gene. The density of repeats suggests that the genes are positioned within regions of genomic instability, which may be required to drive sequence diversification. The second exon encodes the mature protein and is composed of blocks of sequence called elements that are present in mosaics of defined element patterns and are the major source of sequence diversity. The SpTrf genes respond swiftly to immune challenge, but only a single gene is expressed per phagocyte. Many of the mRNAs appear to be edited and encode proteins with altered and/or missense sequence that are often truncated, of which some may be functional. The standard SpTrf protein structure is an N-terminal glycine-rich region, a central RGD motif, a histidine-rich region, and a C-terminal region. Function is predicted from a recombinant protein, rSpTransformer-E1 (rSpTrf-E1), which binds to Vibrio and Saccharomyces, but not to Bacillus, and binds tightly to lipopolysaccharide, β-1,3-glucan, and flagellin, but not to peptidoglycan. rSpTrf-E1 is intrinsically disordered but transforms to α helical structure in the presence of binding targets including lipopolysaccharide, which may underpin the characteristics of binding to multiple targets. SpTrf proteins associate with coelomocyte membranes, and rSpTrf-E1 binds specifically to phosphatidic acid (PA). When rSpTrf-E1 is bound to PA in liposome membranes, it induces morphological changes in liposomes that correlate with PA clustering and leakage of luminal contents, and it extracts or removes PA from the bilayer. The multitasking activities of rSpTrf-E1 infer multiple and perhaps overlapping activities for the hundreds of native SpTrf proteins that are produced by individual sea urchins. This likely generates a flexible and highly protective immune system for the sea urchin in its marine habitat that it shares with broad arrays of microbes that may be pathogens and opportunists.
Collapse
Affiliation(s)
- L Courtney Smith
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| | - Cheng Man Lun
- Department of Biological Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
120
|
Transposable elements in cancer. NATURE REVIEWS. CANCER 2017. [PMID: 28642606 DOI: 10.1038/nrc.2017.35+[doi]] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transposable elements give rise to interspersed repeats, sequences that comprise most of our genomes. These mobile DNAs have been historically underappreciated - both because they have been presumed to be unimportant, and because their high copy number and variability pose unique technical challenges. Neither impediment now seems steadfast. Interest in the human mobilome has never been greater, and methods enabling its study are maturing at a fast pace. This Review describes the activity of transposable elements in human cancers, particularly long interspersed element-1 (LINE-1). LINE-1 sequences are self-propagating, protein-coding retrotransposons, and their activity results in somatically acquired insertions in cancer genomes. Altered expression of transposable elements and animation of genomic LINE-1 sequences appear to be hallmarks of cancer, and can be responsible for driving mutations in tumorigenesis.
Collapse
|
121
|
Filiano AJ, Gadani SP, Kipnis J. How and why do T cells and their derived cytokines affect the injured and healthy brain? Nat Rev Neurosci 2017; 18:375-384. [PMID: 28446786 PMCID: PMC5823005 DOI: 10.1038/nrn.2017.39] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolution of adaptive immunity provides enhanced defence against specific pathogens, as well as homeostatic immune surveillance of all tissues. Despite being 'immune privileged', the CNS uses the assistance of the immune system in physiological and pathological states. In this Opinion article, we discuss the influence of adaptive immunity on recovery after CNS injury and on cognitive and social brain function. We further extend a hypothesis that the pro-social effects of interferon-regulated genes were initially exploited by pathogens to increase host-host transmission, and that these genes were later recycled by the host to form part of an immune defence programme. In this way, the evolution of adaptive immunity may reflect a host-pathogen 'arms race'.
Collapse
Affiliation(s)
- Anthony J Filiano
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Sachin P Gadani
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| |
Collapse
|
122
|
Lescale C, Lenden Hasse H, Deriano L. Paralogie et redondance : maintenir l’intégrité du génome au cours de la recombinaison V(D)J. Med Sci (Paris) 2017; 33:474-477. [DOI: 10.1051/medsci/20173305005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
123
|
The RAG transposon is active through the deuterostome evolution and domesticated in jawed vertebrates. Immunogenetics 2017; 69:391-400. [PMID: 28451741 DOI: 10.1007/s00251-017-0979-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
RAG1 and RAG2 are essential subunits of the V(D)J recombinase required for the generation of the variability of antibodies and T cell receptors in jawed vertebrates. It was demonstrated that the amphioxus homologue of RAG1-RAG2 is encoded in an active transposon, belonging to the transposase DDE superfamily. The data provided support the possibility that the RAG transposon has been active through the deuterostome evolution and is still active in several lineages. The RAG transposon corresponds to several families present in deuterostomes. RAG1-RAG2 V(D)J recombinase evolved from one of them, partially due to the new ability of the transposon to interact with the cellular reparation machinery. Considering the fact that the RAG transposon survived millions of years in many different lineages, in multiple copies, and that DDE transposases evolved their association with proteins involved in repair mechanisms, we propose that the apparition of V(D)J recombination machinery could be a predictable genetic event.
Collapse
|
124
|
Carmona LM, Schatz DG. New insights into the evolutionary origins of the recombination-activating gene proteins and V(D)J recombination. FEBS J 2017; 284:1590-1605. [PMID: 27973733 PMCID: PMC5459667 DOI: 10.1111/febs.13990] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/10/2016] [Accepted: 12/08/2016] [Indexed: 12/26/2022]
Abstract
The adaptive immune system of jawed vertebrates relies on V(D)J recombination as one of the main processes to generate the diverse array of receptors necessary for the recognition of a wide range of pathogens. The DNA cleavage reaction necessary for the assembly of the antigen receptor genes from an array of potential gene segments is mediated by the recombination-activating gene proteins RAG1 and RAG2. The RAG proteins have been proposed to originate from a transposable element (TE) as they share mechanistic and structural similarities with several families of transposases and are themselves capable of mediating transposition. A number of RAG-like proteins and TEs with sequence similarity to RAG1 and RAG2 have been identified, but only recently has their function begun to be characterized, revealing mechanistic links to the vertebrate RAGs. Of particular significance is the discovery of ProtoRAG, a transposon superfamily found in the genome of the basal chordate amphioxus. ProtoRAG has many of the sequence and mechanistic features predicted for the ancestral RAG transposon and is likely to be an evolutionary relative of RAG1 and RAG2. In addition, early observations suggesting that RAG1 is able to mediate V(D)J recombination in the absence of RAG2 have been confirmed, implying independent evolutionary origins for the two RAG genes. Here, recent progress in identifying and characterizing RAG-like proteins and the TEs that encode them is summarized and a refined model for the evolution of V(D)J recombination and the RAG proteins is presented.
Collapse
Affiliation(s)
- Lina Marcela Carmona
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, New Haven, CT, USA
| |
Collapse
|
125
|
Passagem-Santos D, Bonnet M, Sobral D, Trancoso I, Silva JG, Barreto VM, Athanasiadis A, Demengeot J, Pereira-Leal JB. RAG Recombinase as a Selective Pressure for Genome Evolution. Genome Biol Evol 2016; 8:3364-3376. [PMID: 27979968 PMCID: PMC5203794 DOI: 10.1093/gbe/evw261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The RAG recombinase is a domesticated transposable element co-opted in jawed vertebrates to drive the process of the so-called V(D)J recombination, which is the hallmark of the adaptive immune system to produce antigen receptors. RAG targets, namely, the Recombination Signal Sequences (RSS), are rather long and degenerated sequences, which highlights the ability of the recombinase to interact with a wide range of target sequences, including outside of antigen receptor loci. The recognition of such cryptic targets by the recombinase threatens genome integrity by promoting aberrant DNA recombination, as observed in lymphoid malignancies. Genomes evolution resulting from RAG acquisition is an ongoing discussion, in particular regarding the counter-selection of sequences resembling the RSS and the modifications of epigenetic regulation at these potential cryptic sites. Here, we describe a new bioinformatics tool to map potential RAG targets in all jawed vertebrates. We show that our REcombination Classifier (REC) outperforms the currently available tool and is suitable for full genomes scans from species other than human and mouse. Using the REC, we document a reduction in density of potential RAG targets at the transcription start sites of genes co-expressed with the rag genes and marked with high levels of the trimethylation of the lysine 4 of the histone 3 (H3K4me3), which correlates with the retention of functional RAG activity after the horizontal transfer.
Collapse
Affiliation(s)
| | - M Bonnet
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - D Sobral
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - I Trancoso
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - J G Silva
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - V M Barreto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - J Demengeot
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | |
Collapse
|
126
|
Blumenstiel JP, Erwin AA, Hemmer LW. What Drives Positive Selection in the Drosophila piRNA Machinery? The Genomic Autoimmunity Hypothesis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2016; 89:499-512. [PMID: 28018141 PMCID: PMC5168828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In animals, PIWI-interacting RNAs (piRNAs) play a crucial role in genome defense. Moreover, because piRNAs can be maternally transmitted, they contribute to the epigenetic profile of inheritance. Multiple studies, especially in Drosophila, have demonstrated that the machinery of piRNA biogenesis is often the target of positive selection. Because transposable elements (TEs) are a form of genetic parasite, positive selection in the piRNA machinery is often explained by analogy to the signatures of positive selection commonly observed in genes that play a role in host-parasite dynamics. However, the precise mechanisms that drive positive selection in the piRNA machinery are not known. In this review, we outline several mechanistic models that might explain pervasive positive selection in the piRNA machinery of Drosophila species. We propose that recurrent positive selection in the piRNA machinery can be partly explained by an ongoing tension between selection for sensitivity required by genome defense and selection for specificity to avoid the off-target effects of maladaptive genic silencing by piRNA.
Collapse
Affiliation(s)
| | - Alexandra A. Erwin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| | - Lucas W. Hemmer
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS
| |
Collapse
|
127
|
Wang Y, Pryputniewicz-Dobrinska D, Nagy EÉ, Kaufman CD, Singh M, Yant S, Wang J, Dalda A, Kay MA, Ivics Z, Izsvák Z. Regulated complex assembly safeguards the fidelity of Sleeping Beauty transposition. Nucleic Acids Res 2016; 45:311-326. [PMID: 27913727 PMCID: PMC5224488 DOI: 10.1093/nar/gkw1164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/03/2016] [Accepted: 11/16/2016] [Indexed: 01/21/2023] Open
Abstract
The functional relevance of the inverted repeat structure (IR/DR) in a subgroup of the Tc1/mariner superfamily of transposons has been enigmatic. In contrast to mariner transposition, where a topological filter suppresses single-ended reactions, the IR/DR orchestrates a regulatory mechanism to enforce synapsis of the transposon ends before cleavage by the transposase occurs. This ordered assembly process shepherds primary transposase binding to the inner 12DRs (where cleavage does not occur), followed by capture of the 12DR of the other transposon end. This extra layer of regulation suppresses aberrant, potentially genotoxic recombination activities, and the mobilization of internally deleted copies in the IR/DR subgroup, including Sleeping Beauty (SB). In contrast, internally deleted sequences (MITEs) are preferred substrates of mariner transposition, and this process is associated with the emergence of Hsmar1-derived miRNA genes in the human genome. Translating IR/DR regulation to in vitro evolution yielded an SB transposon version with optimized substrate recognition (pT4). The ends of SB transposons excised by a K248A excision+/integration- transposase variant are processed by hairpin resolution, representing a link between phylogenetically, and mechanistically different recombination reactions, such as V(D)J recombination and transposition. Such variants generated by random mutation might stabilize transposon-host interactions or prepare the transposon for a horizontal transfer.
Collapse
Affiliation(s)
- Yongming Wang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | | | - Enikö Éva Nagy
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Christopher D Kaufman
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Manvendra Singh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Steve Yant
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305-5164, USA
| | - Jichang Wang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Anna Dalda
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305-5164, USA
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin 13125, Germany
| |
Collapse
|
128
|
Lescale C, Deriano L. The RAG recombinase: Beyond breaking. Mech Ageing Dev 2016; 165:3-9. [PMID: 27863852 DOI: 10.1016/j.mad.2016.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/04/2016] [Accepted: 11/11/2016] [Indexed: 11/17/2022]
Abstract
DNA double-strand breaks (DSBs) are commonly seen as lesions that threaten genome integrity and contribute to cancer and aging processes. However, in the context of antigen receptor gene assembly, known as V(D)J recombination, DSBs are obligatory intermediates that allow the establishment of genetic diversity and adaptive immunity. V(D)J recombination is initiated when the lymphoid-restricted recombination-activating genes RAG1 and RAG2 are expressed and form a site-specific endonuclease (the RAG nuclease or RAG recombinase). Here, we discuss the ability of the RAG nuclease to minimize the risks of genome disruption by coupling the breakage and repair steps of the V(D)J reaction. This implies that the RAG genes, derived from an ancient transposon, have undergone strong selective pressure to prohibit transposition in favor of promoting controlled DNA end joining in cis by the ubiquitous DNA damage response and DNA repair machineries. We also discuss the idea that, in addition to being essential for the rearrangement of antigen receptor genes, RAG-mediated DSBs could impact cellular processes and outcomes by affecting genetic and epigenetic programs.
Collapse
Affiliation(s)
- Chloé Lescale
- Department of Immunology and Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France
| | - Ludovic Deriano
- Department of Immunology and Department of Genomes and Genetics, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
129
|
Rodgers KK. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures. Trends Biochem Sci 2016; 42:72-84. [PMID: 27825771 DOI: 10.1016/j.tibs.2016.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 12/15/2022]
Abstract
Development of the adaptive immune system is dependent on V(D)J recombination, which forms functional antigen receptor genes through rearrangement of component gene segments. The V(D)J recombinase, comprising recombination-activating proteins RAG1 and RAG2, guides the initial DNA cleavage events to the recombination signal sequence (RSS), which flanks each gene segment. Although the enzymatic steps for RAG-mediated endonucleolytic activity were established over two decades ago, only recently have high-resolution structural studies of the catalytically active core regions of the RAG proteins shed light on conformational requirements for the reaction. While outstanding questions remain, we have a clearer picture of how RAG proteins function in generating the diverse repertoires of antigen receptors, the underlying foundation of the adaptive immune system.
Collapse
Affiliation(s)
- Karla K Rodgers
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73190, USA.
| |
Collapse
|
130
|
Arensburger P, Piégu B, Bigot Y. The future of transposable element annotation and their classification in the light of functional genomics - what we can learn from the fables of Jean de la Fontaine? Mob Genet Elements 2016; 6:e1256852. [PMID: 28090383 DOI: 10.1080/2159256x.2016.1256852] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/31/2016] [Indexed: 12/19/2022] Open
Abstract
Transposable element (TE) science has been significantly influenced by the pioneering ideas of David Finnegan near the end of the last century, as well as by the classification systems that were subsequently developed. Today, whole genome TE annotation is mostly done using tools that were developed to aid gene annotation rather than to specifically study TEs. We argue that further progress in the TE field is impeded both by current TE classification schemes and by a failure to recognize that TE biology is fundamentally different from that of multicellular organisms. Novel genome wide TE annotation methods are helping to redefine our understanding of TE sequence origins and evolution. We briefly discuss some of these new methods as well as ideas for possible alternative classification schemes. Our hope is to encourage the formation of a society to organize a larger debate on these questions and to promote the adoption of standards for annotation and an improved TE classification.
Collapse
Affiliation(s)
- Peter Arensburger
- Biological Sciences Department, California State Polytechnic University , Pomona, CA, USA
| | - Benoît Piégu
- Physiologie de la reproduction et des Comportements, UMR INRA-CNRS 7247, PRC , Nouzilly, France
| | - Yves Bigot
- Physiologie de la reproduction et des Comportements, UMR INRA-CNRS 7247, PRC , Nouzilly, France
| |
Collapse
|
131
|
Abstract
Diversity of antibodies and T cell receptors is generated by gene rearrangement dependent on RAG1 and RAG2, enzymes predicted to have been derived from a transposable element (TE) that invaded an immunoglobulin superfamily gene early in the evolution of jawed vertebrates. Now, Huang et al. report the discovery of ProtoRAG in the lower chordate Amphioxus, the long-anticipated TE related to the RAG transposon.
Collapse
|
132
|
Ding X, Dong C. Evolution of RAG transposon unveiled. SCIENCE CHINA. LIFE SCIENCES 2016; 59:968-970. [PMID: 27460192 DOI: 10.1007/s11427-016-5107-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 07/07/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Xiao Ding
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|