101
|
Gillies JP, Reimer JM, Karasmanis EP, Lahiri I, Htet ZM, Leschziner AE, Reck-Peterson SL. Structural basis for cytoplasmic dynein-1 regulation by Lis1. eLife 2022; 11:e71229. [PMID: 34994688 PMCID: PMC8824474 DOI: 10.7554/elife.71229] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/06/2022] [Indexed: 12/27/2022] Open
Abstract
The lissencephaly 1 gene, LIS1, is mutated in patients with the neurodevelopmental disease lissencephaly. The Lis1 protein is conserved from fungi to mammals and is a key regulator of cytoplasmic dynein-1, the major minus-end-directed microtubule motor in many eukaryotes. Lis1 is the only dynein regulator known to bind directly to dynein's motor domain, and by doing so alters dynein's mechanochemistry. Lis1 is required for the formation of fully active dynein complexes, which also contain essential cofactors: dynactin and an activating adaptor. Here, we report the first high-resolution structure of the yeast dynein-Lis1 complex. Our 3.1 Å structure reveals, in molecular detail, the major contacts between dynein and Lis1 and between Lis1's ß-propellers. Structure-guided mutations in Lis1 and dynein show that these contacts are required for Lis1's ability to form fully active human dynein complexes and to regulate yeast dynein's mechanochemistry and in vivo function.
Collapse
Affiliation(s)
- John P Gillies
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Janice M Reimer
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Eva P Karasmanis
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Indrajit Lahiri
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Department of Biological Sciences, Indian Institute of Science Education and Research MohaliMohaliIndia
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Molecular Biology Section, University of California, San DiegoSan DiegoUnited States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San DiegoSan DiegoUnited States
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San DiegoSan DiegoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
102
|
Fu X, Rao L, Li P, Liu X, Wang Q, Son AI, Gennerich A, Liu JSH. Doublecortin and JIP3 are neural-specific counteracting regulators of dynein-mediated retrograde trafficking. eLife 2022; 11:82218. [PMID: 36476638 PMCID: PMC9799976 DOI: 10.7554/elife.82218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022] Open
Abstract
Mutations in the microtubule (MT)-binding protein doublecortin (DCX) or in the MT-based molecular motor dynein result in lissencephaly. However, a functional link between DCX and dynein has not been defined. Here, we demonstrate that DCX negatively regulates dynein-mediated retrograde transport in neurons from Dcx-/y or Dcx-/y;Dclk1-/- mice by reducing dynein's association with MTs and disrupting the composition of the dynein motor complex. Previous work showed an increased binding of the adaptor protein C-Jun-amino-terminal kinase-interacting protein 3 (JIP3) to dynein in the absence of DCX. Using purified components, we demonstrate that JIP3 forms an active motor complex with dynein and its cofactor dynactin with two dyneins per complex. DCX competes with the binding of the second dynein, resulting in a velocity reduction of the complex. We conclude that DCX negatively regulates dynein-mediated retrograde transport through two critical interactions by regulating dynein binding to MTs and regulating the composition of the dynein motor complex.
Collapse
Affiliation(s)
- Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina,Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina,Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Lu Rao
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina,Key Laboratory of Structural Malformations in Children of Zhejiang ProvinceWenzhouChina,Key Laboratory of Perinatal Medicine of WenzhouWenzhouChina
| | - Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Qi Wang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical UniversityWenzhouChina
| | - Alexander I Son
- Center for Neuroscience Research, Children's National Research Institute, Children's National HospitalWashingtonUnited States
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of MedicineBronxUnited States
| | - Judy Shih-Hwa Liu
- Department of Neurology, Department of Molecular Biology, Cell Biology, and Biochemistry, Brown UniversityProvidenceUnited States
| |
Collapse
|
103
|
Christensen JR, Kendrick AA, Truong JB, Aguilar-Maldonado A, Adani V, Dzieciatkowska M, Reck-Peterson SL. Cytoplasmic dynein-1 cargo diversity is mediated by the combinatorial assembly of FTS-Hook-FHIP complexes. eLife 2021; 10:74538. [PMID: 34882091 PMCID: PMC8730729 DOI: 10.7554/elife.74538] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, intracellular components are organized by the microtubule motors cytoplasmic dynein-1 (dynein) and kinesins, which are linked to cargos via adaptor proteins. While ~40 kinesins transport cargo toward the plus end of microtubules, a single dynein moves cargo in the opposite direction. How dynein transports a wide variety of cargos remains an open question. The FTS–Hook–FHIP (‘FHF’) cargo adaptor complex links dynein to cargo in humans and fungi. As human cells have three Hooks and four FHIP proteins, we hypothesized that the combinatorial assembly of different Hook and FHIP proteins could underlie dynein cargo diversity. Using proteomic approaches, we determine the protein ‘interactome’ of each FHIP protein. Live-cell imaging and biochemical approaches show that different FHF complexes associate with distinct motile cargos. These complexes also move with dynein and its cofactor dynactin in single-molecule in vitro reconstitution assays. Complexes composed of FTS, FHIP1B, and Hook1/Hook3 colocalize with Rab5-tagged early endosomes via a direct interaction between FHIP1B and GTP-bound Rab5. In contrast, complexes composed of FTS, FHIP2A, and Hook2 colocalize with Rab1A-tagged ER-to-Golgi cargos and FHIP2A is involved in the motility of Rab1A tubules. Our findings suggest that combinatorial assembly of different FTS–Hook–FHIP complexes is one mechanism dynein uses to achieve cargo specificity.
Collapse
Affiliation(s)
- Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Agnieszka A Kendrick
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Joey B Truong
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | | | - Vinit Adani
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, United States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
104
|
Ecklund KH, Bailey ME, Kossen KA, Dietvorst CK, Asbury CL, Markus SM. The microtubule-associated protein She1 coordinates directional spindle positioning by spatially restricting dynein activity. J Cell Sci 2021; 134:273583. [PMID: 34854468 DOI: 10.1242/jcs.258510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
Abstract
Dynein motors move the mitotic spindle to the cell division plane in many cell types, including in budding yeast, in which dynein is assisted by numerous factors including the microtubule-associated protein (MAP) She1. Evidence suggests that She1 plays a role in polarizing dynein-mediated spindle movements toward the daughter cell; however, how She1 performs this function is unknown. We find that She1 assists dynein in maintaining the spindle in close proximity to the bud neck, such that, at anaphase onset, the chromosomes are segregated to mother and daughter cells. She1 does so by attenuating the initiation of dynein-mediated spindle movements within the mother cell, thus ensuring such movements are polarized toward the daughter cell. Our data indicate that this activity relies on She1 binding to the microtubule-bound conformation of the dynein microtubule-binding domain, and to astral microtubules within mother cells. Our findings reveal how an asymmetrically localized MAP directionally tunes dynein activity by attenuating motor activity in a spatially confined manner.
Collapse
Affiliation(s)
- Kari H Ecklund
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Megan E Bailey
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Kelly A Kossen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Carsten K Dietvorst
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington 98195, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
105
|
Dahl TM, Reed M, Gerstner CD, Baehr W. Conditional Deletion of Cytoplasmic Dynein Heavy Chain in Postnatal Photoreceptors. Invest Ophthalmol Vis Sci 2021; 62:23. [PMID: 34807236 PMCID: PMC8626856 DOI: 10.1167/iovs.62.14.23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Cytoplasmic dynein-1 (henceforth dynein) moves cargo in conjunction with dynactin toward the minus end of microtubules. The dynein heavy chain, DYNC1H1, comprises the backbone of dynein, a retrograde motor. Deletion of Dync1h1 abrogates dynein function. The purpose of this communication is to demonstrate effects of photoreceptor dynein inactivation during late postnatal development and in adult retina. Methods We mated Dync1h1F/F mice with iCre75 and Prom1-CreERT2 mice to generate conditional rod and tamoxifen-induced knockout in rods and cones, respectively. We documented retina degeneration with confocal microscopy at postnatal day (P) 10 to P30 for the iCre75 line and 1 to 4 weeks post tamoxifen induction (wPTI) for the Prom1-CreERT2 line. We performed scotopic and photopic electroretinography (ERG) at P16 to P30 in the iCre75 line and at 1-week increments in the Prom1-CreERT2 line. Results were evaluated statistically using Student's t-test, two-factor ANOVA, and Welch's ANOVA. Results Cre-induced homologous recombination of Dync1h1F/F mice truncated DYNC1H1 after exon 23. rodDync1h1-/- photoreceptors degenerated after P14, reducing outer nuclear layer (ONL) thickness and combined inner segment/outer segment (IS/OS) length significantly by P18. Scotopic ERG a-wave amplitudes decreased by P16 and were extinguished at P30. Cones were stable under rod-knockout conditions until P21 but inactive at P30. In tamDync1h1-/- photoreceptors, the IS/OS began shortening by 3wPTI and were nearly eliminated by 4wPTI. The ONL shrank significantly over this interval, indicating rapid photoreceptor degeneration following the loss of dynein. Conclusions Our results demonstrate dynein is essential for the secretory pathway, formation of outer segments, and photoreceptor maintenance.
Collapse
Affiliation(s)
- Tiffanie M Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Michelle Reed
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Cecilia D Gerstner
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, Utah, United States.,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, Utah, United States.,Department of Biology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
106
|
Qiu R, Zhang J, Rotty JD, Xiang X. Dynein activation in vivo is regulated by the nucleotide states of its AAA3 domain. Curr Biol 2021; 31:4486-4498.e6. [PMID: 34428469 DOI: 10.1016/j.cub.2021.07.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/05/2021] [Accepted: 07/29/2021] [Indexed: 01/02/2023]
Abstract
Cytoplasmic dynein is activated by the dynactin complex, cargo adapters and LIS1 (Lissencephaly 1). How this process is regulated in vivo remains unclear. The dynein motor ring contains six AAA+ (ATPases associated with diverse cellular activities) domains. Here, we used the filamentous fungus Aspergillus nidulans to examine whether ATP hydrolysis at AAA3 regulates dynein activation in the context of other regulators. In fungal hyphae, early endosomes undergo dynein-mediated movement away from the microtubule plus ends near the hyphal tip. Dynein normally accumulates at the microtubule plus ends. The early endosomal adaptor Hook protein, together with dynactin, drives dynein activation to cause its relocation to the microtubule minus ends. This activation process depends on LIS1, but LIS1 tends to dissociate from dynein after its activation. In this study, we found that dynein containing a mutation-blocking ATP hydrolysis at AAA3 can undergo LIS1-independent activation, consistent with our genetic data that the same mutation suppresses the growth defect of the A. nidulans LIS1-deletion mutant. Our data also suggest that blocking AAA3 ATP hydrolysis allows dynein activation by dynactin without the early endosomal adaptor. As a consequence, dynein accumulates at microtubule minus ends whereas early endosomes stay near the plus ends. Dynein containing a mutation-blocking ATP binding at AAA3 largely depends on LIS1 for activation, but this mutation abnormally prevents LIS1 dissociation upon dynein activation. Together, our data suggest that the AAA3 ATPase cycle regulates the coordination between dynein activation and cargo binding as well as the dynamic dynein-LIS1 interaction.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Jeremy D Rotty
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, the Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD 20814, USA.
| |
Collapse
|
107
|
Kubo S, Yang SK, Black CS, Dai D, Valente-Paterno M, Gaertig J, Ichikawa M, Bui KH. Remodeling and activation mechanisms of outer arm dyneins revealed by cryo-EM. EMBO Rep 2021; 22:e52911. [PMID: 34338432 PMCID: PMC8419702 DOI: 10.15252/embr.202152911] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cilia are thin microtubule-based protrusions of eukaryotic cells. The swimming of ciliated protists and sperm cells is propelled by the beating of cilia. Cilia propagate the flow of mucus in the trachea and protect the human body from viral infections. The main force generators of ciliary beating are the outer dynein arms (ODAs) which attach to the doublet microtubules. The bending of cilia is driven by the ODAs' conformational changes caused by ATP hydrolysis. Here, we report the native ODA complex structure attaching to the doublet microtubule by cryo-electron microscopy. The structure reveals how the ODA complex is attached to the doublet microtubule via the docking complex in its native state. Combined with coarse-grained molecular dynamic simulations, we present a model of how the attachment of the ODA to the doublet microtubule induces remodeling and activation of the ODA complex.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Corbin S Black
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Daniel Dai
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | | | - Jacek Gaertig
- Department of Cellular BiologyUniversity of GeorgiaAthensGAUSA
| | - Muneyoshi Ichikawa
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
- PRESTOJapan Science and Technology AgencyKawaguchiJapan
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
- Centre de Recherche en Biologie StructuraleMcGill UniversityMontréalQCCanada
| |
Collapse
|
108
|
Dahl TM, Baehr W. Review: Cytoplasmic dynein motors in photoreceptors. Mol Vis 2021; 27:506-517. [PMID: 34526758 PMCID: PMC8410232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/30/2021] [Indexed: 12/04/2022] Open
Abstract
Cytoplasmic dyneins (dynein-1 and dynein-2) transport cargo toward the minus end of microtubules and thus, are termed the "retrograde" cellular motor. Dynein-1 cargo may include nuclei, mitochondria, membrane vesicles, lysosomes, phagosomes, and other organelles. For example, dynein-1 works in the cell body of eukaryotes to move cargo toward the microtubule minus end and positions the Golgi complex. Dynein-1 also participates in the movement of chromosomes and the positioning of mitotic spindles during cell division. In contrast, dynein-2 is present almost exclusively within cilia where it participates in retrograde intraflagellar transport (IFT) along the axoneme to return kinesin-2 subunits, BBSome, and IFT particles to the cell body. Cytoplasmic dyneins are hefty 1.5 MDa complexes comprised of dimers of heavy, intermediate, light intermediate, and light chains. Missense mutations of human DYNC1H1 are associated with malformations of cortical development (MCD) or spinal muscular atrophy with lower extremity predominance (SMA-LED). Missense mutations in DYNC2H1 are causative of short-rib polydactyly syndrome type III and nonsyndromic retinitis pigmentosa. We review mutations of the two dynein heavy chains and their effect on postnatal retina development and discuss consequences of deletion of DYNC1H1 in the mouse retina.
Collapse
Affiliation(s)
- Tiffanie M. Dahl
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT
| | - Wolfgang Baehr
- Department of Ophthalmology, University of Utah Health Science Center, Salt Lake City, UT,Department of Neurobiology & Anatomy, University of Utah, Salt Lake City, UT,Department of Biology, University of Utah, Salt Lake City, UT
| |
Collapse
|
109
|
Fenton AR, Jongens TA, Holzbaur ELF. Mitochondrial adaptor TRAK2 activates and functionally links opposing kinesin and dynein motors. Nat Commun 2021; 12:4578. [PMID: 34321481 PMCID: PMC8319186 DOI: 10.1038/s41467-021-24862-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/01/2021] [Indexed: 02/03/2023] Open
Abstract
Mitochondria are transported along microtubules by opposing kinesin and dynein motors. Kinesin-1 and dynein-dynactin are linked to mitochondria by TRAK proteins, but it is unclear how TRAKs coordinate these motors. We used single-molecule imaging of cell lysates to show that TRAK2 robustly activates kinesin-1 for transport toward the microtubule plus-end. TRAK2 is also a novel dynein activating adaptor that utilizes a conserved coiled-coil motif to interact with dynein to promote motility toward the microtubule minus-end. However, dynein-mediated TRAK2 transport is minimal unless the dynein-binding protein LIS1 is present at a sufficient level. Using co-immunoprecipitation and co-localization experiments, we demonstrate that TRAK2 forms a complex containing both kinesin-1 and dynein-dynactin. These motors are functionally linked by TRAK2 as knockdown of either kinesin-1 or dynein-dynactin reduces the initiation of TRAK2 transport toward either microtubule end. We propose that TRAK2 coordinates kinesin-1 and dynein-dynactin as an interdependent motor complex, providing integrated control of opposing motors for the proper transport of mitochondria. Mitochondrial transport toward both the plus- and minus-ends of microtubules is mediated by motor proteins linked to mitochondria by TRAK adaptor proteins. Here the authors investigate the role of TRAK2 as a bidirectional motor adaptor, and propose a model where TRAK2 coordinates the activities of opposing kinesin-1 and cytoplasmic dynein motors as a single interdependent motor complex.
Collapse
Affiliation(s)
- Adam R Fenton
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Thomas A Jongens
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
110
|
Fu G, Scarbrough C, Song K, Phan N, Wirschell M, Nicastro D. Structural organization of the intermediate and light chain complex of Chlamydomonas ciliary I1 dynein. FASEB J 2021; 35:e21646. [PMID: 33993568 DOI: 10.1096/fj.202001857r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022]
Abstract
Axonemal I1 dynein (dynein f) is the largest inner dynein arm in cilia and a key regulator of ciliary beating. It consists of two dynein heavy chains, and an intermediate chain/light chain (ICLC) complex. However, the structural organization of the nine ICLC subunits remains largely unknown. Here, we used biochemical and genetic approaches, and cryo-electron tomography imaging in Chlamydomonas to dissect the molecular architecture of the I1 dynein ICLC complex. Using a strain expressing SNAP-tagged IC140, tomography revealed the location of the IC140 N-terminus at the proximal apex of the ICLC structure. Mass spectrometry of a tctex2b mutant showed that TCTEX2B dynein light chain is required for the stable assembly of TCTEX1 and inner dynein arm interacting proteins IC97 and FAP120. The structural defects observed in tctex2b located these 4 subunits in the center and bottom regions of the ICLC structure, which overlaps with the location of the IC138 regulatory subcomplex, which contains IC138, IC97, FAP120, and LC7b. These results reveal the three-dimensional organization of the native ICLC complex and indicate potential protein-protein interactions that are involved in the pathway by which I1 regulates ciliary motility.
Collapse
Affiliation(s)
- Gang Fu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, China
| | - Chasity Scarbrough
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Kangkang Song
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nhan Phan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maureen Wirschell
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniela Nicastro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
111
|
Abstract
The intraflagellar transport (IFT) system is a remarkable molecular machine used by cells to assemble and maintain the cilium, a long organelle extending from eukaryotic cells that gives rise to motility, sensing and signaling. IFT plays a critical role in building the cilium by shuttling structural components and signaling receptors between the ciliary base and tip. To provide effective transport, IFT-A and IFT-B adaptor protein complexes assemble into highly repetitive polymers, called IFT trains, that are powered by the motors kinesin-2 and IFT-dynein to move bidirectionally along the microtubules. This dynamic system must be precisely regulated to shuttle different cargo proteins between the ciliary tip and base. In this Cell Science at a Glance article and the accompanying poster, we discuss the current structural and mechanistic understanding of IFT trains and how they function as macromolecular machines to assemble the structure of the cilium.
Collapse
Affiliation(s)
- Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany.,Human Technopole, Via Cristina Belgioioso 171, 20157 Milan, Italy
| |
Collapse
|
112
|
Abstract
The dynein-dynactin nanomachine transports cargoes along microtubules in cells. Why dynactin interacts separately with the dynein motor and also with microtubules is hotly debated. Here we disrupted these interactions in a targeted manner on phagosomes extracted from cells, followed by optical trapping to interrogate native dynein-dynactin teams on single phagosomes. Perturbing the dynactin-dynein interaction reduced dynein's on rate to microtubules. In contrast, perturbing the dynactin-microtubule interaction increased dynein's off rate markedly when dynein was generating force against the optical trap. The dynactin-microtubule link is therefore required for persistence against load, a finding of importance because disease-relevant mutations in dynein-dynactin are known to interfere with "high-load" functions of dynein in cells. Our findings call attention to a less studied property of dynein-dynactin, namely, its detachment against load, in understanding dynein dysfunction.
Collapse
|
113
|
Abstract
Dyneins make up a family of AAA+ motors that move toward the minus end of microtubules. Cytoplasmic dynein is responsible for transporting intracellular cargos in interphase cells and mediating spindle assembly and chromosome positioning during cell division. Other dynein isoforms transport cargos in cilia and power ciliary beating. Dyneins were the least studied of the cytoskeletal motors due to challenges in the reconstitution of active dynein complexes in vitro and the scarcity of high-resolution methods for in-depth structural and biophysical characterization of these motors. These challenges have been recently addressed, and there have been major advances in our understanding of the activation, mechanism, and regulation of dyneins. This review synthesizes the results of structural and biophysical studies for each class of dynein motors. We highlight several outstanding questions about the regulation of bidirectional transport along microtubules and the mechanisms that sustain self-coordinated oscillations within motile cilia.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Ruensern Tan
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | - Emre Kusakci
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Jonathan Fernandes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA.,Physics Department, University of California, Berkeley, California 94720, USA
| |
Collapse
|
114
|
Kumari A, Kumar C, Wasnik N, Mylavarapu SVS. Dynein light intermediate chains as pivotal determinants of dynein multifunctionality. J Cell Sci 2021; 134:268315. [PMID: 34014309 DOI: 10.1242/jcs.254870] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In animal cells, a single cytoplasmic dynein motor mediates microtubule minus-end-directed transport, counterbalancing dozens of plus-end-directed kinesins. The remarkable ability of dynein to interact with a diverse cargo spectrum stems from its tightly regulated recruitment of cargo-specific adaptor proteins, which engage the dynactin complex to make a tripartite processive motor. Adaptor binding is governed by the homologous dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which exist in mutually exclusive dynein complexes that can perform both unique and overlapping functions. The intrinsically disordered and variable C-terminal domains of the LICs are indispensable for engaging a variety of structurally divergent adaptors. Here, we hypothesize that numerous spatiotemporally regulated permutations of posttranslational modifications of the LICs, as well as of the adaptors and cargoes, exponentially expand the spectrum of dynein-adaptor-cargo complexes. We thematically illustrate the possibilities that could generate a vast set of biochemical variations required to support the wide range of dynein functions.
Collapse
Affiliation(s)
- Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Chandan Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Neeraj Wasnik
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
115
|
Santarossa CC, Mickolajczyk KJ, Steinman JB, Urnavicius L, Chen N, Hirata Y, Fukase Y, Coudray N, Ekiert DC, Bhabha G, Kapoor TM. Targeting allostery in the Dynein motor domain with small molecule inhibitors. Cell Chem Biol 2021; 28:1460-1473.e15. [PMID: 34015309 DOI: 10.1016/j.chembiol.2021.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/24/2021] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
Cytoplasmic dyneins are AAA (ATPase associated with diverse cellular activities) motor proteins responsible for microtubule minus-end-directed intracellular transport. Dynein's unusually large size, four distinct nucleotide-binding sites, and conformational dynamics pose challenges for the design of potent and selective chemical inhibitors. Here we use structural approaches to develop a model for the inhibition of a well-characterized S. cerevisiae dynein construct by pyrazolo-pyrimidinone-based compounds. These data, along with functional assays of dynein motility and mutagenesis studies, suggest that the compounds inhibit dynein by engaging the regulatory ATPase sites in the AAA3 and AAA4 domains, and not by interacting with dynein's main catalytic site in the AAA1 domain. A double Walker B mutation of the AAA3 and AAA4 sites substantially reduces enzyme activity, suggesting that targeting these regulatory domains is sufficient to inhibit dynein. Our findings reveal how chemical inhibitors can be designed to disrupt allosteric communication across dynein's AAA domains.
Collapse
Affiliation(s)
- Cristina C Santarossa
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA; Tri-Institutional PhD program in Chemical Biology, The Rockefeller University, New York, NY 10065, USA
| | - Keith J Mickolajczyk
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jonathan B Steinman
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Linas Urnavicius
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Nan Chen
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yasuhiro Hirata
- Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, USA
| | - Yoshiyuki Fukase
- Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, USA
| | - Nicolas Coudray
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016, USA
| | - Damian C Ekiert
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Gira Bhabha
- Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA.
| | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
116
|
Lau CK, O’Reilly FJ, Santhanam B, Lacey SE, Rappsilber J, Carter AP. Cryo-EM reveals the complex architecture of dynactin's shoulder region and pointed end. EMBO J 2021; 40:e106164. [PMID: 33734450 PMCID: PMC8047447 DOI: 10.15252/embj.2020106164] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 02/11/2021] [Accepted: 02/17/2021] [Indexed: 11/09/2022] Open
Abstract
Dynactin is a 1.1 MDa complex that activates the molecular motor dynein for ultra-processive transport along microtubules. In order to do this, it forms a tripartite complex with dynein and a coiled-coil adaptor. Dynactin consists of an actin-related filament whose length is defined by its flexible shoulder domain. Despite previous cryo-EM structures, the molecular architecture of the shoulder and pointed end of the filament is still poorly understood due to the lack of high-resolution information in these regions. Here we combine multiple cryo-EM datasets and define precise masking strategies for particle signal subtraction and 3D classification. This overcomes domain flexibility and results in high-resolution maps into which we can build the shoulder and pointed end. The unique architecture of the shoulder securely houses the p150 subunit and positions the four identical p50 subunits in different conformations to bind dynactin's filament. The pointed end map allows us to build the first structure of p62 and reveals the molecular basis for cargo adaptor binding to different sites at the pointed end.
Collapse
Affiliation(s)
- Clinton K Lau
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | - Francis J O’Reilly
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Balaji Santhanam
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | - Samuel E Lacey
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| | - Juri Rappsilber
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Andrew P Carter
- Structural Studies DivisionMRC Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
117
|
DCTN1 Binds to TDP-43 and Regulates TDP-43 Aggregation. Int J Mol Sci 2021; 22:ijms22083985. [PMID: 33924373 PMCID: PMC8070438 DOI: 10.3390/ijms22083985] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/01/2023] Open
Abstract
A common pathological hallmark of several neurodegenerative diseases, including amyotrophic lateral sclerosis, is cytoplasmic mislocalization and aggregation of nuclear RNA-binding protein TDP-43. Perry disease, which displays inherited atypical parkinsonism, is a type of TDP-43 proteinopathy. The causative gene DCTN1 encodes the largest subunit of the dynactin complex. Dynactin associates with the microtubule-based motor cytoplasmic dynein and is required for dynein-mediated long-distance retrograde transport. Perry disease-linked missense mutations (e.g., p.G71A) reside within the CAP-Gly domain and impair the microtubule-binding abilities of DCTN1. However, molecular mechanisms by which such DCTN1 mutations cause TDP-43 proteinopathy remain unclear. We found that DCTN1 bound to TDP-43. Biochemical analysis using a panel of truncated mutants revealed that the DCTN1 CAP-Gly-basic supradomain, dynactin domain, and C-terminal region interacted with TDP-43, preferentially through its C-terminal region. Remarkably, the p.G71A mutation affected the TDP-43-interacting ability of DCTN1. Overexpression of DCTN1G71A, the dynactin-domain fragment, or C-terminal fragment, but not the CAP-Gly-basic fragment, induced cytoplasmic mislocalization and aggregation of TDP-43, suggesting functional modularity among TDP-43-interacting domains of DCTN1. We thus identified DCTN1 as a new player in TDP-43 cytoplasmic-nuclear transport, and showed that dysregulation of DCTN1-TDP-43 interactions triggers mislocalization and aggregation of TDP-43, thus providing insights into the pathological mechanisms of Perry disease and other TDP-43 proteinopathies.
Collapse
|
118
|
Crystal structure of human LC8 bound to a peptide from Ebola virus VP35. J Microbiol 2021; 59:410-416. [PMID: 33630249 DOI: 10.1007/s12275-021-0641-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
Zaire ebolavirus, commonly called Ebola virus (EBOV), is an RNA virus that causes severe hemorrhagic fever with high mortality. Viral protein 35 (VP35) is a virulence factor encoded in the EBOV genome. VP35 inhibits host innate immune responses and functions as a critical cofactor for viral RNA replication. EBOV VP35 contains a short conserved motif that interacts with dynein light chain 8 (LC8), which serves as a regulatory hub protein by associating with various LC8-binding proteins. Herein, we present the crystal structure of human LC8 bound to the peptide comprising residues 67-76 of EBOV VP35. Two VP35 peptides were found to interact with homodimeric LC8 by extending the central β-sheets, constituting a 2:2 complex. Structural analysis demonstrated that the intermolecular binding between LC8 and VP35 is mainly sustained by a network of hydrogen bonds and supported by hydrophobic interactions in which Thr73 and Thr75 of VP35 are involved. These findings were verified by binding measurements using isothermal titration calorimetry. Biochemical analyses also verified that residues 67-76 of EBOV VP35 constitute a core region for interaction with LC8. In addition, corresponding motifs from other members of the genus Ebolavirus commonly bound to LC8 but with different binding affinities. Particularly, VP35 peptides originating from pathogenic species interacted with LC8 with higher affinity than those from noninfectious species, suggesting that the binding of VP35 to LC8 is associated with the pathogenicity of the Ebolavirus species.
Collapse
|
119
|
Mali GR, Ali FA, Lau CK, Begum F, Boulanger J, Howe JD, Chen ZA, Rappsilber J, Skehel M, Carter AP. Shulin packages axonemal outer dynein arms for ciliary targeting. Science 2021; 371:910-916. [PMID: 33632841 PMCID: PMC7116892 DOI: 10.1126/science.abe0526] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
The main force generators in eukaryotic cilia and flagella are axonemal outer dynein arms (ODAs). During ciliogenesis, these ~1.8-megadalton complexes are assembled in the cytoplasm and targeted to cilia by an unknown mechanism. Here, we used the ciliate Tetrahymena to identify two factors (Q22YU3 and Q22MS1) that bind ODAs in the cytoplasm and are required for ODA delivery to cilia. Q22YU3, which we named Shulin, locked the ODA motor domains into a closed conformation and inhibited motor activity. Cryo-electron microscopy revealed how Shulin stabilized this compact form of ODAs by binding to the dynein tails. Our findings provide a molecular explanation for how newly assembled dyneins are packaged for delivery to the cilia.
Collapse
Affiliation(s)
- Girish R Mali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ferdos Abid Ali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Clinton K Lau
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jérôme Boulanger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jonathan D Howe
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Zhuo A Chen
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Andrew P Carter
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
120
|
Spriggs CC, Badieyan S, Verhey KJ, Cianfrocco MA, Tsai B. Golgi-associated BICD adaptors couple ER membrane penetration and disassembly of a viral cargo. J Cell Biol 2021; 219:151622. [PMID: 32259203 PMCID: PMC7199864 DOI: 10.1083/jcb.201908099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 12/04/2019] [Accepted: 02/21/2020] [Indexed: 12/22/2022] Open
Abstract
During entry, viruses must navigate through the host endomembrane system, penetrate cellular membranes, and undergo capsid disassembly to reach an intracellular destination that supports infection. How these events are coordinated is unclear. Here, we reveal an unexpected function of a cellular motor adaptor that coordinates virus membrane penetration and disassembly. Polyomavirus SV40 traffics to the endoplasmic reticulum (ER) and penetrates a virus-induced structure in the ER membrane called “focus” to reach the cytosol, where it disassembles before nuclear entry to promote infection. We now demonstrate that the ER focus is constructed proximal to the Golgi-associated BICD2 and BICDR1 dynein motor adaptors; this juxtaposition enables the adaptors to directly bind to and disassemble SV40 upon arrival to the cytosol. Our findings demonstrate that positioning of the virus membrane penetration site couples two decisive infection events, cytosol arrival and disassembly, and suggest cargo remodeling as a novel function of dynein adaptors.
Collapse
Affiliation(s)
- Chelsey C Spriggs
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Somayesadat Badieyan
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Michael A Cianfrocco
- Department of Biological Chemistry and the Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
121
|
Priyanga J, Guha G, Bhakta-Guha D. Microtubule motors in centrosome homeostasis: A target for cancer therapy? Biochim Biophys Acta Rev Cancer 2021; 1875:188524. [PMID: 33582170 DOI: 10.1016/j.bbcan.2021.188524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Cancer is a grievous concern to human health, owing to a massive heterogeneity in its cause and impact. Dysregulation (numerical, positional and/or structural) of centrosomes is one of the notable factors among those that promote onset and progression of cancers. In a normal dividing cell, a pair of centrosomes forms two poles, thereby governing the formation of a bipolar spindle assembly. A large number of cancer cells, however, harbor supernumerary centrosomes, which mimic the bipolar arrangement in normal cells by centrosome clustering (CC) into two opposite poles, thus developing a pseudo-bipolar spindle assembly. Manipulation of centrosome homeostasis is the paramount pre-requisite for the evasive strategy of CC in cancers. Out of the varied factors that uphold centrosome integrity, microtubule motors (MiMos) play a critical role. Categorized as dyneins and kinesins, MiMos are involved in cohesion of centrosomes, and also facilitate the maintenance of the numerical, positional and structural integrity of centrosomes. Herein, we elucidate the decisive mechanisms undertaken by MiMos to mediate centrosome homeostasis, and how dysregulation of the same might lead to CC in cancer cells. Understanding the impact of MiMos on CC might open up avenues toward a credible therapeutic target against diverse cancers.
Collapse
Affiliation(s)
- J Priyanga
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Gunjan Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| | - Dipita Bhakta-Guha
- Cellular Dyshomeostasis Laboratory (CDHL), School of Chemical and Bio Technology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India.
| |
Collapse
|
122
|
Abstract
Axonemal dyneins are tethered to doublet microtubules inside cilia to drive ciliary beating, a process critical for cellular motility and extracellular fluid flow. Axonemal dyneins are evolutionarily and biochemically distinct from cytoplasmic dyneins that transport cargo, and the mechanisms regulating their localization and function are poorly understood. Here, we report a single-particle cryo-EM reconstruction of a three-headed axonemal dynein natively bound to doublet microtubules isolated from cilia. The slanted conformation of the axonemal dynein causes interaction of its motor domains with the neighboring dynein complex. Our structure shows how a heterotrimeric docking complex specifically localizes the linear array of axonemal dyneins to the doublet microtubule by directly interacting with the heavy chains. Our structural analysis establishes the arrangement of conserved heavy, intermediate and light chain subunits, and provides a framework to understand the roles of individual subunits and the interactions between dyneins during ciliary waveform generation.
Collapse
Affiliation(s)
- Travis Walton
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA, USA
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, 240 Longwood Avenue, Boston, MA, USA.
| |
Collapse
|
123
|
Kesisova IA, Robinson BP, Spiliotis ET. A septin GTPase scaffold of dynein-dynactin motors triggers retrograde lysosome transport. J Cell Biol 2021; 220:211663. [PMID: 33416861 PMCID: PMC7802366 DOI: 10.1083/jcb.202005219] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/22/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
The metabolic and signaling functions of lysosomes depend on their intracellular positioning and trafficking, but the underlying mechanisms are little understood. Here, we have discovered a novel septin GTPase-based mechanism for retrograde lysosome transport. We found that septin 9 (SEPT9) associates with lysosomes, promoting the perinuclear localization of lysosomes in a Rab7-independent manner. SEPT9 targeting to mitochondria and peroxisomes is sufficient to recruit dynein and cause perinuclear clustering. We show that SEPT9 interacts with both dynein and dynactin through its GTPase domain and N-terminal extension, respectively. Strikingly, SEPT9 associates preferentially with the dynein intermediate chain (DIC) in its GDP-bound state, which favors dimerization and assembly into septin multimers. In response to oxidative cell stress induced by arsenite, SEPT9 localization to lysosomes is enhanced, promoting the perinuclear clustering of lysosomes. We posit that septins function as GDP-activated scaffolds for the cooperative assembly of dynein-dynactin, providing an alternative mechanism of retrograde lysosome transport at steady state and during cellular adaptation to stress.
Collapse
|
124
|
Rao Q, Han L, Wang Y, Chai P, Kuo YW, Yang R, Hu F, Yang Y, Howard J, Zhang K. Structures of outer-arm dynein array on microtubule doublet reveal a motor coordination mechanism. Nat Struct Mol Biol 2021; 28:799-810. [PMID: 34556869 PMCID: PMC8500839 DOI: 10.1038/s41594-021-00656-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022]
Abstract
Thousands of outer-arm dyneins (OADs) are arrayed in the axoneme to drive a rhythmic ciliary beat. Coordination among multiple OADs is essential for generating mechanical forces to bend microtubule doublets (MTDs). Using electron microscopy, we determined high-resolution structures of Tetrahymena thermophila OAD arrays bound to MTDs in two different states. OAD preferentially binds to MTD protofilaments with a pattern resembling the native tracks for its distinct microtubule-binding domains. Upon MTD binding, free OADs are induced to adopt a stable parallel conformation, primed for array formation. Extensive tail-to-head (TTH) interactions between OADs are observed, which need to be broken for ATP turnover by the dynein motor. We propose that OADs in an array sequentially hydrolyze ATP to slide the MTDs. ATP hydrolysis in turn relaxes the TTH interfaces to effect free nucleotide cycles of downstream OADs. These findings lead to a model explaining how conformational changes in the axoneme produce coordinated action of dyneins.
Collapse
Affiliation(s)
- Qinhui Rao
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Long Han
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Yue Wang
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Pengxin Chai
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Yin-wei Kuo
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Renbin Yang
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Fangheng Hu
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Yuchen Yang
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Jonathon Howard
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| | - Kai Zhang
- grid.47100.320000000419368710Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT USA
| |
Collapse
|
125
|
Gui M, Ma M, Sze-Tu E, Wang X, Koh F, Zhong ED, Berger B, Davis JH, Dutcher SK, Zhang R, Brown A. Structures of radial spokes and associated complexes important for ciliary motility. Nat Struct Mol Biol 2021; 28:29-37. [PMID: 33318703 PMCID: PMC7855293 DOI: 10.1038/s41594-020-00530-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
In motile cilia, a mechanoregulatory network is responsible for converting the action of thousands of dynein motors bound to doublet microtubules into a single propulsive waveform. Here, we use two complementary cryo-EM strategies to determine structures of the major mechanoregulators that bind ciliary doublet microtubules in Chlamydomonas reinhardtii. We determine structures of isolated radial spoke RS1 and the microtubule-bound RS1, RS2 and the nexin-dynein regulatory complex (N-DRC). From these structures, we identify and build atomic models for 30 proteins, including 23 radial-spoke subunits. We reveal how mechanoregulatory complexes dock to doublet microtubules with regular 96-nm periodicity and communicate with one another. Additionally, we observe a direct and dynamically coupled association between RS2 and the dynein motor inner dynein arm subform c (IDAc), providing a molecular basis for the control of motor activity by mechanical signals. These structures advance our understanding of the role of mechanoregulation in defining the ciliary waveform.
Collapse
Affiliation(s)
- Miao Gui
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Meisheng Ma
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Erica Sze-Tu
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Xiangli Wang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Fujiet Koh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Thermo Fisher Scientific, Eindhoven, Netherlands
| | - Ellen D Zhong
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bonnie Berger
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joseph H Davis
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Susan K Dutcher
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Rui Zhang
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.
| | - Alan Brown
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
126
|
Islam MA, Choi HJ, Dash R, Sharif SR, Oktaviani DF, Seog DH, Moon IS. N-Acetyl- D-Glucosamine Kinase Interacts with NudC and Lis1 in Dynein Motor Complex and Promotes Cell Migration. Int J Mol Sci 2020; 22:ijms22010129. [PMID: 33374456 PMCID: PMC7795690 DOI: 10.3390/ijms22010129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, we showed that N-acetylglucosamine kinase (NAGK), an enzyme of amino sugar metabolism, interacts with dynein light chain roadblock type 1 (DYNLRB1) and promotes the functions of dynein motor. Here, we report that NAGK interacts with nuclear distribution protein C (NudC) and lissencephaly 1 (Lis1) in the dynein complex. Yeast two-hybrid assays, pull-down assays, immunocytochemistry, and proximity ligation assays revealed NAGK-NudC-Lis1-dynein complexes around nuclei, at the leading poles of migrating HEK293T cells, and at the tips of migratory processes of cultured rat neuroblast cells. The exogenous expression of red fluorescent protein (RFP)-tagged NAGK accelerated HEK293T cell migration during in vitro wound-healing assays and of neurons during in vitro neurosphere migration and in utero electroporation assays, whereas NAGK knockdown by short hairpin RNA (shRNA) delayed migration. Finally, a small NAGK peptide derived from the NudC interacting domain in in silico molecular docking analysis retarded the migrations of HEK293T and SH-SY5Y cells. These data indicate a functional interaction between NAGK and dynein-NudC-Lis1 complex at the nuclear envelope is required for the regulation of cell migration.
Collapse
Affiliation(s)
- Md. Ariful Islam
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Ho Jin Choi
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Syeda Ridita Sharif
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
| | - Dae-Hyun Seog
- Department of Biochemistry, Dementia and Neurodegenerative Disease Research Center, Inje University College of Medicine, Busan 47392, Korea;
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea; (M.A.I.); (H.J.C.); (R.D.); (S.R.S.); (D.F.O.)
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju 38066, Korea
- Correspondence: ; Tel.: +82-54-770-2414; Fax: +82-54-770-2447
| |
Collapse
|
127
|
Villari G, Enrico Bena C, Del Giudice M, Gioelli N, Sandri C, Camillo C, Fiorio Pla A, Bosia C, Serini G. Distinct retrograde microtubule motor sets drive early and late endosome transport. EMBO J 2020; 39:e103661. [PMID: 33215754 PMCID: PMC7737607 DOI: 10.15252/embj.2019103661|] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Although subcellular positioning of endosomes significantly impacts on their functions, the molecular mechanisms governing the different steady-state distribution of early endosomes (EEs) and late endosomes (LEs)/lysosomes (LYs) in peripheral and perinuclear eukaryotic cell areas, respectively, are still unsolved. We unveil that such differences arise because, while LE retrograde transport depends on the dynein microtubule (MT) motor only, the one of EEs requires the cooperative antagonism of dynein and kinesin-14 KIFC1, a MT minus end-directed motor involved in cancer progression. Mechanistically, the Ser-x-Ile-Pro (SxIP) motif-mediated interaction of the endoplasmic reticulum transmembrane protein stromal interaction molecule 1 (STIM1) with the MT plus end-binding protein 1 (EB1) promotes its association with the p150Glued subunit of the dynein activator complex dynactin and the distinct location of EEs and LEs/LYs. The peripheral distribution of EEs requires their p150Glued-mediated simultaneous engagement with dynein and SxIP motif-containing KIFC1, via HOOK1 and HOOK3 adaptors, respectively. In sum, we provide evidence that distinct minus end-directed MT motor systems drive the differential transport and subcellular distribution of EEs and LEs in mammalian cells.
Collapse
Affiliation(s)
- Giulia Villari
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| | - Chiara Enrico Bena
- Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly,IIGM ‐ Italian Institute for Genomic MedicineCandioloItaly,Present address:
Sorbonne UniversitéCNRS, Institut de Biologie Paris‐SeineLaboratoire Jean Perrin (LJP)ParisFrance
| | - Marco Del Giudice
- Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly,IIGM ‐ Italian Institute for Genomic MedicineCandioloItaly
| | - Noemi Gioelli
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| | - Chiara Sandri
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| | - Chiara Camillo
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| | | | - Carla Bosia
- IIGM ‐ Italian Institute for Genomic MedicineCandioloItaly,Department of Applied Science and TechnologyPolytechnic of TorinoTorinoItaly
| | - Guido Serini
- Department of OncologyUniversity of Torino School of MedicineCandioloItaly,Candiolo Cancer Institute ‐ Fondazione del Piemonte per l'Oncologia (FPO)Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)TorinoItaly
| |
Collapse
|
128
|
Monzon GA, Scharrel L, DSouza A, Henrichs V, Santen L, Diez S. Stable tug-of-war between kinesin-1 and cytoplasmic dynein upon different ATP and roadblock concentrations. J Cell Sci 2020; 133:133/22/jcs249938. [PMID: 33257498 DOI: 10.1242/jcs.249938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/18/2020] [Indexed: 11/20/2022] Open
Abstract
The maintenance of intracellular processes, like organelle transport and cell division, depend on bidirectional movement along microtubules. These processes typically require kinesin and dynein motor proteins, which move with opposite directionality. Because both types of motors are often simultaneously bound to the cargo, regulatory mechanisms are required to ensure controlled directional transport. Recently, it has been shown that parameters like mechanical motor activation, ATP concentration and roadblocks on the microtubule surface differentially influence the activity of kinesin and dynein motors in distinct manners. However, how these parameters affect bidirectional transport systems has not been studied. Here, we investigate the regulatory influence of these three parameters using in vitro gliding motility assays and stochastic simulations. We find that the number of active kinesin and dynein motors determines the transport direction and velocity, but that variations in ATP concentration and roadblock density have no significant effect. Thus, factors influencing the force balance between opposite motors appear to be important, whereas the detailed stepping kinetics and bypassing capabilities of the motors only have a small effect.
Collapse
Affiliation(s)
- Gina A Monzon
- Center for Biophysics, Department of Physics, Saarland University, D-66123, Saarbrücken, Germany
| | - Lara Scharrel
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Ashwin DSouza
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Verena Henrichs
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany.,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-25250 Prague West, Czech Republic
| | - Ludger Santen
- Center for Biophysics, Department of Physics, Saarland University, D-66123, Saarbrücken, Germany
| | - Stefan Diez
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany .,Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| |
Collapse
|
129
|
Liu X, Rao L, Gennerich A. The regulatory function of the AAA4 ATPase domain of cytoplasmic dynein. Nat Commun 2020; 11:5952. [PMID: 33230227 PMCID: PMC7683685 DOI: 10.1038/s41467-020-19477-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 11/08/2022] Open
Abstract
Cytoplasmic dynein is the primary motor for microtubule minus-end-directed transport and is indispensable to eukaryotic cells. Although each motor domain of dynein contains three active AAA+ ATPases (AAA1, 3, and 4), only the functions of AAA1 and 3 are known. Here, we use single-molecule fluorescence and optical tweezers studies to elucidate the role of AAA4 in dynein's mechanochemical cycle. We demonstrate that AAA4 controls the priming stroke of the motion-generating linker, which connects the dimerizing tail of the motor to the AAA+ ring. Before ATP binds to AAA4, dynein remains incapable of generating motion. However, when AAA4 is bound to ATP, the gating of AAA1 by AAA3 prevails and dynein motion can occur. Thus, AAA1, 3, and 4 work together to regulate dynein function. Our work elucidates an essential role for AAA4 in dynein's stepping cycle and underscores the complexity and crosstalk among the motor's multiple AAA+ domains.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
130
|
Villari G, Enrico Bena C, Del Giudice M, Gioelli N, Sandri C, Camillo C, Fiorio Pla A, Bosia C, Serini G. Distinct retrograde microtubule motor sets drive early and late endosome transport. EMBO J 2020; 39:e103661. [PMID: 33215754 PMCID: PMC7737607 DOI: 10.15252/embj.2019103661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 10/01/2020] [Accepted: 10/14/2020] [Indexed: 11/23/2022] Open
Abstract
Although subcellular positioning of endosomes significantly impacts on their functions, the molecular mechanisms governing the different steady‐state distribution of early endosomes (EEs) and late endosomes (LEs)/lysosomes (LYs) in peripheral and perinuclear eukaryotic cell areas, respectively, are still unsolved. We unveil that such differences arise because, while LE retrograde transport depends on the dynein microtubule (MT) motor only, the one of EEs requires the cooperative antagonism of dynein and kinesin‐14 KIFC1, a MT minus end‐directed motor involved in cancer progression. Mechanistically, the Ser‐x‐Ile‐Pro (SxIP) motif‐mediated interaction of the endoplasmic reticulum transmembrane protein stromal interaction molecule 1 (STIM1) with the MT plus end‐binding protein 1 (EB1) promotes its association with the p150Glued subunit of the dynein activator complex dynactin and the distinct location of EEs and LEs/LYs. The peripheral distribution of EEs requires their p150Glued‐mediated simultaneous engagement with dynein and SxIP motif‐containing KIFC1, via HOOK1 and HOOK3 adaptors, respectively. In sum, we provide evidence that distinct minus end‐directed MT motor systems drive the differential transport and subcellular distribution of EEs and LEs in mammalian cells.
Collapse
Affiliation(s)
- Giulia Villari
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Enrico Bena
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy.,IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Marco Del Giudice
- Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy.,IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy
| | - Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Sandri
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Chiara Camillo
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| | - Alessandra Fiorio Pla
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Carla Bosia
- IIGM - Italian Institute for Genomic Medicine, Candiolo, Italy.,Department of Applied Science and Technology, Polytechnic of Torino, Torino, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia (FPO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Torino, Italy
| |
Collapse
|
131
|
Lee IG, Cason SE, Alqassim SS, Holzbaur ELF, Dominguez R. A tunable LIC1-adaptor interaction modulates dynein activity in a cargo-specific manner. Nat Commun 2020; 11:5695. [PMID: 33173051 PMCID: PMC7655957 DOI: 10.1038/s41467-020-19538-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023] Open
Abstract
Cytoplasmic dynein-1 (dynein) is the motor responsible for most retrograde transport of cargoes along microtubules in eukaryotic cells, including organelles, mRNA and viruses. Cargo selectivity and activation of processive motility depend on a group of so-called "activating adaptors" that link dynein to its general cofactor, dynactin, and cargoes. The mechanism by which these adaptors regulate dynein transport is poorly understood. Here, based on crystal structures, quantitative binding studies, and in vitro motility assays, we show that BICD2, CRACR2a, and HOOK3, representing three subfamilies of unrelated adaptors, interact with the same amphipathic helix of the dynein light intermediate chain-1 (LIC1). While the hydrophobic character of the interaction is conserved, the three adaptor subfamilies use different folds (coiled-coil, EF-hand, HOOK domain) and different surface contacts to bind the LIC1 helix with affinities ranging from 1.5 to 15.0 μM. We propose that a tunable LIC1-adaptor interaction modulates dynein's motility in a cargo-specific manner.
Collapse
Affiliation(s)
- In-Gyun Lee
- grid.25879.310000 0004 1936 8972Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.35541.360000000121053345Present Address: Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-Gil, Seongbuk-Gu, Seoul, 02792 Republic of Korea
| | - Sydney E. Cason
- grid.25879.310000 0004 1936 8972Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Neuroscience Graduate Group, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Saif S. Alqassim
- grid.25879.310000 0004 1936 8972Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,Present Address: College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Erika L. F. Holzbaur
- grid.25879.310000 0004 1936 8972Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA ,grid.25879.310000 0004 1936 8972Neuroscience Graduate Group, Biomedical Graduate Studies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Roberto Dominguez
- grid.25879.310000 0004 1936 8972Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
132
|
Fourel G, Boscheron C. Tubulin mutations in neurodevelopmental disorders as a tool to decipher microtubule function. FEBS Lett 2020; 594:3409-3438. [PMID: 33064843 DOI: 10.1002/1873-3468.13958] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023]
Abstract
Malformations of cortical development (MCDs) are a group of severe brain malformations associated with intellectual disability and refractory childhood epilepsy. Human missense heterozygous mutations in the 9 α-tubulin and 10 β-tubulin isoforms forming the heterodimers that assemble into microtubules (MTs) were found to cause MCDs. However, how a single mutated residue in a given tubulin isoform can perturb the entire microtubule population in a neuronal cell remains a crucial question. Here, we examined 85 MCD-associated tubulin mutations occurring in TUBA1A, TUBB2, and TUBB3 and their location in a three-dimensional (3D) microtubule cylinder. Mutations hitting residues exposed on the outer microtubule surface are likely to alter microtubule association with partners, while alteration of intradimer contacts may impair dimer stability and straightness. Other types of mutations are predicted to alter interdimer and lateral contacts, which are responsible for microtubule cohesion, rigidity, and dynamics. MCD-associated tubulin mutations surprisingly fall into all categories, thus providing unexpected insights into how a single mutation may impair microtubule function and elicit dominant effects in neurons.
Collapse
|
133
|
Webb S, Mukhopadhyay AG, Roberts AJ. Intraflagellar transport trains and motors: Insights from structure. Semin Cell Dev Biol 2020; 107:82-90. [PMID: 32684327 PMCID: PMC7561706 DOI: 10.1016/j.semcdb.2020.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
Intraflagellar transport (IFT) sculpts the proteome of cilia and flagella; the antenna-like organelles found on the surface of virtually all human cell types. By delivering proteins to the growing ciliary tip, recycling turnover products, and selectively transporting signalling molecules, IFT has critical roles in cilia biogenesis, quality control, and signal transduction. IFT involves long polymeric arrays, termed IFT trains, which move to and from the ciliary tip under the power of the microtubule-based motor proteins kinesin-II and dynein-2. Recent top-down and bottom-up structural biology approaches are converging on the molecular architecture of the IFT train machinery. Here we review these studies, with a focus on how kinesin-II and dynein-2 assemble, attach to IFT trains, and undergo precise regulation to mediate bidirectional transport.
Collapse
Affiliation(s)
- Stephanie Webb
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Aakash G Mukhopadhyay
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom
| | - Anthony J Roberts
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, Malet Street, London, United Kingdom.
| |
Collapse
|
134
|
Twelvetrees AE. The lifecycle of the neuronal microtubule transport machinery. Semin Cell Dev Biol 2020; 107:74-81. [DOI: 10.1016/j.semcdb.2020.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/08/2023]
|
135
|
Xiang X, Qiu R. Cargo-Mediated Activation of Cytoplasmic Dynein in vivo. Front Cell Dev Biol 2020; 8:598952. [PMID: 33195284 PMCID: PMC7649786 DOI: 10.3389/fcell.2020.598952] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Cytoplasmic dynein-1 is a minus-end-directed microtubule motor that transports a variety of cargoes including early endosomes, late endosomes and other organelles. In many cell types, dynein accumulates at the microtubule plus end, where it interacts with its cargo to be moved toward the minus end. Dynein binds to its various cargoes via the dynactin complex and specific cargo adapters. Dynactin and some of the coiled-coil-domain-containing cargo adapters not only link dynein to cargo but also activate dynein motility, which implies that dynein is activated by its cellular cargo. Structural studies indicate that a dynein dimer switches between the autoinhibited phi state and an open state; and the binding of dynactin and a cargo adapter to the dynein tails causes the dynein motor domains to have a parallel configuration, allowing dynein to walk processively along a microtubule. Recently, the dynein regulator LIS1 has been shown to be required for dynein activation in vivo, and its mechanism of action involves preventing dynein from switching back to the autoinhibited state. In this review, we will discuss our current understanding of dynein activation and point out the gaps of knowledge on the spatial regulation of dynein in live cells. In addition, we will emphasize the importance of studying a complete set of dynein regulators for a better understanding of dynein regulation in vivo.
Collapse
Affiliation(s)
- Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences - F. Edward Hébert School of Medicine, Bethesda, MD, United States
| | | |
Collapse
|
136
|
Ripon MKH, Lee H, Dash R, Choi HJ, Oktaviani DF, Moon IS, Haque MN. N-acetyl-D-glucosamine kinase binds dynein light chain roadblock 1 and promotes protein aggregate clearance. Cell Death Dis 2020; 11:619. [PMID: 32796833 PMCID: PMC7427805 DOI: 10.1038/s41419-020-02862-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022]
Abstract
Emerging evidence indicates that neurodegenerative diseases (NDs) result from a failure to clear toxic protein aggregates rather than from their generation. We previously showed N-acetylglucosamine kinase (NAGK) promotes dynein functionality and suggested this might promote aggregate removal and effectively address proteinopathies. Here, we report NAGK interacts with dynein light chain roadblock type 1 (DYNLRB1) and efficiently suppresses mutant huntingtin (mHtt) (Q74) and α-synuclein (α-syn) A53T aggregation in mouse brain cells. A kinase-inactive NAGKD107A also efficiently cleared Q74 aggregates. Yeast two-hybrid selection and in silico protein-protein docking analysis showed the small domain of NAGK (NAGK-DS) binds to the C-terminal of DYNLRB1. Furthermore, a small peptide derived from NAGK-DS interfered with Q74 clearance. We propose binding of NAGK-DS to DYNLRB1 'pushes up' the tail of dynein light chain and confers momentum for inactive phi- to active open-dynein transition.
Collapse
Affiliation(s)
- Md Kamal Hossain Ripon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
- Department of Pharmacy, Mawlana Bhashani Science and Technology University, Tangail, 1902, Bangladesh
| | - HyunSook Lee
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Diyah Fatimah Oktaviani
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
- Section of Neuroscience, Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| | - Md Nazmul Haque
- Dongguk Medical Institute, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
- Department of Fisheries Biology and Genetics, Patuakhali Science and Technology University, Patuakhali, 8602, Bangladesh
| |
Collapse
|
137
|
Linke H, Höcker B, Furuta K, Forde NR, Curmi PMG. Synthetic biology approaches to dissecting linear motor protein function: towards the design and synthesis of artificial autonomous protein walkers. Biophys Rev 2020; 12:1041-1054. [PMID: 32651904 PMCID: PMC7429643 DOI: 10.1007/s12551-020-00717-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Molecular motors and machines are essential for all cellular processes that together enable life. Built from proteins with a wide range of properties, functionalities and performance characteristics, biological motors perform complex tasks and can transduce chemical energy into mechanical work more efficiently than human-made combustion engines. Sophisticated studies of biological protein motors have provided many structural and biophysical insights and enabled the development of models for motor function. However, from the study of highly evolved, biological motors, it remains difficult to discern detailed mechanisms, for example, about the relative role of different force generation mechanisms, or how information is communicated across a protein to achieve the necessary coordination. A promising, complementary approach to answering these questions is to build synthetic protein motors from the bottom up. Indeed, much effort has been invested in functional protein design, but so far, the "holy grail" of designing and building a functional synthetic protein motor has not been realized. Here, we review the progress made to date, and we put forward a roadmap for achieving the aim of constructing the first artificial, autonomously running protein motor. Specifically, we propose to break down the task into (i) enzymatic control of track binding, (ii) the engineering of asymmetry and (iii) the engineering of allosteric control for internal communication. We also propose specific approaches for solving each of these challenges.
Collapse
Affiliation(s)
- Heiner Linke
- NanoLund and Solid State Physics, Lund University, Box 118, SE 22100, Lund, Sweden
| | - Birte Höcker
- Department of Biochemistry, University of Bayreuth, 95447, Bayreuth, Germany
| | - Ken'ya Furuta
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo, 651-2492, Japan
| | - Nancy R Forde
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Paul M G Curmi
- School of Physics, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
138
|
Markus SM, Marzo MG, McKenney RJ. New insights into the mechanism of dynein motor regulation by lissencephaly-1. eLife 2020; 9:59737. [PMID: 32692650 PMCID: PMC7373426 DOI: 10.7554/elife.59737] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
Lissencephaly (‘smooth brain’) is a severe brain disease associated with numerous symptoms, including cognitive impairment, and shortened lifespan. The main causative gene of this disease – lissencephaly-1 (LIS1) – has been a focus of intense scrutiny since its first identification almost 30 years ago. LIS1 is a critical regulator of the microtubule motor cytoplasmic dynein, which transports numerous cargoes throughout the cell, and is a key effector of nuclear and neuronal transport during brain development. Here, we review the role of LIS1 in cellular dynein function and discuss recent key findings that have revealed a new mechanism by which this molecule influences dynein-mediated transport. In addition to reconciling prior observations with this new model for LIS1 function, we also discuss phylogenetic data that suggest that LIS1 may have coevolved with an autoinhibitory mode of cytoplasmic dynein regulation.
Collapse
Affiliation(s)
- Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Richard J McKenney
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
| |
Collapse
|
139
|
|
140
|
Ahel J, Lehner A, Vogel A, Schleiffer A, Meinhart A, Haselbach D, Clausen T. Moyamoya disease factor RNF213 is a giant E3 ligase with a dynein-like core and a distinct ubiquitin-transfer mechanism. eLife 2020; 9:e56185. [PMID: 32573437 PMCID: PMC7311170 DOI: 10.7554/elife.56185] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
RNF213 is the major susceptibility factor for Moyamoya disease, a progressive cerebrovascular disorder that often leads to brain stroke in adults and children. Characterization of disease-associated mutations has been complicated by the enormous size of RNF213. Here, we present the cryo-EM structure of mouse RNF213. The structure reveals the intricate fold of the 584 kDa protein, comprising an N-terminal stalk, a dynein-like core with six ATPase units, and a multidomain E3 module. Collaboration with UbcH7, a cysteine-reactive E2, points to an unexplored ubiquitin-transfer mechanism that proceeds in a RING-independent manner. Moreover, we show that pathologic MMD mutations cluster in the composite E3 domain, likely interfering with substrate ubiquitination. In conclusion, the structure of RNF213 uncovers a distinct type of an E3 enzyme, highlighting the growing mechanistic diversity in ubiquitination cascades. Our results also provide the molecular framework for investigating the emerging role of RNF213 in lipid metabolism, hypoxia, and angiogenesis.
Collapse
Affiliation(s)
- Juraj Ahel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Anita Lehner
- Vienna BioCenter Core Facilities, Vienna BioCenter, Vienna, Austria
| | - Antonia Vogel
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Anton Meinhart
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - David Haselbach
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Tim Clausen
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
- Medical University of Vienna, Vienna, Austria
| |
Collapse
|
141
|
Nakayama K, Katoh Y. Architecture of the IFT ciliary trafficking machinery and interplay between its components. Crit Rev Biochem Mol Biol 2020; 55:179-196. [PMID: 32456460 DOI: 10.1080/10409238.2020.1768206] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cilia and flagella serve as cellular antennae and propellers in various eukaryotic cells, and contain specific receptors and ion channels as well as components of axonemal microtubules and molecular motors to achieve their sensory and motile functions. Not only the bidirectional trafficking of specific proteins within cilia but also their selective entry and exit across the ciliary gate is mediated by the intraflagellar transport (IFT) machinery with the aid of motor proteins. The IFT-B complex, which is powered by the kinesin-2 motor, mediates anterograde protein trafficking from the base to the tip of cilia, whereas the IFT-A complex together with the dynein-2 complex mediates retrograde protein trafficking. The BBSome complex connects ciliary membrane proteins to the IFT machinery. Defects in any component of this trafficking machinery lead to abnormal ciliogenesis and ciliary functions, and results in a broad spectrum of disorders, collectively called the ciliopathies. In this review article, we provide an overview of the architectures of the components of the IFT machinery and their functional interplay in ciliary protein trafficking.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Yohei Katoh
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
142
|
Renna C, Rizzelli F, Carminati M, Gaddoni C, Pirovano L, Cecatiello V, Pasqualato S, Mapelli M. Organizational Principles of the NuMA-Dynein Interaction Interface and Implications for Mitotic Spindle Functions. Structure 2020; 28:820-829.e6. [PMID: 32413290 DOI: 10.1016/j.str.2020.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 01/01/2023]
Abstract
Mitotic progression is orchestrated by the microtubule-based motor dynein, which sustains all mitotic spindle functions. During cell division, cytoplasmic dynein acts with the high-molecular-weight complex dynactin and nuclear mitotic apparatus (NuMA) to organize and position the spindle. Here, we analyze the interaction interface between NuMA and the light intermediate chain (LIC) of eukaryotic dynein. Structural studies show that NuMA contains a hook domain contacting directly LIC1 and LIC2 chains through a conserved hydrophobic patch shared among other Hook adaptors. In addition, we identify a LIC-binding motif within the coiled-coil region of NuMA that is homologous to CC1-boxes. Analysis of mitotic cells revealed that both LIC-binding sites of NuMA are essential for correct spindle placement and cell division. Collectively, our evidence depicts NuMA as the dynein-activating adaptor acting in the mitotic processes of spindle organization and positioning.
Collapse
Affiliation(s)
- Cristina Renna
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | | | | | - Chiara Gaddoni
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Laura Pirovano
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | | | | | - Marina Mapelli
- IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy.
| |
Collapse
|
143
|
Canty JT, Yildiz A. Activation and Regulation of Cytoplasmic Dynein. Trends Biochem Sci 2020; 45:440-453. [PMID: 32311337 PMCID: PMC7179903 DOI: 10.1016/j.tibs.2020.02.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein is an AAA+ motor that drives the transport of many intracellular cargoes towards the minus end of microtubules (MTs). Previous in vitro studies characterized isolated dynein as an exceptionally weak motor that moves slowly and diffuses on an MT. Recent studies altered this view by demonstrating that dynein remains in an autoinhibited conformation on its own, and processive motility is activated when it forms a ternary complex with dynactin and a cargo adaptor. This complex assembles more efficiently in the presence of Lis1, providing an explanation for why Lis1 is a required cofactor for most cytoplasmic dynein-driven processes in cells. This review describes how dynein motility is activated and regulated by cargo adaptors and accessory proteins.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Physics Department, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
144
|
Htet ZM, Gillies JP, Baker RW, Leschziner AE, DeSantis ME, Reck-Peterson SL. LIS1 promotes the formation of activated cytoplasmic dynein-1 complexes. Nat Cell Biol 2020; 22:518-525. [PMID: 32341549 PMCID: PMC7271980 DOI: 10.1038/s41556-020-0506-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 03/11/2020] [Indexed: 12/30/2022]
Abstract
Cytoplasmic dynein-1 is a molecular motor that drives nearly all minus-end-directed microtubule-based transport in human cells, performing functions that range from retrograde axonal transport to mitotic spindle assembly1,2. Activated dynein complexes consist of one or two dynein dimers, the dynactin complex and an 'activating adaptor', and they show faster velocity when two dynein dimers are present3-6. Little is known about the assembly process of this massive ~4 MDa complex. Here, using purified recombinant human proteins, we uncover a role for the dynein-binding protein LIS1 in promoting the formation of activated dynein-dynactin complexes that contain two dynein dimers. Complexes activated by proteins representing three families of activating adaptors-BicD2, Hook3 and Ninl-all show enhanced motile properties in the presence of LIS1. Activated dynein complexes do not require sustained LIS1 binding for fast velocity. Using cryo-electron microscopy, we show that human LIS1 binds to dynein at two sites on the motor domain of dynein. Our research suggests that LIS1 binding at these sites functions in multiple stages of assembling the motile dynein-dynactin-activating adaptor complex.
Collapse
Affiliation(s)
- Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Biophysics Graduate Program, Harvard Medical School, Boston, MA, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA, USA
| | - John P Gillies
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA
| | - Richard W Baker
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Andres E Leschziner
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, Molecular Biology Section, University of California San Diego, La Jolla, CA, USA
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, CA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
145
|
Lis1 activates dynein motility by modulating its pairing with dynactin. Nat Cell Biol 2020; 22:570-578. [PMID: 32341547 PMCID: PMC7212015 DOI: 10.1038/s41556-020-0501-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 03/03/2020] [Indexed: 12/18/2022]
Abstract
Lissencephaly-1 (Lis1) is a key cofactor for dynein-mediated intracellular transport towards the minus-ends of microtubules. It remains unclear whether Lis1 serves as an inhibitor or an activator of mammalian dynein motility. Here we use single-molecule imaging and optical trapping to show that Lis1 does not directly alter the stepping and force production of individual dynein motors assembled with dynactin and a cargo adaptor. Instead, Lis1 promotes the formation of an active complex with dynactin. Lis1 also favours the recruitment of two dyneins to dynactin, resulting in increased velocity, higher force production and more effective competition against kinesin in a tug-of-war. Lis1 dissociates from motile complexes, indicating that its primary role is to orchestrate the assembly of the transport machinery. We propose that Lis1 binding releases dynein from its autoinhibited state, which provides a mechanistic explanation for why Lis1 is required for efficient transport of many dynein-associated cargos in cells.
Collapse
|
146
|
Marzo MG, Griswold JM, Markus SM. Pac1/LIS1 stabilizes an uninhibited conformation of dynein to coordinate its localization and activity. Nat Cell Biol 2020; 22:559-569. [PMID: 32341548 DOI: 10.1038/s41556-020-0492-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/23/2020] [Indexed: 12/20/2022]
Abstract
Dynein is a microtubule motor that transports many different cargos in various cell types and contexts. How dynein is regulated to perform these activities with spatial and temporal precision remains unclear. Human dynein is regulated by autoinhibition, whereby intermolecular contacts limit motor activity. Whether this mechanism is conserved throughout evolution, whether it can be affected by extrinsic factors, and its role in regulating dynein function remain unclear. Here, we use a combination of negative stain electron microscopy, single-molecule assays, genetic, and cell biological techniques to show that autoinhibition is conserved in budding yeast, and plays a key role in coordinating in vivo dynein function. Moreover, we find that the Lissencephaly-related protein, LIS1 (Pac1 in yeast), plays an important role in regulating dynein autoinhibition. Our studies demonstrate that, rather than inhibiting dynein motility, Pac1/LIS1 promotes dynein activity by stabilizing the uninhibited conformation, which ensures appropriate dynein localization and activity in cells.
Collapse
Affiliation(s)
- Matthew G Marzo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Jacqueline M Griswold
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Steven M Markus
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
147
|
Pietrantoni G, Ibarra-Karmy R, Arriagada G. Microtubule Retrograde Motors and Their Role in Retroviral Transport. Viruses 2020; 12:v12040483. [PMID: 32344581 PMCID: PMC7232228 DOI: 10.3390/v12040483] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Following entry into the host cell, retroviruses generate a dsDNA copy of their genomes via reverse transcription, and this viral DNA is subsequently integrated into the chromosomal DNA of the host cell. Before integration can occur, however, retroviral DNA must be transported to the nucleus as part of a ‘preintegration complex’ (PIC). Transporting the PIC through the crowded environment of the cytoplasm is challenging, and retroviruses have evolved different mechanisms to accomplish this feat. Within a eukaryotic cell, microtubules act as the roads, while the microtubule-associated proteins dynein and kinesin are the vehicles that viruses exploit to achieve retrograde and anterograde trafficking. This review will examine the various mechanisms retroviruses have evolved in order to achieve retrograde trafficking, confirming that each retrovirus has its own strategy to functionally subvert microtubule associated proteins.
Collapse
|
148
|
Tempes A, Weslawski J, Brzozowska A, Jaworski J. Role of dynein-dynactin complex, kinesins, motor adaptors, and their phosphorylation in dendritogenesis. J Neurochem 2020; 155:10-28. [PMID: 32196676 DOI: 10.1111/jnc.15010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
One of the characteristic features of different classes of neurons that is vital for their proper functioning within neuronal networks is the shape of their dendritic arbors. To properly develop dendritic trees, neurons need to accurately control the intracellular transport of various cellular cargo (e.g., mRNA, proteins, and organelles). Microtubules and motor proteins (e.g., dynein and kinesins) that move along microtubule tracks play an essential role in cargo sorting and transport to the most distal ends of neurons. Equally important are motor adaptors, which may affect motor activity and specify cargo that is transported by the motor. Such transport undergoes very dynamic fine-tuning in response to changes in the extracellular environment and synaptic transmission. Such regulation is achieved by the phosphorylation of motors, motor adaptors, and cargo, among other mechanisms. This review focuses on the contribution of the dynein-dynactin complex, kinesins, their adaptors, and the phosphorylation of these proteins in the formation of dendritic trees by maturing neurons. We primarily review the effects of the motor activity of these proteins in dendrites on dendritogenesis. We also discuss less anticipated mechanisms that contribute to dendrite growth, such as dynein-driven axonal transport and non-motor functions of kinesins.
Collapse
Affiliation(s)
- Aleksandra Tempes
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jan Weslawski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Brzozowska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
149
|
Qiu R, Zhang J, Xiang X. The splicing-factor Prp40 affects dynein-dynactin function in Aspergillus nidulans. Mol Biol Cell 2020; 31:1289-1301. [PMID: 32267207 PMCID: PMC7353152 DOI: 10.1091/mbc.e20-03-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The multi-component cytoplasmic dynein transports cellular cargoes with the help of another multi-component complex dynactin, but we do not know enough about factors that may affect the assembly and functions of these proteins. From a genetic screen for mutations affecting early-endosome distribution in Aspergillus nidulans, we identified the prp40AL438* mutation in Prp40A, a homologue of Prp40, an essential RNA-splicing factor in the budding yeast. Prp40A is not essential for splicing, although it associates with the nuclear splicing machinery. The prp40AL438* mutant is much healthier than the ∆prp40A mutant, but both mutants exhibit similar defects in dynein-mediated early-endosome transport and nuclear distribution. In the prp40AL438* mutant, the frequency but not the speed of dynein-mediated early-endosome transport is decreased, which correlates with a decrease in the microtubule plus-end accumulations of dynein and dynactin. Within the dynactin complex, the actin-related protein Arp1 forms a mini-filament. In a pull-down assay, the amount of Arp1 pulled down with its pointed-end protein Arp11 is lowered in the prp40AL438* mutant. In addition, we found from published interactome data that a mammalian Prp40 homologue PRPF40A interacts with Arp1. Thus, Prp40 homologues may regulate the assembly or function of dynein–dynactin and their mechanisms deserve to be further studied.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| |
Collapse
|
150
|
Brenner S, Berger F, Rao L, Nicholas MP, Gennerich A. Force production of human cytoplasmic dynein is limited by its processivity. SCIENCE ADVANCES 2020; 6:eaaz4295. [PMID: 32285003 PMCID: PMC7141836 DOI: 10.1126/sciadv.aaz4295] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 01/22/2020] [Indexed: 05/02/2023]
Abstract
Cytoplasmic dynein is a highly complex motor protein that generates forces toward the minus end of microtubules. Using optical tweezers, we demonstrate that the low processivity (ability to take multiple steps before dissociating) of human dynein limits its force generation due to premature microtubule dissociation. Using a high trap stiffness whereby the motor achieves greater force per step, we reveal that the motor's true maximal force ("stall force") is ~2 pN. Furthermore, an average force versus trap stiffness plot yields a hyperbolic curve that plateaus at the stall force. We derive an analytical equation that accurately describes this curve, predicting both stall force and zero-load processivity. This theoretical model describes the behavior of a kinesin motor under low-processivity conditions. Our work clarifies the true stall force and processivity of human dynein and provides a new paradigm for understanding and analyzing molecular motor force generation for weakly processive motors.
Collapse
Affiliation(s)
- Sibylle Brenner
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Florian Berger
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
| | - Lu Rao
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthew P. Nicholas
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Medical Scientist Training Program, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Laboratory of Sensory Neuroscience, The Rockefeller University, New York, NY 10065, USA
- Corresponding author.
| |
Collapse
|