101
|
Yewdall NA, Mason AF, van Hest JCM. The hallmarks of living systems: towards creating artificial cells. Interface Focus 2018; 8:20180023. [PMID: 30443324 PMCID: PMC6227776 DOI: 10.1098/rsfs.2018.0023] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2018] [Indexed: 01/01/2023] Open
Abstract
Despite the astonishing diversity and complexity of living systems, they all share five common hallmarks: compartmentalization, growth and division, information processing, energy transduction and adaptability. In this review, we give not only examples of how cells satisfy these requirements for life and the ways in which it is possible to emulate these characteristics in engineered platforms, but also the gaps that remain to be bridged. The bottom-up synthesis of life-like systems continues to be driven forward by the advent of new technologies, by the discovery of biological phenomena through their transplantation to experimentally simpler constructs and by providing insights into one of the oldest questions posed by mankind, the origin of life on Earth.
Collapse
Affiliation(s)
| | | | - Jan C. M. van Hest
- Eindhoven University of Technology, PO Box 513 (STO 3.31), Eindhoven, MB, The Netherlands
| |
Collapse
|
102
|
Freeman SA, Grinstein S. Resolution of macropinosomes, phagosomes and autolysosomes: Osmotically driven shrinkage enables tubulation and vesiculation. Traffic 2018; 19:965-974. [DOI: 10.1111/tra.12614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Spencer A. Freeman
- Program in Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Ontario Canada
| | - Sergio Grinstein
- Program in Cell Biology; Peter Gilgan Centre for Research and Learning, Hospital for Sick Children; Toronto Ontario Canada
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital; Toronto Ontario Canada
- Department of Biochemistry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
103
|
Voth GA. Simulations of N-BAR Protein Interactions with Membranes. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:35-36. [PMID: 32255841 PMCID: PMC7111462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
104
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
105
|
Alimohamadi H, Vasan R, Hassinger J, Stachowiak J, Rangamani P. The role of traction in membrane curvature generation. Mol Biol Cell 2018; 29:2024-2035. [PMID: 30044708 PMCID: PMC6232966 DOI: 10.1091/mbc.e18-02-0087] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 01/28/2023] Open
Abstract
Curvature of biological membranes can be generated by a variety of molecular mechanisms including protein scaffolding, compositional heterogeneity, and cytoskeletal forces. These mechanisms have the net effect of generating tractions (force per unit length) on the bilayer that are translated into distinct shapes of the membrane. Here, we demonstrate how the local shape of the membrane can be used to infer the traction acting locally on the membrane. We show that buds and tubes, two common membrane deformations studied in trafficking processes, have different traction distributions along the membrane and that these tractions are specific to the molecular mechanism used to generate these shapes. Furthermore, we show that the magnitude of an axial force applied to the membrane as well as that of an effective line tension can be calculated from these tractions. Finally, we consider the sensitivity of these quantities with respect to uncertainties in material properties and follow with a discussion on sources of uncertainty in membrane shape.
Collapse
Affiliation(s)
- H. Alimohamadi
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| | - R. Vasan
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| | - J.E. Hassinger
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA 94720
| | - J.C. Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712
| | - P. Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093
| |
Collapse
|
106
|
Simunovic M, Bassereau P, Voth GA. Organizing membrane-curving proteins: the emerging dynamical picture. Curr Opin Struct Biol 2018; 51:99-105. [PMID: 29609179 PMCID: PMC6165709 DOI: 10.1016/j.sbi.2018.03.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/16/2018] [Accepted: 03/19/2018] [Indexed: 11/30/2022]
Abstract
Lipid membranes play key roles in cells, such as in trafficking, division, infection, remodeling of organelles, among others. The key step in all these processes is creating membrane curvature, typically under the control of many anchored, adhered or included proteins. However, it has become clear that the membrane itself can mediate the interactions among proteins to produce highly ordered assemblies. Computer simulations are ideally suited to investigate protein organization and the dynamics of membrane remodeling at near-micron scales, something that is extremely challenging to tackle experimentally. We review recent computational efforts in modeling protein-caused membrane deformation mechanisms, specifically focusing on coarse-grained simulations. We highlight work that exposed the membrane-mediated ordering of proteins into lines, meshwork, spirals and other assemblies, in what seems to be a very generic mechanism driven by a combination of short and long-ranged forces. Modulating the mechanical properties of membranes is an underexplored signaling mechanism in various processes deserving of more attention in the near future.
Collapse
Affiliation(s)
- Mijo Simunovic
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, Chicago, IL 60637, USA; Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France; Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA.
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, 75005 Paris, France
| | - Gregory A Voth
- Department of Chemistry, Institute for Biophysical Dynamics, James Franck Institute and Computation Institute, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
107
|
Bassereau P, Jin R, Baumgart T, Deserno M, Dimova R, Frolov VA, Bashkirov PV, Grubmüller H, Jahn R, Risselada HJ, Johannes L, Kozlov MM, Lipowsky R, Pucadyil TJ, Zeno WF, Stachowiak JC, Stamou D, Breuer A, Lauritsen L, Simon C, Sykes C, Voth GA, Weikl TR. The 2018 biomembrane curvature and remodeling roadmap. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:343001. [PMID: 30655651 PMCID: PMC6333427 DOI: 10.1088/1361-6463/aacb98] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The importance of curvature as a structural feature of biological membranes has been recognized for many years and has fascinated scientists from a wide range of different backgrounds. On the one hand, changes in membrane morphology are involved in a plethora of phenomena involving the plasma membrane of eukaryotic cells, including endo- and exocytosis, phagocytosis and filopodia formation. On the other hand, a multitude of intracellular processes at the level of organelles rely on generation, modulation, and maintenance of membrane curvature to maintain the organelle shape and functionality. The contribution of biophysicists and biologists is essential for shedding light on the mechanistic understanding and quantification of these processes. Given the vast complexity of phenomena and mechanisms involved in the coupling between membrane shape and function, it is not always clear in what direction to advance to eventually arrive at an exhaustive understanding of this important research area. The 2018 Biomembrane Curvature and Remodeling Roadmap of Journal of Physics D: Applied Physics addresses this need for clarity and is intended to provide guidance both for students who have just entered the field as well as established scientists who would like to improve their orientation within this fascinating area.
Collapse
Affiliation(s)
- Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Rui Jin
- Chemistry Department, University of Pennsylvania, Philadelphia, PA 19104-6323, United States of America
| | - Tobias Baumgart
- Chemistry Department, University of Pennsylvania, Philadelphia, PA 19104-6323, United States of America
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, United States of America
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Vadim A Frolov
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Pavel V Bashkirov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Moscow 119435, Russia
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - H Jelger Risselada
- Department of Theoretical Physics, Georg-August University, Göttingen, Germany
| | - Ludger Johannes
- Cellular and Chemical Biology Unit, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Michael M Kozlov
- Sackler Faculty of Medicine, Department of Physiology and Pharmacology, Tel Aviv University
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | | | - Wade F Zeno
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States of America
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, United States of America
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Austin, TX, United States of America
| | - Dimitrios Stamou
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-Science Center, University of Copenhagen, Denmark
| | - Artú Breuer
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-Science Center, University of Copenhagen, Denmark
| | - Line Lauritsen
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-Science Center, University of Copenhagen, Denmark
| | - Camille Simon
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Cécile Sykes
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Gregory A Voth
- Department of Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, United States of America
| | - Thomas R Weikl
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
108
|
Schenk NA, Dahl PJ, Hanna MG, Audhya A, Tall GG, Knight JD, Anantharam A. A simple supported tubulated bilayer system for evaluating protein-mediated membrane remodeling. Chem Phys Lipids 2018; 215:18-28. [PMID: 30012406 DOI: 10.1016/j.chemphyslip.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/29/2018] [Indexed: 01/31/2023]
Abstract
Fusion and fission of cellular membranes involve dramatic, protein-mediated changes in membrane curvature. Many of the experimental methods useful for investigating curvature sensing or generation require specialized equipment. We have developed a system based on supported lipid bilayers (SLBs) in which lipid tubules are simple to produce and several types of membrane remodeling events can be readily imaged using widely available instrumentation (e.g., tubule fission and/or membrane budding). Briefly, high ionic strength during lipid bilayer deposition results in incorporation of excess lipids in the SLB. After sequentially washing with water and physiological ionic strength buffer solutions, lipid tubules form spontaneously. We find that tubule formation results from solution-dependent spreading of the SLB; washing from water into physiological ionic strength buffer solution leads to expansion of the bilayer and formation of tubules. Conversely, washing from physiological buffer into water results in contraction of the membrane and loss of tubules. We demonstrate the utility of these supported tubulated bilayers, termed "STuBs," with an investigation of Sar1B, a small Ras family G-protein known to influence membrane curvature. The addition of Sar1B to STuBs results in dramatic changes in tubule topology and eventual tubule fission. Overall, STuBs are a simple experimental system, useful for monitoring protein-mediated effects on membrane topology in real time, under physiologically relevant conditions.
Collapse
Affiliation(s)
- Noah A Schenk
- Department of Pharmacology, University of Michigan, United States
| | - Peter J Dahl
- Department of Pharmacology, University of Michigan, United States
| | - Michael G Hanna
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, United States
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, United States
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan, United States
| | | | - Arun Anantharam
- Department of Pharmacology, University of Michigan, United States.
| |
Collapse
|
109
|
Gautier R, Bacle A, Tiberti ML, Fuchs PF, Vanni S, Antonny B. PackMem: A Versatile Tool to Compute and Visualize Interfacial Packing Defects in Lipid Bilayers. Biophys J 2018; 115:436-444. [PMID: 30055754 DOI: 10.1016/j.bpj.2018.06.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 11/18/2022] Open
Abstract
The analysis of the structural organization of lipid bilayers is generally performed across the direction normal to the bilayer/water interface, whereas the surface properties of the bilayer at the interface with water are often neglected. Here, we present PackMem, a bioinformatic tool that performs a topographic analysis of the bilayer surface from various molecular dynamics simulations. PackMem unifies and rationalizes previous analyses based on a Cartesian grid. The grid allows identification of surface regions defined as lipid-packing defects where lipids are loosely packed, leading to cavities in which aliphatic carbons are exposed to the solvent, either deep inside or close to the membrane surface. Examples are provided to show that the abundance of lipid-packing defects varies according to the temperature and to the bilayer composition. Because lipid-packing defects control the adsorption of peripheral proteins with hydrophobic insertions, PackMem is instrumental for us to understand and quantify the adhesive properties of biological membranes as well as their response to mechanical perturbations such as membrane deformation.
Collapse
Affiliation(s)
- Romain Gautier
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France.
| | - Amélie Bacle
- Institut Jacques Monod, CNRS Université Paris-Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Patrick F Fuchs
- Institut Jacques Monod, CNRS Université Paris-Diderot, Sorbonne Paris Cité, Paris, France; Laboratoire des biomolécules, Sorbonne Université, École normale supérieure, PSL University, CNRS, Paris, France
| | - Stefano Vanni
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France; Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Bruno Antonny
- Université Côte d'Azur, CNRS, IPMC, Sophia-Antipolis, France
| |
Collapse
|
110
|
Pucadyil TJ. A novel fluorescence microscopic approach to quantitatively analyse protein-induced membrane remodelling. J Biosci 2018; 43:431-435. [PMID: 30002262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane remodelling or the bending and rupture of the lipid bilayer occurs during diverse cellular processes such as cell division, synaptic transmission, vesicular transport, organelle biogenesis and sporulation. These activities are brought about by the localized change in membrane curvature, which in turn causes lipid-packing stress, of a planar lipid bilayer by proteins. For instance, vesicular transport processes are typically characterized by the cooperative recruitment of proteins that induce budding of a planar membrane and catalyse fission of the necks of membrane buds to release vesicles. The analysis of such membrane remodelling reactions has traditionally been restricted to electron microscopy-based approaches or force spectroscopic analysis of membrane tethers pulled from liposome-based model membrane systems. Our recent work has demonstrated the facile creation of tubular model membrane systems of supported membrane tubes (SMrTs), which mimic late-stage intermediates of typical vesicular transport reactions. This review addresses the nature of such an assay system and a fluorescence-intensity-based analysis of changes in tube dimensions that is indicative of the membrane remodelling capacity of proteins.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411 008, India,
| |
Collapse
|
111
|
Diz-Muñoz A, Weiner OD, Fletcher DA. In pursuit of the mechanics that shape cell surfaces. NATURE PHYSICS 2018; 14:648-652. [PMID: 31007706 PMCID: PMC6469718 DOI: 10.1038/s41567-018-0187-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 05/25/2023]
Abstract
Robust and responsive, the surface of a cell is as important as its interior when it comes to mechanically regulating form and function. New techniques are shedding light on this role, and a common language to describe its properties is now needed.
Collapse
Affiliation(s)
- Alba Diz-Muñoz
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Orion D. Weiner
- Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Daniel A. Fletcher
- Bioengineering Department and Biophysics Program, University of California Berkeley, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, California, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
112
|
Hernández F, Llorens-Martín M, Bolós M, Pérez M, Cuadros R, Pallas-Bazarra N, Zabala JC, Avila J. New Beginnings in Alzheimer’s Disease: The Most Prevalent Tauopathy. J Alzheimers Dis 2018; 64:S529-S534. [DOI: 10.3233/jad-179916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| | - María Llorens-Martín
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
- Department of Molecular Biology, Faculty of Science, Universidad Autonoma de Madrid, Spain
| | - Marta Bolós
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Mar Pérez
- Departamento de Anatomía Histología y Neurociencia, Facultad de Medicina UAM, Madrid, Spain
| | - Raquel Cuadros
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Noemí Pallas-Bazarra
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| | - Juan C. Zabala
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- CIBERNED, Madrid, Spain
| |
Collapse
|
113
|
Ripoll L, Heiligenstein X, Hurbain I, Domingues L, Figon F, Petersen KJ, Dennis MK, Houdusse A, Marks MS, Raposo G, Delevoye C. Myosin VI and branched actin filaments mediate membrane constriction and fission of melanosomal tubule carriers. J Cell Biol 2018; 217:2709-2726. [PMID: 29875258 PMCID: PMC6080934 DOI: 10.1083/jcb.201709055] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/16/2018] [Accepted: 05/09/2018] [Indexed: 01/19/2023] Open
Abstract
Vesicular and tubular transport intermediates regulate organellar cargo dynamics. Transport carrier release involves local and profound membrane remodeling before fission. Pinching the neck of a budding tubule or vesicle requires mechanical forces, likely exerted by the action of molecular motors on the cytoskeleton. Here, we show that myosin VI, together with branched actin filaments, constricts the membrane of tubular carriers that are then released from melanosomes, the pigment containing lysosome-related organelles of melanocytes. By combining superresolution fluorescence microscopy, correlative light and electron microscopy, and biochemical analyses, we find that myosin VI motor activity mediates severing by constricting the neck of the tubule at specific melanosomal subdomains. Pinching of the tubules involves the cooperation of the myosin adaptor optineurin and the activity of actin nucleation machineries, including the WASH and Arp2/3 complexes. The fission and release of these tubules allows for the export of components from melanosomes, such as the SNARE VAMP7, and promotes melanosome maturation and transfer to keratinocytes. Our data reveal a new myosin VI- and actin-dependent membrane fission mechanism required for organelle function.
Collapse
Affiliation(s)
- Léa Ripoll
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Xavier Heiligenstein
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Ilse Hurbain
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Lia Domingues
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Florent Figon
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France.,Master BioSciences, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Karl J Petersen
- Structural Motility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Megan K Dennis
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Departments of Pathology and Laboratory Medicine and Physiology, University of Pennsylvania, Philadelphia, PA
| | - Anne Houdusse
- Structural Motility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Michael S Marks
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.,Departments of Pathology and Laboratory Medicine and Physiology, University of Pennsylvania, Philadelphia, PA
| | - Graça Raposo
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France.,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| | - Cédric Delevoye
- Structure and Membrane Compartments, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France .,Cell and Tissue Imaging Facility, Institut Curie, Paris Sciences & Lettres Research University, Centre National de la Recherche Scientifique, UMR144, Paris, France
| |
Collapse
|
114
|
Sych T, Mély Y, Römer W. Lipid self-assembly and lectin-induced reorganization of the plasma membrane. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170117. [PMID: 29632269 PMCID: PMC5904303 DOI: 10.1098/rstb.2017.0117] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2018] [Indexed: 01/10/2023] Open
Abstract
The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'.
Collapse
Affiliation(s)
- Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401 Illkirch Cedex, France
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
115
|
Sathe M, Muthukrishnan G, Rae J, Disanza A, Thattai M, Scita G, Parton RG, Mayor S. Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat Commun 2018; 9:1835. [PMID: 29743604 PMCID: PMC5943408 DOI: 10.1038/s41467-018-03955-w] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 03/22/2018] [Indexed: 01/10/2023] Open
Abstract
Using real-time TIRF microscopy imaging, we identify sites of clathrin and dynamin-independent CLIC/GEEC (CG) endocytic vesicle formation. This allows spatio-temporal localisation of known molecules affecting CG endocytosis; GBF1 (a GEF for ARF1), ARF1 and CDC42 which appear sequentially over 60 s, preceding scission. In an RNAi screen for BAR domain proteins affecting CG endocytosis, IRSp53 and PICK1, known interactors of CDC42 and ARF1, respectively, were selected. Removal of IRSp53, a negative curvature sensing protein, abolishes CG endocytosis. Furthermore, the identification of ARP2/3 complex at CG endocytic sites, maintained in an inactive state reveals a function for PICK1, an ARP2/3 inhibitor. The spatio-temporal sequence of the arrival and disappearance of the molecules suggest a mechanism for a clathrin and dynamin-independent endocytic process. Coincident with the loss of PICK1 by GBF1-activated ARF1, CDC42 recruitment leads to the activation of IRSp53 and the ARP2/3 complex, resulting in a burst of F-actin polymerisation potentially powering scission. Several endocytic pathways operate simultaneously at the cell surface, including the clathrin and dynamin-independent CLIC/GEEC (CG) pathway. Here the authors show that small GTPases and BAR domain proteins regulate branched actin to make clathrin and dynamin-independent endocytic vesicles.
Collapse
Affiliation(s)
- Mugdha Sathe
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore, 560065, India
| | - Gayatri Muthukrishnan
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore, 560065, India
| | - James Rae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrea Disanza
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, 20139, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Mukund Thattai
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore, 560065, India.,Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bellary Road, Bangalore, 560065, India
| | - Giorgio Scita
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, 20139, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, 20122, Italy
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Satyajit Mayor
- National Centre for Biological Science (TIFR), Bellary Road, Bangalore, 560065, India. .,Institute for Stem Cell Biology and Regenerative Medicine, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
116
|
Yoshida A, Sakai N, Uekusa Y, Imaoka Y, Itagaki Y, Suzuki Y, Yoshimura SH. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis. PLoS Biol 2018; 16:e2004786. [PMID: 29723197 PMCID: PMC5953504 DOI: 10.1371/journal.pbio.2004786] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 05/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022] Open
Abstract
Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. Cells communicate with their environments via the plasma membrane and various membrane proteins. Clathrin-mediated endocytosis (CME) plays a central role in such communication and proceeds with a series of multiprotein assembly, deformation of the plasma membrane, and production of a membrane vesicle that delivers extracellular signaling molecules into the cytoplasm. In this study, we utilized our home-built correlative imaging system comprising high-speed atomic force microscopy (HS-AFM) and confocal fluorescence microscopy to simultaneously image morphological changes of the plasma membrane and protein localization during CME in a living cell. The results revealed a tight correlation between the size of the pit and the amount of clathrin assembled. Actin dynamics play multiple roles in the assembly, maturation, and closing phases of the process, and affects membrane morphology, suggesting a close relationship between endocytosis and dynamic events at the cell cortex. Knock down of dynamin also affected the closing motion of the pit and showed functional correlation with actin.
Collapse
Affiliation(s)
- Aiko Yoshida
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | | | | | - Yuka Imaoka
- R&D Group, Olympus Corporation, Hachioji, Japan
| | | | - Yuki Suzuki
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | | |
Collapse
|
117
|
Spatiotemporal Control of Lipid Conversion, Actin-Based Mechanical Forces, and Curvature Sensors during Clathrin/AP-1-Coated Vesicle Biogenesis. Cell Rep 2018; 20:2087-2099. [PMID: 28854360 DOI: 10.1016/j.celrep.2017.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/29/2017] [Accepted: 07/31/2017] [Indexed: 01/03/2023] Open
Abstract
Clathrin/adaptor protein-1-coated carriers connect the secretory and the endocytic pathways. Carrier biogenesis relies on distinct protein networks changing membrane shape at the trans-Golgi network, each regulating coat assembly, F-actin-based mechanical forces, or the biophysical properties of lipid bilayers. How these different hubs are spatiotemporally coordinated remains largely unknown. Using in vitro reconstitution systems, quantitative proteomics, and lipidomics, as well as in vivo cell-based assays, we characterize the protein networks controlling membrane lipid composition, membrane shape, and carrier scission. These include PIP5K1A and phospholipase C-beta 3 controlling the conversion of PI[4]P into diacylglycerol. PIP5K1A binding to RAC1 provides a link to F-actin-based mechanical forces needed to tubulate membranes. Tubular membranes then recruit the BAR-domain-containing arfaptin-1/2 guiding carrier scission. These findings provide a framework for synchronizing the chemical/biophysical properties of lipid bilayers, F-actin-based mechanical forces, and the activity of proteins sensing membrane shape during clathrin/adaptor protein-1-coated carrier biogenesis.
Collapse
|
118
|
Capping protein-controlled actin polymerization shapes lipid membranes. Nat Commun 2018; 9:1630. [PMID: 29691404 PMCID: PMC5915599 DOI: 10.1038/s41467-018-03918-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 03/20/2018] [Indexed: 11/08/2022] Open
Abstract
Arp2/3 complex-mediated actin assembly at cell membranes drives the formation of protrusions or endocytic vesicles. To identify the mechanism by which different membrane deformations can be achieved, we reconstitute the basic membrane deformation modes of inward and outward bending in a confined geometry by encapsulating a minimal set of cytoskeletal proteins into giant unilamellar vesicles. Formation of membrane protrusions is favoured at low capping protein (CP) concentrations, whereas the formation of negatively bent domains is promoted at high CP concentrations. Addition of non-muscle myosin II results in full fission events in the vesicle system. The different deformation modes are rationalized by simulations of the underlying transient nature of the reaction kinetics. The relevance of the regulatory mechanism is supported by CP overexpression in mouse melanoma B16-F1 cells and therefore demonstrates the importance of the quantitative understanding of microscopic kinetic balances to address the diverse functionality of the cytoskeleton. Cell membrane protrusions and invaginations are both driven by actin assembly but the mechanism leading to different membrane shapes is unknown. Using a minimal system and modelling the authors reconstitute the deformation modes and identify capping protein as a regulator of both deformation types.
Collapse
|
119
|
Local actin polymerization during endocytic carrier formation. Biochem Soc Trans 2018; 46:565-576. [DOI: 10.1042/bst20170355] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 12/20/2022]
Abstract
Extracellular macromolecules, pathogens and cell surface proteins rely on endocytosis to enter cells. Key steps of endocytic carrier formation are cargo molecule selection, plasma membrane folding and detachment from the cell surface. While dedicated proteins mediate each step, the actin cytoskeleton contributes to all. However, its role can be indirect to the actual molecular events driving endocytosis. Here, we review our understanding of the molecular steps mediating local actin polymerization during the formation of endocytic carriers. Clathrin-mediated endocytosis is the least reliant on local actin polymerization, as it is only engaged to counter forces induced by membrane tension or cytoplasmic pressure. Two opposite situations are coated pit formation in yeast and at the basolateral surface of polarized mammalian cells which are, respectively, dependent and independent on actin polymerization. Conversely, clathrin-independent endocytosis forming both nanometer [CLIC (clathrin-independent carriers)/GEEC (glycosylphosphatidylinositol (GPI)-anchored protein enriched endocytic compartments), caveolae, FEME (fast endophilin-mediated endocytosis) and IL-2β (interleukin-2β) uptake] and micrometer carriers (macropinocytosis) are dependent on actin polymerization to power local membrane deformation and carrier budding. A variety of endocytic adaptors can recruit and activate the Cdc42/N-WASP or Rac1/WAVE complexes, which, in turn, engage the Arp2/3 complex, thereby mediating local actin polymerization at the membrane. However, the molecular steps for RhoA and formin-mediated actin bundling during endocytic pit formation remain unclear.
Collapse
|
120
|
D’Amico AE, Lennartz MR. Protein Kinase C-epsilon in Membrane Delivery during Phagocytosis. JOURNAL OF IMMUNOLOGICAL SCIENCES 2018; 2:26-32. [PMID: 30112519 PMCID: PMC6089528 DOI: 10.29245/2578-3009/2018/2.1134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During phagocytosis, internal membranes are recruited to the site of pathogen binding and fuse with the plasma membrane, providing the membrane needed for pseudopod extension and target uptake. The mechanism by which vesicles destined for the phagosome are generated, targeted, and fuse is unknown. We established that Golgi-associated protein kinase C-epsilon (PKC-ε) is necessary for the addition of membrane during FcyR-mediated phagocytosis. PKC-ε is tethered to the Golgi through interactions between its' regulatory domain and the Golgi lipids PI4P and diacylglycerol; disruption of these interactions prevents PKC-ε concentration at phagosomes and decreases phagocytosis. The accumulated evidence suggests that PKC-ε orchestrates vesicle formation at the Golgi by a mechanism requiring lipid binding but not enzymatic activity. This review discusses how PKC-ε might mediate vesicle formation at the level of budding and fission. Specifically, we discuss PKC-ε binding partners, the formation of lipid subdomains to generate membrane curvature, and PKC-ε mediated links to the actin and microtubule cytoskeleton to provide tension for vesicle fission. Assimilating information from several model systems, we propose a model for PKC-ε mediated vesicle formation for exocytosis during phagocytosis that may be applicable to other processes that require directed membrane delivery and fusion.
Collapse
Affiliation(s)
- Anna E. D’Amico
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue Albany, NY 12208, USA
| | - Michelle R. Lennartz
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue Albany, NY 12208, USA
| |
Collapse
|
121
|
Snead WT, Stachowiak JC. Structure Versus Stochasticity-The Role of Molecular Crowding and Intrinsic Disorder in Membrane Fission. J Mol Biol 2018; 430:2293-2308. [PMID: 29627460 DOI: 10.1016/j.jmb.2018.03.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 01/07/2023]
Abstract
Cellular membranes must undergo remodeling to facilitate critical functions including membrane trafficking, organelle biogenesis, and cell division. An essential step in membrane remodeling is membrane fission, in which an initially continuous membrane surface is divided into multiple, separate compartments. The established view has been that membrane fission requires proteins with conserved structural features such as helical scaffolds, hydrophobic insertions, and polymerized assemblies. In this review, we discuss these structure-based fission mechanisms and highlight recent findings from several groups that support an alternative, structure-independent mechanism of membrane fission. This mechanism relies on lateral collisions among crowded, membrane-bound proteins to generate sufficient steric pressure to drive membrane vesiculation. As a stochastic process, this mechanism contrasts with the paradigm that deterministic protein structures are required to drive fission, raising the prospect that many more proteins may participate in fission than previously thought. Paradoxically, our recent work suggests that intrinsically disordered domains may be among the most potent drivers of membrane fission, owing to their large hydrodynamic radii and substantial chain entropy. This stochastic view of fission also suggests new roles for the structure-based fission proteins. Specifically, we hypothesize that in addition to driving fission directly, the canonical fission machines may facilitate the enrichment and organization of bulky disordered protein domains in order to promote membrane fission by locally amplifying protein crowding.
Collapse
Affiliation(s)
- Wilton T Snead
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeanne C Stachowiak
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA; Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
122
|
Increasing Diversity of Biological Membrane Fission Mechanisms. Trends Cell Biol 2018; 28:274-286. [DOI: 10.1016/j.tcb.2017.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 12/19/2022]
|
123
|
Ghose P, Rashid A, Insley P, Trivedi M, Shah P, Singhal A, Lu Y, Bao Z, Shaham S. EFF-1 fusogen promotes phagosome sealing during cell process clearance in Caenorhabditis elegans. Nat Cell Biol 2018; 20:393-399. [PMID: 29556089 PMCID: PMC5876135 DOI: 10.1038/s41556-018-0068-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/16/2018] [Indexed: 12/21/2022]
Abstract
Phagocytosis of dying cells is critical in development and immunity1–3. While proteins for recognition and engulfment of cellular debris following cell death are known4,5, proteins that directly mediate phagosome sealing are uncharacterized. Furthermore, whether all phagocytic targets are cleared using the same machinery is unclear. Degeneration of morphologically-complex cells, such as neurons, glia, and melanocytes, produces phagocytic targets of various shapes and sizes located in different microenvironments6,7. Such cells, therefore, offer unique settings to explore engulfment program mechanisms and specificity. Here we report that dismantling and clearance of a morphologically-complex C. elegans epithelial cell requires separate cell-soma, proximal-, and distal-process programs. Similar compartment-specific events govern elimination of a C. elegans neuron. While canonical engulfment proteins drive cell-soma clearance, these are not required for process removal. We find that EFF-1, a protein previously implicated in cell-cell fusion8, specifically promotes distal-process phagocytosis. EFF-1 localizes to phagocyte pseudopod tips, and acts exoplasmically to drive phagosome sealing. eff-1 mutations result in phagocytosis arrest with unsealed phagosomes. Our studies suggest universal mechanisms for dismantling morphologically-complex cells, and uncover a phagosome sealing component promoting cell-process clearance.
Collapse
Affiliation(s)
- Piya Ghose
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Alina Rashid
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Peter Insley
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Meera Trivedi
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Pavak Shah
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Anupriya Singhal
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA
| | - Zhirong Bao
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
124
|
Manni MM, Tiberti ML, Pagnotta S, Barelli H, Gautier R, Antonny B. Acyl chain asymmetry and polyunsaturation of brain phospholipids facilitate membrane vesiculation without leakage. eLife 2018. [PMID: 29543154 PMCID: PMC5903860 DOI: 10.7554/elife.34394] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Phospholipid membranes form cellular barriers but need to be flexible enough to divide by fission. Phospholipids generally contain a saturated fatty acid (FA) at position sn1 whereas the sn2-FA is saturated, monounsaturated or polyunsaturated. Our understanding of the impact of phospholipid unsaturation on membrane flexibility and fission is fragmentary. Here, we provide a comprehensive view of the effects of the FA profile of phospholipids on membrane vesiculation by dynamin and endophilin. Coupled to simulations, this analysis indicates that: (i) phospholipids with two polyunsaturated FAs make membranes prone to vesiculation but highly permeable; (ii) asymmetric sn1-saturated-sn2-polyunsaturated phospholipids provide a tradeoff between efficient membrane vesiculation and low membrane permeability; (iii) When incorporated into phospholipids, docosahexaenoic acid (DHA; omega-3) makes membranes more deformable than arachidonic acid (omega-6). These results suggest an explanation for the abundance of sn1-saturated-sn2-DHA phospholipids in synaptic membranes and for the importance of the omega-6/omega-3 ratio on neuronal functions. Surrounding each living cell is a membrane that is mainly made of fat molecules called phospholipids. Similar membranes also surround many of the structures inside cells. It is important for life that these membranes are impermeable to many molecules; for example, they do not allow ions to cross them freely. The membranes also need to be flexible and allow cells to form different shapes. Flexible membranes also allow cells to move molecules around and to divide to produce new cells. Each phospholipid includes two long chains of atoms called fatty acids. There are many fatty acids but they are typically grouped into saturated and unsaturated based on their chemical structures. The omega-3 and omega-6 fats are both groups of unsaturated fatty acids that are found in brain cells. Many phospholipids in cell membranes contain one saturated and one unsaturated fatty acid but it is not clear why. By studying fat molecules in the laboratory and combining this with simulations, Manni et al. have now examined the effects of fatty acids on membranes. The investigation showed that phospholipids with both saturated and unsaturated fatty acids strike a balance between impermeable and flexible membranes. More unsaturated fatty acids make more flexible membranes but they are too permeable to be used in cells. The experiments also revealed that omega-3 unsaturated fats aid flexibility more than omega-6. This finding may help to explain why the relative amounts of omega-3 and -6 are so important in the membranes of brain cells. The connection between the fats we eat and the fatty acids in our cells is complex. Yet, findings like these serve to remind us that we need a balanced diet of different fats to keep all our cells healthy.
Collapse
Affiliation(s)
- Marco M Manni
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France.,Instituto Biofisika (UPV/EHU, CSIC), Leioa, Spain
| | - Marion L Tiberti
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquée, Université Côte d'Azur, Nice, France
| | - Hélène Barelli
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France
| | - Romain Gautier
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France
| | - Bruno Antonny
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur et CNRS, Valbonne, France
| |
Collapse
|
125
|
Lou X. Sensing Exocytosis and Triggering Endocytosis at Synapses: Synaptic Vesicle Exocytosis-Endocytosis Coupling. Front Cell Neurosci 2018; 12:66. [PMID: 29593500 PMCID: PMC5861208 DOI: 10.3389/fncel.2018.00066] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/26/2018] [Indexed: 12/29/2022] Open
Abstract
The intact synaptic structure is critical for information processing in neural circuits. During synaptic transmission, rapid vesicle exocytosis increases the size of never terminals and endocytosis counteracts the increase. Accumulating evidence suggests that SV exocytosis and endocytosis are tightly connected in time and space during SV recycling, and this process is essential for synaptic function and structural stability. Research in the past has illustrated the molecular details of synaptic vesicle (SV) exocytosis and endocytosis; however, the mechanisms that timely connect these two fundamental events are poorly understood at central synapses. Here we discuss recent progress in SV recycling and summarize several emerging mechanisms by which synapses can “sense” the occurrence of exocytosis and timely initiate compensatory endocytosis. They include Ca2+ sensing, SV proteins sensing, and local membrane stress sensing. In addition, the spatial organization of endocytic zones adjacent to active zones provides a structural basis for efficient coupling between SV exocytosis and endocytosis. Through linking different endocytosis pathways with SV fusion, these mechanisms ensure necessary plasticity and robustness of nerve terminals to meet diverse physiological needs.
Collapse
Affiliation(s)
- Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
126
|
Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem Soc Trans 2018. [PMID: 29540508 DOI: 10.1042/bst20170322] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors.
Collapse
|
127
|
|
128
|
Milosevic I. Revisiting the Role of Clathrin-Mediated Endoytosis in Synaptic Vesicle Recycling. Front Cell Neurosci 2018; 12:27. [PMID: 29467622 PMCID: PMC5807904 DOI: 10.3389/fncel.2018.00027] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/17/2018] [Indexed: 12/11/2022] Open
Abstract
Without robust mechanisms to efficiently form new synaptic vesicles (SVs), the tens to hundreds of SVs typically present at the neuronal synapse would be rapidly used up, even at modest levels of neuronal activity. SV recycling is thus critical for synaptic physiology and proper function of sensory and nervous systems. Yet, more than four decades after it was originally proposed that the SVs are formed and recycled locally at the presynaptic terminals, the mechanisms of endocytic processes at the synapse are heavily debated. Clathrin-mediated endocytosis, a type of endocytosis that capitalizes on the clathrin coat, a number of adaptor and accessory proteins, and the GTPase dynamin, is well understood, while the contributions of clathrin-independent fast endocytosis, kiss-and-run, bulk endocytosis and ultrafast endocytosis are still being evaluated. This review article revisits and summarizes the current knowledge on the SV reformation with a focus on clathrin-mediated endocytosis, and it discusses the modes of SV formation from endosome-like structures at the synapse. Given the importance of this topic, future advances in this active field are expected to contribute to better comprehension of neurotransmission, and to have general implications for neuroscience and medicine.
Collapse
Affiliation(s)
- Ira Milosevic
- Synaptic Vesicle Dynamics Group, European Neuroscience Institute (ENI), University Medical Center Göttingen (UMG), Göttingen, Germany
| |
Collapse
|
129
|
Carlsson AE. Membrane bending by actin polymerization. Curr Opin Cell Biol 2018; 50:1-7. [PMID: 29207306 PMCID: PMC5911415 DOI: 10.1016/j.ceb.2017.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 11/20/2017] [Indexed: 01/22/2023]
Abstract
Actin polymerization provides driving force to aid several types of processes that involve pulling the plasma membrane into the cell, including phagocytosis, cellular entry of large viruses, and endocytosis. In endocytosis, actin polymerization is especially important under conditions of high membrane tension or high turgor pressure. Recent modeling efforts have shown how actin polymerization can give rise to a distribution of forces around the endocytic site, and explored how these forces affect the shape dynamics; experiments have revealed the structure of the endocytic machinery in increasing detail, and demonstrated key feedback interactions between actin assembly and membrane curvature. Here we provide a perspective on these findings and suggest avenues for future research.
Collapse
Affiliation(s)
- Anders E Carlsson
- Department of Physics, Washington University, One Brookings Drive, Campus Box 1105, St. Louis, MO 63130, United States.
| |
Collapse
|
130
|
Takeda T, Kozai T, Yang H, Ishikuro D, Seyama K, Kumagai Y, Abe T, Yamada H, Uchihashi T, Ando T, Takei K. Dynamic clustering of dynamin-amphiphysin helices regulates membrane constriction and fission coupled with GTP hydrolysis. eLife 2018; 7:30246. [PMID: 29357276 PMCID: PMC5780043 DOI: 10.7554/elife.30246] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/18/2017] [Indexed: 01/16/2023] Open
Abstract
Dynamin is a mechanochemical GTPase essential for membrane fission during clathrin-mediated endocytosis. Dynamin forms helical complexes at the neck of clathrin-coated pits and their structural changes coupled with GTP hydrolysis drive membrane fission. Dynamin and its binding protein amphiphysin cooperatively regulate membrane remodeling during the fission, but its precise mechanism remains elusive. In this study, we analyzed structural changes of dynamin-amphiphysin complexes during the membrane fission using electron microscopy (EM) and high-speed atomic force microscopy (HS-AFM). Interestingly, HS-AFM analyses show that the dynamin-amphiphysin helices are rearranged to form clusters upon GTP hydrolysis and membrane constriction occurs at protein-uncoated regions flanking the clusters. We also show a novel function of amphiphysin in size control of the clusters to enhance biogenesis of endocytic vesicles. Our approaches using combination of EM and HS-AFM clearly demonstrate new mechanistic insights into the dynamics of dynamin-amphiphysin complexes during membrane fission. The nerve cells that make up a nervous system connect at junctions known as synapses. When a nerve impulse reaches the end of the cell, membrane-bound packages called vesicles fuse with the surface membrane and release their contents to the outside. The contents, namely chemicals called neurotransmitters, then travels across the synapse, relaying the signal to the next cell. Nerve cells can fire many times per second. The membrane from fused vesicles must be retrieved from the surface membrane and recycled to make new vesicles, ready to transmit more signals across the synapse. Many proteins at these sites are involved in folding the fused membrane back into the cell, constricting the opening, and eventually pinching off the new vesicles – a process known as endocytosis. Two proteins named dynamin and amphiphysin cooperate in this process, but their precise mechanism remained elusive. Dynamin is a protein that acts like a motor; it breaks down a molecule called GTP to release energy. Previous studies have seen that dynamin-amphiphysin complexes join end to end to form long helical structures. Takeda et al. have now looked at how the structure of the helices changes during endocytosis. This revealed that the dynamin-amphiphysin helices rearrange to form clusters when the GTP is broken down. Further analysis showed that the folded membrane becomes constricted at regions that are not coated with the clusters of dynamin-amphiphysin helices. Takeda et al. also discovered that amphiphysin controls the size of the clusters to help make the new vesicles more uniform. The gene for dynamin is altered in a number of disorders affecting the nervous system and muscles, including epileptic encephalopathy, Charcot-Marie-Tooth disease and congenital myopathy. Moreover, a neurological disorder characterized by muscle stiffness (known as Stiff-person syndrome) occurs when an individual’s immune system mistakenly attacks the amphiphysin protein. As such, these new findings will not only help scientists to better understand the process of endocytosis, but they will also give new insight into a number of human diseases.
Collapse
Affiliation(s)
- Tetsuya Takeda
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Toshiya Kozai
- Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Huiran Yang
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daiki Ishikuro
- Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Kaho Seyama
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yusuke Kumagai
- Department of Physics, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Tadashi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiroshi Yamada
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takayuki Uchihashi
- CREST, JST, Saitama, Japan.,Department of Physics, School of Science, Nagoya University, Nagoya, Japan
| | - Toshio Ando
- CREST, JST, Saitama, Japan.,Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Kohji Takei
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.,CREST, JST, Saitama, Japan
| |
Collapse
|
131
|
McIntosh BB, Pyrpassopoulos S, Holzbaur ELF, Ostap EM. Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Curr Biol 2018; 28:236-248.e5. [PMID: 29337076 DOI: 10.1016/j.cub.2017.12.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 09/29/2017] [Accepted: 12/07/2017] [Indexed: 01/22/2023]
Abstract
Microtubule and actin filament molecular motors such as kinesin-1 and myosin-Ic (Myo1c) transport and remodel membrane-bound vesicles; however, it is unclear how they coordinate to accomplish these tasks. We introduced kinesin-1- and Myo1c-bound giant unilamellar vesicles (GUVs) into a micropatterned in vitro cytoskeletal matrix modeled after the subcellular architecture where vesicular sorting and membrane remodeling are observed. This array was composed of sparse microtubules intersecting regions dense with actin filaments, and revealed that Myo1c-dependent tethering of GUVs enabled kinesin-1-driven membrane deformation and tubulation. Membrane remodeling at actin/microtubule intersections was modulated by lipid composition and the addition of the Bin-Amphiphysin-Rvs-domain (BAR-domain) proteins endophilin or FCH-domain-only (FCHo). Myo1c not only tethered microtubule-transported cargo, but also transported, deformed, and tubulated GUVs along actin filaments in a lipid-composition- and BAR-protein-responsive manner. These results suggest a mechanism for actin-based involvement in vesicular transport and remodeling of intracellular membranes, and implicate lipid composition as a key factor in determining whether vesicles will undergo transport, deformation, or tubulation driven by opposing actin and microtubule motors and BAR-domain proteins.
Collapse
Affiliation(s)
- Betsy B McIntosh
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Serapion Pyrpassopoulos
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | - Erika L F Holzbaur
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| | - E Michael Ostap
- The Pennsylvania Muscle Institute and Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6085, USA; Center for Engineering MechanoBiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA.
| |
Collapse
|
132
|
Simunovic M, Šarić A, Henderson JM, Lee KYC, Voth GA. Long-Range Organization of Membrane-Curving Proteins. ACS CENTRAL SCIENCE 2017; 3:1246-1253. [PMID: 29296664 PMCID: PMC5746856 DOI: 10.1021/acscentsci.7b00392] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Indexed: 05/02/2023]
Abstract
Biological membranes have a central role in mediating the organization of membrane-curving proteins, a dynamic process that has proven to be challenging to probe experimentally. Using atomic force microscopy, we capture the hierarchically organized assemblies of Bin/amphiphysin/Rvs (BAR) proteins on supported lipid membranes. Their structure reveals distinct long linear aggregates of proteins, regularly spaced by up to 300 nm. Employing accurate free-energy calculations from large-scale coarse-grained computer simulations, we found that the membrane mediates the interaction among protein filaments as a combination of short- and long-ranged interactions. The long-ranged component acts at strikingly long distances, giving rise to a variety of micron-sized ordered patterns. This mechanism may contribute to the long-ranged spatiotemporal control of membrane remodeling by proteins in the cell.
Collapse
Affiliation(s)
- Mijo Simunovic
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Anđela Šarić
- Department
of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, Gower Street, London, WC1E 6BT, U.K.
| | - J. Michael Henderson
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Ka Yee C. Lee
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Gregory A. Voth
- Department
of Chemistry, Institute for Biophysical Dynamics, and James Franck
Institute, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
133
|
Cui Y, Yang Z, Teasdale RD. The functional roles of retromer in Parkinson's disease. FEBS Lett 2017; 592:1096-1112. [DOI: 10.1002/1873-3468.12931] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Yi Cui
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Zhe Yang
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| | - Rohan D. Teasdale
- School of Biomedical Sciences Faculty of Medicine The University of Queensland Brisbane Australia
| |
Collapse
|
134
|
Ferreira APA, Boucrot E. Mechanisms of Carrier Formation during Clathrin-Independent Endocytosis. Trends Cell Biol 2017; 28:188-200. [PMID: 29241687 DOI: 10.1016/j.tcb.2017.11.004] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/05/2023]
Abstract
Clathrin-independent endocytosis (CIE) mediates the cellular uptake of many extracellular ligands, receptors, and pathogens, including several life-threatening bacterial toxins and viruses. So far, our understanding of CIE carrier formation has lagged behind that of clathrin-coated vesicles. Impediments have been the imprecise definition of some CIE pathways, the lack of specific cargoes being transported and of exclusive cytosolic markers and regulators. Notwithstanding these limitations, three distinct molecular mechanisms by which CIE carriers form can be defined. Cargo capture by cytosolic proteins is the main mechanism used by fast endophilin-mediated endocytosis (FEME) and interleukin 2 receptor (IL-2R) endocytosis. Acute signaling-induced membrane remodeling drives macropinocytosis. Finally, extracellular lipid or cargo clustering by the glycolipid-lectin (GL-Lect) hypothesis mediates the uptake of Shiga and cholera toxins and receptors by the CLIC/GEEC pathway. Here, we review these mechanisms and highlight current gaps in knowledge that will need to be addressed to complete our understanding of CIE.
Collapse
Affiliation(s)
- Antonio P A Ferreira
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK
| | - Emmanuel Boucrot
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, UK; Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, WC1E 7HX, UK.
| |
Collapse
|
135
|
|
136
|
Prévost C, Tsai FC, Bassereau P, Simunovic M. Pulling Membrane Nanotubes from Giant Unilamellar Vesicles. J Vis Exp 2017. [PMID: 29286431 DOI: 10.3791/56086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The reshaping of the cell membrane is an integral part of many cellular phenomena, such as endocytosis, trafficking, the formation of filopodia, etc. Many different proteins associate with curved membranes because of their ability to sense or induce membrane curvature. Typically, these processes involve a multitude of proteins making them too complex to study quantitatively in the cell. We describe a protocol to reconstitute a curved membrane in vitro, mimicking a curved cellular structure, such as the endocytic neck. A giant unilamellar vesicle (GUV) is used as a model of a cell membrane, whose internal pressure and surface tension are controlled with micropipette aspiration. Applying a point pulling force on the GUV using optical tweezers creates a nanotube of high curvature connected to a flat membrane. This method has traditionally been used to measure the fundamental mechanical properties of lipid membranes, such as bending rigidity. In recent years, it has been expanded to study how proteins interact with membrane curvature and the way they affect the shape and the mechanics of membranes. A system combining micromanipulation, microinjection, optical tweezers, and confocal microscopy allows measurement of membrane curvature, membrane tension, and the surface density of proteins, concurrently. From these measurements, many important mechanical and morphological properties of the protein-membrane system can be inferred. In addition, we lay out a protocol of creating GUVs in the presence of physiological salt concentration, and a method of quantifying the surface density of proteins on the membrane from fluorescence intensities of labeled proteins and lipids.
Collapse
Affiliation(s)
- Coline Prévost
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168; Department of Genetics and Complex Diseases, T. H. Chan School of Public Health, Harvard Medical School; Department of Cell Biology, Harvard Medical School
| | - Feng-Ching Tsai
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168; Sorbonne Universités, UPMC University Paris 06
| | - Patricia Bassereau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168; Sorbonne Universités, UPMC University Paris 06;
| | - Mijo Simunovic
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168; Center for Studies in Physics and Biology, The Rockefeller University
| |
Collapse
|
137
|
Nussenzveig HM. Cell membrane biophysics with optical tweezers. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:499-514. [PMID: 29164289 DOI: 10.1007/s00249-017-1268-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/29/2017] [Accepted: 11/13/2017] [Indexed: 10/24/2022]
Abstract
Membrane elastic properties play important roles in regulating cell shape, motility, division and differentiation. Here I review optical tweezer (OT) investigations of membrane surface tension and bending modulus, emphasizing didactic aspects and insights provided for cell biology. OT measurements employ membrane-attached microspheres to extract long cylindrical nanotubes named tethers. The Helfrich-Canham theory yields elastic parameters in terms of tether radius and equilibrium extraction force. It assumes initial point-like microsphere attachment and no cytoskeleton content within tethers. Experimental force-displacement curves reveal violations of those assumptions, and I discuss proposed explanations of such discrepancies, as well as recommended OT protocols. Measurements of elastic parameters for predominant cell types in the central nervous system yield correlations between their values and cell function. Micro-rheology OT experiments extend these correlations to viscoelastic parameters. The results agree with a quasi-universal phenomenological scaling law and are interpreted in terms of the soft glass rheology model. Spontaneously-generated cell nanotube protrusions are also briefly reviewed, emphasizing common features with tethers. Filopodia as well as tunneling nanotubes (TNT), which connect distant cells and allow transfers between their cytoplasms, are discussed, including OT tether pulling from TNTs which mediate communication among bacteria, even of different species. Pathogens, including bacteria, viruses and prions, opportunistically exploit TNTs for cell-to-cell transmission of infection, indicating that TNTs have an ancient evolutionary origin.
Collapse
Affiliation(s)
- H Moysés Nussenzveig
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil. .,Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, 21941-972, Brazil.
| |
Collapse
|
138
|
Johannes L. Shiga Toxin-A Model for Glycolipid-Dependent and Lectin-Driven Endocytosis. Toxins (Basel) 2017; 9:toxins9110340. [PMID: 29068384 PMCID: PMC5705955 DOI: 10.3390/toxins9110340] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/15/2017] [Accepted: 10/20/2017] [Indexed: 12/27/2022] Open
Abstract
The cellular entry of the bacterial Shiga toxin and the related verotoxins has been scrutinized in quite some detail. This is due to their importance as a threat to human health. At the same time, the study of Shiga toxin has allowed the discovery of novel molecular mechanisms that also apply to the intracellular trafficking of endogenous proteins at the plasma membrane and in the endosomal system. In this review, the individual steps that lead to Shiga toxin uptake into cells will first be presented from a purely mechanistic perspective. Membrane-biological concepts will be highlighted that are often still poorly explored, such as fluctuation force-driven clustering, clathrin-independent membrane curvature generation, friction-driven scission, and retrograde sorting on early endosomes. It will then be explored whether and how these also apply to other pathogens, pathogenic factors, and cellular proteins. The molecular nature of Shiga toxin as a carbohydrate-binding protein and that of its cellular receptor as a glycosylated raft lipid will be an underlying theme in this discussion. It will thereby be illustrated how the study of Shiga toxin has led to the proposal of the GlycoLipid-Lectin (GL-Lect) hypothesis on the generation of endocytic pits in processes of clathrin-independent endocytosis.
Collapse
Affiliation(s)
- Ludger Johannes
- Cellular and Chemical Biology Department, Institut Curie, PSL Research University, U1143 INSERM, UMR3666 CNRS, 26 rue d'Ulm, 75248 Paris CEDEX 05, France.
| |
Collapse
|
139
|
Manni MM, Derganc J, Čopič A. Crowd-Sourcing of Membrane Fission. Bioessays 2017; 39. [DOI: 10.1002/bies.201700117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/06/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Marco M. Manni
- Université Côte d'Azur; CNRS, IPMC; 06560 Valbonne France
| | - Jure Derganc
- Institute of Biophysics; Faculty of Medicine; University of Ljubljana; 1000 Ljubljana Slovenia
| | - Alenka Čopič
- Institut Jacques Monod, CNRS UMR 7592; Université Paris Diderot; Sorbonne Paris Cité 75013 Paris France
| |
Collapse
|
140
|
Gopaldass N, Fauvet B, Lashuel H, Roux A, Mayer A. Membrane scission driven by the PROPPIN Atg18. EMBO J 2017; 36:3274-3291. [PMID: 29030482 DOI: 10.15252/embj.201796859] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/14/2022] Open
Abstract
Sorting, transport, and autophagic degradation of proteins in endosomes and lysosomes, as well as the division of these organelles, depend on scission of membrane-bound tubulo-vesicular carriers. How scission occurs is poorly understood, but family proteins bind these membranes. Here, we show that the yeast PROPPIN Atg18 carries membrane scission activity. Purified Atg18 drives tubulation and scission of giant unilamellar vesicles. Upon membrane contact, Atg18 folds its unstructured CD loop into an amphipathic α-helix that inserts into the bilayer. This allows the protein to engage its two lipid binding sites for PI3P and PI(3,5)P2 PI(3,5)P2 induces Atg18 oligomerization, which should concentrate lipid-inserted α-helices in the outer membrane leaflet and drive membrane tubulation and scission. The scission activity of Atg18 is compatible with its known roles in endo-lysosomal protein trafficking, autophagosome biogenesis, and vacuole fission. Key features required for membrane tubulation and scission by Atg18 are shared by other PROPPINs, suggesting that membrane scission may be a generic function of this protein family.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Bruno Fauvet
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hilal Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Program Chemical Biology, Geneva, Switzerland
| | - Andreas Mayer
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
141
|
Hohendahl A, Talledge N, Galli V, Shen PS, Humbert F, De Camilli P, Frost A, Roux A. Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 2017; 6:26856. [PMID: 28933693 PMCID: PMC5663480 DOI: 10.7554/elife.26856] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 09/20/2017] [Indexed: 01/19/2023] Open
Abstract
Dynamin, which mediates membrane fission during endocytosis, binds endophilin and other members of the Bin-Amphiphysin-Rvs (BAR) protein family. How endophilin influences endocytic membrane fission is still unclear. Here, we show that dynamin-mediated membrane fission is potently inhibited in vitro when an excess of endophilin co-assembles with dynamin around membrane tubules. We further show by electron microscopy that endophilin intercalates between turns of the dynamin helix and impairs fission by preventing trans interactions between dynamin rungs that are thought to play critical roles in membrane constriction. In living cells, overexpression of endophilin delayed both fission and transferrin uptake. Together, our observations suggest that while endophilin helps shape endocytic tubules and recruit dynamin to endocytic sites, it can also block membrane fission when present in excess by inhibiting inter-dynamin interactions. The sequence of recruitment and the relative stoichiometry of the two proteins may be critical to regulated endocytic fission.
Collapse
Affiliation(s)
- Annika Hohendahl
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Nathaniel Talledge
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States.,California Institute for Quantitative Biomedical Research, University of California, San Francisco, United States.,Department of Biochemistry, University of Utah, Salt Lake City, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Valentina Galli
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Peter S Shen
- Department of Biochemistry, University of Utah, Salt Lake City, United States
| | - Frédéric Humbert
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, United States.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, United States.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, United States.,Department of Cell Biology, Yale University School of Medicine, New Haven, United States.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, United States.,California Institute for Quantitative Biomedical Research, University of California, San Francisco, United States.,Department of Biochemistry, University of Utah, Salt Lake City, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland.,Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland
| |
Collapse
|
142
|
Abstract
A long-standing question in cell biology is how endocytic vesicles and tubules detach from the plasma membrane in the absence of constriction by dynamin. In this issue of Cell, Simunovic et al. describe an elegant biophysical model in which friction between lipids and BAR-domain proteins drives the scission of elongating membrane tubules.
Collapse
Affiliation(s)
- Kranthi K Mandadapu
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA; Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|