101
|
Hazama D, Yin Y, Murata Y, Matsuda M, Okamoto T, Tanaka D, Terasaka N, Zhao J, Sakamoto M, Kakuchi Y, Saito Y, Kotani T, Nishimura Y, Nakagawa A, Suga H, Matozaki T. Macrocyclic Peptide-Mediated Blockade of the CD47-SIRPα Interaction as a Potential Cancer Immunotherapy. Cell Chem Biol 2020; 27:1181-1191.e7. [PMID: 32640189 DOI: 10.1016/j.chembiol.2020.06.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/30/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022]
Abstract
Medium-sized macrocyclic peptides are an alternative to small compounds and large biomolecules as a class of pharmaceutics. The CD47-SIRPα signaling axis functions as an innate immune checkpoint that inhibits phagocytosis in phagocytes and has been implicated as a promising target for cancer immunotherapy. The potential of macrocyclic peptides that target this signaling axis as immunotherapeutic agents has remained unknown, however. Here we have developed a macrocyclic peptide consisting of 15 amino acids that binds to the ectodomain of mouse SIRPα and efficiently blocks its interaction with CD47 in an allosteric manner. The peptide markedly promoted the phagocytosis of antibody-opsonized tumor cells by macrophages in vitro as well as enhanced the inhibitory effect of anti-CD20 or anti-gp75 antibodies on tumor formation or metastasis in vivo. Our results suggest that allosteric inhibition of the CD47-SIRPα interaction by macrocyclic peptides is a potential approach to cancer immunotherapy.
Collapse
Affiliation(s)
- Daisuke Hazama
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yizhen Yin
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| | - Makoto Matsuda
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Takeshi Okamoto
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Daisuke Tanaka
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Naohiro Terasaka
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Jinxuan Zhao
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mariko Sakamoto
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yuka Kakuchi
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.
| |
Collapse
|
102
|
Rogers JM. Peptide Folding and Binding Probed by Systematic Non-canonical Mutagenesis. Front Mol Biosci 2020; 7:100. [PMID: 32671094 PMCID: PMC7326784 DOI: 10.3389/fmolb.2020.00100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Many proteins and peptides fold upon binding another protein. Mutagenesis has proved an essential tool in the study of these multi-step molecular recognition processes. By comparing the biophysical behavior of carefully selected mutants, the concert of interactions and conformational changes that occur during folding and binding can be separated and assessed. Recently, this mutagenesis approach has been radically expanded by deep mutational scanning methods, which allow for many thousands of mutations to be examined in parallel. Furthermore, these high-throughput mutagenesis methods have been expanded to include mutations to non-canonical amino acids, returning peptide structure-activity relationships with unprecedented depth and detail. These developments are timely, as the insights they provide can guide the optimization of de novo cyclic peptides, a promising new modality for chemical probes and therapeutic agents.
Collapse
Affiliation(s)
- Joseph M Rogers
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
103
|
Shinbara K, Liu W, van Neer RHP, Katoh T, Suga H. Methodologies for Backbone Macrocyclic Peptide Synthesis Compatible With Screening Technologies. Front Chem 2020; 8:447. [PMID: 32626683 PMCID: PMC7314982 DOI: 10.3389/fchem.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/28/2020] [Indexed: 12/23/2022] Open
Abstract
Backbone macrocyclic structures are often found in diverse bioactive peptides and contribute to greater conformational rigidity, peptidase resistance, and potential membrane permeability compared to their linear counterparts. Therefore, such peptide scaffolds are an attractive platform for drug-discovery endeavors. Recent advances in synthetic methods for backbone macrocyclic peptides have enabled the discovery of novel peptide drug candidates against diverse targets. Here, we overview recent technical advancements in the synthetic methods including 1) enzymatic synthesis, 2) chemical synthesis, 3) split-intein circular ligation of peptides and proteins (SICLOPPS), and 4) in vitro translation system combined with genetic code reprogramming. We also discuss screening methodologies compatible with those synthetic methodologies, such as one-beads one-compound (OBOC) screening compatible with the synthetic method 2, cell-based assay compatible with 3, limiting-dilution PCR and mRNA display compatible with 4.
Collapse
Affiliation(s)
| | | | | | | | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
104
|
Huang Y, Nawatha M, Livneh I, Rogers JM, Sun H, Singh SK, Ciechanover A, Brik A, Suga H. Affinity Maturation of Macrocyclic Peptide Modulators of Lys48‐Linked Diubiquitin by a Twofold Strategy. Chemistry 2020; 26:8022-8027. [DOI: 10.1002/chem.202000273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Yichao Huang
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Mickal Nawatha
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ido Livneh
- The Rappaport Faculty of Medicine and Research InstituteTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Joseph M. Rogers
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Hao Sun
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Sumeet K. Singh
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Aaron Ciechanover
- The Rappaport Faculty of Medicine and Research InstituteTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of Technology Haifa 3200008 Israel
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| |
Collapse
|
105
|
Iannuzzelli JA, Fasan R. Expanded toolbox for directing the biosynthesis of macrocyclic peptides in bacterial cells. Chem Sci 2020; 11:6202-6208. [PMID: 32953014 PMCID: PMC7480269 DOI: 10.1039/d0sc01699c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022] Open
Abstract
A new suite of unnatural amino acids is reported for directing the biosynthesis of genetically encoded macrocyclic peptides in live bacteria.
The macrocyclization of recombinant polypeptides by means of genetically encodable non-canonical amino acids has recently provided an attractive strategy for the screening and discovery of macrocyclic peptide inhibitors of protein–protein interactions. Here, we report the development of an expanded suite of electrophilic unnatural amino acids (eUAAs) useful for directing the biosynthesis of genetically encoded thioether-bridged macrocyclic peptides in bacterial cells (E. coli). These reagents are shown to provide efficient access to a broad range of macrocyclic peptide scaffolds spanning from 2 to 20 amino acid residues, with the different eUAAs offering complementary reactivity profiles toward mediating short- vs. long-range macrocyclizations. Swapping of the eUAA cyclization module in a cyclopeptide inhibitor of streptavidin and Keap1 led to compounds with markedly distinct binding affinity toward the respective target proteins, highlighting the effectiveness of this strategy toward tuning the structural and functional properties of bioactive macrocyclic peptides. The peptide cyclization strategies reported here expand opportunities for the combinatorial biosynthesis of natural product-like peptide macrocycles in bacterial cells or in combination with display platforms toward the discovery of selective agents capable of targeting proteins and protein-mediated interactions.
Collapse
Affiliation(s)
- Jacob A Iannuzzelli
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA .
| | - Rudi Fasan
- Department of Chemistry , University of Rochester , Rochester , New York 14627 , USA .
| |
Collapse
|
106
|
Nagano M, Suga H. Expansion of Modality: Peptides to Pseudo-Natural Macrocyclic Peptides. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo
| |
Collapse
|
107
|
Johansen-Leete J, Passioura T, Foster SR, Bhusal RP, Ford DJ, Liu M, Jongkees SAK, Suga H, Stone MJ, Payne RJ. Discovery of Potent Cyclic Sulfopeptide Chemokine Inhibitors via Reprogrammed Genetic Code mRNA Display. J Am Chem Soc 2020; 142:9141-9146. [DOI: 10.1021/jacs.0c03152] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Toby Passioura
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, NSW 2006, Australia
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Simon R. Foster
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Ram Prasad Bhusal
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Daniel J. Ford
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Minglong Liu
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Seino A. K. Jongkees
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Martin J. Stone
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Richard J. Payne
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
108
|
Tsiamantas C, Rogers JM, Suga H. Initiating ribosomal peptide synthesis with exotic building blocks. Chem Commun (Camb) 2020; 56:4265-4272. [PMID: 32267262 DOI: 10.1039/d0cc01291b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ribosomal peptide synthesis begins almost exclusively with the amino acid methionine, across all domains of life. The ubiquity of methionine initiation raises the question; to what extent could polypeptide synthesis be realized with other amino acids, proteinogenic or otherwise? This highlight describes the breadth of building blocks now known to be accepted by the ribosome initiation machinery, from subtle methionine analogues to large exotic non-proteinogenic structures. We outline the key methodological developments that have enabled these discoveries, including the exploitation of methionyl-tRNA synthetase promiscuity, synthetase and tRNA engineering, and the utilization of artificial tRNA-loading ribozymes, flexizymes. Using these methods, the number and diversity of validated initiation building blocks is rapidly expanding permitting the use of the ribosome to synthesize ever more artificial polymers in search of new functional molecules.
Collapse
Affiliation(s)
- Christos Tsiamantas
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
109
|
Blaquiere N, Villemure E, Staben ST. Medicinal Chemistry of Inhibiting RING-Type E3 Ubiquitin Ligases. J Med Chem 2020; 63:7957-7985. [PMID: 32142281 DOI: 10.1021/acs.jmedchem.9b01451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The ubiquitin proteasome system (UPS) presents many opportunities for pharmacological intervention. Key players in the UPS are E3 ubiquitin ligases, responsible for conjugation of ubiquitin to specific cognate substrates. Numbering more than 600 members, these ligases represent the most selective way to intervene within this physiologically important system. This Perspective highlights some of the dedicated medicinal chemistry efforts directed at inhibiting the function of specific single-protein and multicomponent RING-type E3 ubiquitin ligases. We present opportunities and challenges associated with targeting this important class of enzymes.
Collapse
Affiliation(s)
- Nicole Blaquiere
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Elisia Villemure
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Steven T Staben
- Discovery Chemistry, Genentech Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
110
|
Otero-Ramirez ME, Matoba K, Mihara E, Passioura T, Takagi J, Suga H. Macrocyclic peptides that inhibit Wnt signalling via interaction with Wnt3a. RSC Chem Biol 2020; 1:26-34. [PMID: 34458746 PMCID: PMC8382136 DOI: 10.1039/d0cb00016g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 03/13/2020] [Indexed: 12/20/2022] Open
Abstract
Here we report de novo macrocyclic peptide binders to Wnt3a, a member of the Wnt protein family. By means of the Random non-standard Peptides Integrated Discovery (RaPID) system, we have performed in vitro selection against the complex of mouse Wnt3a (mWnt3a) with human afamin (hAFM) to discover macrocyclic peptides that bind mWnt3a with K D values as tight as 110 nM. One of these peptides, WAp-D04 (Wnt-AFM-peptide-D04), was able to inhibit the receptor-mediated signaling process, which was demonstrated in a Wnt3a-dependent reporter cell-line. Based on this initial hit, we applied a block-mutagenesis scanning display to identify a mutant inhibitor, WAp-D04-W10P, with 5-fold greater potency in a reporter assay. This work represents the first instance of molecules capable of inhibiting Wnt signaling through direct interaction with a Wnt protein, a molecular class for which targeting has been challenging due its highly hydrophobic nature.
Collapse
Affiliation(s)
- Manuel E Otero-Ramirez
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Kyoko Matoba
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita-shi Osaka 565-0871 Japan
| | - Emiko Mihara
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita-shi Osaka 565-0871 Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan .,Sydney Analytical, School of Chemistry and School of Life and Environmental Sciences, The University of Sydney Sydney 2006 Australia
| | - Junichi Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita-shi Osaka 565-0871 Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| |
Collapse
|
111
|
Tsiamantas C, Kwon S, Rogers JM, Douat C, Huc I, Suga H. Ribosomal Incorporation of Aromatic Oligoamides as Peptide Sidechain Appendages. Angew Chem Int Ed Engl 2020; 59:4860-4864. [PMID: 31894626 PMCID: PMC7496375 DOI: 10.1002/anie.201914654] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/24/2019] [Indexed: 01/06/2023]
Abstract
Derivatives of 4-aminomethyl-l-phenylalanine with aromatic oligoamide foldamers as sidechain appendages were successfully charged on tRNA by means of flexizymes. Their subsequent incorporation both at the C-terminus of, and within, peptide sequences by the ribosome, was demonstrated. These results expand the registry of chemical structures tolerated by the ribosome to sidechains significantly larger and more structurally defined than previously demonstrated.
Collapse
Affiliation(s)
- Christos Tsiamantas
- Department of ChemistrySchool of ScienceThe University of Tokyo7-3-1 HongoBunkyoTokyo113-0033Japan
| | - Sunbum Kwon
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
- Department of ChemistryChung-Ang University84 Heukseok-roDongjak-guSeoul06974Republic of Korea
| | - Joseph M. Rogers
- Department of ChemistrySchool of ScienceThe University of Tokyo7-3-1 HongoBunkyoTokyo113-0033Japan
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of Tokyo7-3-1 HongoBunkyoTokyo113-0033Japan
| |
Collapse
|
112
|
Tsiamantas C, Kwon S, Rogers JM, Douat C, Huc I, Suga H. Ribosomal Incorporation of Aromatic Oligoamides as Peptide Sidechain Appendages. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Christos Tsiamantas
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Sunbum Kwon
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
- Department of ChemistryChung-Ang University 84 Heukseok-ro Dongjak-gu Seoul 06974 Republic of Korea
| | - Joseph M. Rogers
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-Universität Butenandtstr. 5–13 81377 München Germany
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| |
Collapse
|
113
|
Katoh T, Suga H. Ribosomal Elongation of Cyclic γ-Amino Acids using a Reprogrammed Genetic Code. J Am Chem Soc 2020; 142:4965-4969. [PMID: 32129615 DOI: 10.1021/jacs.9b12280] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Because γ-amino acids generally undergo rapid self-cyclization upon esterification on the carboxyl group, for example, γ-aminoacyl-tRNA, there are no reports of the ribosomal elongation of γ-amino acids to the best of our knowledge. To avoid such self-cyclization, we utilized cyclic γ-amino acids and demonstrated their elongation into a peptide chain. Although the incorporation of the cyclic γ-amino acids is intrinsically slow, we here show that the combination of elongation factor P and engineered tRNAs improves cyclic γ-amino acid incorporation efficiency. Via this method, thioether-macrocyclic peptides containing not only cyclic γ-amino acids but also d-α-, N-methyl-α-, and cyclic β-amino acids were expressed under the reprogrammed genetic code. Ribosomally synthesized macrocyclic peptide libraries containing cyclic γ-amino acids should be applicable to in vitro screening methodologies such as mRNA display for discovering novel peptide drugs.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
114
|
Zheng X, Li Z, Gao W, Meng X, Li X, Luk LYP, Zhao Y, Tsai YH, Wu C. Condensation of 2-((Alkylthio)(aryl)methylene)malononitrile with 1,2-Aminothiol as a Novel Bioorthogonal Reaction for Site-Specific Protein Modification and Peptide Cyclization. J Am Chem Soc 2020; 142:5097-5103. [DOI: 10.1021/jacs.9b11875] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaoli Zheng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhuoru Li
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Gao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xiaoting Meng
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Xuefei Li
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Louis Y. P. Luk
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Yibing Zhao
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Chuanliu Wu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
115
|
Newton MS, Cabezas-Perusse Y, Tong CL, Seelig B. In Vitro Selection of Peptides and Proteins-Advantages of mRNA Display. ACS Synth Biol 2020; 9:181-190. [PMID: 31891492 DOI: 10.1021/acssynbio.9b00419] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
mRNA display is a robust in vitro selection technique that allows the selection of peptides and proteins with desired functions from libraries of trillions of variants. mRNA display relies upon a covalent linkage between a protein and its encoding mRNA molecule; the power of the technique stems from the stability of this link, and the large degree of control over experimental conditions afforded to the researcher. This article describes the major advantages that make mRNA display the method of choice among comparable in vivo and in vitro methods, including cell-surface display, phage display, and ribosomal display. We also describe innovative techniques that harness mRNA display for directed evolution, protein engineering, and drug discovery.
Collapse
Affiliation(s)
- Matilda S. Newton
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
- Department of Molecular, Cellular, and Developmental Biology & Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Yari Cabezas-Perusse
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Cher Ling Tong
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology and Biophysics & BioTechnology Institute, University of Minnesota, 1479 Gortner Avenue, St. Paul, Minnesota 55108, United States
| |
Collapse
|
116
|
Maini R, Kimura H, Takatsuji R, Katoh T, Goto Y, Suga H. Ribosomal Formation of Thioamide Bonds in Polypeptide Synthesis. J Am Chem Soc 2019; 141:20004-20008. [DOI: 10.1021/jacs.9b11097] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
117
|
Yin Y, Ochi N, Craven TW, Baker D, Takigawa N, Suga H. De Novo Carborane-Containing Macrocyclic Peptides Targeting Human Epidermal Growth Factor Receptor. J Am Chem Soc 2019; 141:19193-19197. [PMID: 31752491 DOI: 10.1021/jacs.9b09106] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
l-Carboranylalanine (LCba) is a unique artificial amino acid containing a cluster of 10 boron atoms. Since the three-dimensional aromaticity and charge distributions of the carborane side chain are quite different from any side chains of proteinogenic amino acids, there is no report whether LCba can be a substrate for the translation machinery. Here, we report studies on the ribosomal incorporation of LCba into peptide via initiation and elongation using the flexizyme-assisted translation system. Our results indicate that only the initiation step could tolerate LCba incorporation, but the elongation steps could not, very likely due to its steric bulkiness of the side chain. Based on this knowledge, we have designed a library of macrocyclic peptides initiated by α-N-(2-choloroacetyl)-l-carboranylalanine (ClAc-LCba) and selected molecules capable of binding to human epidermal growth factor receptor (hEGFR). Two peptides that were forwarded to deeper studies exhibited affinities with KD values at 16 and 20 nM against hEGFR. Computational modeling of one of the peptides suggested that the carborane side chain might be directly involved in the interaction with the hydrophobic β-sheet core in the EGF binding site of hEGFR, which is consistent with the mutational data where replacing LCba residue with LPhe completely eliminated the binding activity. Cell lines that stably express hEGFR could be stained by incubation with the C-terminal fluorescein-labeled peptides, whereas hEGFR-negative cells could not be stained. This study provides a general strategy for the de novo discovery of carborane-containing macrocyclic peptides targeting various tumor biomarker proteins, potentially applicable to boron neutron capture therapy.
Collapse
Affiliation(s)
- Yizhen Yin
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo , Tokyo 113-0033 , Japan
| | - Nobuaki Ochi
- Department of General Internal Medicine 4 , Kawasaki Medical School , 2-6-1 Nakasange , Kita-ku , Okayama 700-8505 , Japan
| | - Timothy W Craven
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - David Baker
- Department of Biochemistry and Institute for Protein Design , University of Washington , Seattle , Washington 98195 , United States
| | - Nagio Takigawa
- Department of General Internal Medicine 4 , Kawasaki Medical School , 2-6-1 Nakasange , Kita-ku , Okayama 700-8505 , Japan
| | - Hiroaki Suga
- Department of Chemistry, School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo , Tokyo 113-0033 , Japan
| |
Collapse
|
118
|
Jing X, Jin K. A gold mine for drug discovery: Strategies to develop cyclic peptides into therapies. Med Res Rev 2019; 40:753-810. [PMID: 31599007 DOI: 10.1002/med.21639] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022]
Abstract
As a versatile therapeutic modality, peptides attract much attention because of their great binding affinity, low toxicity, and the capability of targeting traditionally "undruggable" protein surfaces. However, the deficiency of cell permeability and metabolic stability always limits the success of in vitro bioactive peptides as drug candidates. Peptide macrocyclization is one of the most established strategies to overcome these limitations. Over the past decades, more than 40 cyclic peptide drugs have been clinically approved, the vast majority of which are derived from natural products. The de novo discovered cyclic peptides on the basis of rational design and in vitro evolution, have also enabled the binding with targets for which nature provides no solutions. The current review summarizes different classes of cyclic peptides with diverse biological activities, and presents an overview of various approaches to develop cyclic peptide-based drug candidates, drawing upon series of examples to illustrate each strategy.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kang Jin
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University, Jinan, Shandong, China
| |
Collapse
|
119
|
Abstract
Approximately 75% of all disease-relevant human proteins, including those involved in intracellular protein-protein interactions (PPIs), are undruggable with the current drug modalities (i.e., small molecules and biologics). Macrocyclic peptides provide a potential solution to these undruggable targets because their larger sizes (relative to conventional small molecules) endow them the capability of binding to flat PPI interfaces with antibody-like affinity and specificity. Powerful combinatorial library technologies have been developed to routinely identify cyclic peptides as potent, specific inhibitors against proteins including PPI targets. However, with the exception of a very small set of sequences, the vast majority of cyclic peptides are impermeable to the cell membrane, preventing their application against intracellular targets. This Review examines common structural features that render most cyclic peptides membrane impermeable, as well as the unique features that allow the minority of sequences to enter the cell interior by passive diffusion, endocytosis/endosomal escape, or other mechanisms. We also present the current state of knowledge about the molecular mechanisms of cell penetration, the various strategies for designing cell-permeable, biologically active cyclic peptides against intracellular targets, and the assay methods available to quantify their cell-permeability.
Collapse
Affiliation(s)
- Patrick G. Dougherty
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Ashweta Sahni
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
120
|
Hirose H, Hideshima T, Katoh T, Suga H. A Case Study on the Keap1 Interaction with Peptide Sequence Epitopes Selected by the Peptidomic mRNA Display. Chembiochem 2019; 20:2089-2100. [PMID: 31169361 DOI: 10.1002/cbic.201900039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Indexed: 11/08/2022]
Abstract
Many protein-protein and peptide-protein interactions (PPIs) play key roles in the regulation of biological functions, and therefore, the modulation of PPIs has become an attractive target of new drug development. Although a number of PPIs have already been identified, over 100 000 unknown PPIs are predicted to exist. To uncover such unknown PPIs, it is important to devise a conceptually distinct method from that of currently available methods. Herein, an mRNA display by using a total RNA library derived from various human tissues, which serves as a unique method to physically isolate peptide epitopes that potentially bind to a target protein of interest, is reported. In this study, selection was performed against Kelch-like ECH-associated protein (Keap1) as a model target protein, leading to a peptide epitope originating from astrotactin-1 (ASTN1). It turned out that this ASTN1 peptide was able to interact with Keap1 more strongly than that with a known peptide derived from Nrf2; a well-known, naturally occurring Keap1 binder. This case study demonstrates the applicability of peptidomic mRNA display for the rapid exploration of consensus binding peptide motifs and the potential for the discovery of unknown PPIs with other proteins of interest.
Collapse
Affiliation(s)
- Hisaaki Hirose
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tomoki Hideshima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
121
|
Hirose H, Tsiamantas C, Katoh T, Suga H. In vitro expression of genetically encoded non-standard peptides consisting of exotic amino acid building blocks. Curr Opin Biotechnol 2019; 58:28-36. [DOI: 10.1016/j.copbio.2018.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
|
122
|
Iqbal ES, Richardson SL, Abrigo NA, Dods KK, Osorio Franco HE, Gerrish HS, Kotapati HK, Morgan IM, Masterson DS, Hartman MCT. A new strategy for the in vitro selection of stapled peptide inhibitors by mRNA display. Chem Commun (Camb) 2019; 55:8959-8962. [PMID: 31290487 DOI: 10.1039/c8cc10192b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrocarbon stapled peptides are promising therapeutics for inhibition of intracellular protein-protein interactions. Here we develop a new high-throughput strategy for hydrocarbon stapled peptide discovery based on mRNA display of peptides containing α-methyl cysteine and cyclized with m-dibromoxylene. We focus on development of a peptide binder to the HPV16 E2 protein.
Collapse
Affiliation(s)
- Emil S Iqbal
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, P. O. Box 842006, Richmond, VA 23284, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | - Stacie L Richardson
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, P. O. Box 842006, Richmond, VA 23284, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | - Nicolas A Abrigo
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, P. O. Box 842006, Richmond, VA 23284, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | - Kara K Dods
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, P. O. Box 842006, Richmond, VA 23284, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | - H Estheban Osorio Franco
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, P. O. Box 842006, Richmond, VA 23284, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | - Heather S Gerrish
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, P. O. Box 842006, Richmond, VA 23284, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| | - Hari Kiran Kotapati
- School of Mathematics & Natural Sciences, Chemistry & Biochemistry, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Iain M Morgan
- Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA and Philips Institute for Oral Health Research, Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia Commonwealth University, Box 980566, Richmond, VA 23298, USA
| | - Douglas S Masterson
- School of Mathematics & Natural Sciences, Chemistry & Biochemistry, 118 College Drive #5043, Hattiesburg, MS 39406, USA
| | - Matthew C T Hartman
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, P. O. Box 842006, Richmond, VA 23284, USA. and Massey Cancer Center, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA
| |
Collapse
|
123
|
Fujino T, Kondo T, Suga H, Murakami H. Exploring the Minimal RNA Substrate of Flexizymes. Chembiochem 2019; 20:1959-1965. [PMID: 30950544 DOI: 10.1002/cbic.201900150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Indexed: 02/06/2023]
Abstract
Flexizymes are tRNA acylation ribozymes that have been successfully used to facilitate genetic code reprogramming. They are capable of charging acid substrates onto various tRNAs and tRNA analogues. However, their minimal RNA substrate has not been investigated. Here we have designed fluorescently labeled short RNAs corresponding to the four, three, and two bases (4bRNA, 3bRNA, 2bRNA) at the tRNA 3'-end and explored the minimal RNA substrate of flexizymes, dFx and eFx. 3bRNA was the observed minimal RNA substrate of the flexizymes, but the efficiency of acylation of this short RNA was two to three times lower than that of 4bRNA. The efficiency of acylation of 4bRNA was comparable with that of the microhelix, a 22-base RNA conventionally used as a tRNA analogue for analyzing acylation efficiency. We also compared the efficiencies of acylation of the microhelix and 4bRNA with various acid substrates. Thanks to the short length of 4bRNA, its acyl-4bRNA products exhibited larger mobility shifts in gel electrophoresis than those exhibited by acyl-microhelix products with every substrate tested. This indicated that 4bRNA was an ideal RNA substrate for analyzing the efficiency of acylation by flexizymes.
Collapse
Affiliation(s)
- Tomoshige Fujino
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Taishi Kondo
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroshi Murakami
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
124
|
Lin P, Yao H, Zha J, Zhao Y, Wu C. Ordered and Isomerically Stable Bicyclic Peptide Scaffolds Constrained through Cystine Bridges and Proline Turns. Chembiochem 2019; 20:1514-1518. [PMID: 30770638 DOI: 10.1002/cbic.201800788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/12/2019] [Indexed: 12/21/2022]
Abstract
Bicyclic peptides are attractive scaffolds for the design of potent protein binders and new therapeutics. However, peptide bicycles constrained through disulfide bonds are rarely stable or tolerant to sequence manipulation owing to disulfide isomerization, especially for peptides lacking a regular secondary structure. Herein, we report the discovery and identification of a class of bicyclic peptide scaffolds with ordered but irregular secondary structures. These peptides have a conserved cysteine/proline framework for directing the oxidative folding into a fused bicyclic structure that consists of four irregular turns and a 310 helix (characterized by NMR spectroscopy). This work shows that bicyclic peptides can be stabilized into ordered structures by manipulating both the disulfide bonds and proline-stabilized turns. In turn, this could inspire the design and engineering of multicyclic peptides with new structures and benefit the development of novel protein binders and therapeutics.
Collapse
Affiliation(s)
- Ping Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| | - Hongwei Yao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Zha
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
125
|
De novo macrocyclic peptides that specifically modulate Lys48-linked ubiquitin chains. Nat Chem 2019; 11:644-652. [PMID: 31182821 DOI: 10.1038/s41557-019-0278-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 04/30/2019] [Indexed: 12/12/2022]
Abstract
A promising approach in cancer therapy is to find ligands that directly bind ubiquitin (Ub) chains. However, finding molecules capable of tightly and specifically binding Ub chains is challenging given the range of Ub polymer lengths and linkages and their subtle structural differences. Here, we use total chemical synthesis of proteins to generate highly homogeneous Ub chains for screening against trillion-member macrocyclic peptide libraries (RaPID system). De novo cyclic peptides were found that can bind tightly and specifically to K48-linked Ub chains, confirmed by NMR studies. These cyclic peptides protected K48-linked Ub chains from deubiquitinating enzymes and prevented proteasomal degradation of Ub-tagged proteins. The cyclic peptides could enter cells, inhibit growth and induce programmed cell death, opening new opportunities for therapeutic intervention. This highly synthetic approach, with both protein target generation and cyclic peptide discovery performed in vitro, will make other elaborate post-translationally modified targets accessible for drug discovery.
Collapse
|
126
|
Stress CJ, Sauter B, Schneider LA, Sharpe T, Gillingham D. A DNA-Encoded Chemical Library Incorporating Elements of Natural Macrocycles. Angew Chem Int Ed Engl 2019; 58:9570-9574. [PMID: 30938482 DOI: 10.1002/anie.201902513] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/01/2019] [Indexed: 12/22/2022]
Abstract
Here we show a seven-step chemical synthesis of a DNA-encoded macrocycle library (DEML) on DNA. Inspired by polyketide and mixed peptide-polyketide natural products, the library was designed to incorporate rich backbone diversity. Achieving this diversity, however, comes at the cost of the custom synthesis of bifunctional building block libraries. This study outlines the importance of careful retrosynthetic design in DNA-encoded libraries, while revealing areas where new DNA synthetic methods are needed.
Collapse
Affiliation(s)
- Cedric J Stress
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Basilius Sauter
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Lukas A Schneider
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Timothy Sharpe
- Biophysics Facility, Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Dennis Gillingham
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| |
Collapse
|
127
|
Stress CJ, Sauter B, Schneider LA, Sharpe T, Gillingham D. Eine DNA‐kodierte Molekülbibliothek mit Elementen natürlicher Makrocyclen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Cedric J. Stress
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Basilius Sauter
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Lukas A. Schneider
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| | - Timothy Sharpe
- Biophysikalisches InstitutBiozentrumUniversität Basel Klingelbergstrasse 50/70 4056 Basel Schweiz
| | - Dennis Gillingham
- Department ChemieUniversität Basel St. Johanns-Ring 19 4056 Basel Schweiz
| |
Collapse
|
128
|
Vogt E, Künzler M. Discovery of novel fungal RiPP biosynthetic pathways and their application for the development of peptide therapeutics. Appl Microbiol Biotechnol 2019; 103:5567-5581. [PMID: 31147756 DOI: 10.1007/s00253-019-09893-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/06/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
Bioactive peptide natural products are an important source of therapeutics. Prominent examples are the antibiotic penicillin and the immunosuppressant cyclosporine which are both produced by fungi and have revolutionized modern medicine. Peptide biosynthesis can occur either non-ribosomally via large enzymes referred to as non-ribosomal peptide synthetases (NRPS) or ribosomally. Ribosomal peptides are synthesized as part of a larger precursor peptide where they are posttranslationally modified and subsequently proteolytically released. Such peptide natural products are referred to as ribosomally synthesized and posttranslationally modified peptides (RiPPs). Their biosynthetic pathways have recently received a lot of attention, both from a basic and applied research point of view, due to the discoveries of several novel posttranslational modifications of the peptide backbone. Some of these modifications were so far only known from NRPSs and significantly increase the chemical space covered by this class of peptide natural products. Latter feature, in combination with the promiscuity of the modifying enzymes and the genetic encoding of the peptide sequence, makes RiPP biosynthetic pathways attractive for synthetic biology approaches to identify novel peptide therapeutics via screening of de novo generated peptide libraries and, thus, exploit bioactive peptide natural products beyond their direct use as therapeutics. This review focuses on the recent discovery and characterization of novel RiPP biosynthetic pathways in fungi and their possible application for the development of novel peptide therapeutics.
Collapse
Affiliation(s)
- Eva Vogt
- ETH Zürich, Department of Biology, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland
| | - Markus Künzler
- ETH Zürich, Department of Biology, Institute of Microbiology, Vladimir-Prelog-Weg 4, CH-8093, Zürich, Switzerland.
| |
Collapse
|
129
|
Jeong S, Kwon S. Recent Advances in
In Vitro
Translation and Selection of Bioactive Nonstandard Peptides. B KOREAN CHEM SOC 2019. [DOI: 10.1002/bkcs.11707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seoneun Jeong
- Department of ChemistryKorea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea
| | - Sunbum Kwon
- Department of ChemistryChung‐Ang University Seoul 06974 Republic of Korea
| |
Collapse
|
130
|
Ottl J, Leder L, Schaefer JV, Dumelin CE. Encoded Library Technologies as Integrated Lead Finding Platforms for Drug Discovery. Molecules 2019; 24:E1629. [PMID: 31027189 PMCID: PMC6514559 DOI: 10.3390/molecules24081629] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 01/22/2023] Open
Abstract
The scope of targets investigated in pharmaceutical research is continuously moving into uncharted territory. Consequently, finding suitable chemical matter with current compound collections is proving increasingly difficult. Encoded library technologies enable the rapid exploration of large chemical space for the identification of ligands for such targets. These binders facilitate drug discovery projects both as tools for target validation, structural elucidation and assay development as well as starting points for medicinal chemistry. Novartis internalized two complementing encoded library platforms to accelerate the initiation of its drug discovery programs. For the identification of low-molecular weight ligands, we apply DNA-encoded libraries. In addition, encoded peptide libraries are employed to identify cyclic peptides. This review discusses how we apply these two platforms in our research and why we consider it beneficial to run both pipelines in-house.
Collapse
Affiliation(s)
- Johannes Ottl
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Lukas Leder
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | - Jonas V Schaefer
- Novartis Institutes for Biomedical Research, 4056 Basel, Switzerland.
| | | |
Collapse
|
131
|
Yin Y, Fei Q, Liu W, Li Z, Suga H, Wu C. Chemical and Ribosomal Synthesis of Topologically Controlled Bicyclic and Tricyclic Peptide Scaffolds Primed by Selenoether Formation. Angew Chem Int Ed Engl 2019; 58:4880-4885. [PMID: 30762292 DOI: 10.1002/anie.201813827] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/11/2019] [Indexed: 12/31/2022]
Abstract
Bicyclic and tricyclic peptides have emerged as promising candidates for the development of protein binders and new therapeutics. However, convenient and efficient strategies that can generate topologically controlled bicyclic and tricyclic peptide scaffolds from fully-unprotected peptides are still much in demand, particularly for those amenable to the design of biosynthetic libraries. In this work, we report a reliable chemical and ribosomal synthesis of topologically controlled bicyclic and tricyclic peptide scaffolds. Our strategy involves the combination of selenoether cyclization followed by disulfide or thioether cyclization, yielding desirable bicyclic and tricyclic peptides. This work thus lays the foundation for developing peptide libraries with controlled topology of multicyclic scaffolds for in vitro display techniques.
Collapse
Affiliation(s)
- Yizhen Yin
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Qianran Fei
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, 361005, P. R. China
| | - Weidong Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhuoru Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, 361005, P. R. China
| | - Hiroaki Suga
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surface, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
132
|
Yin Y, Fei Q, Liu W, Li Z, Suga H, Wu C. Chemical and Ribosomal Synthesis of Topologically Controlled Bicyclic and Tricyclic Peptide Scaffolds Primed by Selenoether Formation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yizhen Yin
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Qianran Fei
- Department of ChemistryCollege of Chemistry and Chemical EngineeringThe MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen University Xiamen 361005 P. R. China
| | - Weidong Liu
- Department of ChemistryCollege of Chemistry and Chemical EngineeringThe MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen University Xiamen 361005 P. R. China
| | - Zhuoru Li
- Department of ChemistryCollege of Chemistry and Chemical EngineeringThe MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen University Xiamen 361005 P. R. China
| | - Hiroaki Suga
- Department of ChemistrySchool of ScienceThe University of Tokyo 7-3-1 Hongo Bunkyo Tokyo 113-0033 Japan
| | - Chuanliu Wu
- Department of ChemistryCollege of Chemistry and Chemical EngineeringThe MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid SurfaceXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
133
|
Vinogradov AA, Yin Y, Suga H. Macrocyclic Peptides as Drug Candidates: Recent Progress and Remaining Challenges. J Am Chem Soc 2019; 141:4167-4181. [PMID: 30768253 DOI: 10.1021/jacs.8b13178] [Citation(s) in RCA: 476] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peptides as a therapeutic modality attract much attention due to their synthetic accessibility, high degree of specific binding, and the ability to target protein surfaces traditionally considered "undruggable". Unfortunately, at the same time, other pharmacological properties of a generic peptide, such as metabolic stability and cell permeability, are quite poor, which limits the success of de novo discovered biologically active peptides as drug candidates. Here, we review how macrocyclization as well as the incorporation of nonproteogenic amino acids and various conjugation strategies may be utilized to improve on these characteristics to create better drug candidates. We analyze recent progress and remaining challenges in improving individual pharmacological properties of bioactive peptides, and offer our opinion on interfacing these, often conflicting, considerations, to create balanced drug candidates as a potential way to make further progress in this area.
Collapse
Affiliation(s)
- Alexander A Vinogradov
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Yizhen Yin
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
134
|
Nitsche C, Passioura T, Varava P, Mahawaththa MC, Leuthold MM, Klein CD, Suga H, Otting G. De Novo Discovery of Nonstandard Macrocyclic Peptides as Noncompetitive Inhibitors of the Zika Virus NS2B-NS3 Protease. ACS Med Chem Lett 2019; 10:168-174. [PMID: 30783498 PMCID: PMC6378662 DOI: 10.1021/acsmedchemlett.8b00535] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022] Open
Abstract
The Zika virus presents a major public health concern due to severe fetal neurological disorders associated with infections in pregnant women. In addition to vaccine development, the discovery of selective antiviral drugs is essential to combat future epidemic Zika virus outbreaks. The Zika virus NS2B-NS3 protease, which performs replication-critical cleavages of the viral polyprotein, is a promising drug target. We report the first macrocyclic peptide-based inhibitors of the NS2B-NS3 protease, discovered de novo through in vitro display screening of a genetically reprogrammed library including noncanonical residues. Six compounds were selected, resynthesized, and isolated, all of which displayed affinities in the low nanomolar concentration range. Five compounds showed significant protease inhibition. Two of these were validated as hits with submicromolar inhibition constants and selectivity toward Zika over the related proteases from dengue and West Nile viruses. The compounds were characterized as noncompetitive inhibitors, suggesting allosteric inhibition.
Collapse
Affiliation(s)
- Christoph Nitsche
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Toby Passioura
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Paul Varava
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Mithun C. Mahawaththa
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| | - Mila M. Leuthold
- Medicinal
Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Christian D. Klein
- Medicinal
Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Hiroaki Suga
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Gottfried Otting
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2601, Australia
| |
Collapse
|
135
|
Katoh T, Suga H. Engineering Translation Components Improve Incorporation of Exotic Amino Acids. Int J Mol Sci 2019; 20:ijms20030522. [PMID: 30691159 PMCID: PMC6386890 DOI: 10.3390/ijms20030522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Methods of genetic code manipulation, such as nonsense codon suppression and genetic code reprogramming, have enabled the incorporation of various nonproteinogenic amino acids into the peptide nascent chain. However, the incorporation efficiency of such amino acids largely varies depending on their structural characteristics. For instance, l-α-amino acids with artificial, bulky side chains are poorer substrates for ribosomal incorporation into the nascent peptide chain, mainly owing to the lower affinity of their aminoacyl-tRNA toward elongation factor-thermo unstable (EF-Tu). Phosphorylated Ser and Tyr are also poorer substrates for the same reason; engineering EF-Tu has turned out to be effective in improving their incorporation efficiencies. On the other hand, exotic amino acids such as d-amino acids and β-amino acids are even poorer substrates owing to their low affinity to EF-Tu and poor compatibility to the ribosome active site. Moreover, their consecutive incorporation is extremely difficult. To solve these problems, the engineering of ribosomes and tRNAs has been executed, leading to successful but limited improvement of their incorporation efficiency. In this review, we comprehensively summarize recent attempts to engineer the translation systems, resulting in a significant improvement of the incorporation of exotic amino acids.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
136
|
Takatsuji R, Shinbara K, Katoh T, Goto Y, Passioura T, Yajima R, Komatsu Y, Suga H. Ribosomal Synthesis of Backbone-Cyclic Peptides Compatible with In Vitro Display. J Am Chem Soc 2019; 141:2279-2287. [DOI: 10.1021/jacs.8b05327] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryo Takatsuji
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koki Shinbara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Yajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yamato Komatsu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
137
|
Tsiamantas C, Otero-Ramirez ME, Suga H. Discovery of Functional Macrocyclic Peptides by Means of the RaPID System. Methods Mol Biol 2019; 2001:299-315. [PMID: 31134577 DOI: 10.1007/978-1-4939-9504-2_14] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flexizymes, highly flexible tRNA aminoacylation ribozymes, have enabled charging of virtually any amino acid (including non-proteogenic ones) onto tRNA molecules. Coupling to a custom-made in vitro translation system, namely the flexible in vitro translation (FIT) system, has unveiled the remarkable tolerance of the ribosome toward molecules, remote from what nature has selected to carry out its elaborate functions. Among the very diverse molecules and chemistries that have been ribosomally incorporated, a plethora of entities capable of mediating intramolecular cyclization have revolutionized the design and discovery of macrocyclic peptides. These macrocyclization reactions (which can be spontaneous, chemical, or enzymatic) have all served as tools for the discovery of peptides with natural-like structures and properties. Coupling of the FIT system and mRNA display techniques, known as the random non-standard peptide integrated discovery (RaPID) system, has in turn allowed for the simultaneous screening of trillions of macrocyclic peptides against challenging biological targets. The macrocyclization methodologies are chosen depending on the structural and functional characteristics of the desired molecule. Thus, they can emanate from the peptide's N-terminus or its side chains, attributing flexibility or rigidity, or even result in the installation of fluorescent probes.
Collapse
Affiliation(s)
- Christos Tsiamantas
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Manuel E Otero-Ramirez
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan.
| |
Collapse
|
138
|
Otero-Ramirez ME, Passioura T, Suga H. Structural Features and Binding Modes of Thioether-Cyclized Peptide Ligands. Biomedicines 2018; 6:biomedicines6040116. [PMID: 30551606 PMCID: PMC6316662 DOI: 10.3390/biomedicines6040116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 01/26/2023] Open
Abstract
Macrocyclic peptides are an emerging class of bioactive compounds for therapeutic use. In part, this is because they are capable of high potency and excellent target affinity and selectivity. Over the last decade, several biochemical techniques have been developed for the identification of bioactive macrocyclic peptides, allowing for the rapid isolation of high affinity ligands to a target of interest. A common feature of these techniques is a general reliance on thioether formation to effect macrocyclization. Increasingly, the compounds identified using these approaches have been subjected to x-ray crystallographic analysis bound to their respective targets, providing detailed structural information about their conformation and mechanism of target binding. The present review provides an overview of the target bound thioether-closed macrocyclic peptide structures that have been obtained to date.
Collapse
Affiliation(s)
- Manuel E Otero-Ramirez
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Bunkyo-ku, Japan.
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Bunkyo-ku, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Bunkyo-ku, Japan.
- JST CREST, The University of Tokyo, 7-3-1 Hongo, 113-0033 Tokyo, Bunkyo-ku, Japan.
| |
Collapse
|
139
|
Cyclic Peptides: Promising Scaffolds for Biopharmaceuticals. Genes (Basel) 2018; 9:genes9110557. [PMID: 30453533 PMCID: PMC6267108 DOI: 10.3390/genes9110557] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022] Open
Abstract
To date, small molecules and macromolecules, including antibodies, have been the most pursued substances in drug screening and development efforts. Despite numerous favorable features as a drug, these molecules still have limitations and are not complementary in many regards. Recently, peptide-based chemical structures that lie between these two categories in terms of both structural and functional properties have gained increasing attention as potential alternatives. In particular, peptides in a circular form provide a promising scaffold for the development of a novel drug class owing to their adjustable and expandable ability to bind a wide range of target molecules. In this review, we discuss recent progress in methodologies for peptide cyclization and screening and use of bioactive cyclic peptides in various applications.
Collapse
|
140
|
Huang Y, Wiedmann MM, Suga H. RNA Display Methods for the Discovery of Bioactive Macrocycles. Chem Rev 2018; 119:10360-10391. [PMID: 30395448 DOI: 10.1021/acs.chemrev.8b00430] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The past two decades have witnessed the emergence of macrocycles, including macrocyclic peptides, as a promising yet underexploited class of de novo drug candidates. Both rational/computational design and in vitro display systems have contributed tremendously to the development of cyclic peptide binders of either traditional targets such as cell-surface receptors and enzymes or challenging targets such as protein-protein interaction surfaces. mRNA display, a key platform technology for the discovery of cyclic peptide ligands, has become one of the leading strategies that can generate natural-product-like macrocyclic peptide binders with antibody-like affinities. On the basis of the original cell-free transcription/translation system, mRNA display is highly evolvable to realize its full potential by applying genetic reprogramming and chemical/enzymatic modifications. In addition, mRNA display also allows the follow-up hit-to-lead development using high-throughput focused affinity maturation. Finally, mRNA-displayed peptides can be readily engineered to create chemical conjugates based on known small molecules or biologics. This review covers the birth and growth of mRNA display and discusses the above features of mRNA display with success stories and future perspectives and is up to date as of August 2018.
Collapse
Affiliation(s)
- Yichao Huang
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Mareike Margarete Wiedmann
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-0033 , Japan
| |
Collapse
|
141
|
Abstract
The 20 proteinogenic amino acids have physicochemical properties that allow peptides and proteins to fold and bind. However, there are numerous unnatural, nonproteinogenic amino acids that may be equally good, or even better, at folding and binding. Exploration of these alternative peptide building blocks has been limited by slow, one-at-a-time synthesis and testing. We describe how, in a single experiment, multiple nonproteinogenic amino acids can be trialed at all positions in a peptide sequence, with thousands of modifications tested in parallel. This permits detailed analysis of how chemical structure relates to function and allows for systematic comparisons of proteinogenic and nonproteinogenic chemistry. Such analysis can guide the improvement of drug-candidate peptides, including the therapeutically promising class of cyclic peptides. High-resolution structure–activity analysis of polypeptides requires amino acid structures that are not present in the universal genetic code. Examination of peptide and protein interactions with this resolution has been limited by the need to individually synthesize and test peptides containing nonproteinogenic amino acids. We describe a method to scan entire peptide sequences with multiple nonproteinogenic amino acids and, in parallel, determine the thermodynamics of binding to a partner protein. By coupling genetic code reprogramming to deep mutational scanning, any number of amino acids can be exhaustively substituted into peptides, and single experiments can return all free energy changes of binding. We validate this approach by scanning two model protein-binding peptides with 21 diverse nonproteinogenic amino acids. Dense structure–activity maps were produced at the resolution of single aliphatic atom insertions and deletions. This permits rapid interrogation of interaction interfaces, as well as optimization of affinity, fine-tuning of physical properties, and systematic assessment of nonproteinogenic amino acids in binding and folding.
Collapse
|
142
|
Wang J, Forster AC. Ribosomal incorporation of unnatural amino acids: lessons and improvements from fast kinetics studies. Curr Opin Chem Biol 2018; 46:180-187. [DOI: 10.1016/j.cbpa.2018.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/21/2018] [Accepted: 07/13/2018] [Indexed: 11/30/2022]
|
143
|
Passioura T, Liu W, Dunkelmann D, Higuchi T, Suga H. Display Selection of Exotic Macrocyclic Peptides Expressed under a Radically Reprogrammed 23 Amino Acid Genetic Code. J Am Chem Soc 2018; 140:11551-11555. [PMID: 30157372 DOI: 10.1021/jacs.8b03367] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bioactive naturally occurring macrocyclic peptides often exhibit a strong bias for hydrophobic residues. Recent advances in in vitro display technologies have made possible the identification of potent macrocyclic peptide ligands to protein targets of interest. However, such approaches have so far been restricted to using libraries composed of peptides containing mixtures of hydrophobic and hydrophilic/charged amino acids encoded by the standard genetic code. In the present study, we have demonstrated ribosomal expression of exotic macrocyclic peptides under a radically reprogrammed, relatively hydrophobic, genetic code, comprising 12 proteinogenic and 11 nonproteinogenic amino acids. Screening of this library for affinity to the interleukin-6 receptor (IL6R) as a case study successfully identified exotic macrocyclic peptide ligands with high affinity, validating the feasibility of this approach for the discovery of relatively hydrophobic exotic macrocyclic peptide ligands.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| | - Wenyu Liu
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| | - Daniel Dunkelmann
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| | - Takashi Higuchi
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| | - Hiroaki Suga
- Department of Chemistry , Graduate School of Science, The University of Tokyo , 7-3-1, Hongo , Tokyo 113-0033 , Japan
| |
Collapse
|
144
|
Iegre J, Gaynord JS, Robertson NS, Sore HF, Hyvönen M, Spring DR. Two-Component Stapling of Biologically Active and Conformationally Constrained Peptides: Past, Present, and Future. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800052] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jessica Iegre
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| | | | | | - Hannah F. Sore
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| | - Marko Hyvönen
- Department of Biochemistry; University of Cambridge; Cambridge CB2 1GA UK
| | - David R. Spring
- Department of Chemistry; University of Cambridge; Cambridge CB2 1EW UK
| |
Collapse
|
145
|
Tajima K, Katoh T, Suga H. Genetic code expansion via integration of redundant amino acid assignment by finely tuning tRNA pools. Curr Opin Chem Biol 2018; 46:212-218. [PMID: 30072241 DOI: 10.1016/j.cbpa.2018.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
In all translation systems, the genetic code assigns codons to amino acids as building blocks of polypeptides, defining their chemical, structural and physiological properties. The canonical genetic code, however, utilizes only 20 proteinogenic amino acids redundantly encoded in 61 codons. In order to expand the building block repertoire, this redundancy was reduced by tuning composition of the transfer RNA (tRNA) mixture in vitro. Depletion of particular tRNAs from the total tRNA mixture or its reconstitution with in vitro-transcribed tRNASNNs (S = C or G, N = U, C, A or G) divided a codon box to encode two amino acids, expanding the repertoire to 23. The expanded genetic codes may benefit analysis of cellular regulatory pathways and drug screening.
Collapse
Affiliation(s)
- Kenya Tajima
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
146
|
|
147
|
Valeur E, Jimonet P. New Modalities, Technologies, and Partnerships in Probe and Lead Generation: Enabling a Mode-of-Action Centric Paradigm. J Med Chem 2018; 61:9004-9029. [DOI: 10.1021/acs.jmedchem.8b00378] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Eric Valeur
- Medicinal Chemistry, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal 431 83, Sweden
| | - Patrick Jimonet
- External Innovation Drug Discovery, Global Business Development & Licensing, Sanofi, 13 quai Jules Guesde, 94400 Vitry-sur-Seine, France
| |
Collapse
|
148
|
Katoh T, Passioura T, Suga H. Advances in in vitro genetic code reprogramming in 2014-2017. Synth Biol (Oxf) 2018; 3:ysy008. [PMID: 32995516 PMCID: PMC7445766 DOI: 10.1093/synbio/ysy008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 11/16/2022] Open
Abstract
To date, various genetic code manipulation methods have been developed to introduce non-proteinogenic amino acids into peptides by translation. However, the number of amino acids that can be used simultaneously remains limited even using these methods. Additionally, the scope of amino acid substrates that are compatible with ribosomal translation systems is also limited. For example, difficult substrates such as d-amino acids and β-amino acids are much less efficiently incorporated into peptides than l-α-amino acids. Here, we focus on three recently developed methodologies that address these issues: (i) artificial division of codon boxes to increase the number of available amino acids, (ii) orthogonal ribosomal translation systems to ‘duplicate’ the codon table and (iii) development of novel artificial tRNAs that enhance incorporation of difficult amino acid substrates.
Collapse
Affiliation(s)
- Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,JST, PRESTO, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
149
|
McAllister TE, Yeh TL, Abboud MI, Leung IKH, Hookway ES, King ONF, Bhushan B, Williams ST, Hopkinson RJ, Münzel M, Loik ND, Chowdhury R, Oppermann U, Claridge TDW, Goto Y, Suga H, Schofield CJ, Kawamura A. Non-competitive cyclic peptides for targeting enzyme-substrate complexes. Chem Sci 2018; 9:4569-4578. [PMID: 29899950 PMCID: PMC5969509 DOI: 10.1039/c8sc00286j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/23/2018] [Indexed: 01/19/2023] Open
Abstract
Affinity reagents are of central importance for selectively identifying proteins and investigating their interactions. We report on the development and use of cyclic peptides, identified by mRNA display-based RaPID methodology, that are selective for, and tight binders of, the human hypoxia inducible factor prolyl hydroxylases (PHDs) - enzymes crucial in hypoxia sensing. Biophysical analyses reveal the cyclic peptides to bind in a distinct site, away from the enzyme active site pocket, enabling conservation of substrate binding and catalysis. A biotinylated cyclic peptide captures not only the PHDs, but also their primary substrate hypoxia inducible factor HIF1-α. Our work highlights the potential for tight, non-active site binding cyclic peptides to act as promising affinity reagents for studying protein-protein interactions.
Collapse
Affiliation(s)
- T E McAllister
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - T-L Yeh
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - M I Abboud
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - I K H Leung
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
- School of Chemical Sciences , The University of Auckland , Private Bag 92019 , Auckland 1142 , New Zealand
| | - E S Hookway
- Botnar Research Centre , NIHR Oxford Biomedical Research Unit , University of Oxford , Windmill Road , Oxford , OX3 7LD , UK
| | - O N F King
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - B Bhushan
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
- Division of Cardiovascular Medicine , Radcliffe Department of Medicine , University of Oxford , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| | - S T Williams
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - R J Hopkinson
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - M Münzel
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - N D Loik
- Department of Chemistry , Graduate School of Science , The University of Tokyo , Tokyo 113-0033 , Japan
| | - R Chowdhury
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - U Oppermann
- Botnar Research Centre , NIHR Oxford Biomedical Research Unit , University of Oxford , Windmill Road , Oxford , OX3 7LD , UK
| | - T D W Claridge
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - Y Goto
- Department of Chemistry , Graduate School of Science , The University of Tokyo , Tokyo 113-0033 , Japan
| | - H Suga
- Department of Chemistry , Graduate School of Science , The University of Tokyo , Tokyo 113-0033 , Japan
- JST , CREST , The University of Tokyo , Tokyo 113-0033 , Japan
| | - C J Schofield
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
| | - A Kawamura
- Department of Chemistry , University of Oxford , Chemistry Research Laboratory , 12 Mansfield Road , Oxford OX1 3TA , UK .
- Division of Cardiovascular Medicine , Radcliffe Department of Medicine , University of Oxford , Wellcome Trust Centre for Human Genetics , Roosevelt Drive , Oxford OX3 7BN , UK
| |
Collapse
|
150
|
Passioura T, Watashi K, Fukano K, Shimura S, Saso W, Morishita R, Ogasawara Y, Tanaka Y, Mizokami M, Sureau C, Suga H, Wakita T. De Novo Macrocyclic Peptide Inhibitors of Hepatitis B Virus Cellular Entry. Cell Chem Biol 2018; 25:906-915.e5. [PMID: 29779957 DOI: 10.1016/j.chembiol.2018.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/01/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) constitutes a significant public health burden, and currently available treatment options are not generally curative, necessitating the development of new therapeutics. Here we have applied random non-standard peptide integrated discovery (RaPID) screening to identify small macrocyclic peptide inhibitors of HBV entry that target the cell-surface receptor for HBV, sodium taurocholate cotransporting polypeptide (NTCP). In addition to their anti-HBV activity, these molecules also inhibit cellular entry by the related hepatitis D virus (HDV), and are active against diverse strains of HBV (including clinically relevant nucleos(t)ide analog-resistant and vaccine escaping strains). Importantly, these macrocyclic peptides, in contrast to other NTCP-binding HBV entry inhibitors, exhibited no inhibition of NTCP-mediated bile acid uptake, making them appealing candidates for therapeutic development.
Collapse
Affiliation(s)
- Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Applied Biological Sciences, Tokyo University of Science, Noda 278-8510, Japan; JST CREST, Saitama 332-0012, Japan
| | - Kento Fukano
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Satomi Shimura
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan
| | - Wakana Saso
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Ryo Morishita
- CellFree Sciences Co., Ltd., Matsuyama 790-8577, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, Kiyose 204-8588, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University, Graduate School of Medicinal Sciences, Nagoya 467-8601, Japan
| | - Masashi Mizokami
- Genome Medical Sciences Project, National Center for Global Health and Medicine, Ichikawa 272-8516, Japan
| | - Camille Sureau
- Laboratoire de Virologie Moléculaire, Institut National de la Transfusion Sanguine, INSERM U1134, Paris 75015, France
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan; JST CREST, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Takaji Wakita
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 162-8640, Japan.
| |
Collapse
|