101
|
Furia F, Minella M, Gosetti F, Turci F, Sabatino R, Di Cesare A, Corno G, Vione D. Elimination from wastewater of antibiotics reserved for hospital settings, with a Fenton process based on zero-valent iron. CHEMOSPHERE 2021; 283:131170. [PMID: 34467949 DOI: 10.1016/j.chemosphere.2021.131170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/18/2021] [Accepted: 06/05/2021] [Indexed: 06/13/2023]
Abstract
The Fenton process activated by Zero Valent Iron (ZVI-Fenton) is shown here to effectively remove antibiotics reserved for hospital settings (specifically used to treat antibiotic-resistant infections) from wastewater, thereby helping in the fight against bacterial resistance. Effective degradation of cefazolin, imipenem and vancomycin in real urban wastewater was achieved at pH 5, which is quite near neutrality when compared with classic Fenton that works effectively at pH 3-4. The possibility to operate successfully at pH 5 has several advantages compared to operation at lower pH values: (i) lower reagent costs for pH adjustment; (ii) insignificant impact on wastewater conductivity, because lesser acid is required to acidify and lesser or no base for neutralization; (iii) undetectable release of dissolved Fe, which could otherwise be an issue for wastewater quality. The cost of reagents for the treatment ranges between 0.04 and 0.07 $ m-3, which looks very suitable for practical applications. The structures of the degradation intermediates of the studied antibiotics and their likely abundance suggest that, once the primary compound is eliminated, most of the potential to trigger antibiotic action has been removed. Application of the ZVI-Fenton technique to wastewater treatment could considerably lower the possibility for antibiotics to trigger the development of resistance in bacteria.
Collapse
Affiliation(s)
- Francesco Furia
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Marco Minella
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Fabio Gosetti
- Dipartimento di Scienze Dell'Ambiente e Della Terra, Università di Milano - Bicocca, Piazza Della Scienza 1, 20126, Milano, Italy
| | - Francesco Turci
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy
| | - Raffaella Sabatino
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Andrea Di Cesare
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Gianluca Corno
- Molecular Ecology Group, National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922, Verbania, VCO, Italy
| | - Davide Vione
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 5,9, 10125, Torino, Italy.
| |
Collapse
|
102
|
Shmychkova O, Zahorulko S, Luk'yanenko T, Velichenko A. Electrochemical oxidation of chloramphenicol with lead dioxide-surfactant composites. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2716-2726. [PMID: 34415641 DOI: 10.1002/wer.1628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/28/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
The PbO2 -2 wt.% sodium dodecyl sulfate composite formed from methanesulfonate electrolyte consists of 93.1% of α-phase PbO2 in contrast to the similar one synthesized from nitrate electrolyte, which contains 73.3% of β phase. The electrocatalytic activity of the obtained composites in the oxygen evolution reaction and oxidation of chloramphenicol was investigated. It was found that the Tafel slope significantly exceeds the theoretical value, which indicates a decrease in the degree of filling of the electrode surface with oxygen-containing particles. In the presence of organic compound and chloride ions in the solution, irreversible adsorption of the intermediate is observed, which leads to additional blocking of active centers on the oxide surface, which are involved in the oxidation of organic substance. It was established that the maximum rate of chloramphenicol conversion is 83.5% and 85% at 50 and 80 mA cm-2 , respectively, under kinetic control. The heterogeneous oxidation rate constant of chloramphenicol is 0.0035 min-1 . Oxidation of chloramphenicol occurs through the formation of 4-(-2-amino-1,3-dihydroxy-propanyl)-nitrobenzene with cleavage of dichloroacetic acid. Next, the amino group is oxidized to the nitro group to form 4-(2-nitro-1,3-dihydroxy-propanyl)-nitrobenzene. Subsequent electrolysis produces nitrobenzoic acid, which is oxidized to benzoic acid, later hydroquinone, then benzoquinone and a set of aliphatic compounds. PRACTITIONER POINTS: The PbO2 -2 wt.% SDS composite consists of 93.1% of α phase of PbO2 in contrast to those synthesized from nitrate electrolyte. The Tafel slope indicates a decrease of surface filling with oxygen-containing particles. Irreversible adsorption of the intermediate is observed in the presence of chloride ions.
Collapse
Affiliation(s)
- Olesia Shmychkova
- Physical Chemistry Department, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Svitlana Zahorulko
- Physical Chemistry Department, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Tatiana Luk'yanenko
- Physical Chemistry Department, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Alexander Velichenko
- Physical Chemistry Department, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| |
Collapse
|
103
|
Jiang S, Sun H, Wang H, Ladewig BP, Yao Z. A comprehensive review on the synthesis and applications of ion exchange membranes. CHEMOSPHERE 2021; 282:130817. [PMID: 34091294 DOI: 10.1016/j.chemosphere.2021.130817] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.
Collapse
Affiliation(s)
- Shanxue Jiang
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China; Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom
| | - Haishu Sun
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huijiao Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, China
| | - Bradley P Ladewig
- Barrer Centre, Department of Chemical Engineering, Imperial College London, Exhibition Road, London, SW7 2AZ, United Kingdom; Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Zhiliang Yao
- State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing, 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
104
|
Alulema-Pullupaxi P, Espinoza-Montero PJ, Sigcha-Pallo C, Vargas R, Fernández L, Peralta-Hernández JM, Paz JL. Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review. CHEMOSPHERE 2021; 281:130821. [PMID: 34000653 DOI: 10.1016/j.chemosphere.2021.130821] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
Water pollution is an environmental problem in constant raising because of population growing, industrial development, agricultural frontier expansion, and principally because of the lack of wastewater treatment technology to remove organic recalcitrant and toxic pollutants from industrial and domestic wastewater. Recalcitrant compounds are a serious environmental and health problem mainly due to their toxicity and potential hazardous effects on living organisms, including human beings. Conventional wastewater treatments have not been able to remove efficiently pollutants from water; however, electrochemical advanced oxidation processes (EAOPs) are able to solve this environmental concern. One of the most recent EAOPs technology is photoelectrocatalysis (PEC), it consists in applying an external bias potential to a semiconductor film placed over a conductive substrate to avoid the recombination of photogenerated electron-hole (e-/h+) pairs, increasing h+ availability and hydroxyl radicals' formation, responsible for promoting the degradation/mineralization of organic pollutants in aqueous medium. This review summarizes the recent advances in PEC as a promising technology for wastewater treatment. It addresses the fundamentals and kinetic aspects of PEC. An analysis of photoanode materials and of the configuration of photoelectrochemical reactors is also presented, including an analysis of the influence of the main operational parameters on the treatment of contaminated water. Finally, the most recent applications of PEC are reviewed, and the challenges and perspectives of PEC in wastewater treatment are discussed.
Collapse
Affiliation(s)
- Paulina Alulema-Pullupaxi
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, PO·Box: 1701-2184, Quito, Ecuador
| | - Patricio J Espinoza-Montero
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, PO·Box: 1701-2184, Quito, Ecuador.
| | - Carol Sigcha-Pallo
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, PO·Box: 1701-2184, Quito, Ecuador
| | - Ronald Vargas
- Instituto Tecnológico de Chascomús (INTECH), Universidad Nacional de San Martín (UNSAM)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Intendente Marino, Km 8.2, CC 164 (B7130IWA), Chascomús, Argentina; Departamento de Química, Universidad Simón Bolívar (USB), Apartado 89000, 1080A, Caracas, Venezuela
| | - Lenys Fernández
- Escuela de Ciencias Químicas, Pontificia Universidad Católica del Ecuador, Avenida 12 de Octubre y Roca, PO·Box: 1701-2184, Quito, Ecuador
| | - Juan M Peralta-Hernández
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, 36040, Guanajuato, Mexico
| | - J L Paz
- Departamento Académico de Química Inorgánica, Facultad de Química e Ingeniería Química, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
105
|
Hollanda LR, Santos SBF, Faustino JGAA, Dotto GL, Foletto EL, Chiavone-Filho O. Oil field-produced water treatment: characterization, photochemical systems, and combined processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52744-52763. [PMID: 34467489 DOI: 10.1007/s11356-021-16222-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Produced water, a mixture of inorganic and organic components, comprises the largest effluent stream from oil and gas activities. The removal of contaminants from this wastewater is receiving special attention of the researchers since most of them are persistent and difficult to remove with simple techniques. Several technologies from conventional to advanced oxidation processes have been employed to treat produced water. However, the achievement of greater efficiency may be conditioned to a combination of different wastewater treatment techniques. Hereupon, the present paper discusses three important aspects regarding produced water treatment: analytical methods used for characterization, relevant aspects regarding photochemical systems used for advanced oxidation processes, and combined techniques for treating oil field wastewaters. Analytical methods employed for the quantification of the main species contained in produced water are presented for a proper characterization. Photochemical aspects of the reaction systems such as operating conditions, types of irradiation sources, and technical details of reactors are also addressed. Finally, research papers concerning combined treatment techniques are discussed focusing on the essential contributions. Thus, this manuscript aims to assist in the development of novel techniques and the improvement of produced water treatment to obtain a high-quality treated effluent and reduce environmental impacts.
Collapse
Affiliation(s)
- Luana Rabelo Hollanda
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
| | | | | | - Guilherme Luiz Dotto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| | - Edson Luiz Foletto
- Department of Chemical Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Osvaldo Chiavone-Filho
- Department of Chemical Engineering, Federal University of Rio Grande do Norte, Natal, 59078-970, Brazil
| |
Collapse
|
106
|
Diao Y, Wei F, Zhang L, Yang Y, Yao Y. Study on the preparation, characterization, and electrocatalytic performance of
Gd
‐doped
PbO
2
electrodes. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yuhan Diao
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin P. R. China
| | - Feng Wei
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin P. R. China
| | - Liman Zhang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin P. R. China
| | - Yang Yang
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin P. R. China
| | - Yingwu Yao
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin P. R. China
| |
Collapse
|
107
|
Selective electrochemical H2O2 generation on the graphene aerogel for efficient electro-Fenton degradation of ciprofloxacin. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
108
|
The Surge of Metal-Organic-Framework (MOFs)-Based Electrodes as Key Elements in Electrochemically Driven Processes for the Environment. Molecules 2021; 26:molecules26185713. [PMID: 34577184 PMCID: PMC8467760 DOI: 10.3390/molecules26185713] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022] Open
Abstract
Metal–organic-frameworks (MOFs) are emerging materials used in the environmental electrochemistry community for Faradaic and non-Faradaic water remediation technologies. It has been concluded that MOF-based materials show improvement in performance compared to traditional (non-)faradaic materials. In particular, this review outlines MOF synthesis and their application in the fields of electron- and photoelectron-Fenton degradation reactions, photoelectrocatalytic degradations, and capacitive deionization physical separations. This work overviews the main electrode materials used for the different environmental remediation processes, discusses the main performance enhancements achieved via the utilization of MOFs compared to traditional materials, and provides perspective and insights for the further development of the utilization of MOF-derived materials in electrified water treatment.
Collapse
|
109
|
Li X, Yang B, Xiao K, Duan H, Wan J, Zhao H. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. WATER RESEARCH 2021; 203:117541. [PMID: 34416650 DOI: 10.1016/j.watres.2021.117541] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Efficient removal of low-concentration refractory pollutants is a crucial problem to ensuring water safety. The use of heterogeneous catalysis of molecular imprinting technology combined with traditional catalysts is a promising method to improve removal efficiency. Presently, the research into molecular imprinting targeting catalysts focuses mainly on material preparation and performance optimization. However, more researchers are investigating other applications of imprinting materials. This review provides recent progress in photocatalyst preparation, electrocatalyst, and Fenton-like catalysts synthesized by molecular imprinting. The principle and control points of target catalysts prepared by precipitation polymerization (PP) and surface molecular imprinting (S-MIP) are introduced. Also, the application of imprinted catalysts in targeted degradation of drugs, pesticides, environmental hormones, and other refractory pollutants is summarized. In addition, the reusability and stability of imprinted catalyst in water treatment are discussed, and the possible ecotoxicity risk is analyzed. Finally, we appraised the prospects, challenges, and opportunities of imprinted catalysts in the advanced oxidation process. This paper provides a reference for the targeted degradation of refractory pollutants and the preparation of targeted catalysts.
Collapse
Affiliation(s)
- Xitong Li
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huabo Duan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinquan Wan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
110
|
Kamyab H, Yuzir MA, Al-Qaim FF, Purba LDA, Riyadi FA. Application of Box-Behnken design to mineralization and color removal of palm oil mill effluent by electrocoagulation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 30:10.1007/s11356-021-16197-z. [PMID: 34480301 DOI: 10.1007/s11356-021-16197-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
In this study, palm oil mill effluent (POME) was treated using electrocoagulation, whereby the influencing factors including voltage, electrolysis time, and electrolyte amount were optimized to achieve the highest chemical oxygen demand (COD) and color removal efficiencies. Graphite was selected as electrode material due to its performance better compared to aluminum and copper. Response surface methodology (RSM) was carried out for optimization of the electrocoagulation operating parameters. The best model obtained using Box-Behnken design (BBD) were quadratic for COD removal (R2 = 0.9844), color reduction (R2 = 0.9412), and oil and grease removal (R2 = 0.9724). The result from the analysis of variance (ANOVA) was obtained to determine the relationship between factors and treatment efficiencies. The experimental results under optimized conditions such as voltage 14, electrolysis time of 3 h, and electrolyte amount of 13.41 g/L show that the electrocoagulation process effectively reduced the COD (56%), color (65%), and oil and grease (99%) of the POME treatment. Graphical abstract.
Collapse
Affiliation(s)
- Hesam Kamyab
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Muhammad Ali Yuzir
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Fouad Fadhil Al-Qaim
- Department of Chemistry, Faculty of Sciences for Women, University of Babylon, Hilla, Iraq
| | - Laila Dina Amalia Purba
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| | - Fatimah Azizah Riyadi
- Department of Chemical and Environmental Engineering (ChEE), Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
111
|
Salmerón I, Oller I, Malato S. Solar photo-assisted electrochemical processes applied to actual industrial and urban wastewaters: A practical approach based on recent literature. CHEMOSPHERE 2021; 279:130560. [PMID: 34134406 DOI: 10.1016/j.chemosphere.2021.130560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
The application of electrochemical processes for wastewater treatment has increase significantly in the last two decades. However, most of the works are focused on lab-scale systems testing in saline simulated solutions spiked with a reference organic compound, evidencing the scarcity of studies on actual wastewaters through a more realistic practical approach. The aim of the present work is assessing the performance of electrochemical treatments in actual matrices, considering the formation of different oxidants species, apart from hydroxyl radicals, from dissolved ions contained in target effluents as well as both, the regeneration of Fe2+ and their combination with a light irradiation source. The degradation of a mix of microcontaminants in water matrices with different complexity by solar photoelectron-Fenton at natural pH and at pilot scale has been carried out at Plataforma Solar de Almería. Higher degradation rates were obtained when focusing on the more complex and saline matrices. In addition, complex industrial wastewaters mineralization was also studied by means of solar assisted electro-oxidation, showing the crucial role of ammonium concentration in the effluent, since it acts as a competitor for active chlorine species and so reducing the mineralization rate.
Collapse
Affiliation(s)
- I Salmerón
- Plataforma Solar de Almería, Ctra Senés Km 4, 04200, Tabernas, Almería, Spain
| | - I Oller
- Plataforma Solar de Almería, Ctra Senés Km 4, 04200, Tabernas, Almería, Spain
| | - S Malato
- Plataforma Solar de Almería, Ctra Senés Km 4, 04200, Tabernas, Almería, Spain
| |
Collapse
|
112
|
Ghanbari F, Wang Q, Hassani A, Wacławek S, Rodríguez-Chueca J, Lin KYA. Electrochemical activation of peroxides for treatment of contaminated water with landfill leachate: Efficacy, toxicity and biodegradability evaluation. CHEMOSPHERE 2021; 279:130610. [PMID: 34134413 DOI: 10.1016/j.chemosphere.2021.130610] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Contaminated water with landfill leachate (CWLL) with high salinity and high organic content (total organic carbon (TOC) = 649 mg/L and Chemical Oxygen Demand (COD) = 1175 mg/L) is a toxic and non-biodegradable effluent. The present research aimed to assess the treatment effectiveness of CWLL by electrocoagulation (EC)/oxidant process. The ferrous ions generated during the process were employed as coagulant and catalyst for the activation of different oxidants such as peroxymonosulfate (PMS), peroxydisulfate (PDS), hydrogen peroxide (HP), and percarbonate (PC) to decrease TOC in CWLL. Removal of ammonia, color, phosphorous, and chemical oxygen demand (COD) from CWLL effluent was explored at various processes. EC/HP had the best performance (∼73%) in mineralization of organic pollutants compared to others under the condition of pH 6.8, applied current of 200 mA, oxidant dosage of 6 mM, and time of 80 min. The oxidation priority was to follow this order: EC/HP > EC/PMS > EC/PDS > EC/PC. These processes enhanced the biodegradability of CWLL based on the average oxidation state and biochemical oxygen demand (BOD)/COD ratio. SUVA254 and E2/E3 indices were also investigated on obtained effluents. The phytotoxicity evaluation was carried out based on the germination index, indicating that the electro-activated oxidant was an effective system to reduce the toxicity of polluted waters. EC/HP showed supremacy compared to others in terms of efficiency, cost, and detoxification. Therefore, the electro-activated oxidant system is a good means for removing organic pollutants from real wastewater.
Collapse
Affiliation(s)
- Farshid Ghanbari
- Department of Environmental Health Engineering, Abadan Faculty of Medical Sciences, Abadan, Iran.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Aydin Hassani
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138, Nicosia, TRNC, Mersin 10, Turkey.
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Jorge Rodríguez-Chueca
- Universidad Politécnica de Madrid (UPM), E.T.S. de Ingenieros Industriales, Departamento de Ingeniería Química Industrial y Del Medio Ambiente, C/ de José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture & Research Center of Sustainable Energy and Nanotechnology, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan.
| |
Collapse
|
113
|
Muelas-Ramos V, Sampaio MJ, Silva CG, Bedia J, Rodriguez JJ, Faria JL, Belver C. Degradation of diclofenac in water under LED irradiation using combined g-C 3N 4/NH 2-MIL-125 photocatalysts. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126199. [PMID: 34492963 DOI: 10.1016/j.jhazmat.2021.126199] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
This study reports the photocatalytic degradation of diclofenac by hybrid materials prepared by combination of graphitic carbon nitride (g-C3N4) and titanium-metal organic framework (NH2-MIL-125), in different mass proportions (MOF:C3N4 of 25:75, 50:50 and 75:25). The hybrid materials were fully characterized, and their properties compared to those of the individual components, whose presence was confirmed by XRD. The porous structure was the result of the highly microporous character of the MOF and the non-porous one of g-C3N4. The band gap values were very close to that of MOF component. Photoluminescence measurements suggested an increase on the recombination rate associated to the presence of g-C3N4. Photodegradation tests of diclofenac (10 mg·L-1) were performed under UV LED irradiation at 384 nm. The hybrid materials showed higher photocatalytic activity than the individual components, suggesting the occurrence of some synergistic effect. The photocatalyst with a MOF:g-C3N4 ratio of 50:50 yielded the highest conversion rate, allowing complete disappearance of diclofenac in 2 h. Experiments with scavengers showed that superoxide radicals and holes played a major role in the photocatalytic process photodegradation, being that of hydroxyl radicals less significant. From the identification of by-products species, a degradation pathway was proposed for the degradation of diclofenac under the experimental operating conditions.
Collapse
Affiliation(s)
- V Muelas-Ramos
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain.
| | - M J Sampaio
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidad do Porto, Rua Dr. Roberto Frías s/n, 4200-465 Porto, Portugal.
| | - C G Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidad do Porto, Rua Dr. Roberto Frías s/n, 4200-465 Porto, Portugal
| | - J Bedia
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain
| | - J J Rodriguez
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain
| | - J L Faria
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Departamento de Engenharia Química, Faculdade de Engenharia, Universidad do Porto, Rua Dr. Roberto Frías s/n, 4200-465 Porto, Portugal
| | - C Belver
- Departamento de Ingeniería Química, Universidad Autónoma de Madrid, Campus Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
114
|
Bury NA, Mumford KA, Stevens GW. The electro-Fenton regeneration of Granular Activated Carbons: Degradation of organic contaminants and the relationship to the carbon surface. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125792. [PMID: 33878650 DOI: 10.1016/j.jhazmat.2021.125792] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/20/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Electrochemical regeneration of Granular Activated Carbon is an emerging treatment option to restore adsorption capacity in systems designed to remove organic contaminants from aqueous solutions. The electro-Fenton process is one such electrochemical process and it is reviewed along with other members of its family including Photoelectro-Fenton and Heterogeneous electro-Fenton and electro-Fenton like reactions, for its ability to regenerate Granular Activated Carbons contaminated with organics. The behaviour of critical operating parameter such as pH, current, catalyst concentration and initial contaminant concentration are reviewed to find optimal operating conditions. The relationship between electro-Fenton regeneration and the chemical and physical surface of the carbon is also explored. Understanding regeneration mechanisms and the optimal operating conditions enables these technologies to be used commercially and to be scaled-up and treat contaminated waters more efficiently.
Collapse
Affiliation(s)
- Naomi A Bury
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
115
|
Ma P, Prestigiacomo C, Proietto F, Galia A, Scialdone O. Electrochemical Treatment of Wastewater by ElectroFenton, Photo‐ElectroFenton, Pressurized‐ElectroFenton and Pressurized Photo ElectroFenton: A First Comparison of these Innovative Routes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pengfei Ma
- Department of Chemical Engineering Taiyuan University of Technology Taiyuan 030024 China
- Dipartimento di Ingegneria Università degli Studi di Palermo Viale delle Scienze Palermo 90128 Italy
| | - Claudia Prestigiacomo
- Dipartimento di Ingegneria Università degli Studi di Palermo Viale delle Scienze Palermo 90128 Italy
| | - Federica Proietto
- Dipartimento di Ingegneria Università degli Studi di Palermo Viale delle Scienze Palermo 90128 Italy
| | - Alessandro Galia
- Dipartimento di Ingegneria Università degli Studi di Palermo Viale delle Scienze Palermo 90128 Italy
| | - Onofrio Scialdone
- Dipartimento di Ingegneria Università degli Studi di Palermo Viale delle Scienze Palermo 90128 Italy
| |
Collapse
|
116
|
Sarmin S, Tarek M, Cheng CK, Roopan SM, Khan MMR. Augmentation of microbial fuel cell and photocatalytic polishing technique for the treatment of hazardous dimethyl phthalate containing wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125587. [PMID: 33721778 DOI: 10.1016/j.jhazmat.2021.125587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
In the present paper, the potentiality of integrating microbial fuel cells (MFCs) with a photocatalytic reactor to maximize the wastewater treatment efficiency with concurrent power generation was explored. Dimethyl phthalate (DMP) and acetic acid (AA) were the employed substrate and the co-substrate, respectively, using Pseudomonas aeruginosa as a biocatalyst. MFCs operated by single substrate showed the maximum power generation of 0.75-3.84 W m-3 whereas an addition of AA as the co-substrate yielded 3-12 fold higher power generation. Pseudomonas aeruginosa produced phenazine-1-carboxylic acid in DMP-fed MFC as the metabolite whereas AA along with DMP yielded pyocyanin which reduced the charge transfer resistance. Chemical oxygen demand (COD) removal efficiency in the MFCs was circa 62% after 11 days of operation. Thereafter, it further increased albeit with a drastic reduction in power generation. Subsequently, the MFC anolyte was treated in a photocatalytic reactor under visible light irradiation and catalyzed by CuO-gC3N4. The performance of photocatalytic reactor was evaluated, with COD and total organic carbon (TOC) removal efficiency of 88% and 86% after 200 min of light irradiation. The present work suggests that the MFC can be integrated with photocatalysis as a sustainable wastewater treatment method with concurrent power generation.
Collapse
Affiliation(s)
- Sumaya Sarmin
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia
| | - Mostafa Tarek
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia
| | - Chin Kui Cheng
- Department of Chemical Engineering, College of Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India
| | - Md Maksudur Rahman Khan
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Gambang 26300, Pahang, Malaysia; Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, Kuantan 26300, Pahang, Malaysia.
| |
Collapse
|
117
|
Study of simultaneous electro-Fenton and adsorption processes in a reactor containing porous carbon electrodes and particulate activated carbon. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
118
|
Xu J, Olvera-Vargas H, Teo FYH, Lefebvre O. A comparison of visible-light photocatalysts for solar photoelectrocatalysis coupled to solar photoelectro-Fenton: Application to the degradation of the pesticide simazine. CHEMOSPHERE 2021; 276:130138. [PMID: 33740647 DOI: 10.1016/j.chemosphere.2021.130138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
Three different visible-light photocatalysts (hematite (α-Fe2O3), bismuth vanadate (BiVO4) and Mo-doped bismuth vanadate (BiMoVO4)) deposited on transparent fluorine-doped SnO2 (FTO) were evaluated for the solar-driven photoelectrocatalytic treatment of emerging pollutants. BiMoVO4 was found to be the most effective photoanode, yielding the fastest degradation rate constant and highest mineralization efficiency using phenol as the oxidation probe. The BiMoVO4 photoanode was then used to degrade the herbicide simazine in a photoelectrolytic cell combining photoelectrocatalysis (PEC) with photoelectron-Fenton (PEF) under solar light (SPEC-SPEC). Total simazine removal was achieved within 1 min of treatment (kapp = 4.21 min-1) at the optimum electrode potential of 2.5 V vs Ag/AgCl, with complete TOC removal in 2 h. The analysis of anionic species in solution during treatment showed that most of the nitrogen heteroatoms in the simazine structure were converted into NO3- following •OH addition to organic N. This innovative process combining BiMoVO4-PEC with PEF using solar light as a sustainable source of energy (SPEC-SPEF) achieved the highest degradation/mineralization efficiency ever reported for simazine treatment. Besides, this is the first work reporting the photo(electrochemical) degradation of this toxic herbicide.
Collapse
Affiliation(s)
- Jianxiong Xu
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Hugo Olvera-Vargas
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore; Instituto de Energías Renovables, Universidad Nacional Autónoma de México (IER-UNAM), Priv. Xochicalco S/N, Col. Centro, Temixco, Morelos, 62580, Mexico
| | - Felix Yee Hao Teo
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Olivier Lefebvre
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore.
| |
Collapse
|
119
|
Divyapriya G, Singh S, Martínez-Huitle CA, Scaria J, Karim AV, Nidheesh PV. Treatment of real wastewater by photoelectrochemical methods: An overview. CHEMOSPHERE 2021; 276:130188. [PMID: 33743419 DOI: 10.1016/j.chemosphere.2021.130188] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
An inadequate and inefficient performance ability of conventional methods to remove persistent organic pollutants urges the need of alternative or complementary advanced wastewater treatments methods to ensure the safer reuse of reclaimed water. Photoelectrochemical methods are emerging as promising options among other advanced oxidation processes because of the higher treatment efficiency achieved due to the synergistic effects of combined photochemical and electrolysis reactions. Synergistic effects of integrated photochemical, electrochemical and photoelectrochemical processes not only increase the hydroxyl radical production; an enhancement on the mineralization ability through various side reactions is also achieved. In this review, fundamental reaction mechanisms of different photoelectrochemical methods including photoelectrocatalysis, photo/solar electro-Fenton, photo anodic oxidation, photoelectroperoxone and photocatalytic fuel cell are discussed. Various integrated photochemical, electrochemical and photoelectrochemical processes and their synergistic effects are elaborated. Different reactor configurations along with the positioning of electrodes, photocatalysts and light source of the individual/combined photoelectrochemical treatment systems are discussed. Modified photoanode and cathode materials used in the photoelectrochemical reactors and their performance ability is presented. Photoelectrochemical treatment of real wastewater such as landfill leachate, oil mill, pharmaceutical, textile, and tannery wastewater are reviewed. Hydrogen production efficiency in the photoelectrochemical process is further elaborated. Cost and energy involved in these processes are briefed, but the applicability of photocatalytic fuel cells to reduce the electrical dependence is also summarised. Finally, the use of photoelectrochemical approaches as an alternative for treating soil washing effluents is currently discussed.
Collapse
Affiliation(s)
- G Divyapriya
- Virginia Polytechnic Institute and State University, USA
| | - Seema Singh
- Omvati Devi Degree College, Bhalaswagaj, Haridwar, India
| | - Carlos A Martínez-Huitle
- Institute of Chemistry, Federal University of Rio Grande do Norte, Lagoa Nova, CEP 59078-970, Natal, RN, Brazil.
| | - Jaimy Scaria
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| | - Ansaf V Karim
- Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, India
| | - P V Nidheesh
- CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
120
|
Effectiveness of Advanced Oxidation Processes in Wastewater Treatment: State of the Art. WATER 2021. [DOI: 10.3390/w13152094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In recent years, many scientific studies have focused their efforts on quantifying the different types of pollutants that are not removed in wastewater treatment plants. Compounds of emerging concern (CECs) have been detected in different natural environments. The presence of these compounds in wastewater is not new, but they may have consequences in the future. These compounds reach the natural environment through various routes, such as wastewater. This review focuses on the study of tertiary treatment with advanced oxidation processes (AOPs) for the degradation of CECs. The main objective of the different existing AOPs applied to the treatment of wastewater is the degradation of pollutants that are not eliminated by means of traditional wastewater treatment.
Collapse
|
121
|
Zhu Y, Fan W, Feng W, Wang Y, Liu S, Dong Z, Li X. A critical review on metal complexes removal from water using methods based on Fenton-like reactions: Analysis and comparison of methods and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125517. [PMID: 33684817 DOI: 10.1016/j.jhazmat.2021.125517] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
Metals mainly exist in the form of complexes in urban wastewater, fresh water and even drinking water, which are difficult to remove and further harm human health. Fenton-like reaction has been used for the removal of metal complexes. Effective removal of metal complexes using Fenton-like reaction requires the removal of both metals and organic ligands, meanwhile, the fate of metals and organic pollutions must be clearly understood. Thus, this review summarizes the relevant research on metal complex removal from using Fenton-like reactions in the past ten years, with the detailed removal approaches and mechanisms analyzed. Electro-, photo-, microwave/ultrasound-Fenton reactions or the synergistic Fenton reaction have been shown to exhibit excellent metal complex treatment capabilities. Furthermore, various catalysts, such as transition metals, bimetals and metal-free catalytic systems can expand the potential applications of Fenton-like reactions. Novel Fenton reaction methods without the addition of metals or H2O2, with construction of a dual active center catalyst, or with the introduction of other free radicals, are all worthy of further investigation. Due to increasing levels of environmental metal and organic pollutions remediation requirements, more research is required for the development of economical and efficient novel Fenton-like processes.
Collapse
Affiliation(s)
- Ying Zhu
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - WenHong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| | - WeiYing Feng
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Ying Wang
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Shu Liu
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - ZhaoMin Dong
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - XiaoMin Li
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| |
Collapse
|
122
|
Hasija V, Nguyen VH, Kumar A, Raizada P, Krishnan V, Khan AAP, Singh P, Lichtfouse E, Wang C, Thi Huong P. Advanced activation of persulfate by polymeric g-C 3N 4 based photocatalysts for environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125324. [PMID: 33582464 DOI: 10.1016/j.jhazmat.2021.125324] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 05/08/2023]
Abstract
Photocatalytic materials for photocatalysis is recently proposed as a promising strategy to address environmental remediation. Metal-free graphitic carbon nitride (g-C3N4), is an emerging photocatalyst in sulfate radical based advanced oxidation processes. The solar-driven electronic excitations in g-C3N4 are capable of peroxo (O‒O) bond dissociation in peroxymonosulfate/peroxydisulfate (PMS/PDS) and oxidants to generate reactive free radicals, namely SO4•- and OH• in addition to O2•- radical. The synergistic mechanism of g-C3N4 mediated PMS/PDS photocatalytic activation, could ensure the generation of OH• radicals to overcome the low reductive potential of g-C3N4 and fastens the degradation reaction rate. This article reviews recent work on heterojunction formation (type-II heterojunction and direct Z-scheme) to achieve the bandgap for extended visible light absorption and improved charge carrier separation for efficient photocatalytic efficiency. Focus is placed on the fundamental mechanistic routes followed for PMS/PDS photocatalytic activation over g-C3N4-based photocatalysts. A particular emphasis is given to the factors influencing the PMS/PDS photocatalytic activation mechanism and the contribution of SO4•- and OH• radicals that are not thoroughly investigated and require further studies. Concluding perspectives on the challenges and opportunities to design highly efficient persulfate-activated g-C3N4 based photocatalysts toward environmental remediation are also intensively highlighted.
Collapse
Affiliation(s)
- Vasudha Hasija
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Van-Huy Nguyen
- Key Laboratory of Advanced Materials for Energy and Environmental Applications, Lac Hong University, Dong Nai 810000, Viet Nam
| | - Ajay Kumar
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| | - Venkata Krishnan
- School of Basic Sciences and Advanced Materials Research Center, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P.O.Box 80203, Jeddah 21589, Saudi Arabia; Chemistry Department, Faculty of Science, King Abdulaziz University, P.O.Box 80203, Jeddah, Saudi Arabia
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence 13100, France; International Research Centre for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an, PR China
| | - Chuanyi Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Pham Thi Huong
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang 550000, Viet Nam
| |
Collapse
|
123
|
Ghanbari F, Hassani A, Wacławek S, Wang Z, Matyszczak G, Lin KYA, Dolatabadi M. Insights into paracetamol degradation in aqueous solutions by ultrasound-assisted heterogeneous electro-Fenton process: Key operating parameters, mineralization and toxicity assessment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118533] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
124
|
García-Espinoza JD, Robles I, Durán-Moreno A, Godínez LA. Photo-assisted electrochemical advanced oxidation processes for the disinfection of aqueous solutions: A review. CHEMOSPHERE 2021; 274:129957. [PMID: 33979920 PMCID: PMC8121763 DOI: 10.1016/j.chemosphere.2021.129957] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 05/04/2023]
Abstract
Disinfection is usually the final step in water treatment and its effectiveness is of paramount importance in ensuring public health. Chlorination, ultraviolet (UV) irradiation and ozone (O3) are currently the most common methods for water disinfection; however, the generation of toxic by-products and the non-remnant effect of UV and O3 still constitute major drawbacks. Photo-assisted electrochemical advanced oxidation processes (EAOPs) on the other hand, appear as a potentially effective option for water disinfection. In these processes, the synergism between electrochemically produced active species and photo-generated radicals, improve their performance when compared with the corresponding separate processes and with other physical or chemical approaches. In photo-assisted EAOPs the inactivation of pathogens takes place by means of mechanisms that occur at different distances from the anode, that is: (i) directly at the electrode's surface (direct oxidation), (ii) at the anode's vicinity by means of electrochemically generated hydroxyl radical species (quasi-direct), (iii) or at the bulk solution (away from the electrode surface) by photo-electrogenerated active species (indirect oxidation). This review addresses state of the art reports concerning the inactivation of pathogens in water by means of photo-assisted EAOPs such as photo-electrocatalytic process, photo-assisted electrochemical oxidation, photo-electrocoagulation and cathodic processes. By focusing on the oxidation mechanism, it was found that while quasi-direct oxidation is the preponderant inactivation mechanism, the photo-electrocatalytic process using semiconductor materials is the most studied method as revealed by numerous reports in the literature. Advantages, disadvantages, trends and perspectives for water disinfection in photo-assisted EAOPs are also analyzed in this work.
Collapse
Affiliation(s)
- Josué Daniel García-Espinoza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | - Irma Robles
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico
| | | | - Luis A Godínez
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica, Parque Tecnológico Querétaro Sanfandila, 76703, Pedro Escobedo, Querétaro, Mexico.
| |
Collapse
|
125
|
Ye S, Chen Y, Yao X, Zhang J. Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: A review. CHEMOSPHERE 2021; 273:128503. [PMID: 33070977 DOI: 10.1016/j.chemosphere.2020.128503] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
As a powerful technique by combining photocatalysis with electrochemistry, photoelectrocatalysis has been extensively explored to simultaneously remove mixed pollutants of organic and heavy metal in wastewater in the past decade. In the photoelectrocatalytic system, the bias potential can remarkably promote the oxidation of organic pollutants on the photoanode by suppressing the recombination of photogenerated electron-hole pairs and extending the lifetime of photogenerated holes. Meanwhile, some photogenerated electrons are driven by the bias potential to the cathode to reduce heavy metals. In this review, we summarize the research advances in photoelectrocatalytic treatment of organic-heavy metal mixed pollution systems under UV light, visible light and sunlight. We demonstrate the main operation variables affecting the photoelectrocatalytic removal processes of organic pollutants and heavy metals. The problems for utilization of solar energy in photoelectrocatalysis are discussed. Finally, this review proposes the perspectives for future development of photoelectrocatalysis to industrial applications.
Collapse
Affiliation(s)
- Shangshi Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingxu Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoling Yao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jingdong Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
126
|
Photo-Fenton process under sunlight irradiation for textile wastewater degradation: monitoring of residual hydrogen peroxide by spectrophotometric method and modeling artificial neural network models to predict treatment. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01449-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
127
|
Amali S, Zarei M, Ebratkhahan M, Khataee A. Preparation of Fe@Fe 2O 3/3D graphene composite cathode for electrochemical removal of sulfasalazine. CHEMOSPHERE 2021; 273:128581. [PMID: 33082000 DOI: 10.1016/j.chemosphere.2020.128581] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
In the present study, heterogeneous electro-Fenton (EF) process was applied to remove the sulfasalazine (SU) pharmaceutical from aqueous solutions. In the first part, 3D graphene loaded with Fe@Fe2O3 core-shell nanowires (Fe@Fe2O3/3D-GO) was used as a cathode electrode in the EF process. Graphene oxide (GO) was synthesized for the synthesis of 3D graphene nanocomposites using the improved Hummers' method and subsequently 3D graphene synthesized by the hydrothermal method using glycine. Finally, Fe@Fe2O3/3D-GO composite was synthesized and its properties were assessed by Scanning electron microscopy, Atomic force microscopy, Brunauer-Emmett-Teller, Fourier-transform infrared spectroscopy and X-ray diffraction methods. Then, the cathode electrode was prepared using the resulting composite and its performance was evaluated using Cyclic Voltammetry analysis. In the final part of this work, the Fe@Fe2O3/3D-GO electrode was used as the cathode electrode in the heterogeneous EF process to remove SU from aqueous solutions. The effect of operating parameters such as applied current (mA), initial pH of solution, initial pharmaceutical concentration (mg L-1) and process time (min) on pharmaceutical removal efficiency under heterogeneous EF process was investigated by response surface methodology. The results showed that the optimum values for applied current, pH, initial pharmaceutical concentration and electrolysis time were respectively 300 mA, 7, 30 mg L-1 and 100 min, resulting 99.60% of SU removal. Finally, the intermediates of SU degradation were determined by Gas chromatography-mass spectrometry analysis and the amount of mineralization was determined by total organic carbon analysis. About 5.2% drop in the SU removal efficiency was observed within 8 operational runs.
Collapse
Affiliation(s)
- Somayeh Amali
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Mahmoud Zarei
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Masoud Ebratkhahan
- Research Laboratory of Environmental Remediation, Department of Applied Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Environmental Engineering, Gebze Technical University, 41400, Gebze, Turkey.
| |
Collapse
|
128
|
Sharif HMA, Mahmood N, Wang S, Hussain I, Hou YN, Yang LH, Zhao X, Yang B. Recent advances in hybrid wet scrubbing techniques for NO x and SO 2 removal: State of the art and future research. CHEMOSPHERE 2021; 273:129695. [PMID: 33524756 DOI: 10.1016/j.chemosphere.2021.129695] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Recently, the discharge of flue gas has become a global issue due to the rapid development in industrial and anthropogenic activities. Various dry and wet treatment approaches including conventional and hybrid hybrid wet scrubbing have been employing to combat against these toxic exhaust emissions. However, certain issues i.e., large energy consumption, generation of secondary pollutants, low regeneration of scrubbing liquid and high efficieny are hindering their practical applications on industrial level. Despite this, the hybrid wet scrubbing technique (advanced oxidation, ionic-liquids and solid engineered interface hybrid materials based techniques) is gaining great attention because of its low installation costs, simultaneous removal of multi-air pollutants and low energy requirements. However, the lack of understanding about the basic principles and fundamental requirements are great hurdles for its commercial scale application, which is aim of this review article. This review article highlights the recent developments, minimization of GHG, sustainable improvements for the regeneration of used catalyst via green and electron rich donors. It explains, various hybrid wet scrubbing techniques can perform well under mild condition with possible improvements such as development of stable, heterogeneous catalysts, fast and in-situ regeneration for large scale applications. Finally, it discussed recovery of resources i.e., N2O, NH3 and N2, the key challenges about several competitive side products and loss of catalytic activity over time to treat toxic gases via feasible solutions by hybrid wet scrubbing techniques.
Collapse
Affiliation(s)
| | - Nasir Mahmood
- School of Engineering, RMIT University, 124 La Trobe Street, 3001, Melbourne, Victoria, Australia
| | - Shengye Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China
| | - Ijaz Hussain
- Faculty of Science, Universiti Teknologi Malaysia, UTM, 81310, Johor Bahru, Malaysia
| | - Ya-Nan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, PR China
| | - Li-Hui Yang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Xu Zhao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China.
| |
Collapse
|
129
|
Zhang G, Xie M, Zhao J, Wei S, Zheng H, Zhang S. Key structural features that determine the selectivity of UV/acetylacetone for the degradation of aromatic pollutants when compared to UV/H 2O 2. WATER RESEARCH 2021; 196:117046. [PMID: 33774353 DOI: 10.1016/j.watres.2021.117046] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Acetylacetone (AA) has proven to be a potent photo-activator for the decolorization of dyes. However, there is very limited information on the quantitative structure-activity relationship (QSAR) and the mechanisms of dye degradation by UV/AA. Herein, the photolysis of 65 aromatic compounds (dyes and dye precursors) was investigated at three pH values (4.0, 6.0, 9.0) by UV/AA and UV/H2O2. The obtained pseudo-first-order photodegradation rate constants (k1) were processed using statistical analysis. The correlation between the k1 values and the number of photons absorbed by AA, together with the observed pH effect, suggested that the protonated enol structure of AA plays a crucial role in the photodecolorization of dyes. According to quantum chemical computation, photo-induced direct electron transfer between the excited state of AA and the dye was the main mechanism in the UV/AA process. QSAR models demonstrated that the molecular size and stability were the key factors that determined the efficiency of UV/H2O2 for dye degradation. Statistically, the UV/AA process was target-selective and suffered less from the inner filter effect, which made it more effective than the UV/H2O2 process for dye degradation. The selectivity of the UV/AA process was mainly embodied in the substituent effects: dyes with hydroxyl groups in conjugated systems decomposed faster than those with nitro-substitution or ortho-substituted sulfonate groups. The results can be used for the selection of appropriate photochemical approaches for the treatment of dye-contaminated water.
Collapse
Affiliation(s)
- Guoyang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Min Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuangshuang Wei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongcen Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
130
|
Bugueño-Carrasco S, Monteil H, Toledo-Neira C, Sandoval MÁ, Thiam A, Salazar R. Elimination of pharmaceutical pollutants by solar photoelectro-Fenton process in a pilot plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23753-23766. [PMID: 33099736 DOI: 10.1007/s11356-020-11223-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
In this study, the simultaneous degradation of antibiotics (ampicillin, sulfamethazine, and tetracycline; and non-steroidal anti-inflammatories (diclofenac and salicylic acid)) including the total organic carbon abatement by solar photoelectro-Fenton process was assessed. Eight liters of solution containing the mixture of the five pharmaceuticals in 1 mmol L-1 Fe2+, 0.05 mol L-1 Na2SO4 at pH 3 and 35 °C were electrolyzed applying different current densities (j = 10, 25, and 50 mA cm-2) in a solar-electrochemical pilot plant. The pilot plant was equipped with an electrochemical filter press cell with a dimensionally stable anode (DSA type) and an air-diffusion cathode coupled to a solar photoreactor exposed directly to sunlight radiation. All pharmaceuticals were degraded during the first 10 min. A TOC removal efficiency of 99.2% after 100 min of treatment with an energy consumption of 534.23 kW h (kgTOC)-1 and 7.15 kW h m-3 was achieved. The pharmaceutical concentration decay followed a pseudo-first-order kinetics. The specific energy per unit of mass of ampicillin, diclofenac, salicylic acid, sulfamethazine, and tetracycline was obtained at 11.73, 19.56, 35.2, 11.73, and 39.32 kW h (kgPD)-1 for ampicillin, diclofenac, salicylic acid, sulfamethazine, and tetracycline, respectively. With our results, we demonstrated that SPEF is an emerging technology for the treatment of this type of pollutants in short time.
Collapse
Affiliation(s)
- Sebastián Bugueño-Carrasco
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Hélène Monteil
- Laboratoire Géomatériaux et Environnement, LGE, Université Paris-Est, EA 4508, UPEM, 77454, Marne-la-Vallée, France
| | - Carla Toledo-Neira
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
| | - Miguel Ángel Sandoval
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile
- Departamento de Ingeniería Química, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Guanajuato, Mexico
| | - Abdoulaye Thiam
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Ricardo Salazar
- Departamento de Química de los Materiales, Laboratorio de Electroquímica Medio Ambiental, LEQMA, Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
131
|
Wang A, Zhang Y, Han S, Guo C, Wen Z, Tian X, Li J. Electro-Fenton oxidation of a β-lactam antibiotic cefoperazone: Mineralization, biodegradability and degradation mechanism. CHEMOSPHERE 2021; 270:129486. [PMID: 33418225 DOI: 10.1016/j.chemosphere.2020.129486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 05/07/2023]
Abstract
Oxidation of a commonly-used β-lactam pharmaceutical, cefoperazone (CFPZ), was systematically investigated by anodic oxidation (AO), AO in presence of H2O2 electro-generation (AO-H2O2) and electro-Fenton (EF) processes with an activated carbon fiber cathode from the biodegradability viewpoint. The degradation and mineralization rates increased in a sequence of AO < AO-H2O2 < EF. Even CPFZ could be efficiently degraded in EF process, achieving complete CFPZ mineralization was rather difficult. Thereby, the biodegradability of the effluent after electrochemical pretreatment was examined to test the feasibility of the combination of electrochemical and biological processes. The results suggested that compared with AO and AO-H2O2, EF process could effectively transform the non-biodegradable CFPZ into biocompatible materials with a high BOD5/COD value (0.33 after 720 min), allowing the possible biotreatment for further remediation. This behavior was relatively accorded with the average oxidation state (AOS) results, evidencing the potential of EF process in enhancing the biodegradability of CFPZ. The determination of inorganic ions revealed that N in CFPZ molecular was oxidized into NH4+ and NO3- ions in EF process. Oxalic, succinic, oxamic, fumaric and formic acids were also formed. Besides, six aromatic by-products were qualified and a possible pathway involving hydrolysis, hydroxylation and decarboxylation during CFPZ mineralization was proposed.
Collapse
Affiliation(s)
- Aimin Wang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China.
| | - Yanyu Zhang
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Shanshan Han
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Chunxiao Guo
- Machinery Technology Development Co. Ltd., Beijing, 100044, China
| | - Zhenjun Wen
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiujun Tian
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- Department of Municipal and Environmental Engineering, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing Jiaotong University, Beijing, 100044, China
| |
Collapse
|
132
|
Im JK, Sohn EJ, Kim S, Jang M, Son A, Zoh KD, Yoon Y. Review of MXene-based nanocomposites for photocatalysis. CHEMOSPHERE 2021; 270:129478. [PMID: 33418219 DOI: 10.1016/j.chemosphere.2020.129478] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 05/27/2023]
Abstract
Since multilayered MXenes (Ti3C2Tx, a new family of two-dimensional materials) were initially introduced by researchers at Drexel University in 2011, various MXene-based nanocomposites have received increased attention as photocatalysts owing to their exceptional properties (e.g., rich surface chemistry, adjustable bandgap structures, high electrical conductivity, hydrophilicity, thermal stability, and large specific surface area). Therefore, we present a comprehensive review of recent studies on fabrication methods for MXene-based photocatalysts and photocatalytic performance for contaminant degradation, CO2 reduction, H2 evolution, and N2 fixation with various MXene-based nanocomposites. In addition, this review briefly discusses the stability of MXene-based nanophotocatalysts, current limitations, and future research needs, along with the various corresponding challenges, in an effort to reveal the unique properties of MXene-based nanocomposites.
Collapse
Affiliation(s)
- Jong Kwon Im
- National Institute of Environmental Research, Han River Environment Research Center, 42, Dumulmeori-gil 68beon-gil, Yangseo-myeon, Yangpyeong-gun, Gyeonggi-do, 12585, Republic of Korea
| | - Erica Jungmin Sohn
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, 20 Kwangwoon-Ro, Nowon-Gu, Seoul, 01897, Republic of Korea
| | - Ahjeong Son
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyung-Duk Zoh
- Department of Environmental Health, School of Public Health, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Yeomin Yoon
- Department of Civil and Environmental Engineering, University of South Carolina, Columbia, 300 Main Street, SC, 29208, USA.
| |
Collapse
|
133
|
Walker WS, Bezerra Cavalcanti E, Atrashkevich A, Fajardo AS, Brillas E, Garcia-Segura S. Mass transfer and residence time distribution in an electrochemical cell with an air-diffusion electrode: Effect of air pressure and mesh promoters. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
134
|
Clematis D, Panizza M. Electro-Fenton, solar photoelectro-Fenton and UVA photoelectro-Fenton: Degradation of Erythrosine B dye solution. CHEMOSPHERE 2021; 270:129480. [PMID: 33421751 DOI: 10.1016/j.chemosphere.2020.129480] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The treatment of Erythrosine B, selected as a model compound, has been comparatively studied by electrochemical advanced oxidation processes (EAOPs) such as electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton at constant current density. Experiments are performed in a one-compartment cell with a BDD anode, and a commercial carbon felt cathode at pH = 3, treating a volume of 0.3 L in each test. The irradiation plays a crucial role in the increasing of hydroxyl radical production and in the recover of iron catalyst. A faster colour and COD removal degradation are achieved under the light application. UVA photoelectro-Fenton and solar photoelectro-Fenton processes allow degrading COD entirely in 90 min, while a conventional electro-Fenton does not reach 90% COD removal after 2 h. Energy consumptions are a substantial factor in process selection. Photo electro-Fenton with a UVA-100 W lamp has one of the best removal performance, but it becomes not suitable for application due to high energy demand, up to 515.6 kWh m-3, and the UVA system requires the main fraction of this energy. Possible alternatives are proposed to contain costs: the first is the reduction of UVA lamp power to 25 W, maintaining a high-performance removal with an Ec decreasing to 187.9 kWh m-3. Nevertheless, the lowest and competitive energy demands is obtained working with a solar photoelectro-Fenton system, where energy consumption are only related to the electrochemical process (20.9 kWh m-3), and removal is complete.
Collapse
Affiliation(s)
- Davide Clematis
- University of Genoa, Department of Civil, Chemical and Environmental Engineering, Via All'Opera Pia 15, 16137, Genova, Italy
| | - Marco Panizza
- University of Genoa, Department of Civil, Chemical and Environmental Engineering, Via All'Opera Pia 15, 16137, Genova, Italy.
| |
Collapse
|
135
|
Macías-Quiroga IF, Henao-Aguirre PA, Marín-Flórez A, Arredondo-López SM, Sanabria-González NR. Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23791-23811. [PMID: 33140298 DOI: 10.1007/s11356-020-11333-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Advanced oxidation processes (AOPs) constitute a developing area of particular interest for researchers in different fields due to their broad range of applications. However, there are few studies dedicated to the bibliometric analysis of AOPs. Hence, a systematic literature review of research publications (research articles, review articles, and book chapters) from 1980 to 2018 was carried out to visualize and evaluate research trends on AOPs around the world and, especially in Ibero-America (IA), on the field of wastewater treatment. Using the most extensive databases in literature search, Scopus and Web of Science (WoS), which encompass 95% of the publications in the world, a total of 18,751 records were retrieved by limiting the search results to words associated with AOPs in the titles, keyword, and abstracts. Raw data were manually organized and filtered, standardizing authors and institution names, publication titles, and keywords for the purpose of eliminating double-counted entries. Similarly, homonymous authors and institutions were identified for all records retrieved. The bibliometric dataset was processed using the VantagePoint software. The research trends visualized about AOPs were as follows: number of publications per triennium, publications by country, participation by continent, most important journals and authors, most referenced institutions, global network of co-authors, and keywords network visualization, highlighting the Ibero-American contribution to global research.
Collapse
Affiliation(s)
- Iván F Macías-Quiroga
- Department of Chemical Engineering, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Paula A Henao-Aguirre
- Department of Chemical Engineering, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Alexander Marín-Flórez
- Unit of Strategic Information Analysis, Library Section, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Sandra M Arredondo-López
- Unit of Strategic Information Analysis, Library Section, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Nancy R Sanabria-González
- Department of Chemical Engineering, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia.
| |
Collapse
|
136
|
Engineering Iron Oxide Nanocatalysts by a Microwave-Assisted Polyol Method for the Magnetically Induced Degradation of Organic Pollutants. NANOMATERIALS 2021; 11:nano11041052. [PMID: 33924017 PMCID: PMC8072590 DOI: 10.3390/nano11041052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Advanced oxidation processes constitute a promising alternative for the treatment of wastewater containing organic pollutants. Still, the lack of cost-effective processes has hampered the widespread use of these methodologies. Iron oxide magnetic nanoparticles stand as a great alternative since they can be engineered by different reproducible and scalable methods. The present study consists of the synthesis of single-core and multicore magnetic iron oxide nanoparticles by the microwave-assisted polyol method and their use as self-heating catalysts for the degradation of an anionic (acid orange 8) and a cationic dye (methylene blue). Decolorization of these dyes was successfully improved by subjecting the catalyst to an alternating magnetic field (AMF, 16 kA/m, 200 kHz). The sudden temperature increase at the surface of the catalyst led to an intensification of 10% in the decolorization yields using 1 g/L of catalyst, 0.3 M H2O2 and 500 ppm of dye. Full decolorization was achieved at 90 °C, but iron leaching (40 ppm) was detected at this temperature leading to a homogeneous Fenton process. Multicore nanoparticles showed higher degradation rates and 100% efficiencies in four reusability cycles under the AMF. The improvement of this process with AMF is a step forward into more sustainable remediation techniques.
Collapse
|
137
|
dos Santos AJ, Fajardo AS, Kronka MS, Garcia-Segura S, Lanza MR. Effect of electrochemically-driven technologies on the treatment of endocrine disruptors in synthetic and real urban wastewater. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
138
|
Nair KM, Kumaravel V, Pillai SC. Carbonaceous cathode materials for electro-Fenton technology: Mechanism, kinetics, recent advances, opportunities and challenges. CHEMOSPHERE 2021; 269:129325. [PMID: 33385665 DOI: 10.1016/j.chemosphere.2020.129325] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Electro-Fenton (EF) technique has gained significant attention in recent years owing to its high efficiency and environmental compatibility for the degradation of organic pollutants and contaminants of emerging concern (CECs). The efficiency of an EF reaction relies primarily on the formation of hydrogen peroxide (H2O2) via 2e─ oxygen reduction reaction (ORR) and the generation of hydroxyl radicals (●OH). This could be achieved through an efficient cathode material which operates over a wide pH range (pH 3-9). Herein, the current progresses on the advancements of carbonaceous cathode materials for EF reactions are comprehensively reviewed. The insights of various materials such as, activated carbon fibres (ACFs), carbon/graphite felt (CF/GF), carbon nanotubes (CNTs), graphene, carbon aerogels (CAs), ordered mesoporous carbon (OMCs), etc. are discussed inclusively. Transition metals and hetero atoms were used as dopants to enhance the efficiency of homogeneous and heterogeneous EF reactions. Iron-functionalized cathodes widened the working pH window (pH 1-9) and limited the energy consumption. The mechanism, reactor configuration, and kinetic models, are explained. Techno economic analysis of the EF reaction revealed that the anode and the raw materials contributed significantly to the overall cost. It is concluded that most reactions follow pseudo-first order kinetics and rotating cathodes provide the best H2O2 production efficiency in lab scale. The challenges, future prospects and commercialization of EF reaction for wastewater treatment are also discussed.
Collapse
Affiliation(s)
- Keerthi M Nair
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Vignesh Kumaravel
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland
| | - Suresh C Pillai
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Institute of Technology, Sligo, F91 YW50, Ireland; Nanotechnology and Bio-Engineering Research Group, Department of Environmental Science, Institute of Technology, Sligo, F91 YW50, Ireland.
| |
Collapse
|
139
|
McQuillan RV, Stevens GW, Mumford KA. Assessment of the electro-Fenton pathway for the removal of naphthalene from contaminated waters in remote regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143155. [PMID: 33131837 DOI: 10.1016/j.scitotenv.2020.143155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
This work investigates the effectiveness of the electro-Fenton reaction for the treatment of wastewaters contaminated with petroleum hydrocarbons. More specific attention was given to field deployment applications in remote regions, such as the sub-Antarctic, where there is a need for low-cost technologies that can aid in remediation efforts. Naphthalene, a high priority pollutant for removal within these regions, was chosen as a model contaminant and treated with inexpensive graphite electrodes to promote the electro-Fenton pathway. Results show that naphthalene can be fully removed from a near-saturated solution, 20 mg/L, in less than 3 h of treatment. The underlying removal mechanisms were identified, and a kinetic model is presented that can accurately predict treatment outcomes at varying operating conditions of applied electric currents, 0-5 mA, and iron(II) concentrations, 0-2.0 mM. Optimal operating conditions for the electro-Fenton pathway were found to be at an applied current of 5 mA and an iron(II) concentration of 0.06 mM; this resulted in a specific energy consumption of 5.6 kWhr/kg of naphthalene removed, low enough to be operated in remote regions via sustainable energy sources.
Collapse
Affiliation(s)
- Rebecca V McQuillan
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
140
|
Vidal J, Báez ME, Salazar R. Electro-kinetic washing of a soil contaminated with quinclorac and subsequent electro-oxidation of wash water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143204. [PMID: 33162125 DOI: 10.1016/j.scitotenv.2020.143204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/21/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
This work deals with the remediation of a soil that has been enriched with Quinclorac (QNC), one of the herbicides most used in Chile for weed control in rice fields. Quinclorac damages the microflora and macrofauna of soils and is toxic to some susceptible crops, which results in economic loses during crop rotation. Furthermore, Quinclorac a potential contaminant of water resources and soils, given its high mobility and persistence. This has created the need to lower its concentrations in soils intensively cultivated. In this study, an electro-kinetic soil washing system (EKSW) for mobilizing this pesticide in the soil was explored. The performance of this technology was compared by assessing the effect of direct (DP) and reverse (RP) polarity during 15 days under potentiostatic conditions and applying an electric field of 1 V cm-1 between electrodes. Among the main results, the highest removal of QNC was obtained through the EKSW-RP process, which also contributed to the prevention of acidity and alkaline fronts in the soil, compared to the EKSW-DP system. In both cases, the highest accumulation of QNC occurred in the cathodic well by mobilizing the non-ionized contaminant through the electroosmotic flow (EOF) from anode to cathode. After the treatment with EKSW, the wash water accumulated in the anodic and cathodic wells, which contained an important concentration of pesticide, was subjected to electro-oxidation (EO) by applying different current densities (j). The high generation of •OH on the surface of a boron-doped diamond electrode (BDD) allowed for the complete degradation and mineralization of QNC and its major intermediate compounds to CO2. The results of this study show that the application of both coupled stages in this type of remediation technologies would enable the removal of QNC from the soil without altering its chemical and physical properties, constituting an environmentally friendly process.
Collapse
Affiliation(s)
- J Vidal
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile.
| | - María E Báez
- Departamento de Química Inorgánica y Analítica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Chile
| | - R Salazar
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Chile
| |
Collapse
|
141
|
Chen T, Yu Z, Xu T, Xiao R, Chu W, Yin D. Formation and degradation mechanisms of CX 3R-type oxidation by-products during cobalt catalyzed peroxymonosulfate oxidation: The roles of Co 3+ and SO 4·. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124243. [PMID: 33109408 DOI: 10.1016/j.jhazmat.2020.124243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Sulfate radical (SO4·-)-based advanced oxidation processes (AOPs) attract increasing attention in the control of micropollutants. However, SO4·- can react with other chemicals present in water and result in undesired oxidation by-products (OBPs) generation. The formation and degradation mechanisms of CX3R-type OBPs during cobalt catalyzed peroxymonosulfate (Co2+/PMS) oxidation were investigated. In the formation of CX3R-type OBPs, both Co3+ and SO4·- could convert chloride to free chlorine that then reacted with natural organic matter, leading to the formation of CX3R-type OBPs. The concentrations of trichloromethane, chloral hydrate, dichloroacetonitrile, dichloroacetamide and trichloroacetamide after 15 min reaction were 9.8, 3.9, 1.2, 5.9 and 22.3 nM, respectively. Compared to SO4·-, Co3+ played a more significant role in the CX3R-type OBP formation and calculated toxicity values of CX3R-type OBPs. CX3R-type OBPs could not only be formed but also be degraded at the same time during Co2+/PMS oxidation. As for the degradation of CX3R-type OBPs, both Co3+ and SO4·- could transform CX3R-type OBPs to chloride. Compared to Co3+, SO4·- played a more important role in the degradation of CX3R-type OBPs and the conversion from chloride to final by-product chlorate. The adverse effects that results from Co3+ need more attention in SO4·--based AOPs application.
Collapse
Affiliation(s)
- Tiantian Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenyang Yu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ting Xu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
142
|
Patidar R, Srivastava VC. Evaluation of the sono-assisted photolysis method for the mineralization of toxic pollutants. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
143
|
Sanabria P, Scunderlick D, Wilde ML, Lüdtke DS, Sirtori C. Solar photo-Fenton treatment of the anti-cancer drug anastrozole in different aqueous matrices at near-neutral pH: Transformation products identification, pathways proposal, and in silico (Q)SAR risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142300. [PMID: 33254902 DOI: 10.1016/j.scitotenv.2020.142300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Anastrozole (ANZ) is a breast cancer drug that was introduced onto the pharmaceutical market in the 1990s and is still one of the most widely consumed cytotoxic compounds. Due to the persistence of the drug, its continued presence after passing through wastewater treatment plants can lead to harm to aquatic environments. The present study investigates use of the solar photo-Fenton (SPF) process applied for ANZ degradation, considering the fate of ANZ and its transformation products (TPs). The SPF process was performed using different concentrations of ferrous iron (Fe2+) and H2O2 in solutions produced with deionized water (DW) and hospital wastewater (HWW), at pH close to neutrality. When solar irradiation in the SPF process was carried out the best ANZ removal rates were found under the following conditions: (i) for the DW matrix, [ANZ]0 = 50 μg L-1, [Fe2+] = 5 mg L-1, and [H2O2]0 = 25 mg L-1, achieving 95% primary ANZ elimination; (ii) for the HWW matrix, [ANZ]0 = 50 μg L-1, [Fe2+] = 10 mg L-1(multiple additions), and [H2O2]0 = 25 mg L-1, achieving 51% primary ANZ elimination. LC-QTOF MS analysis allowed to identify tentatively five transformation products (TPs) formed during the ANZ degradation process in DW, and two TPs when HWW was used. The main proposed degradation pathways were demethylation and hydroxylation. Different in silico models free available (quantitative) structure-activity relationship ((Q)SAR) software were used to predict the ecotoxicities and environmental fates of ANZ and the TPs. The in silico (Q)SAR predictions indicated that ANZ and the TPs were non-biodegradable compounds. In silico (Q)SAR predictions for mutagenicity and carcinogenicity end-points identified some TPs that require further study. Attention is drawn to the formation of several TPs for which statistical and rule-based positive alerts for mutagenic activities were found, requiring further confirmatory in vitro validation tests.
Collapse
Affiliation(s)
- Pedro Sanabria
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Davi Scunderlick
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Marcelo L Wilde
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Diogo S Lüdtke
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Carla Sirtori
- Instituto de Química-UFRGS, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil.
| |
Collapse
|
144
|
Treatment of Tebuthiuron in synthetic and real wastewater using electrochemical flow-by reactor. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.114978] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
145
|
Li D, Li W, Zhang Q, Wang Y, Lin H, Feng L, Li S, Deng Y, Xiao Q, Chen J, Dong Q. Generation of active Co(III) and peroxodiphosphate by synergistic electrocatalytic system with phosphate and the mediator cobalt(II) and its degradation performance. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:841-853. [PMID: 33617491 DOI: 10.2166/wst.2021.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The promising synergistic electrocatalytic system of phosphate (PO43-) with the mediator cobalt(II) (for short E-Co(II)-PO43-) was employed to degrade cationic dye methylene blue (MB). The exploration in the electrocatalytic process revealed that the main intermediate active oxidation products were Co(III), accompanied with hydroxyl radicals and peroxodiphosphates (P2O84-). Their synergistic electrocatalytic degradation rate to MB and total organic carbon (TOC) was up to 100 and 60% in 40 min, respectively, which was 5 times and 2.6 times that in a direct electrocatalytic system, correspondingly. The degradation process of the E-Co(II)-PO43- system on MB started with the bond being broken at the N-C junction of the MB molecule and intermediate active oxidation substances being generated, such as phenothiazine, 2-amino-5-(N-methylformamide) benzene sulfonic acid and N1,N1-dimethyl-1,4 diaminobenzene. Then, the intermediates were degraded into aniline, phenol and benzene sulfonic acid, and eventually decomposed into inorganic substances like CO2 and water. The electrocatalytic degradation mechanism of E-Co(II)-PO43- system on MB was the combination of indirect oxidation of the intermediate oxidants like Co(III), P2O84- and the hydroxyl radical with direct electrocatalysis on the platinum titanium electrode, where the electrocatalytic oxidation of Co(III) was dominant.
Collapse
Affiliation(s)
- Dongmei Li
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, 100 Waihuan Road West, HEMC, Guangzhou 510006, China E-mail: ;
| | - Wenjie Li
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, 100 Waihuan Road West, HEMC, Guangzhou 510006, China E-mail: ;
| | - Quan Zhang
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, 100 Waihuan Road West, HEMC, Guangzhou 510006, China E-mail: ;
| | - Yizhi Wang
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hongyu Lin
- Concord Academy, 166 Main Street, Concord, MA 01742, USA
| | - Li Feng
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, 100 Waihuan Road West, HEMC, Guangzhou 510006, China E-mail: ;
| | - Shaoxiu Li
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, 100 Waihuan Road West, HEMC, Guangzhou 510006, China E-mail: ;
| | - Yue Deng
- Experimental School affiliated to Zhuhai No.1 Middle School, 393 Road 3rd Gongbei Gang, Zhuhai 519000, China
| | - Qiurong Xiao
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, 100 Waihuan Road West, HEMC, Guangzhou 510006, China E-mail: ;
| | - Jiongxi Chen
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, 100 Waihuan Road West, HEMC, Guangzhou 510006, China E-mail: ;
| | - Qi Dong
- Faculty of Civil and Transportation Engineering, Guangdong University of Technology, 100 Waihuan Road West, HEMC, Guangzhou 510006, China E-mail: ;
| |
Collapse
|
146
|
Methyl Orange Photo-Degradation by TiO2 in a Pilot Unit under Different Chemical, Physical, and Hydraulic Conditions. Processes (Basel) 2021. [DOI: 10.3390/pr9020205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The photo-catalytic degradation of a textile azo-dye as Methyl Orange was studied in an innovative unit constituted by a channel over which a layer of titanium dioxide (TiO2) catalyst in anatase form was deposited and activated by UVB irradiation. The degradation kinetics were followed after variation of the chemical, physical, and hydraulic/hydrodynamic parameters of the system. For this purpose, the influence of the TiO2 dosage (g/cm3), dye concentration (mg/L), pH of the solution, flow-rate (L/s), hydraulic load (cm), and irradiation power (W) were evaluated on the degradation rates. It was observed that the maximum dosage of TiO2 was 0.79 g/cm3 while for higher dosage a reduction of homogeneity of the cement conglomerate occurred. The Langmuir–Hinshelwood (LH) kinetic model was followed up to a dye concentration around 1 mg/L. It was observed that with the increase of the flow rate, an increase of the degradation kinetics was obtained, while the further increase of the flow-rate associated with the modification of the hydraulic load determined a decrease of the kinetic rates. The results also evidenced an increase of the kinetic rates with the increase of the UVB intensity. A final comparison with other dyes such as Methyl Red and Methylene Blue was carried out in consideration of the pH of the solution, which sensibly affected the removal efficiencies.
Collapse
|
147
|
Abstract
The presence of pharmaceutical products in the water cycle may cause harmful effects such as morphological, metabolic and sex alterations in aquatic organisms and the selection/development of organisms resistant to antimicrobial agents. The compounds’ stability and persistent character hinder their elimination by conventional physico-chemical and biological treatments and thus, the development of new water purification technologies has drawn great attention from academic and industrial researchers. Recently, the electro-Fenton process has been demonstrated to be a viable alternative for the removal of these hazardous, recalcitrant compounds. This process occurs under the action of a suitable catalyst, with the majority of current scientific research focused on heterogeneous systems. A significant area of research centres working on the development of an appropriate catalyst able to overcome the operating limitations associated with the homogeneous process is concerned with the short service life and difficulty in the separation/recovery of the catalyst from polluted water. This review highlights a present trend in the use of different materials as electro-Fenton catalysts for pharmaceutical compound removal from aquatic environments. The main challenges facing these technologies revolve around the enhancement of performance, stability for long-term use, life-cycle analysis considerations and cost-effectiveness. Although treatment efficiency has improved significantly, ongoing research efforts need to deliver economic viability at a larger scale due to the high operating costs, primarily related to energy consumption.
Collapse
|
148
|
Ao XW, Eloranta J, Huang CH, Santoro D, Sun WJ, Lu ZD, Li C. Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: A review. WATER RESEARCH 2021; 188:116479. [PMID: 33069949 DOI: 10.1016/j.watres.2020.116479] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/25/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Peracetic acid (PAA) has attracted growing attention as an alternative oxidant and disinfectant in wastewater treatment due to the increased demand to reduce chlorine usage and control disinfection byproducts (DBPs). These applications have stimulated new investigations on PAA-based advanced oxidation processes (AOPs), which can enhance water disinfection and remove micropollutants. The purpose of this review is to conduct a comprehensive analysis of scientific information and experimental data reported in recent years on the applications of PAA-based AOPs for the removal of chemical and microbiological micropollutants from water and wastewater. Various methods of PAA activation, including the supply of external energy and metal/metal-free catalysts, as well as their activation mechanisms are discussed. Then, a review on the usage of PAA-based AOPs for contaminant degradation is given. The degradation mechanisms of organic compounds and the influence of the controlling parameters of PAA-based treatment systems are summarized and discussed. Concurrently, the application of PAA-based AOPs for water disinfection and the related mechanisms of microorganism inactivation are also reviewed. Since combining UV light with PAA is the most commonly investigated PAA-based AOP for simultaneous pathogen inactivation and micropollutant oxidation, we have also focused on PAA microbial inactivation kinetics, together with the effects of key experimental parameters on the process. Moreover, we have discussed the advantages and disadvantages of UV/PAA as an AOP against the well-known and established UV/H2O2. Finally, the knowledge gaps, challenges, and new opportunities for research in this field are discussed. This critical review will facilitate an in-depth understanding of the PAA-based AOPs for water and wastewater treatment and provide useful perspectives for future research and development for PAA-based technologies.
Collapse
Affiliation(s)
- Xiu-Wei Ao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jussi Eloranta
- Department of Chemistry and Biochemistry, California State University at Northridge, Northridge, CA, 91330, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | | | - Wen-Jun Sun
- School of Environment, Tsinghua University, Beijing 100084, China.
| | - Ze-Dong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chen Li
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
149
|
Mineralization of perfluorooctanoic acid by combined aerated electrocoagulation and Modified peroxi-coagulation methods. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
150
|
Nanofiltration retentate treatment from urban wastewater secondary effluent by solar electrochemical oxidation processes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|