101
|
Xu S, Liao Z, Dianat A, Park S, Addicoat MA, Fu Y, Pastoetter DL, Fabozzi FG, Liu Y, Cuniberti G, Richter M, Hecht S, Feng X. Combination of Knoevenagel Polycondensation and Water-Assisted Dynamic Michael-Addition-Elimination for the Synthesis of Vinylene-Linked 2D Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022; 61:e202202492. [PMID: 35253336 PMCID: PMC9401016 DOI: 10.1002/anie.202202492] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 12/16/2022]
Abstract
Vinylene-linked two-dimensional conjugated covalent organic frameworks (V-2D-COFs), belonging to the class of two-dimensional conjugated polymers, have attracted increasing attention due to their extended π-conjugation over the 2D backbones associated with high chemical stability. The Knoevenagel polycondensation has been demonstrated as a robust synthetic method to provide cyano (CN)-substituted V-2D-COFs with unique optoelectronic, magnetic, and redox properties. Despite the successful synthesis, it remains elusive for the relevant polymerization mechanism, which leads to relatively low crystallinity and poor reproducibility. In this work, we demonstrate the novel synthesis of CN-substituted V-2D-COFs via the combination of Knoevenagel polycondensation and water-assisted dynamic Michael-addition-elimination, abbreviated as KMAE polymerization. The existence of C=C bond exchange between two diphenylacrylonitriles (M1 and M6) is firstly confirmed via in situ high-temperature NMR spectroscopy study of model reactions. Notably, the intermediate M4 synthesized via Michael-addition can proceed the Michael-elimination quantitatively, leading to an efficient C=C bond exchange, unambiguously confirming the dynamic nature of Michael-addition-elimination. Furthermore, the addition of water can significantly promote the reaction rate of Michael-addition-elimination for highly efficient C=C bond exchange within 5 mins. As a result, the KMAE polymerization provides a highly efficient strategy for the synthesis of CN-substituted V-2D-COFs with high crystallinity, as demonstrated by four examples of V-2D-COF-TFPB-PDAN, V-2D-COF-TFPT-PDAN, V-2D-COF-TFPB-BDAN, and V-2D-COF-HATN-BDAN, based on the simulated and experimental powder X-ray diffraction (PXRD) patterns as well as N2 -adsorption-desorption measurements. Moreover, high-resolution transmission electron microscopy (HR-TEM) analysis shows crystalline domain sizes ranging from 20 to 100 nm for the newly synthesized V-2D-COFs.
Collapse
Affiliation(s)
- Shunqi Xu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS)01109DresdenGermany
| | - Arezoo Dianat
- Chair of Material Science and NanotechnologyFaculty of Mechanical Science and EngineeringTechnische Universität DresdenHallwachstraße 301069DresdenGermany
| | - Sang‐Wook Park
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Leibniz-Institute for Polymer Research Dresden e.V. (IPF)01069DresdenGermany
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton LaneNottinghamNG11 8NSUK
| | - Yubin Fu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Dominik L. Pastoetter
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Filippo Giovanni Fabozzi
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
| | - Yannan Liu
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Gianaurelio Cuniberti
- Chair of Material Science and NanotechnologyFaculty of Mechanical Science and EngineeringTechnische Universität DresdenHallwachstraße 301069DresdenGermany
| | - Marcus Richter
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular ChemistryRWTH Aachen University52074AachenGermany
| | - Xinliang Feng
- Chair of Molecular Functional MaterialsCenter for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food ChemistryTechnische Universität DresdenMommsenstrasse 401069DresdenGermany
- Department of Synthetic Materials and Functional DevicesMax-Planck Institute of Microstructure Physics06120HalleGermany
| |
Collapse
|
102
|
Zhang H, Lin Z, Guo J. Enhanced photocatalytic H 2 evolution over covalent organic frameworks through an assembled NiS cocatalyst. RSC Adv 2022; 12:14932-14938. [PMID: 35702250 PMCID: PMC9115773 DOI: 10.1039/d2ra02236b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Covalent organic frameworks (COFs) have been investigated in the field of photocatalysts for H2 evolution because of their crystalline structure and diversity. However, most of them need the help of noble metals as co-catalysts to realize a high hydrogen evolution. Herein, we chose typical COFs as a platform and constructed NiSX-BD (X: weight fraction of NiS) composites by assembling NiS at room temperature. The NiS nanoparticles are shown to tightly adhere to the COFs surface. Under visible light irradiation (wavelength > 420 nm), the optimized sample with 3 wt% NiS loading exhibits a photocatalytic H2 evolution rate of 38.4 μmol h−1 (3840 μmol h−1 g−1), which is about 120 folds higher than that of the pure TpBD-COF and better than TpBD-COF/Pt with the same Pt loading (3 wt%). NiS3-BD shows stable hydrogen evolution in at least six consecutive cycle tests totaling 18 h. Further investigation reveals that the loaded NiS can facilitate the transfer of photogenerated electrons from TpBD-COF to the co-catalyst, leading to efficient and high photocatalytic activity. Combining the significant feature of COFs, this study opens up a feasible avenue to boost the photocatalytic H2 performance by constructing the synergetic effects between COFs and cost-effective material. We constructed a novel hybrid photocatalyst by assembling NiS through a milder method. Under visible light irradiation, controlled NiS/TpBD-COF composites can readily optimize photocatalytic performances without a noble cocatalyst.![]()
Collapse
Affiliation(s)
- Hualei Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China
| | - Zheng Lin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai 200433 China
| |
Collapse
|
103
|
Qiao H, Yang L, Yang X, Wang J, Chen Y, Zhang L, Sun W, Zhai L, Mi L. Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry 2022; 28:e202200600. [DOI: 10.1002/chem.202200600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liting Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Jialin Wang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Ya Chen
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lin Zhang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Wuxuan Sun
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| |
Collapse
|
104
|
Wang H, Yang C, Chen F, Zheng G, Han Q. A Crystalline Partially Fluorinated Triazine Covalent Organic Framework for Efficient Photosynthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2022; 61:e202202328. [PMID: 35229432 DOI: 10.1002/anie.202202328] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/07/2022]
Abstract
A partially fluorinated, metal-free, imine-linked two-dimensional triazine covalent organic framework (TF50 -COF) photocatalyst was developed. Fluorine (F)-substituted and nonsubstituted units were integrated in equimolar amounts on the edge aromatic units, where they mediated two-electron O2 photoreduction. F-substitution created an abundance of Lewis acid sites, which regulated the electronic distribution of adjacent carbon atoms and provided highly active sites for O2 adsorption, and widened the visible-light-responsive range of the catalyst, while enhancing charge separation. Varying the proportion of F maximized the interlayer interactions of TF50 -COF, resulting in improved crystallinity with faster carrier transfer and robust photostability. The TF50 -COF catalyst demonstrates high selectivity and stability in O2 photoreduction into H2 O2 , with a high H2 O2 yield rate of 1739 μmol h-1 g-1 and a remarkable apparent quantum efficiency of 5.1 % at 400 nm, exceeding the performance of previously reported nonmetal COF-based photocatalysts.
Collapse
Affiliation(s)
- Haozhen Wang
- Key Laboratory of Cluster Science, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chao Yang
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Fangshuai Chen
- Key Laboratory of Cluster Science, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Faculty of Chemistry and Materials Science, Fudan University, Shanghai, 200438, China
| | - Qing Han
- Key Laboratory of Cluster Science, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
105
|
Yan Z, Fang L, He Z, Xie H, Liu B, Guo B, Yao Y. Surfactant-Modulated a Highly Sensitive Fluorescent Probe of Fully Conjugated Covalent Organic Nanosheets for Detecting Copper Ions in Aqueous Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200388. [PMID: 35491241 DOI: 10.1002/smll.202200388] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Efficient detection of aqueous copper ions is of high significance for environmental and human health, since copper is involved in potent redox activity in physiological and pathological processes. Covalent organic frameworks (COFs) have shown advantages in efficient capturing and detecting of copper ions due to their large surface area, robust chemical stability, and high sensitivity, but most of them are hydrophobic, leading to the limitation in sensing copper ions in aqueous media. Herein, the design and synthesis of an sp2 -carbon conjugated COF (sp2 -TPE-COF) are reported with surfactant-assisted water dispersion for detecting traces of copper ions based on the photo-induced electron transfer (PET) mechanism. Importantly, the olefin-linked conjugated backbone of sp2 -TPE-COF works as a signal amplified transducer for metal ion sensing. Notably, it is found that a surfactant-assisted strategy can greatly enhance COF's dispersion in aqueous solution and finely modulate their sensitivity with a significantly improved KSV to 15.15 × 104 m-1 in SDBS (sodium dodecyl benzene sulfonate) solution, the value of which is larger than that of a majority of COF/MOF based sensors for copper ions. This research demonstrates the promise of surfactant modulated fully π-conjugated COFs for sensing applications.
Collapse
Affiliation(s)
- Zifeng Yan
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Long Fang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiguo He
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Binbin Liu
- School of Electronic and Computer Engineering, Peking University, Beijing, 100091, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Youwei Yao
- Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
106
|
Covalent organic frameworks with high quantum efficiency in sacrificial photocatalytic hydrogen evolution. Nat Commun 2022; 13:2357. [PMID: 35487901 PMCID: PMC9054748 DOI: 10.1038/s41467-022-30035-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 12/31/2022] Open
Abstract
Organic semiconductors offer a tunable platform for photocatalysis, yet the more difficult exciton dissociation, compared to that in inorganic semiconductors, lowers their photocatalytic activities. In this work, we report that the charge carrier lifetime is dramatically prolonged by incorporating a suitable donor-acceptor (β-ketene-cyano) pair into a covalent organic framework nanosheet. These nanosheets show an apparent quantum efficiency up to 82.6% at 450 nm using platinum as co-catalyst for photocatalytic H2 evolution. Charge carrier kinetic analysis and femtosecond transient absorption spectroscopy characterizations verify that these modified covalent organic framework nanosheets have intrinsically lower exciton binding energies and longer-lived charge carriers than the corresponding nanosheets without the donor-acceptor unit. This work provides a model for gaining insight into the nature of short-lived active species in polymeric organic photocatalysts.
Collapse
|
107
|
Wang Y, Zhao Y, Li Z. Two-Dimensional Covalent Organic Frameworks as Photocatalysts for Solar Energy Utilization. Macromol Rapid Commun 2022; 43:e2200108. [PMID: 35477941 DOI: 10.1002/marc.202200108] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/02/2022] [Indexed: 11/07/2022]
Abstract
In the context of energy crisis and global warming, developing clean and sustainable energy is receiving increasing attention. Photocatalytic process including water splitting, CO2 reduction, coenzyme regeneration, etc., provides an ideal way to utilize renewable solar resources. The photocatalyst plays a central role in photocatalytic processes. Organic porous polymers have recently gained extensive attention in photocatalysis. Covalent organic frameworks (COFs), as one of the organic porous polymers, have the characteristics of high crystallinity, porosity and structural designability that make them perfect platforms for photocatalysis. In this minireview, the recent progresses of 2D COFs as photocatalysts were summarized including our recent work. The synthesis of the diversified structures of the COFs including the different linkages was first introduced. Then, the photocatalytic applications of the 2D COFs including photocatalytic hydrogen evolution, CO2 conversion, coenzyme regeneration and other traditional organic reaction were then discussed. Finally, conclusions and prospects were provided in the last section. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yuancheng Wang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yingjie Zhao
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
108
|
Lan ZA, Wu M, Fang Z, Zhang Y, Chen X, Zhang G, Wang X. Ionothermal Synthesis of Covalent Triazine Frameworks in a NaCl-KCl-ZnCl 2 Eutectic Salt for the Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022; 61:e202201482. [PMID: 35218273 DOI: 10.1002/anie.202201482] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Indexed: 11/09/2022]
Abstract
Covalent triazine-based frameworks (CTFs) are typically produced by the salt-melt polycondensation of aromatic nitriles in the presence of ZnCl2 . In this reaction, molten ZnCl2 salt acts as both a solvent and Lewis acid catalyst. However, when cyclotrimerization takes place at temperatures above 300 °C, undesired carbonization occurs. In this study, an ionothermal synthesis method for CTF-based photocatalysts was developed using a ternary NaCl-KCl-ZnCl2 eutectic salt (ES) mixture with a melting point of approximately 200 °C. This temperature is lower than the melting point of pure ZnCl2 (318 °C), thus providing milder salt-melt conditions. These conditions facilitated the polycondensation process, while avoiding carbonization of the polymeric backbone. The resulting CTF-ES200 exhibited enhanced optical and electronic properties, and displayed remarkable photocatalytic performance in the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China.,College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Meng Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Zhongpu Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Guigang Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P.R. China
| |
Collapse
|
109
|
Fu S, Jin E, Hanayama H, Zheng W, Zhang H, Di Virgilio L, Addicoat MA, Mezger M, Narita A, Bonn M, Müllen K, Wang HI. Outstanding Charge Mobility by Band Transport in Two-Dimensional Semiconducting Covalent Organic Frameworks. J Am Chem Soc 2022; 144:7489-7496. [PMID: 35420808 PMCID: PMC9052747 DOI: 10.1021/jacs.2c02408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Two-dimensional covalent
organic frameworks (2D COFs) represent
a family of crystalline porous polymers with a long-range order and
well-defined open nanochannels that hold great promise for electronics,
catalysis, sensing, and energy storage. To date, the development of
highly conductive 2D COFs has remained challenging due to the finite
π-conjugation along the 2D lattice and charge localization at
grain boundaries. Furthermore, the charge transport mechanism within
the crystalline framework remains elusive. Here, time- and frequency-resolved
terahertz spectroscopy reveals intrinsically Drude-type band transport
of charge carriers in semiconducting 2D COF thin films condensed by
1,3,5-tris(4-aminophenyl)benzene (TPB) and 1,3,5-triformylbenzene
(TFB). The TPB–TFB COF thin films demonstrate high photoconductivity
with a long charge scattering time exceeding 70 fs at room temperature
which resembles crystalline inorganic materials. This corresponds
to a record charge carrier mobility of 165 ± 10 cm2 V–1 s–1, vastly outperforming
that of the state-of-the-art conductive COFs. These results reveal
TPB–TFB COF thin films as promising candidates for organic
electronics and catalysis and provide insights into the rational design
of highly crystalline porous materials for efficient and long-range
charge transport.
Collapse
Affiliation(s)
- Shuai Fu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Enquan Jin
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany.,State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry and International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Wenhao Zheng
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Heng Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Lucia Di Virgilio
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, U.K
| | - Markus Mezger
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany.,Institute of Physical Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, Mainz 55128, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz D-55128, Germany
| |
Collapse
|
110
|
Abstract
Covalent organic frameworks (COFs) are distinguished from other organic polymers by their crystallinity1-3, but it remains challenging to obtain robust, highly crystalline COFs because the framework-forming reactions are poorly reversible4,5. More reversible chemistry can improve crystallinity6-9, but this typically yields COFs with poor physicochemical stability and limited application scope5. Here we report a general and scalable protocol to prepare robust, highly crystalline imine COFs, based on an unexpected framework reconstruction. In contrast to standard approaches in which monomers are initially randomly aligned, our method involves the pre-organization of monomers using a reversible and removable covalent tether, followed by confined polymerization. This reconstruction route produces reconstructed COFs with greatly enhanced crystallinity and much higher porosity by means of a simple vacuum-free synthetic procedure. The increased crystallinity in the reconstructed COFs improves charge carrier transport, leading to sacrificial photocatalytic hydrogen evolution rates of up to 27.98 mmol h-1 g-1. This nanoconfinement-assisted reconstruction strategy is a step towards programming function in organic materials through atomistic structural control.
Collapse
|
111
|
Xu S, Liao Z, Dianat A, Park S, Addicoat MA, Fu Y, Pastoetter DL, Fabozzi FG, Liu Y, Cuniberti G, Richter M, Hecht S, Feng X. Combination of Knoevenagel Polycondensation and Water‐Assisted Dynamic Michael‐Addition‐Elimination for the Synthesis of Vinylene‐Linked 2D Covalent Organic Frameworks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shunqi Xu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Department of Synthetic Materials and Functional Devices Max-Planck Institute of Microstructure Physics 06120 Halle Germany
| | - Zhongquan Liao
- Fraunhofer Institute for Ceramic Technologies and Systems (IKTS) 01109 Dresden Germany
| | - Arezoo Dianat
- Chair of Material Science and Nanotechnology Faculty of Mechanical Science and Engineering Technische Universität Dresden Hallwachstraße 3 01069 Dresden Germany
| | - Sang‐Wook Park
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Leibniz-Institute for Polymer Research Dresden e.V. (IPF) 01069 Dresden Germany
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS UK
| | - Yubin Fu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Dominik L. Pastoetter
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Filippo Giovanni Fabozzi
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular Chemistry RWTH Aachen University 52074 Aachen Germany
| | - Yannan Liu
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Gianaurelio Cuniberti
- Chair of Material Science and Nanotechnology Faculty of Mechanical Science and Engineering Technische Universität Dresden Hallwachstraße 3 01069 Dresden Germany
| | - Marcus Richter
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
| | - Stefan Hecht
- DWI-Leibniz Institute for Interactive Materials & Institute of Technical and Macromolecular Chemistry RWTH Aachen University 52074 Aachen Germany
| | - Xinliang Feng
- Chair of Molecular Functional Materials Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry Technische Universität Dresden Mommsenstrasse 4 01069 Dresden Germany
- Department of Synthetic Materials and Functional Devices Max-Planck Institute of Microstructure Physics 06120 Halle Germany
| |
Collapse
|
112
|
Wang H, Yang C, Chen F, Zheng G, Han Q. A Crystalline Partially Fluorinated Triazine Covalent Organic Framework for Efficient Photosynthesis of Hydrogen Peroxide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haozhen Wang
- Key Laboratory of Cluster Science Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Ministry of Education of China School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Chao Yang
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Fangshuai Chen
- Key Laboratory of Cluster Science Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Ministry of Education of China School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| | - Gengfeng Zheng
- Laboratory of Advanced Materials Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Faculty of Chemistry and Materials Science Fudan University Shanghai 200438 China
| | - Qing Han
- Key Laboratory of Cluster Science Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Ministry of Education of China School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
113
|
Liu S, Guo J. Two-dimensional Covalent Organic Frameworks: Intrinsic Synergy Promoting Photocatalytic Hydrogen Evolution. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2007-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
114
|
Acelas M, Castellanos NJ, Sierra CA. Stability and Performance Enhancement of an Oligo (phenylene vinylene) Photocatalyst via Surface Grafting onto TiO
2
for Visible‐Light Indigo Carmine Degradation. ChemistrySelect 2022. [DOI: 10.1002/slct.202103460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mauricio Acelas
- Grupo de Investigación en Macromoléculas Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| | - Nelson J. Castellanos
- Estado Sólido y Catálisis Ambiental (ESCA) Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| | - César A. Sierra
- Grupo de Investigación en Macromoléculas Departamento de Química Universidad Nacional de Colombia Bogotá 111321 Colombia
| |
Collapse
|
115
|
Lan ZA, Wu M, Fang Z, Zhang Y, Chen X, Zhang G, Wang X. Ionothermal Synthesis of Covalent Triazine Frameworks in NaCl‐KCl‐ZnCl2 Eutectic Salt for Hydrogen Evolution Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-An Lan
- Fuzhou University college of chemistry CHINA
| | - Meng Wu
- Fuzhou University college of chemistry CHINA
| | | | | | - Xiong Chen
- Fuzhou University college of chemistry CHINA
| | | | - Xinchen Wang
- Fuzhou University Chemistry 523 Gongye Rd, Gulou 350000 Fuzhou CHINA
| |
Collapse
|
116
|
Fang Y, Hou Y, Fu X, Wang X. Semiconducting Polymers for Oxygen Evolution Reaction under Light Illumination. Chem Rev 2022; 122:4204-4256. [PMID: 35025505 DOI: 10.1021/acs.chemrev.1c00686] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sunlight-driven water splitting to produce hydrogen fuel has stimulated intensive scientific interest, as this technology has the potential to revolutionize fossil fuel-based energy systems in modern society. The oxygen evolution reaction (OER) determines the performance of overall water splitting owing to its sluggish kinetics with multielectron transfer processing. Polymeric photocatalysts have recently been developed for the OER, and substantial progress has been realized in this emerging research field. In this Review, the focus is on the photocatalytic technologies and materials of polymeric photocatalysts for the OER. Two practical systems, namely, particle suspension systems and film-based photoelectrochemical systems, form two main sections. The concept is reviewed in terms of thermodynamics and kinetics, and polymeric photocatalysts are discussed based on three key characteristics, namely, light absorption, charge separation and transfer, and surface oxidation reactions. A satisfactory OER performance by polymeric photocatalysts will eventually offer a platform to achieve overall water splitting and other advanced applications in a cost-effective, sustainable, and renewable manner using solar energy.
Collapse
Affiliation(s)
- Yuanxing Fang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
117
|
Bi S, Zhang Z, Meng F, Wu D, Chen J, Zhang F. Heteroatom‐Embedded Approach to Vinylene‐Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shuai Bi
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
118
|
Sun L, Li L, Yang J, Fan J, Xu Q. Fabricating covalent organic framework/CdS S-scheme heterojunctions for improved solar hydrogen generation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63869-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
119
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene‐Based Two‐Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shuai Fu
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| | - Matthew A. Addicoat
- School of Science and Technology Nottingham Trent University Clifton Lane, Nottingham NG11 8NS UK
| | - Wenxin Wei
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Qiang Chen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Robert Graf
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Materials Science Fudan University Shanghai 200433 P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Department of Chemistry Johannes Gutenberg University Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Akimitsu Narita
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
- Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University Kunigami-gun, Okinawa 904-0495 Japan
| |
Collapse
|
120
|
Jin E, Fu S, Hanayama H, Addicoat MA, Wei W, Chen Q, Graf R, Landfester K, Bonn M, Zhang KAI, Wang HI, Müllen K, Narita A. A Nanographene-Based Two-Dimensional Covalent Organic Framework as a Stable and Efficient Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202114059. [PMID: 34870362 PMCID: PMC9299764 DOI: 10.1002/anie.202114059] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Indexed: 01/14/2023]
Abstract
Synthesis of covalent organic frameworks (COFs) with desirable organic units furnishes advanced materials with unique functionalities. As an emerging class of two-dimensional (2D) COFs, sp2 -carbon-conjugated COFs provide a facile platform to build highly stable and crystalline porous polymers. Herein, a 2D olefin-linked COF was prepared by employing nanographene, namely, dibenzo[hi,st]ovalene (DBOV), as a building block. The DBOV-COF exhibits unique ABC-stacked lattices, enhanced stability, and charge-carrier mobility of ≈0.6 cm2 V-1 s-1 inferred from ultrafast terahertz photoconductivity measurements. The ABC-stacking structure was revealed by the high-resolution transmission electron microscopy and powder X-ray diffraction. DBOV-COF demonstrated remarkable photocatalytic activity in hydroxylation, which was attributed to the exposure of narrow-energy-gap DBOV cores in the COF pores, in conjunction with efficient charge transport following light absorption.
Collapse
Affiliation(s)
- Enquan Jin
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shuai Fu
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Hiroki Hanayama
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| | - Matthew A. Addicoat
- School of Science and TechnologyNottingham Trent UniversityClifton Lane, NottinghamNG11 8NSUK
| | - Wenxin Wei
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Qiang Chen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Robert Graf
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | | | - Mischa Bonn
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Kai A. I. Zhang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of Materials ScienceFudan UniversityShanghai200433P.R. China
| | - Hai I. Wang
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Klaus Müllen
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Akimitsu Narita
- Max Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
- Organic and Carbon Nanomaterials UnitOkinawa Institute of Science and Technology Graduate UniversityKunigami-gun, Okinawa904-0495Japan
| |
Collapse
|
121
|
Yang S, Lv H, Zhong H, Yuan D, Wang X, Wang R. Transformation of Covalent Organic Frameworks from
N
‐Acylhydrazone to Oxadiazole Linkages for Smooth Electron Transfer in Photocatalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuailong Yang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haowei Lv
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Hong Zhong
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou Fujian 350108 China
| | - Ruihu Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- School of Chemical Engineering and Technology Hebei University of Technology Tianjin 300130 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
122
|
Wang Y, Hao W, Liu H, Chen R, Pan Q, Li Z, Zhao Y. Facile construction of fully sp 2-carbon conjugated two-dimensional covalent organic frameworks containing benzobisthiazole units. Nat Commun 2022; 13:100. [PMID: 35013158 PMCID: PMC8748616 DOI: 10.1038/s41467-021-27573-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 11/18/2021] [Indexed: 11/09/2022] Open
Abstract
Developing a facile strategy for the construction of vinylene-linked fully π-conjugated covalent organic frameworks (COFs) remains a huge challenge. Here, a versatile condition of Knoevenagel polycondensation for constructing vinylene-linked 2D COFs was explored. Three new examples of vinylene-linked 2D COFs (BTH-1, 2, 3) containing benzobisthiazoles units as functional groups were successfully prepared under this versatile and mild condition. The electron-deficient benzobisthiazole units and cyano-vinylene linkages were both integrated into the π conjugated COFs skeleton and acted as acceptor moieties. Interestingly, we found the construction of a highly ordered and conjugated D-A system is favorable for photocatalytic activity. BTH-3 with benzotrithiophene as the donor with a strong D-A effect exhibited an attractive photocatalytic HER of 15.1 mmol h-1g-1 under visible light irradiation.
Collapse
Affiliation(s)
- Yuancheng Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Wenbo Hao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Hui Liu
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Renzeng Chen
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qingyan Pan
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhibo Li
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
123
|
Liu G, Pan G, Dang Q, Li R, Li L, Yang C, Yu Y. Hollow Covalent Organic Framework Cages with Zn Ion‐Implantation Promoting Photocatalytic H2 Evolution. ChemCatChem 2022. [DOI: 10.1002/cctc.202101800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guoyu Liu
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Guodong Pan
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Qiang Dang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Rui Li
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Liuyi Li
- Fuzhou University College of Materials Science and Engineering 2 Xue Yuan Road, University Town, Fuzhou Fuzhou CHINA
| | - Chengkai Yang
- Fuzhou University College of Materials Science and Engineering CHINA
| | - Yan Yu
- Fuzhou University College of Materials Science and Engineering CHINA
| |
Collapse
|
124
|
2D/2D S-scheme heterojunction with a covalent organic framework and g-C3N4 nanosheets for highly efficient photocatalytic H2 evolution. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64094-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
125
|
Liu SS, Liu QQ, Huang SZ, Zhang C, Dong XY, Zang SQ. Sulfonic and phosphonic porous solids as proton conductors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214241] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
126
|
Yu X, Huang W, Li Y. Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22070303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
127
|
All-organic covalent organic frameworks/perylene diimide urea polymer S-scheme photocatalyst for boosted H2 generation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64130-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
128
|
Zhou Z, Bie C, Li P, Tan B, Shen Y. A thioether-functionalized pyrene-based covalent organic framework anchoring ultrafine Au nanoparticles for efficient photocatalytic hydrogen generation. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
129
|
Wang R, Yang S, Lv H, Zhong H, Yuan D, Wang X. Transformation of Covalent Organic Frameworks from N-Acylhydrazone to Oxadiazole Linkages for Smooth Electron Transfer in Photocatalysis. Angew Chem Int Ed Engl 2021; 61:e202115655. [PMID: 34962043 DOI: 10.1002/anie.202115655] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Indexed: 11/06/2022]
Abstract
Covalent organic frameworks (COFs) are regarded as new platforms for solar-to-chemical energy conversion due to their tailor-made functions and pre-designable structures. Their intrinsic reversibility and high polarization of organic linkages inevitably result in poor chemical stability and weak optoelectronic properties. Herein, one N -acylhydrazone-linked COF (H-COF) was converted into stable and π-conjugated oxadiazole-linked COF via post-oxidative cyclization. Both chemical stability and π-electron delocalization throughout the reticular framework are significantly improved, leading to high hydrogen evolution amount of 13075 μmol g -1 in 5 h upon visible-light irradiation, which is over four times higher than that of H-COF. This work provides a facile protocol for the fabrication of p-conjugated COFs and the modulation of photophysical properties for photocatalytic application.
Collapse
Affiliation(s)
- Ruihu Wang
- Chinese Academy of Sciences, State Key Laboratory of Structural Chemistry, Yangqiao West Road 155#, 350002, Fuzhou, CHINA
| | - Shuailong Yang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, CHINA
| | - Haowei Lv
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, CHINA
| | - Hong Zhong
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, CHINA
| | - Daqiang Yuan
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, CHINA
| | - Xinchen Wang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter, State Key Laboratory of Structural Chemistry, CHINA
| |
Collapse
|
130
|
Bhavani B, Chanda N, Kotha V, Reddy G, Basak P, Pal U, Giribabu L, Prasanthkumar S. 1D alignment of Co(II) metalated porphyrin-napthalimide based self-assembled nanowires for photocatalytic hydrogen evolution. NANOSCALE 2021; 14:140-146. [PMID: 34904615 DOI: 10.1039/d1nr06961f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The splitting of water into hydrogen and oxygen under visible light is an emerging phenomenon in green energy technology. Nevertheless, selecting an appropriate photocatalyst is rather significant to enhance hydrogen production on a large scale. In this context, organic photocatalysts have received considerable attention owing to their larger surface area, control in diffusion adsorption, nanostructures and electronic properties. Herein, we have developed five either free base or transition metalated porphyrin-napthalimide based donor-acceptor systems (PN1-PN5) and studied their morphology, electronic properties and catalytic behaviour. Detailed studies suggest that the Co(II) substituent D-A system (PN2) displayed a well-aligned one-dimensional (1D) nanowire with high electrical conductivity promoting remarkable photocatalytic hydrogen production rate (18 mM g-1 h-1) when compared to that of porphyrin-based derivatives reported until now. Thus, these results propose to investigate diverse metalated π-conjugated materials as photocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Botta Bhavani
- Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Nageshwarrao Chanda
- Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Vishal Kotha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharastra, India
| | - Govind Reddy
- Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
| | - Pratyay Basak
- Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Ujjwal Pal
- Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Lingamallu Giribabu
- Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| | - Seelam Prasanthkumar
- Polymer & Functional Materials Division, CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad-500007, Telangana, India.
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad-201 002, India
| |
Collapse
|
131
|
Zhang W, Peng Q, Yang H, Fang Z, Deng J, Yu G, Liao Y, Liao S, Liu Q. Modulating Carrier Transfer over Carbazolic Conjugated Microporous Polymers via Donor Structural Design for Functionalization of Thiophenols. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60072-60083. [PMID: 34882401 DOI: 10.1021/acsami.1c20579] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Developing photocatalysts to steer conversion of solar energy toward high-value-added fine chemicals represents a potentially viable approach to address the energy crisis and environmental issues. However, enablement of this conversion is usually impeded by the sluggish kinetic process for proton-coupled electron transfer and rapid recombination of photogenerated excitons. Herein, we report a simple and general structural expansion strategy to facilitate charge transfer in conjugated microporous polymers (CMPs) via engineering the donor surrounding the trifluoromethylphenyl core. The resulting CMPs combine high surface area, strong light-harvesting capabilities, and tunable optical properties endowed by extended π-conjugation; the optimized compound CbzCMP-5 generated from 9,9',9″-(2-(trifluoromethyl)benzene-1,3,5-triyl)tris(9H-carbazole) remarkably enhanced the photogenerated carrier transfer efficiency, enabling the functionalization of thiophenols toward thiocarbamates and 3-sulfenylindoles with high photocatalytic efficiency. Most importantly, the in-depth insights into the carrier-transfer processes open up new prospects on further optimization and rational design of photoactive polymers for efficient charge-transfer-mediated reactions.
Collapse
Affiliation(s)
- Weijie Zhang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China
| | - Qi Peng
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| | - Hai Yang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China
| | - Zhengjun Fang
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China
| | - Jiyong Deng
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China
| | - Guipeng Yu
- Hunan Key Laboratory of Micro and Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Lushan South Road 932, Changsha 410083, Hunan, People's Republic of China
| | - Yunfeng Liao
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China
| | - Shuzhen Liao
- Hunan Provincial Key Laboratory of Environmental Catalysis and Waste Recycling, School of Chemistry and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, People's Republic of China
| | - Qingquan Liu
- Hunan Provincial Key Lab of Advanced Materials for New Energy Storage and Conversion, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China
| |
Collapse
|
132
|
Zhu Y, Zhu D, Chen Y, Yan Q, Liu CY, Ling K, Liu Y, Lee D, Wu X, Senftle TP, Verduzco R. Porphyrin-based donor-acceptor COFs as efficient and reusable photocatalysts for PET-RAFT polymerization under broad spectrum excitation. Chem Sci 2021; 12:16092-16099. [PMID: 35024131 PMCID: PMC8672717 DOI: 10.1039/d1sc05379e] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
Covalent organic frameworks (COFs) are crystalline and porous organic materials attractive for photocatalysis applications due to their structural versatility and tunable optical and electronic properties. The use of photocatalysts (PCs) for polymerizations enables the preparation of well-defined polymeric materials under mild reaction conditions. Herein, we report two porphyrin-based donor-acceptor COFs that are effective heterogeneous PCs for photoinduced electron transfer-reversible addition-fragmentation chain transfer (PET-RAFT). Using density functional theory (DFT) calculations, we designed porphyrin COFs with strong donor-acceptor characteristics and delocalized conduction bands. The COFs were effective PCs for PET-RAFT, successfully polymerizing a variety of monomers in both organic and aqueous media using visible light (λ max from 460 to 635 nm) to produce polymers with tunable molecular weights (MWs), low molecular weight dispersity, and good chain-end fidelity. The heterogeneous COF PCs could also be reused for PET-RAFT polymerization at least 5 times without losing photocatalytic performance. This work demonstrates porphyrin-based COFs that are effective catalysts for photo-RDRP and establishes design principles for the development of highly active COF PCs for a variety of applications.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
| | - Dongyang Zhu
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Yu Chen
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Qianqian Yan
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
| | - Chun-Yen Liu
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Kexin Ling
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Yifeng Liu
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
| | - Dongjoo Lee
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Xiaowei Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences Fuzhou 350002 China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials (XMIREM), Haixi Institutes, Chinese Academy of Sciences Xiamen 361021 China
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| | - Rafael Verduzco
- Department of Materials Science and NanoEngineering, Rice University Houston Texas 77005 USA
- Department of Chemical and Biomolecular Engineering, Rice University Houston Texas 77005 USA
| |
Collapse
|
133
|
Zhong X, Liu Y, Wang S, Zhu Y, Hu B. In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U(VI) photocatalytic reduction. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119627] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
134
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
135
|
Bi S, Zhang Z, Meng F, Wu D, Chen JS, Zhang F. Heteroatom-Embedded Approach to Vinylene-Linked Covalent Organic Frameworks with Isoelectronic Structures for Photoredox Catalysis. Angew Chem Int Ed Engl 2021; 61:e202111627. [PMID: 34813141 DOI: 10.1002/anie.202111627] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/06/2022]
Abstract
Embedding heteroatoms into the main backbones of polymeric materials has become an efficient tool for tailoring their structures and improving their properties. However, owing to comparatively harsh heteroatom-doping conditions, this has rarely been explored in covalent organic frameworks (COFs). Herein, upon aldol condensation of a trimethyl-substituted pyrylium salt with a tritopic aromatic aldehyde, a two-dimensional oxonium-embedded COF with vinylene linkages was achieved, which was further converted to a neutral pyridine-cored COF by in situ replacement of oxonium ions with nitrogen atoms under ammonia treatment. The two heteroatom-embedded COFs are conceptually isoelectronic with each other, featuring similar geometric structures but different electronic structures, rendering them capable of catalyzing the visible-light-promoted multi-component synthesis of tri-substituted pyridine derivatives with good recyclability.
Collapse
Affiliation(s)
- Shuai Bi
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jie-Sheng Chen
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering; State Key Laboratory of Metal Matrix Composites; Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
136
|
Wu S, Pan Y, Lin H, Li L, Fu X, Long J. Crystalline Covalent Organic Frameworks with Tailored Linkages for Photocatalytic H 2 Evolution. CHEMSUSCHEM 2021; 14:4958-4972. [PMID: 34558794 DOI: 10.1002/cssc.202101625] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Crystalline covalent organic frameworks (COFs) are porous polymeric semiconductors with network topologies, which are built from the integration of selected organic blocks with covalent bond linkages. They have shown great promise for artificial photosynthesis, owing to broad light harvesting, high crystallinity, and high carrier mobility. This Minireview introduces state-of-the-art COF photocatalysts based on different linkages and discusses the origin of photocatalytic activities for hydrogen evolution. Three typical COF photocatalysts, with linkages including imine (-C=N-), β-ketoenamine (O=C-C=C-NH-), and vinylene (-C=C-), are discussed with a particular focus on the advancements in synthetic methodologies and structural design, as well as photoelectronic properties that are relevant to photocatalytic performance. The Minireview is expected to elucidate their structure-property relationships and the way to design photoactive COFs with enhanced performances.
Collapse
Affiliation(s)
- Shuhong Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yi Pan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Huan Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
- Beijing Key Laboratory for Green Catalysis and Separation, Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Liuyi Li
- Key Laboratory of Eco-materials Advanced Technology, College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China
| |
Collapse
|
137
|
Photo-induced synthesis of ternary Pt/rGO/COF photocatalyst with Pt nanoparticles precisely anchored on rGO for efficient visible-light-driven H 2 evolution. J Colloid Interface Sci 2021; 608:2613-2622. [PMID: 34772502 DOI: 10.1016/j.jcis.2021.10.183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 12/26/2022]
Abstract
Covalent organic frameworks (COFs) have been recognized as a new type of promising visible-light-driven photocatalysts for H2 evolution, while it still is a key point to facilitate the separation and transfer of photoinduced charges for further enhancing their activities. In this work, we fabricated a new type of ternary Pt/rGO/COF photocatalysts with Pt cocatalyst precisely anchored on rGO serving as electron collector for largely enhanced H2 evolution. A series of ternary hybrid materials were obtained via one-pot photoreduction of Pt4+ and GO under visible-light irradiation in a solution the same as photocatalytic H2 evolution reaction and simultaneous self-assembling of rGO/COF heterostructure. No need isolation, the synthetic system could be further used for photocatalytic H2 evolution reaction and the results show the H2 evolution rate of Pt/rGO(20%)/TpPa-1-COF hybrid material is 19.59 mmol·g-1·h-1, 6.51 times higher than that of Pt/TpPa-1-COF. The essential role of the exclusively distributed Pt nanoparticles on rGO to the high H2 evolution activity was confirmed by various comparisons of activity for the samples with diverse Pt distribution.
Collapse
|
138
|
Xia C, Kirlikovali KO, Nguyen THC, Nguyen XC, Tran QB, Duong MK, Nguyen Dinh MT, Nguyen DLT, Singh P, Raizada P, Nguyen VH, Kim SY, Singh L, Nguyen CC, Shokouhimehr M, Le QV. The emerging covalent organic frameworks (COFs) for solar-driven fuels production. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214117] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
139
|
Ma S, Li Z, Jia J, Zhang Z, Xia H, Li H, Chen X, Xu Y, Liu X. Amide-linked covalent organic frameworks as efficient heterogeneous photocatalysts in water. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63836-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
140
|
Li C, Yu G. Controllable Synthesis and Performance Modulation of 2D Covalent-Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100918. [PMID: 34288393 DOI: 10.1002/smll.202100918] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/29/2021] [Indexed: 06/13/2023]
Abstract
Covalent-organic frameworks (COFs) are especially interesting and unique as their highly ordered topological structures entirely built from plentiful π-conjugated units through covalent bonds. Arranging tailorable organic building blocks into periodically reticular skeleton bestows predictable lattices and various properties upon COFs in respect of topology diagrams, pore size, properties of channel wall interfaces, etc. Indeed, these peculiar features in terms of crystallinity, conjugation degree, and topology diagrams fundamentally decide the applications of COFs including heterogeneous catalysis, energy conversion, proton conduction, light emission, and optoelectronic devices. Additionally, this research field has attracted widespread attention and is of importance with a major breakthrough in recent year. However, this research field is running with the lack of summaries about tailorable construction of 2D COFs for targeted functionalities. This review first covers some crucial polymeric strategies of preparing COFs, containing boron ester condensation, amine-aldehyde condensation, Knoevenagel condensation, trimerization reaction, Suzuki CC coupling reaction, and hybrid polycondensation. Subsequently, a summary is made of some representative building blocks, and then underlines how the electronic and molecular structures of building blocks can strongly influence the functional performance of COFs. Finally, conclusion and perspectives on 2D COFs for further study are proposed.
Collapse
Affiliation(s)
- Chenyu Li
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
141
|
Li YJ, Cui WR, Jiang QQ, Liang RP, Li XJ, Wu Q, Luo QX, Liu J, Qiu JD. Arousing Electrochemiluminescence Out of Non-Electroluminescent Monomers within Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47921-47931. [PMID: 34601862 DOI: 10.1021/acsami.1c12958] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) with stable long-range ordered arrangements are promising materials for organic optoelectronics. However, their electrochemiluminescence (ECL) from non-ECL active monomers has not been realized. Here, we report a design strategy for ECL-emitting COF family. The donors and acceptors co-crystallized and stacked into the highly aligned array of olefin-linked COFs, so that electrons can be transported freely. By this means, a tunable ECL is activated from non-ECL molecules with the maximum efficiency of 32.1% in water with the dissolved oxygen as an inner coreactant, and no additional noxious co-reactant is needed any more. Quantum chemistry calculations further demonstrate that this design reduces the COFs' band gaps and the overlap of electrons and holes in the excited state for better photoelectric properties and stronger ECL signals. This work exploits a basis to envisage the broad application potential of ECL-COFs for various biosensors and light-emitting display.
Collapse
Affiliation(s)
- Ya-Jie Li
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Wei-Rong Cui
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiao-Qiao Jiang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Xue-Jing Li
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiong Wu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Qiu-Xia Luo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jian-Ding Qiu
- College of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
142
|
Ghosh R, Paesani F. Topology-Mediated Enhanced Polaron Coherence in Covalent Organic Frameworks. J Phys Chem Lett 2021; 12:9442-9448. [PMID: 34554754 DOI: 10.1021/acs.jpclett.1c02454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We employ the Holstein model for polarons to investigate the relationship among defects, topology, Coulomb trapping, and polaron delocalization in covalent organic frameworks (COFs). We find that intrasheet topological connectivity and π-column density can override disorder-induced deep traps and significantly enhance polaron migration by several orders of magnitude in good agreement with recent experimental observations. The combination of percolation networks and micropores makes trigonal COFs ideally suited for charge transport followed by kagome/tetragonal and hexagonal structures. By comparing the polaron spectral signatures and coherence numbers of large three-dimensional frameworks having a maximum of 180 coupled chromophores, we show that controlling nanoscale defects and the location of the counteranion is critical for the design of new COF-based materials yielding higher mobilities. Our analysis establishes design strategies for enhanced conductivity in COFs that can be readily generalized to other classes of conductive materials such as metal-organic frameworks and perovskites.
Collapse
Affiliation(s)
- Raja Ghosh
- Department of Chemistry and Biochemistry, ‡Materials Science and Engineering, and §San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, ‡Materials Science and Engineering, and §San Diego Supercomputer Center, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
143
|
Chen Z, Li X, Yang C, Cheng K, Tan T, Lv Y, Liu Y. Hybrid Porous Crystalline Materials from Metal Organic Frameworks and Covalent Organic Frameworks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101883. [PMID: 34411465 PMCID: PMC8529453 DOI: 10.1002/advs.202101883] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/07/2021] [Indexed: 05/19/2023]
Abstract
Two frontier crystalline porous framework materials, namely, metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have been widely explored owing to their outstanding physicochemical properties. While each type of framework has its own intrinsic advantages and shortcomings for specific applications, combining the complementary properties of the two materials allows the engineering of new classes of hybrid porous crystalline materials with properties superior to the individual components. Since the first report of MOF/COF hybrid in 2016, it has rapidly evolved as a novel platform for diverse applications. The state-of-art advances in the various synthetic approaches of MOF/COF hybrids are hereby summarized, together with their applications in different areas. Perspectives on the main challenges and future opportunities are also offered in order to inspire a multidisciplinary effort toward the further development of chemically diverse, multi-functional hybrid porous crystalline materials.
Collapse
Affiliation(s)
- Ziman Chen
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
- The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Xinle Li
- Department of ChemistryClark Atlanta UniversityAtlantaGA30314USA
| | - Chongqing Yang
- The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| | - Kaipeng Cheng
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Tianwei Tan
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yongqin Lv
- Beijing Key Laboratory of BioprocessCollege of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029China
| | - Yi Liu
- The Molecular FoundryLawrence Berkeley National LaboratoryBerkeleyCA94720USA
| |
Collapse
|
144
|
Wang S, Li XX, Da L, Wang Y, Xiang Z, Wang W, Zhang YB, Cao D. A Three-Dimensional sp 2 Carbon-Conjugated Covalent Organic Framework. J Am Chem Soc 2021; 143:15562-15566. [PMID: 34533316 DOI: 10.1021/jacs.1c06986] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A first example of an sp2 carbon-conjugated three-dimensional (3D) covalent organic framework (COF) (BUCT-COF-4) is synthesized via the Knoevenagel condensation of the saddle-shaped aldehyde-substituted cyclooctatetrathiophene and 1,4-phenylenediacetonitrile. Ascribed to the extended π-conjugation and long-range ordered structures, BUCT-COF-4 displays high Hall electron mobility of 1.97 cm2 V-1 s-1 at room temperature. After it is doped with iodine, the material not only exhibits an enhanced electron mobility up to 2.62 cm2 V-1 s-1 in ambient air but also presents an unexpected metal-free ferromagnetic phase transition arising from the formation of aligned spins unidirectional across the whole sp2 carbon-conjugated 3D framework. This is the first report of a ferromagnetic phenomenon in 3D COF materials, which would broaden promising applications and open a new frontier in COF materials.
Collapse
Affiliation(s)
- Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiang-Xiang Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Da
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yaqin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhehao Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wei Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.,Department of Physics and Electronics, School of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
145
|
Koh JX, Geng K, Jiang D. Smart covalent organic frameworks: dual channel sensors for acids and bases. Chem Commun (Camb) 2021; 57:9418-9421. [PMID: 34528965 DOI: 10.1039/d1cc03057d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fully π-conjugated sp2 carbon covalent organic frameworks upon integration with carboxylic electrolyte sites on the pore wall become highly luminescent sensors. The sensors feature dual channel responsiveness and are able to detect both acids and bases over a wide pH range and the neurotransmitter dopamine via ultrafast electron transfer under ambient conditions.
Collapse
Affiliation(s)
- Jia Xin Koh
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Keyu Geng
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Donglin Jiang
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore. .,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
146
|
Yang Y, Zhao W, Niu H, Cai Y. Mechanochemical Construction 2D/2D Covalent Organic Nanosheets Heterojunctions Based on Substoichiometric Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42035-42043. [PMID: 34428887 DOI: 10.1021/acsami.1c11775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Combining different semiconductor materials to construct heterojunctions is a promising method to achieve efficient photocatalysis; however, it is still a challenge to accurately construct heterojunctions through molecular regulation. In this work, we take advantage of the remaining aldehyde groups in a substoichiometric covalent organic framework (denoted as PTO-COF) to achieve precise construction of covalently linked 2D/2D covalent organic nanosheets (CONs) heterojunctions through mechanochemical methods. The ultrathin structure of CONs endowed them with superior photoinduced charge generation and separation. Additionally, the energy bands of two CONs materials in heterojunctions were precisely coupled in a Z-scheme by the well-designed covalent linkages, which lead to a 190% enhancement of photocatalytic degradation efficiency for PTO/TpMa CONs heterojunctions as compared with pure COFs. This work provides new insights for design and synthesis of innovative 2D organic heterojunction photocatalysts.
Collapse
Affiliation(s)
- Yongliang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijia Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyun Niu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
- Institute of Environment and Health, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| |
Collapse
|
147
|
Ru C, Zhou T, Zhang J, Wu X, Sun P, Chen P, Zhou L, Zhao H, Wu J, Pan X. Introducing Secondary Acceptors into Conjugated Polymers to Improve Photocatalytic Hydrogen Evolution. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chenglong Ru
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Tong Zhou
- School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Jin Zhang
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xuan Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Pengyao Sun
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Lian Zhou
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810006, People’s Republic of China
| | - Hao Zhao
- School of Science & Technology for Opto-Electronic Information, Yantai University, 30 Qingquan Road, Yantai 264005, People’s Republic of China
| | - Jincai Wu
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, People’s Republic of China
- New Energy (Photovoltaic) Industry Research Center, Qinghai University, Xining 810006, People’s Republic of China
| |
Collapse
|
148
|
Liu M, Liu J, Zhou K, Chen J, Sun Q, Bao Z, Yang Q, Yang Y, Ren Q, Zhang Z. Turn-On Photocatalysis: Creating Lone-Pair Donor-Acceptor Bonds in Organic Photosensitizer to Enhance Intersystem Crossing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100631. [PMID: 34339109 PMCID: PMC8456219 DOI: 10.1002/advs.202100631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/28/2021] [Indexed: 05/05/2023]
Abstract
There is growing interest in developing triplet photosensitizers in terms of implementing photochemical strategies in synthetic chemistry. However, synthesis of stable triplet organic photosensitizers is nontrivial and often requires the use of heavy atoms. Herein, an alternative strategy is demonstrated to enhance the triplet generation efficiency by implanting lone-pair donor-acceptor bonds in the conjugated covalent organic frameworks (COFs). This powerful method is validated using COFs that host triazine, a moiety that has been extensively investigated in photocatalysis. Spectroscopic analysis and theoretical calculations reveal substantial improvements in the photoabsorptivity and triple-state photogeneration efficiency, consistent with catalytic tests concerning industrially relevant sulfide oxidation. These systems represent a promising addition to the rapidly increasing arsenal of synthetic photocatalytic systems.
Collapse
Affiliation(s)
- Mingjie Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
- Institute of Zhejiang University‐Quzhou78 Jiuhua Boulevard NorthQuzhou324000China
| | - Junnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
| | - Kai Zhou
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
- Institute of Zhejiang University‐Quzhou78 Jiuhua Boulevard NorthQuzhou324000China
| | - Jingwen Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
| | - Qi Sun
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
- Institute of Zhejiang University‐Quzhou78 Jiuhua Boulevard NorthQuzhou324000China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
- Institute of Zhejiang University‐Quzhou78 Jiuhua Boulevard NorthQuzhou324000China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
- Institute of Zhejiang University‐Quzhou78 Jiuhua Boulevard NorthQuzhou324000China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
- Institute of Zhejiang University‐Quzhou78 Jiuhua Boulevard NorthQuzhou324000China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang UniversityZheda Road 38Hangzhou310027China
- Institute of Zhejiang University‐Quzhou78 Jiuhua Boulevard NorthQuzhou324000China
| |
Collapse
|
149
|
Zhou Z, Springer MA, Geng W, Zhu X, Li T, Li M, Jing Y, Heine T. Rational Design of Two-Dimensional Binary Polymers from Heterotriangulenes for Photocatalytic Water Splitting. J Phys Chem Lett 2021; 12:8134-8140. [PMID: 34410139 DOI: 10.1021/acs.jpclett.1c02109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
On the basis of first-principles calculations, we report the design of three two-dimensional (2D) binary honeycomb-kagome polymers composed of B- and N-centered heterotriangulenes with a periodically alternate arrangement as in hexagonal boron nitride. The 2D binary polymers with donor-acceptor characteristics are semiconductors with a direct band gap of 1.98-2.28 eV. The enhanced in-plane electron conjugation contributes to high charge carrier mobilities for both electrons and holes, about 6.70 and 0.24 × 103 cm2 V-1 s-1, respectively, for the 2D binary polymer with carbonyl bridges (2D CTPAB). With appropriate band edge alignment to match the water redox potentials and pronounced light adsorption for the ultraviolet and visible range of spectra, 2D CTPAB is predicted to be an effective photocatalyst/photoelectrocatalyst to promote overall water splitting.
Collapse
Affiliation(s)
- Zhenpei Zhou
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Maximilian A Springer
- Fakultät Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66c, 01062 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Permoserstraße 15, 04318 Leipzig, Germany
| | - Weixiang Geng
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xinyue Zhu
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianchun Li
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Manman Li
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yu Jing
- Jiangsu Co-Innovation Centre of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Thomas Heine
- Fakultät Chemie und Lebensmittelchemie, TU Dresden, Bergstraße 66c, 01062 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
150
|
Li Q, Wang J, Zhang Y, Ricardez-Sandoval L, Bai G, Lan X. Structural and Morphological Engineering of Benzothiadiazole-Based Covalent Organic Frameworks for Visible Light-Driven Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39291-39303. [PMID: 34392679 DOI: 10.1021/acsami.1c08951] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Covalent organic frameworks (COFs) are appealing platforms for photocatalysts because of their structural diversity and adjustable optical band gaps. The construction of efficient COFs for heterogeneous photocatalysis of organic transformations is highly desirable. Herein, we constructed a photoactive COF containing benzothiadiazole and triazine (BTDA-TAPT), for which the morphology and crystallinity might be easily tuned by slight synthetic variation. To unveil the relationship of photocatalytic properties between the structure and morphology, analogous COFs were synthesized by precisely tailoring building blocks. Systematic investigations indicated that tuning the structure and morphology might greatly impact photoelectric properties. The BTDA-TAPT featuring ordered alignment and perfect crystalline nature was more beneficial for promoting charge transfer and separation, which exhibited superior photocatalytic activity for visible light-driven oxidative coupling of amines. Outcomes from this study reveal the intrinsic synergy effects between the structure and morphology of COFs for photocatalysis.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Luis Ricardez-Sandoval
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|