101
|
Haouas N, Remadi L, Chaara D, Chargui N, Dabghi R, Jbeniani H, Babba H, Ravel C. Unexpected co-detection of promastigote and amastigote Leishmania forms in a human cutaneous lesion: implications for leishmaniasis physiopathology and treatment. Diagn Microbiol Infect Dis 2014; 81:18-20. [PMID: 25312011 DOI: 10.1016/j.diagmicrobio.2014.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/09/2014] [Accepted: 09/15/2014] [Indexed: 10/24/2022]
Abstract
Cutaneous leishmaniasis pathogenicity depends on the survival and replication of the parasitic protozoa in the form of non-motile amastigotes inside macrophages. Here, we report the unprecedented observation of both Leishmania major amastigote and promastigote forms (the latter is normally detected only in the mid gut of the insect vector or in vitro culture) in a cutaneous lesion of a 6-year-old boy. This finding suggests that modifications of the skin lesion environment, such as maceration and changes in pH or temperature, could promote the in situ transformation of Leishmania amastigotes into promastigotes. This observation raises questions about the physiopathology of cutaneous leishmaniasis and the influence of micro-environmental changes on the efficiency of topical treatments.
Collapse
Affiliation(s)
- Najoua Haouas
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie, Université de Monastir, Tunisia.
| | - Latifa Remadi
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie, Université de Monastir, Tunisia
| | - Dhekra Chaara
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie, Université de Monastir, Tunisia
| | - Najla Chargui
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie, Université de Monastir, Tunisia
| | | | - Henda Jbeniani
- Centre d'Hygiène et des Soins de Santé de Base de Kairouan, Tunisia
| | - Hamouda Babba
- Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Département de Biologie Clinique B, Faculté de Pharmacie, Université de Monastir, Tunisia
| | - Christophe Ravel
- French Reference Centre on Leishmaniasis, UMR5290 MIVEGEC, University of Montpellier, Department of Parasitology, Montpellier, France
| |
Collapse
|
102
|
Marr AK, MacIsaac JL, Jiang R, Airo AM, Kobor MS, McMaster WR. Leishmania donovani infection causes distinct epigenetic DNA methylation changes in host macrophages. PLoS Pathog 2014; 10:e1004419. [PMID: 25299267 PMCID: PMC4192605 DOI: 10.1371/journal.ppat.1004419] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/23/2014] [Indexed: 12/15/2022] Open
Abstract
Infection of macrophages by the intracellular protozoan Leishmania leads to down-regulation of a number of macrophage innate host defense mechanisms, thereby allowing parasite survival and replication. The underlying molecular mechanisms involved remain largely unknown. In this study, we assessed epigenetic changes in macrophage DNA methylation in response to infection with L. donovani as a possible mechanism for Leishmania driven deactivation of host defense. We quantified and detected genome-wide changes of cytosine methylation status in the macrophage genome resulting from L. donovani infection. A high confidence set of 443 CpG sites was identified with changes in methylation that correlated with live L. donovani infection. These epigenetic changes affected genes that play a critical role in host defense such as the JAK/STAT signaling pathway and the MAPK signaling pathway. These results provide strong support for a new paradigm in host-pathogen responses, where upon infection the pathogen induces epigenetic changes in the host cell genome resulting in downregulation of innate immunity thereby enabling pathogen survival and replication. We therefore propose a model whereby Leishmania induced epigenetic changes result in permanent down regulation of host defense mechanisms to protect intracellular replication and survival of parasitic cells. The L. donovani parasite causes visceral leishmaniasis, a tropical, neglected disease with an estimated number of 500,000 cases worldwide. Current drug treatments have toxic side effects, lead to drug resistance, and an effective vaccine is not available. The parasite has a complex life cycle residing within different host environments including the gut of a sand fly and immune cells of the mammalian host. Alteration of host cell gene expression including signaling pathways has been shown to be a major strategy to evade host cell immune response and thus enables the Leishmania parasite to survive, replicate and persist in its host cells. Recently it was demonstrated that intracellular pathogens such as viruses and bacteria are able to manipulate epigenetic processes, thereby perhaps facilitating their intracellular survival. Using an unbiased genome-wide DNA methylation approach, we demonstrate here that an intracellular parasite can alter host cell DNA methylation patterns resulting in altered gene expression possibly to establish disease. Thus DNA methylation changes in host cells upon infection might be a common strategy among intracellular pathogens for their uncontrolled replication and dissemination.
Collapse
Affiliation(s)
- Alexandra K. Marr
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Julia L. MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Ruiwei Jiang
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Adriana M. Airo
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Human Early Learning Partnership, School of Population and Public Health, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (MSK); (WRM)
| | - W. Robert McMaster
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (MSK); (WRM)
| |
Collapse
|
103
|
Fader CM, Aguilera MO, Colombo MI. Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens. Amino Acids 2014; 47:2101-12. [PMID: 25234192 DOI: 10.1007/s00726-014-1835-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/03/2014] [Indexed: 02/06/2023]
Abstract
Macroautophagy is a self-degradative process that normally maintains cellular homeostasis via a lysosomal pathway. It is induced by different stress signals, including nutrients and growth factors' restriction as well as pathogen invasions. These stimuli are modulated by the serine/threonine protein kinase mammalian target of rapamycin (mTOR) which control not only autophagy but also protein translation and gene expression. This review focuses on the important role of mTOR as a master regulator of cell growth and the autophagy pathway. Here, we have discussed the role of intracellular amino acid availability and intracellular pH in the redistribution of autophagic structures, which may contribute to mammalian target of rapamycin complex 1 (mTORC1) activity regulation. We have also discussed that mTORC1 complex and components of the autophagy machinery are localized at the lysosomal surface, representing a fascinating mechanism to control the metabolism, cellular clearance and also to restrain invading intracellular pathogens.
Collapse
Affiliation(s)
- Claudio Marcelo Fader
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500), Mendoza, Argentina
| | - Milton Osmar Aguilera
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500), Mendoza, Argentina
| | - María Isabel Colombo
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM)-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500), Mendoza, Argentina.
| |
Collapse
|
104
|
Beiting DP. Protozoan parasites and type I interferons: a cold case reopened. Trends Parasitol 2014; 30:491-8. [PMID: 25153940 DOI: 10.1016/j.pt.2014.07.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/12/2023]
Abstract
Protozoan parasites, such as Plasmodium, Toxoplasma, Cryptosporidium, trypanosomes, and Leishmania, are a major cause of disease in both humans and other animals, highlighting the need to understand the full spectrum of strategies used by the host immune system to sense and respond to parasite infection. Although type II interferon (IFN-γ) has long been recognized as an essential antiparasite immune effector, much less is known about the role of type I interferons (IFN-α and -β) in host defense, particularly in vivo. Recent studies are reviewed which collectively highlight that type I IFN can be induced in response to parasite infection and influence the outcome of infection.
Collapse
Affiliation(s)
- Daniel P Beiting
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
105
|
Carpenter S, Ricci EP, Mercier BC, Moore MJ, Fitzgerald KA. Post-transcriptional regulation of gene expression in innate immunity. Nat Rev Immunol 2014; 14:361-76. [PMID: 24854588 DOI: 10.1038/nri3682] [Citation(s) in RCA: 280] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Innate immune responses combat infectious microorganisms by inducing inflammatory responses, antimicrobial pathways and adaptive immunity. Multiple genes within each of these functional categories are coordinately and temporally regulated in response to distinct external stimuli. The substantial potential of these responses to drive pathological inflammation and tissue damage highlights the need for rigorous control of these responses. Although transcriptional control of inflammatory gene expression has been studied extensively, the importance of post-transcriptional regulation of these processes is less well defined. In this Review, we discuss the regulatory mechanisms that occur at the level of mRNA splicing, mRNA polyadenylation, mRNA stability and protein translation, and that have instrumental roles in controlling both the magnitude and duration of the inflammatory response.
Collapse
Affiliation(s)
- Susan Carpenter
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Emiliano P Ricci
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Blandine C Mercier
- 1] Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2]
| | - Melissa J Moore
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Katherine A Fitzgerald
- 1] Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. [2] Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
106
|
Arango Duque G, Fukuda M, Turco SJ, Stäger S, Descoteaux A. Leishmania promastigotes induce cytokine secretion in macrophages through the degradation of synaptotagmin XI. THE JOURNAL OF IMMUNOLOGY 2014; 193:2363-72. [PMID: 25063865 DOI: 10.4049/jimmunol.1303043] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Synaptotagmins (Syts) are type-I membrane proteins that regulate vesicle docking and fusion in processes such as exocytosis and phagocytosis. We recently discovered that Syt XI is a recycling endosome- and lysosome-associated protein that negatively regulates the secretion of TNF and IL-6. In this study, we show that Syt XI is directly degraded by the zinc metalloprotease GP63 and excluded from Leishmania parasitophorous vacuoles by the promastigotes surface glycolipid lipophosphoglycan. Infected macrophages were found to release TNF and IL-6 in a GP63-dependent manner. To demonstrate that cytokine release was dependent on GP63-mediated degradation of Syt XI, small interfering RNA-mediated knockdown of Syt XI before infection revealed that the effects of small interfering RNA knockdown and GP63 degradation were not cumulative. In mice, i.p. injection of GP63-expressing parasites led to an increase in TNF and IL-6 secretion and to an augmented influx of neutrophils and inflammatory monocytes to the inoculation site. Both of these cell types have been shown to be infection targets and aid in the establishment of infection. In sum, our data revealed that GP63 induces proinflammatory cytokine release and increases infiltration of inflammatory phagocytes. This study provides new insight on how Leishmania exploits the immune response to establish infection.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan; and
| | - Salvatore J Turco
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40508
| | - Simona Stäger
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique-Institut Armand-Frappier, Laval, Quebec H7V 1B7, Canada; Centre for Host-Parasite Interactions, Laval, Quebec H7V 1B7, Canada;
| |
Collapse
|
107
|
Absence of metalloprotease GP63 alters the protein content of Leishmania exosomes. PLoS One 2014; 9:e95007. [PMID: 24736445 PMCID: PMC3988155 DOI: 10.1371/journal.pone.0095007] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/22/2014] [Indexed: 11/19/2022] Open
Abstract
Protozoan parasites of Leishmania genus are able to successfully infect their host macrophage due to multiple virulence strategies that result in its deactivation. Recent studies suggest Leishmania GP63 to be a critical virulence factor in modulation of many macrophage molecules, including protein tyrosine phosphatases (PTPs) and transcription factors (TFs). Additionally, we and others recently reported that Leishmania-released exosomes can participate in pathogenesis. Exosomes are 40-100 nm vesicles that are freed by many eukaryotic cells. To better understand the GP63-dependent immune modulation of the macrophage by Leishmania parasites and their exosomes, we compared the immunomodulatory properties of Leishmania major (WT) and L. major gp63-/- (KO) as well as their exosomes in vitro and in vivo. Importantly, we observed that Leishmania exosomes can modulate macrophage PTPs and TFs in a GP63-dependent manner. In addition, our qRT-PCR analyses showed that WT parasites were able to downregulate multiple genes involved in the immune response, especially cytokines and pattern recognition receptors. KO parasites showed a strongly reduced modulatory capacity compared to WT parasites. Furthermore, comparison of WT versus KO exosomes also showed divergences in alteration of gene expression, especially of chemokine receptors. In parallel, studying the in vivo inflammatory recruitment using a murine air pouch model, we found that exosomes have stronger proinflammatory properties than parasites and preferentially induce the recruitment of neutrophils. Finally, comparative proteomics of WT and KO exosomes surprisingly revealed major differences in their protein content, suggesting a role for GP63 in Leishmania exosomal protein sorting. Collectively our data clearly establish the crucial role of GP63 in dampening the innate inflammatory response during early Leishmania infection, and also provides new insights in regard to the role and biology of exosomes in Leishmania host-parasite interactions.
Collapse
|
108
|
Magalhães RDM, Duarte MC, Mattos EC, Martins VT, Lage PS, Chávez-Fumagalli MA, Lage DP, Menezes-Souza D, Régis WCB, Manso Alves MJ, Soto M, Tavares CAP, Nagen RAP, Coelho EAF. Identification of differentially expressed proteins from Leishmania amazonensis associated with the loss of virulence of the parasites. PLoS Negl Trop Dis 2014; 8:e2764. [PMID: 24699271 PMCID: PMC3974679 DOI: 10.1371/journal.pntd.0002764] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 02/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background The present study analyzed whether or not the in vitro cultivation for long periods of time of pre-isolated Leishmania amazonensis from lesions of chronically infected BALB/c mice was able to interfere in the parasites' infectivity using in vivo and in vitro experiments. In addition, the proteins that presented a significant decrease or increase in their protein expression content were identified applying a proteomic approach. Methodology/Principal Findings Parasites were cultured in vitro for 150 days. Aliquots were collected on the day 0 of culture (R0), as well as after ten (R10; 50 days of culture), twenty (R20; 100 days of culture), and thirty (R30; 150 days of culture) passages, and were used to analyze the parasites' in vitro and in vivo infectivity, as well as to perform the proteomic approach. Approximately 837, 967, 935, and 872 spots were found in 2-DE gels prepared from R0, R10, R20, and R30 samples, respectively. A total of 37 spots presented a significant decrease in their intensity of expression, whereas a significant increase in protein content during cultivation could be observed for 19 proteins (both cases >2.0 folds). Some of these identified proteins can be described, such as diagnosis and/or vaccine candidates, while others are involved in the infectivity of Leishmania. It is interesting to note that six proteins, considered hypothetical in Leishmania, showed a significant decrease in their expression and were also identified. Conclusions/Significance The present study contributes to the understanding that the cultivation of parasites over long periods of time may well be related to the possible loss of infectivity of L. amazonensis. The identified proteins that presented a significant decrease in their expression during cultivation, including the hypothetical, may also be related to this loss of parasites' infectivity, and applied in future studies, including vaccine candidates and/or immunotherapeutic targets against leishmaniasis. Leishmania amazonensis can induce a diversity of clinical manifestations in mammal hosts, including tegumentary and visceral leishmaniasis. The present study evaluated the variation of infectivity of L. amazonensis, which was pre-isolated from lesions of chronically infected mice and in vitro cultured for 150 days, in turn connecting these results with the profile of parasite protein expression using a proteomic approach. Parasites were recovered after the first passage, as well as after 50, 100, and 150 days of axenic cultures, and were subsequently evaluated. A total of 37 proteins presented a significant decrease, whereas 19 proteins presented a significant increase in their protein expression content in the assays (both cases >2.0 fold). Some of the identified proteins have been reported in prior literature, including diagnosis and/or vaccine candidates for leishmaniasis, while others proved to be involved in the infectivity of Leishmania. It is interesting to note that proteins related to the parasites' metabolism were also the majority of the proteins identified in the old cultures of L. amazonensis, suggesting a possible relation between the metabolic state of parasites and their possible loss of infectivity. In conclusion, the proteins identified in this study represent a contribution to the discovery of new vaccine candidates and/or immunotherapeutic targets against leishmaniasis.
Collapse
Affiliation(s)
- Rubens D. M. Magalhães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eliciane C. Mattos
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Vivian T. Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P. Lage
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Wiliam C. B. Régis
- Departamento de Bioquímica, PUC Minas, Belo Horizonte, Minas Gerais, Brazil
| | - Maria J. Manso Alves
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ronaldo A. P. Nagen
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
109
|
Calixto P, Fagundes D, Oliveira J. Estrutura Tridimensional da Major Surface Protease de Leishmania guyanensis Resolvida por Modelagem Comparativa. BIOTA AMAZÔNIA 2014. [DOI: 10.18561/2179-5746/biotaamazonia.v4n1p74-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
110
|
Matheoud D, Moradin N, Bellemare-Pelletier A, Shio MT, Hong WJ, Olivier M, Gagnon E, Desjardins M, Descoteaux A. Leishmania evades host immunity by inhibiting antigen cross-presentation through direct cleavage of the SNARE VAMP8. Cell Host Microbe 2014; 14:15-25. [PMID: 23870310 DOI: 10.1016/j.chom.2013.06.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 04/08/2013] [Accepted: 05/17/2013] [Indexed: 11/18/2022]
Abstract
During phagocytosis, microorganisms are taken up by immune cells into phagosomes. Through membrane-trafficking events mediated by SNARE proteins, phagosomes fuse with lysosomes, generating degradative phagolysosomes. Phagolysosomes contribute to host immunity by linking microbial killing within these organelles with antigen processing for presentation on MHC class I or II molecules to T cells. We show that the intracellular parasite Leishmania evades immune recognition by inhibiting phagolysosome biogenesis. The Leishmania cell surface metalloprotease GP63 cleaves a subset of SNAREs, including VAMP8. GP63-mediated VAMP8 inactivation or Vamp8 disruption prevents the NADPH oxidase complex from assembling on phagosomes, thus altering their pH and degradative properties. Consequently, the presentation of exogenous Leishmania antigens on MHC class I molecules, also known as cross-presentation, is inhibited, resulting in reduced T cell activation. These findings indicate that Leishmania subverts immune recognition by altering phagosome function and highlight the importance of VAMP8 in phagosome biogenesis and antigen cross-presentation.
Collapse
Affiliation(s)
- Diana Matheoud
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol 2014; 5:491. [PMID: 25339958 PMCID: PMC4188125 DOI: 10.3389/fimmu.2014.00491] [Citation(s) in RCA: 1401] [Impact Index Per Article: 140.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 09/22/2014] [Indexed: 12/21/2022] Open
Abstract
The evolution of macrophages has made them primordial for both development and immunity. Their functions range from the shaping of body plans to the ingestion and elimination of apoptotic cells and pathogens. Cytokines are small soluble proteins that confer instructions and mediate communication among immune and non-immune cells. A portfolio of cytokines is central to the role of macrophages as sentries of the innate immune system that mediate the transition from innate to adaptive immunity. In concert with other mediators, cytokines bias the fate of macrophages into a spectrum of inflammation-promoting "classically activated," to anti-inflammatory or "alternatively activated" macrophages. Deregulated cytokine secretion is implicated in several disease states ranging from chronic inflammation to allergy. Macrophages release cytokines via a series of beautifully orchestrated pathways that are spatiotemporally regulated. At the molecular level, these exocytic cytokine secretion pathways are coordinated by multi-protein complexes that guide cytokines from their point of synthesis to their ports of exit into the extracellular milieu. These trafficking proteins, many of which were discovered in yeast and commemorated in the 2013 Nobel Prize in Physiology or Medicine, coordinate the organelle fusion steps that are responsible for cytokine release. This review discusses the functions of cytokines secreted by macrophages, and summarizes what is known about their release mechanisms. This information will be used to delve into how selected pathogens subvert cytokine release for their own survival.
Collapse
Affiliation(s)
- Guillermo Arango Duque
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| | - Albert Descoteaux
- INRS-Institut Armand-Frappier, Laval, QC, Canada
- Centre for Host-Parasite Interactions, Laval, QC, Canada
- *Correspondence: Guillermo Arango Duque and Albert Descoteaux, Institut National de la Recherche Scientifique–Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada e-mail: , ;
| |
Collapse
|
112
|
Immune responses of macrophages and dendritic cells regulated by mTOR signalling. Biochem Soc Trans 2013; 41:927-33. [PMID: 23863158 DOI: 10.1042/bst20130032] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The innate myeloid immune system is a complex network of cells that protect against disease by identifying and killing pathogens and tumour cells, but it is also implicated in homoeostatic mechanisms such as tissue remodelling and wound healing. Myeloid phagocytes such as monocytes, macrophages or dendritic cells are at the basis of controlling these immune responses in all tissues of the body. In the present review, we summarize recent studies demonstrating that mTOR [mammalian (or mechanistic) target of rapamycin] regulates innate immune reactions in macrophages and dendritic cells. The mTOR pathway serves as a decision maker to control the cellular response to pathogens and tumours by regulating the expression of inflammatory mediators such as cytokines, chemokines or interferons. In addition to various in vivo mouse models, kidney transplant patients under mTOR inhibitor therapy allowed the elucidation of important innate immune functions regulated by mTOR in humans. The role of the mTOR pathway in macrophages and dendritic cells enhances our understanding of the immune system and suggests new therapeutic avenues for the regulation of pro- versus anti-inflammatory mediators with potential relevance to cancer therapy, the design of novel adjuvants and the control of distinct infectious and autoimmune diseases.
Collapse
|
113
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
114
|
Rabhi I, Rabhi S, Ben-Othman R, Aniba MR, Trentin B, Piquemal D, Regnault B, Guizani-Tabbane L. Comparative analysis of resistant and susceptible macrophage gene expression response to Leishmania major parasite. BMC Genomics 2013; 14:723. [PMID: 24148319 PMCID: PMC4007596 DOI: 10.1186/1471-2164-14-723] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 10/14/2013] [Indexed: 11/13/2022] Open
Abstract
Background Leishmania are obligated intracellular pathogens that replicate almost exclusively in macrophages. The outcome of infection depends largely on parasite pathogenicity and virulence but also on the activation status and genetic background of macrophages. Animal models are essential for a better understanding of pathogenesis of different microbes including Leishmania. Results Here we compared the transcriptional signatures of resistant (C57BL/6) and susceptible (BALB/c) mouse bone marrow-derived macrophages in response to Leishmania major (L. major) promastigotes infection. Microarray results were first analyzed for significant pathways using the Kyoto Encylopedia of Genes and Genomes (KEGG) database. The analysis revealed that a large set of the shared genes is involved in the immune response and that difference in the expression level of some chemokines and chemokine receptors could partially explain differences in resistance. We next focused on up-regulated genes unique to either BALB/c or C57BL/6 derived macrophages and identified, using KEGG database, signal transduction pathways among the most relevant pathways unique to both susceptible and resistant derived macrophages. Indeed, genes unique to C57BL/6 BMdMs were associated with target of rapamycin (mTOR) signaling pathway while a range of genes unique to BALB/c BMdMs, belong to p53 signaling pathway. We next investigated whether, in a given mice strain derived macrophages, the different up-regulated unique genes could be coordinately regulated. Using GeneMapp Cytoscape, we showed that the induced genes unique to BALB/c or C57BL/6 BMdMs are interconnected. Finally, we examined whether the induced pathways unique to BALB/c derived macrophages interfere with the ones unique to C57BL/6 derived macrophages. Protein-protein interaction analysis using String database highlights the existence of a cross-talk between p53 and mTOR signaling pathways respectively specific to susceptible and resistant BMdMs. Conclusions Taken together our results suggest that strains specific pathogenesis may be due to a difference in the magnitude of the same pathways and/or to differentially expressed pathways in the two mouse strains derived macrophages. We identify signal transduction pathways among the most relevant pathways modulated by L. major infection, unique to BALB/c and C57BL/6 BMdM and postulate that the interplay between these potentially interconnected pathways could direct the macrophage response toward a given phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lamia Guizani-Tabbane
- Institut Pasteur de Tunis, Parasitologies medicales biotechnologies et Biomolecules, 13, Place Pasteur - B, P, 74,, 1002 Tunis-Belvedere, Tunisia.
| |
Collapse
|
115
|
Pathogen signatures activate a ubiquitination pathway that modulates the function of the metabolic checkpoint kinase mTOR. Nat Immunol 2013; 14:1219-28. [PMID: 24121838 PMCID: PMC3839319 DOI: 10.1038/ni.2740] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/29/2013] [Indexed: 12/13/2022]
Abstract
The mammalian immune system has the ability to discriminate between pathogenic and non-pathogenic microbes to control inflammation. Here we investigated ubiquitinylation profiles of host proteins after infection of macrophages with a virulent strain of the intracellular bacterium Legionella pneumophila and a non-pathogenic mutant. Only infection with pathogenic Legionella resulted in ubiquitinylation of positive regulators of the metabolic checkpoint kinase mTOR leading to diminished mTOR activity. Detection of pathogen signatures resulted in translational biasing to proinflammatory cytokines through mTOR-mediated regulation of cap-dependent translation. Thus, there is a pathogen detection program in macrophages that stimulates protein ubiquitinylation and degradation of mTOR regulators, which suppresses mTOR function and directs a proinflammatory cytokine program.
Collapse
|
116
|
Brunton J, Steele S, Ziehr B, Moorman N, Kawula T. Feeding uninvited guests: mTOR and AMPK set the table for intracellular pathogens. PLoS Pathog 2013; 9:e1003552. [PMID: 24098109 PMCID: PMC3789714 DOI: 10.1371/journal.ppat.1003552] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jason Brunton
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Shaun Steele
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Benjamin Ziehr
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Nathaniel Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Thomas Kawula
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
117
|
Ghosh J, Bose M, Roy S, Bhattacharyya SN. Leishmania donovani targets Dicer1 to downregulate miR-122, lower serum cholesterol, and facilitate murine liver infection. Cell Host Microbe 2013; 13:277-88. [PMID: 23498953 PMCID: PMC3605572 DOI: 10.1016/j.chom.2013.02.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/20/2012] [Accepted: 02/08/2013] [Indexed: 12/21/2022]
Abstract
Leishmania donovani causes visceral leishmaniasis (VL) where the parasite infects and resides inside liver and spleen tissue macrophages. Given the abnormal lipid profile observed in VL patients, we examined the status of serum lipids in an experimental murine model of VL. The murine VL liver displayed altered expression of lipid metabolic genes, many of which are direct or indirect targets of the liver-specific microRNA-122. Concomitant reduction of miR-122 expression was observed in VL liver. High serum cholesterol caused resistance to L. donovani infection, while downregulation of miR-122 is coupled with low serum cholesterol in VL mice. Exosomes secreted by the infective parasites caused reduction in miR-122 activity in hepatic cells. Leishmania surface glycoprotein gp63, a Zn-metalloprotease, targets pre-miRNA processor Dicer1 to prevent miRNP formation in L. donovani-interacting hepatic cells. Conversely, restoration of miR-122 or Dicer1 levels in VL mouse liver increased serum cholesterol and reduced liver parasite burden.
Collapse
Affiliation(s)
- June Ghosh
- RNA Biology Research Laboratory, Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | | | | | | |
Collapse
|
118
|
Price HP, Paape D, Hodgkinson MR, Farrant K, Doehl J, Stark M, Smith DF. The Leishmania major BBSome subunit BBS1 is essential for parasite virulence in the mammalian host. Mol Microbiol 2013; 90:597-611. [PMID: 23998526 PMCID: PMC3916885 DOI: 10.1111/mmi.12383] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2013] [Indexed: 12/17/2022]
Abstract
Bardet-Biedl syndrome (BBS) is a human genetic disorder with a spectrum of symptoms caused by primary cilium dysfunction. The disease is caused by mutations in one of at least 17 identified genes, of which seven encode subunits of the BBSome, a protein complex required for specific trafficking events to and from the primary cilium. The molecular mechanisms associated with BBSome function remain to be fully elucidated. Here, we generated null and complemented mutants of the BBSome subunit BBS1 in the protozoan parasite, Leishmania. In the absence of BBS1, extracellular parasites have no apparent defects in growth, flagellum assembly, motility or differentiation in vitro but there is accumulation of vacuole-like structures close to the flagellar pocket. Infectivity of these parasites for macrophages in vitro is reduced compared with wild-type controls but the null parasites retain the ability to differentiate to the intracellular amastigote stage. However, infectivity of BBS1 null parasites is severely compromised in a BALB/c mouse footpad model. We hypothesize that the absence of BBS1 in Leishmania leads to defects in specific trafficking events that affect parasite persistence in the host. This is the first report of an association between the BBSome complex and pathogen infectivity.
Collapse
Affiliation(s)
- Helen P Price
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, YO10 5YW, UK
| | | | | | | | | | | | | |
Collapse
|
119
|
Gene identification and comparative molecular modeling of a Trypanosoma rangeli major surface protease. J Mol Model 2013; 19:3053-64. [DOI: 10.1007/s00894-013-1834-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
|
120
|
Tsalikis J, Croitoru DO, Philpott DJ, Girardin SE. Nutrient sensing and metabolic stress pathways in innate immunity. Cell Microbiol 2013; 15:1632-41. [PMID: 23834352 DOI: 10.1111/cmi.12165] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 01/13/2023]
Abstract
Cells monitor nutrient availability through several highly conserved pathways that include the mTOR signalling axis regulated by AKT/PI3K, HIF and AMPK, as well as the GCN2/eIF2α integrated stress response pathway that provides cellular adaptation to amino acid starvation. Recent evidence has identified a critical interplay between these nutrient sensing pathways and innate immunity to bacterial pathogens, viruses and parasites. These observations suggest that, in addition to the well-characterized pro-inflammatory signalling mediated by pattern recognition molecules, a metabolic stress programme contributes to shape the global response to pathogens.
Collapse
Affiliation(s)
- Jessica Tsalikis
- Department of Laboratory Medicine and Pathobiologyy, University of Toronto, Toronto, M5S 1A8, Canada
| | | | | | | |
Collapse
|
121
|
Tsigankov P, Gherardini PF, Helmer-Citterich M, Späth GF, Zilberstein D. Phosphoproteomic Analysis of Differentiating Leishmania Parasites Reveals a Unique Stage-Specific Phosphorylation Motif. J Proteome Res 2013; 12:3405-12. [DOI: 10.1021/pr4002492] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Pier Federico Gherardini
- Center for Molecular Bioinformatics,
Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Manuela Helmer-Citterich
- Center for Molecular Bioinformatics,
Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Gerald F. Späth
- Institut Pasteur, CNRS URA2581, Unité de Parasitology moléculaire
et Signalisation, 75015 Paris, France
| | - Dan Zilberstein
- Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
122
|
Hassani K, Olivier M. Immunomodulatory impact of leishmania-induced macrophage exosomes: a comparative proteomic and functional analysis. PLoS Negl Trop Dis 2013; 7:e2185. [PMID: 23658846 PMCID: PMC3642089 DOI: 10.1371/journal.pntd.0002185] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Released by many eukaryotic cells, the exosomes are 40-100 nm vesicles shown to operate over the complex processes of cell-cell communication. Among the metazoan cell lineages known to generate exosomes is the mononuclear phagocyte lineage, a lineage that parasites such as Leishmania are known to subvert as host cells. We previously reported that mouse macrophage signaling and functions are modified once co-incubated with exoproteome of Leishmania promastigotes. Using mass spectrometry analysis, we were curious to further compare the content of purified exosomes released by the J774 mouse macrophage cell line exposed or not to either LPS or to stationary phase Leishmania mexicana promastigotes. Collectively, our analyses resulted in detection of 248 proteins, ∼50-80% of which were shared among the three sources studied. Using exponentially modified protein abundance index (emPAI) and network analyses, we found that the macrophage exosomes display unique signatures with respect to composition and abundance of many functional groups of proteins, such as plasma membrane-associated proteins, chaperones and metabolic enzymes. Moreover, for the first time, L. mexicana surface protease GP63 is shown to be present in exosomes released from J774 macrophages exposed to stationary phase promastigotes. We observed that macrophage exosomes are able to induce signaling molecules and transcription factors in naive macrophages. Finally, using qRT-PCR, we monitored modulation of expression of multiple immune-related genes within macrophages exposed to exosomes. We found all three groups of exosomes to induce expression of immune-related genes, the ones collected from macrophages exposed to L. mexicana sharing properties with exosomes collected from macrophage left unexposed to any agonist. Overall, our results allowed depicting that protein sorting into macrophage-derived exosomes depends upon the cell status and how such distinct protein sorting can in turn impact the functions of naive J774 cells.
Collapse
Affiliation(s)
- Kasra Hassani
- Departments of Microbiology & Immunology and Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada
| | - Martin Olivier
- Departments of Microbiology & Immunology and Medicine, The Research Institute of the McGill University Health Centre, McGill University, Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
123
|
Aulner N, Danckaert A, Rouault-Hardoin E, Desrivot J, Helynck O, Commere PH, Munier-Lehmann H, Späth GF, Shorte SL, Milon G, Prina E. High content analysis of primary macrophages hosting proliferating Leishmania amastigotes: application to anti-leishmanial drug discovery. PLoS Negl Trop Dis 2013; 7:e2154. [PMID: 23593521 PMCID: PMC3617141 DOI: 10.1371/journal.pntd.0002154] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/25/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND/OBJECTIVES Human leishmaniases are parasitic diseases causing severe morbidity and mortality. No vaccine is available and numerous factors limit the use of current therapies. There is thus an urgent need for innovative initiatives to identify new chemotypes displaying selective activity against intracellular Leishmania amastigotes that develop and proliferate inside macrophages, thereby causing the pathology of leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS We have developed a biologically sound High Content Analysis assay, based on the use of homogeneous populations of primary mouse macrophages hosting Leishmania amazonensis amastigotes. In contrast to classical promastigote-based screens, our assay more closely mimics the environment where intracellular amastigotes are growing within acidic parasitophorous vacuoles of their host cells. This multi-parametric assay provides quantitative data that accurately monitors the parasitic load of amastigotes-hosting macrophage cultures for the discovery of leishmanicidal compounds, but also their potential toxic effect on host macrophages. We validated our approach by using a small set of compounds of leishmanicidal drugs and recently published chemical entities. Based on their intramacrophagic leishmanicidal activity and their toxicity against host cells, compounds were classified as irrelevant or relevant for entering the next step in the drug discovery pipeline. CONCLUSIONS/SIGNIFICANCE Our assay represents a new screening platform that overcomes several limitations in anti-leishmanial drug discovery. First, the ability to detect toxicity on primary macrophages allows for discovery of compounds able to cross the membranes of macrophage, vacuole and amastigote, thereby accelerating the hit to lead development process for compounds selectively targeting intracellular parasites. Second, our assay allows discovery of anti-leishmanials that interfere with biological functions of the macrophage required for parasite development and growth, such as organelle trafficking/acidification or production of microbicidal effectors. These data thus validate a novel phenotypic screening assay using virulent Leishmania amastigotes growing inside primary macrophage to identify new chemical entities with bona fide drug potential.
Collapse
Affiliation(s)
| | | | - Eline Rouault-Hardoin
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
| | - Julie Desrivot
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
| | - Olivier Helynck
- Institut Pasteur, Unité Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
| | | | - Hélène Munier-Lehmann
- Institut Pasteur, Unité Chimie et Biocatalyse, Département de Biologie Structurale et Chimie, Paris, France
- CNRS, UMR 3523, Paris, France
| | - Gerald F. Späth
- Institut Pasteur, Unité Parasitologie Moléculaire et Signalisation, Département de Parasitologie et Mycologie, Paris, France
- CNRS URA 2581, Paris, France
| | | | - Geneviève Milon
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
| | - Eric Prina
- Institut Pasteur, Laboratoire Immunophysiologie et Parasitisme, Département de Parasitologie et Mycologie, Paris, France
- Institut Pasteur, Unité Parasitologie Moléculaire et Signalisation, Département de Parasitologie et Mycologie, Paris, France
- CNRS URA 2581, Paris, France
| |
Collapse
|
124
|
Olivier M, Atayde VD, Isnard A, Hassani K, Shio MT. Leishmania virulence factors: focus on the metalloprotease GP63. Microbes Infect 2012; 14:1377-89. [DOI: 10.1016/j.micinf.2012.05.014] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/16/2012] [Accepted: 05/28/2012] [Indexed: 12/20/2022]
|
125
|
Abstract
By controlling gene expression at the level of mRNA translation, organisms temporally and spatially respond swiftly to an ever-changing array of environmental conditions. This capacity for rapid response is ideally suited for mobilizing host defenses and coordinating innate responses to infection. Not surprisingly, a growing list of pathogenic microbes target host mRNA translation for inhibition. Infection with bacteria, protozoa, viruses, and fungi has the capacity to interfere with ongoing host protein synthesis and thereby trigger and/or suppress powerful innate responses. This review discusses how diverse pathogens manipulate the host translation machinery and the impact of these interactions on infection biology and the immune response.
Collapse
Affiliation(s)
- Ian Mohr
- Department of Microbiology, NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Nahum Sonenberg
- Department of Biochemistry, Goodman Cancer Centre, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
126
|
Tattoli I, Philpott DJ, Girardin SE. The bacterial and cellular determinants controlling the recruitment of mTOR to the Salmonella-containing vacuole. Biol Open 2012; 1:1215-25. [PMID: 23259056 PMCID: PMC3522883 DOI: 10.1242/bio.20122840] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/30/2022] Open
Abstract
Bacterial invasion results in the rapid induction of an acute state of cytosolic amino acid (AA) starvation, provoked by host membrane damage. Bacteria-induced AA starvation, in turn, down-regulates mTOR signaling while triggering autophagy and the integrated stress response pathway dependent on GCN2, eIF2α and ATF3. In Salmonella-infected cells, we now demonstrate that the host AA starvation response program depended on the Salmonella pathogenicity island (SPI)-1, the activity of which was required to damage the Salmonella-containing vacuole (SCV) in the early stage of infection. At a later stage (3–4 hour post-infection), the progressive recruitment of mTOR to the surface of the SCV appeared to be independent of the activity of SPI-2 and of SCV positioning in the cell. Instead, mTOR localization to the SCV required the activity of host AA transporters SLC1A5, SLC3A2 and SLC7A5, resulting in bacterial escape from autophagy. These results expand our understanding of the mechanisms underlying the AA starvation response in Salmonella-infected cells.
Collapse
Affiliation(s)
- Ivan Tattoli
- Department of Laboratory Medicine and Pathobiology, University of Toronto , Toronto, ON M6G 2T6 , Canada ; Department of Immunology, University of Toronto , Toronto, ON M6G 2T6 , Canada
| | | | | |
Collapse
|
127
|
|
128
|
Castanys-Muñoz E, Brown E, Coombs GH, Mottram JC. Leishmania mexicana metacaspase is a negative regulator of amastigote proliferation in mammalian cells. Cell Death Dis 2012; 3:e385. [PMID: 22951982 PMCID: PMC3461358 DOI: 10.1038/cddis.2012.113] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metacaspases (MCAs) are caspase family cysteine peptidases that have been implicated in cell death processes in plants, fungi and protozoa. MCAs have also been suggested to be involved in cell cycle control, differentiation and clearance of aggregates; they are virulence factors. Dissecting the function of MCAs has been complicated by the presence in many organisms of multiple MCA genes or limitations on genetic manipulation. We describe here the creation of a MCA gene-deletion mutant (Δmca) in the protozoan parasite Leishmania mexicana, which has allowed us to dissect the role of the parasite's single MCA gene in cell growth and cell death. Δmca parasites are viable as promastigotes, and differentiate normally to the amastigote form both in in vitro macrophages infection and in mice. Δmca promastigotes respond to cell death inducers such as the drug miltefosine and H2O2 similarly to wild-type (WT) promastigotes, suggesting that MCAs do not have a caspase-like role in execution of L. mexicana cell death. Δmca amastigotes replicated significantly faster than WT amastigotes in macrophages and in mice, but not as axenic culture in vitro. We propose that the Leishmania MCA acts as a negative regulator of amastigote proliferation, thereby acting to balance cell growth and cell death.
Collapse
Affiliation(s)
- E Castanys-Muñoz
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | | | | | | |
Collapse
|
129
|
Cyrino LT, Araújo AP, Joazeiro PP, Vicente CP, Giorgio S. In vivo and in vitro Leishmania amazonensis infection induces autophagy in macrophages. Tissue Cell 2012; 44:401-8. [PMID: 22939777 DOI: 10.1016/j.tice.2012.08.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/13/2012] [Accepted: 08/02/2012] [Indexed: 12/19/2022]
Abstract
Autophagy is the primary mechanism of degradation of cellular proteins and at least two functions can be attributed to this biological phenomenon: increased nutrient supply via recycling of the products of autophagy under nutrient starvation; and antimicrobial response involved in the innate immune system. Many microorganisms induce host cell autophagy and it has been proposed as a pathway by which parasites compete with the host cell for limited resources. In this report we provide evidence that the intracellular parasite Leishmania amazonensis induces autophagy in macrophages. Using western blotting, the LC3II protein, a marker of autophagosomes, was detected in cell cultures with a high infection index. Macrophages infected with L. amazonensis were examined by transmission electronic microscopy, which revealed enlarged myelin-like structures typical late autophagosome and autolysosome. Other evidence indicating autophagy was Lysotracker red dye uptake by the macrophages. Autophagy also occurs in the leishmaniasis skin lesions of BALB/c mice, detected by immunohistochemistry with anti-LC3II antibody. In this study, autophagy inhibitor 3-methyladenine (3MA) reduced the infection index, while autophagy inductors, such as rapamycin or starvation, did not alter the infection index in cultivated macrophages, suggesting that one aspect of the role of autophagy could be the provision of nutritive support to the parasite.
Collapse
Affiliation(s)
- Larissa Tavares Cyrino
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, Caixa Postal 6109, Cep 13.083-970, Campinas, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
130
|
Evolutionary conservation and diversification of the translation initiation apparatus in trypanosomatids. Comp Funct Genomics 2012; 2012:813718. [PMID: 22829751 PMCID: PMC3399392 DOI: 10.1155/2012/813718] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/12/2012] [Indexed: 01/10/2023] Open
Abstract
Trypanosomatids are ancient eukaryotic parasites that migrate between insect vectors and mammalian hosts, causing a range of diseases in humans and domestic animals. Trypanosomatids feature a multitude of unusual molecular features, including polycistronic transcription and subsequent processing by trans-splicing and polyadenylation. Regulation of protein coding genes is posttranscriptional and thus, translation regulation is fundamental for activating the developmental program of gene expression. The spliced-leader RNA is attached to all mRNAs. It contains an unusual hypermethylated cap-4 structure in its 5′ end. The cap-binding complex, eIF4F, has gone through evolutionary changes in accordance with the requirement to bind cap-4. The eIF4F components in trypanosomatids are highly diverged from their orthologs in higher eukaryotes, and their potential functions are discussed. The cap-binding activity in all eukaryotes is a target for regulation and plays a similar role in trypanosomatids. Recent studies revealed a novel eIF4E-interacting protein, involved in directing stage-specific and stress-induced translation pathways. Translation regulation during stress also follows unusual regulatory cues, as the increased translation of Hsp83 following heat stress is driven by a defined element in the 3′ UTR, unlike higher eukaryotes. Overall, the environmental switches experienced by trypanosomatids during their life cycle seem to affect their translational machinery in unique ways.
Collapse
|
131
|
Chakrabarti S, Liehl P, Buchon N, Lemaitre B. Infection-Induced Host Translational Blockage Inhibits Immune Responses and Epithelial Renewal in the Drosophila Gut. Cell Host Microbe 2012; 12:60-70. [DOI: 10.1016/j.chom.2012.06.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/09/2012] [Accepted: 06/21/2012] [Indexed: 12/25/2022]
|
132
|
Isnard A, Shio MT, Olivier M. Impact of Leishmania metalloprotease GP63 on macrophage signaling. Front Cell Infect Microbiol 2012; 2:72. [PMID: 22919663 PMCID: PMC3417651 DOI: 10.3389/fcimb.2012.00072] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
The intramacrophage protozoan parasites of Leishmania genus have developed sophisticated ways to subvert the innate immune response permitting their infection and propagation within the macrophages of the mammalian host. Several Leishmania virulence factors have been identified and found to be of importance for the development of leishmaniasis. However, recent findings are now further reinforcing the critical role played by the zinc-metalloprotease GP63 as a virulence factor that greatly influence host cell signaling mechanisms and related functions. GP63 has been found to be involved not only in the cleavage and degradation of various kinases and transcription factors, but also to be the major molecule modulating host negative regulatory mechanisms involving for instance protein tyrosine phosphatases (PTPs). Those latter being well recognized for their pivotal role in the regulation of a great number of signaling pathways. In this review article, we are providing a complete overview about the role of Leishmania GP63 in the mechanisms underlying the subversion of macrophage signaling and functions.
Collapse
Affiliation(s)
- Amandine Isnard
- Faculty of Medicine, Department of Medicine, Microbiology, and Immunology, The Research Institute of the McGill University Health Centre, McGill University Montréal, QC, Canada
| | | | | |
Collapse
|
133
|
Rodrigues V, Cordeiro-da-Silva A, Laforge M, Ouaissi A, Silvestre R, Estaquier J. Modulation of mammalian apoptotic pathways by intracellular protozoan parasites. Cell Microbiol 2012; 14:325-33. [PMID: 22168464 DOI: 10.1111/j.1462-5822.2011.01737.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During intracellular parasitic infections, pathogens and host cells take part in a complex web of events that are crucial for the outcome of the infection. Modulation of host cell apoptosis by pathogens attracted the attention of scientists during the last decade. Apoptosis is an efficient mechanism used by the host to control infection and limit pathogen multiplication and dissemination. In order to ensure completion of their complex life cycles and to guarantee transmission between different hosts, intracellular parasites have developed mechanisms to block apoptosis and sustain the viability of their host cells. Here, we review how some of the most prominent intracellular protozoan parasites modulate the main mammalian apoptotic pathways by emphasizing the advances from the last decade, which have begun to dissect this dynamic and complex interaction.
Collapse
|
134
|
McConville MJ, Naderer T. Metabolic pathways required for the intracellular survival of Leishmania. Annu Rev Microbiol 2012; 65:543-61. [PMID: 21721937 DOI: 10.1146/annurev-micro-090110-102913] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Leishmania spp. are sandfly-transmitted parasitic protozoa that cause a spectrum of important diseases and lifelong chronic infections in humans. In the mammalian host, these parasites proliferate within acidified vacuoles in several phagocytic host cells, including macrophages, dendritic cells, and neutrophils. In this review, we discuss recent progress that has been made in defining the nutrient composition of the Leishmania parasitophorous vacuole, as well as metabolic pathways required by these parasites for virulence. Analysis of the virulence phenotype of Leishmania mutants has been particularly useful in defining carbon sources and nutrient salvage pathways that are essential for parasite persistence and/or induction of pathology. We also review data suggesting that intracellular parasite stages modulate metabolic processes in their host cells in order to generate a more permissive niche.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
135
|
Silverman JM, Reiner NE. Leishmania exosomes deliver preemptive strikes to create an environment permissive for early infection. Front Cell Infect Microbiol 2012; 1:26. [PMID: 22919591 PMCID: PMC3417360 DOI: 10.3389/fcimb.2011.00026] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/23/2011] [Indexed: 01/20/2023] Open
Abstract
Herein, we review evidence supporting a role for Leishmania exosomes during early infection. We suggest a model in which Leishmania secreted microvesicles released into the extracellular milieu deliver effector cargo to host target cells. This cargo mediates immunosuppression and functionally primes host cells for Leishmania invasion. Leishmania ssp. release microvesicles and the amount of vesicle release and the specific protein cargo of the vesicles is sensitive to changes in environmental conditions that mimic infection. Leishmania exosomes influence the phenotype of treated immune cells. For example, wild-type (WT) exosomes attenuate interferon-γ-induced pro-inflammatory cytokine production (TNF-α) by Leishmania-infected monocytes while conversely enhancing production of the anti-inflammatory cytokine IL-10. The Leishmania proteins GP63 and elongation factor-1α (EF-1α) are found in secreted vesicles and are likely important effectors responsible for these changes in phenotype. GP63 and EF-1α access host cell cytosol and activate multiple host protein-tyrosine phosphatases (PTPs). Activation of these PTPs negatively regulates interferon-γ signaling and this prevents effective expression of the macrophage microbicidal arsenal, including TNF-α and nitric oxide. In addition to changing macrophage phenotype, WT vesicles dampen the immune response of monocyte-derived dendritic cells and CD4+ T lymphocytes. This capacity is lost when the protein cargo of the vesicles is modified, specifically when the amount of GP63 and EF-1α in the vesicles is reduced. It appears that exosome delivery of effector proteins results in activation of host PTPs and the negative regulatory effects of the latter creates a pro-parasitic environment. The data suggest that Leishmania exosomes secreted upon initial infection are capable of delivering effector cargo to naïve target cells wherein the cargo primes host cells for infection by interfering with host cell signaling pathways.
Collapse
Affiliation(s)
- Judith Maxwell Silverman
- Brain Research Center, Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
136
|
Shertz CA, Cardenas ME. Exploiting and subverting Tor signaling in the pathogenesis of fungi, parasites, and viruses. PLoS Pathog 2011; 7:e1002269. [PMID: 21980290 PMCID: PMC3182915 DOI: 10.1371/journal.ppat.1002269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Cecelia A. Shertz
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Maria E. Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
137
|
Shapira M, Zinoviev A. Leishmania Parasites Act as a Trojan Horse that Paralyzes the Translation System of Host Macrophages. Cell Host Microbe 2011; 9:257-9. [DOI: 10.1016/j.chom.2011.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|