101
|
Lees JG, Makker PGS, Tonkin RS, Abdulla M, Park SB, Goldstein D, Moalem-Taylor G. Immune-mediated processes implicated in chemotherapy-induced peripheral neuropathy. Eur J Cancer 2017; 73:22-29. [PMID: 28104535 DOI: 10.1016/j.ejca.2016.12.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/13/2016] [Indexed: 12/29/2022]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) and associated neuropathic pain are challenging complications of cancer treatment. Many of the major classes of chemotherapeutics can cause neurotoxicity and significantly modulate the immune system. There is ongoing investigation regarding whether reciprocal crosstalk between the nervous and immune systems occurs and, indeed, contributes to neuropathic pain during treatment with chemotherapeutics. An emerging concept is that neuroinflammation is one of the major mechanisms underlying CIPN. Here, we discuss recent findings, which provide insight into this complex process of neuroimmune interactions. Findings show limited infiltration of leukocytes into the nervous system of CIPN animals and varying degrees of peripheral and central glial activation depending on the chemotherapeutic drug, dose, schedule, and timing. Most evidence suggests an increase in pro-inflammatory cytokine expression and changes in immune signalling pathways. There is, however, limited evidence available from human studies and it remains unclear whether neuroinflammatory responses are the cause of neuropathy or a bystander effect of the chemotherapy treatment.
Collapse
Affiliation(s)
- Justin G Lees
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Preet G S Makker
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ryan S Tonkin
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Munawwar Abdulla
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Susanna B Park
- Brain and Mind Centre, University of Sydney, NSW, 2050, Australia; Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia
| | - David Goldstein
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW, 2052, Australia; Department of Medical Oncology, Prince of Wales Hospital, Sydney, 2031, Australia
| | - Gila Moalem-Taylor
- School of Medical Sciences, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
102
|
Chen Y, Xia R, Huang Y, Zhao W, Li J, Zhang X, Wang P, Venkataramanan R, Fan J, Xie W, Ma X, Lu B, Li S. An immunostimulatory dual-functional nanocarrier that improves cancer immunochemotherapy. Nat Commun 2016; 7:13443. [PMID: 27819653 PMCID: PMC5103075 DOI: 10.1038/ncomms13443] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 10/05/2016] [Indexed: 01/05/2023] Open
Abstract
Immunochemotherapy combines a chemotherapeutic agent with an immune-modulating agent and represents an attractive approach to improve cancer therapy. However, the success of immunochemotherapy is hampered by the lack of a strategy to effectively co-deliver the two therapeutics to the tumours. Here we report the development of a dual-functional, immunostimulatory nanomicellar carrier that is based on a prodrug conjugate of PEG with NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor currently used for reversing tumour immune suppression. An Fmoc group, an effective drug-interactive motif, is also introduced into the carrier to improve the drug loading capacity and formulation stability. We show that PEG2k-Fmoc-NLG alone is effective in enhancing T-cell immune responses and exhibits significant antitumour activity in vivo. More importantly, systemic delivery of paclitaxel (PTX) using the PEG2k-Fmoc-NLG nanocarrier leads to a significantly improved antitumour response in both breast cancer and melanoma mouse models. The use of immunostimulatory agents to enhance the efficacy of chemotherapy is a promising strategy in cancer therapy. Here, the authors report on a micellar nanoparticle that can effectively co-deliver chemo- and immunotherapeutics, resulting in an improved in vivo antitumour response.
Collapse
Affiliation(s)
- Yichao Chen
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Rui Xia
- Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Jiang Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Xiaolan Zhang
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Pengcheng Wang
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Jie Fan
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Xiaochao Ma
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Binfeng Lu
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA.,University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
103
|
Reardon DA, Gilbert MR, Wick W, Liau L. Immunotherapy for neuro-oncology: the critical rationale for combinatorial therapy. Neuro Oncol 2016; 17 Suppl 7:vii32-vii40. [PMID: 26516225 DOI: 10.1093/neuonc/nov178] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
A successful therapeutic paradigm established historically in oncology involves combining agents with potentially complementary mechanisms of antitumor activity into rationally designed regimens. For example, cocktails of cytotoxic agents, which were carefully designed based on mechanisms of action, dose, and scheduling considerations, have led to dramatic improvements in survival including cures for childhood leukemia, Hodgkin's lymphoma, and several other complex cancers. Outcome for glioblastoma, the most common primary malignant CNS cancer, has been more modest, but nonetheless our current standard of care derives from confirmation that combination therapy surpasses single modality therapy. Immunotherapy has recently come of age for medical oncology with exciting therapeutic benefits achieved by several types of agents including vaccines, adoptive T cells, and immune checkpoint inhibitors against several types of cancers. Nonetheless, most benefits are relatively short, while others are durable but are limited to a minority of treated patients. Critical factors limiting efficacy of immunotherapeutics include insufficient immunogenicity and/or inadequate ability to overcome immunosuppressive factors exploited by tumors. The paradigm of rationally designed combinatorial regimens, originally established by cytotoxic therapy for oncology, may also prove relevant for immunotherapy. Realization of the true therapeutic potential of immunotherapy for medical oncology and neuro-oncology patients may require development of combinatorial regimens that optimize immunogenicity and target tumor adaptive immunosuppressive factors.
Collapse
Affiliation(s)
- David A Reardon
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R.); Neurology Clinic and National Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (M.R.G.); Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany (W.W); Brain Tumor Program, Department of Neurosurgery, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California (L.L.)
| | - Mark R Gilbert
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R.); Neurology Clinic and National Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (M.R.G.); Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany (W.W); Brain Tumor Program, Department of Neurosurgery, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California (L.L.)
| | - Wolfgang Wick
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R.); Neurology Clinic and National Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (M.R.G.); Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany (W.W); Brain Tumor Program, Department of Neurosurgery, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California (L.L.)
| | - Linda Liau
- Center of Neuro-Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R.); Department of Medical Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts (D.A.R.); Neurology Clinic and National Center for Cancer Research, National Cancer Institute, Bethesda, Maryland (M.R.G.); Neurology Clinic and National Center for Tumor Diseases, University of Heidelberg and German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany (W.W); Brain Tumor Program, Department of Neurosurgery, University of California Los Angeles, David Geffen School of Medicine at UCLA, Los Angeles, California (L.L.)
| |
Collapse
|
104
|
Migali C, Milano M, Trapani D, Criscitiello C, Esposito A, Locatelli M, Minchella I, Curigliano G. Strategies to modulate the immune system in breast cancer: checkpoint inhibitors and beyond. Ther Adv Med Oncol 2016; 8:360-74. [PMID: 27583028 DOI: 10.1177/1758834016658423] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Is breast cancer (BC) immunogenic? Many data suggest that it is. Many observations demonstrated the prognostic role of tumor-infiltrating lymphocytes (TILs) in triple negative (TN) and human epidermal growth factor receptor 2 (HER-2)-positive BC. TNBCs are poorly differentiated tumors with high genetic instability and very high heterogeneity. This heterogeneity enhances the 'danger signals' and select clone variants that could be more antigenic or, in other words, that could more strongly stimulate a host immune antitumor response. The response to chemotherapy is at least partly dependent on an immunological reaction against those tumor cells that are dying during the chemotherapy. One of the mechanisms whereby chemotherapy can stimulate the immune system to recognize and destroy malignant cells is commonly known as immunogenic cell death (ICD). ICD elicits an adaptive immune response. Which are the clinical implications of all 'immunome' data produced in the last years? First, validate prognostic or predictive role of TILs. Second, validate immune genomic signatures that may be predictive and prognostic in patients with TN disease. Third, incorporate an 'immunoscore' into traditional classification of BC, thus providing an essential prognostic and potentially predictive tool in the pathology report. Fourth, implement clinical trials for BC in the metastatic setting with drugs that target immune-cell-intrinsic checkpoints. Blockade of one of these checkpoints, cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or the programmed cell death 1 (PD-1) receptor may provide proof of concepts for the activity of an immune-modulation approach in the treatment of a BC.
Collapse
Affiliation(s)
- Cristina Migali
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Monica Milano
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Dario Trapani
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Carmen Criscitiello
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Angela Esposito
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Marzia Locatelli
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Ida Minchella
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Milano, Italy
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, Istituto Europeo di Oncologia, Via Ripamonti 435, 20141 Milano, Italy
| |
Collapse
|
105
|
INFα-2b inhibitory effects on CD4(+)CD25(+)FOXP3(+) regulatory T cells in the tumor microenvironment of C57BL/6 J mice with melanoma xenografts. BMC Cancer 2016; 16:397. [PMID: 27389040 PMCID: PMC4936163 DOI: 10.1186/s12885-016-2473-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 06/30/2016] [Indexed: 11/10/2022] Open
Abstract
Background Regulatory T cells (Tregs), particularly the CD4+CD25+Foxp3+ Tregs, down regulate immunity and promote tumor cell growth by directly suppressing CD8+ and CD4+ T cells. Alternatively they can promote tumor growth by generating interleukin-10 (IL-10) and transforming growth factor β (TGFβ) in situ, which help tumor cells to evade the immune system. Methods In vivo tumor models were prepared via subcutaneous injection with a suspension of B16 melanoma cells into the left upper flank of C57BL/6 J mice. The mice were randomized into five groups: radiotherapy (RT), chemotherapy (CT), radiochemotherapy (RCT), Inteferon α (INFα) groups, and a control group. Flow cytometry was used to determine the Tregs levels in the spleen and peripheral blood, and immunohistochemistry was performed to determine the expression levels of TGFβ and IL-10 in the tumor microenvironment. Results Tumor weight was significantly reduced in the CT or RCT groups (40.91 % and 41.83 %, respectively), while the reduction in tumor weight was relatively lower for the RT and IFNα groups (15.10 % and 13.15 %, respectively). The flow cytometry results showed that the ratios of CD4+CD25+Foxp3+ Tregs to lymphocytes and CD4+ cells in the spleen and in peripheral blood were significantly decreased after treatment with IFNα (P < 0.05). Expression of TGFβ and IL-10 in the tumor microenvironment in the CT and RT groups was higher compared with the control group (P < 0.01), while the expression of TGFβ and IL-10 in the INFα group was not significantly different (P > 0.05). Conclusions The results show that INFα-2b inhibits cancer cell immune evasion by decreasing the levels of CD4+CD25+Foxp3+ Tregs and suppressing the expression of TGFβ and IL-10 in the tumor microenvironment.
Collapse
|
106
|
Abstract
Lung cancers are immunogenic tumors that manage to evade the immune system by exploiting checkpoint pathways that render effector T cells anergic. Inhibition of these checkpoints can restore and invigorate endogenous antitumor T-cell responses. The immunotherapeutic approach of checkpoint inhibition has become an important treatment option for patients with advanced non-small cell lung cancer, playing a role that will continue to evolve over the coming years. The programmed death 1 inhibitors nivolumab and pembrolizumab have both been shown to induce durable responses and improve survival in a subset of patients with platinum-refractory metastatic non-small cell lung cancer. Nivolumab has recently earned Food and Drug Administration approval for progressive squamous cell lung cancer. Optimization and validation of a pretreatment biomarker to predict response is a key area of ongoing research. Combination therapy is now being investigated in an effort to improve response rates.
Collapse
|
107
|
Mizukoshi E, Yamashita T, Arai K, Terashima T, Kitahara M, Nakagawa H, Iida N, Fushimi K, Kaneko S. Myeloid-derived suppressor cells correlate with patient outcomes in hepatic arterial infusion chemotherapy for hepatocellular carcinoma. Cancer Immunol Immunother 2016; 65:715-25. [PMID: 27083166 PMCID: PMC11029544 DOI: 10.1007/s00262-016-1837-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/01/2016] [Indexed: 12/21/2022]
Abstract
Hepatic arterial infusion chemotherapy (HAIC) has been employed as an alternative therapy to sorafenib for the patients with advanced hepatocellular carcinoma (HCC). In this study, we performed a comparative analysis of various immune cell responses including tumor-associated antigen (TAA)-specific T cells, regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) in advanced HCC patients treated with HAIC. Thirty-six HCC patients were examined in the study. Interferon gamma enzyme-linked immunospot assays were performed to examine the frequency of TAA-specific T cells. The frequencies of Tregs and MDSCs were examined by multicolor fluorescence-activated cell sorting analysis. The treatment with HAIC using interferon (IFN)/5-fluorouracil (FU) or IFN/FU + cisplatin modulated the frequencies of various immune cells. In 22.2 % of patients, the frequency of TAA-specific T cells increased after HAIC. Although the frequency of Tregs decreased after HAIC, it was not associated with the prognosis of patients. An analysis of prognostic factors for overall survival identified diameter of the tumor (<3.0 cm), absence of major portal vein invasion, absence of distant metastasis, Union Internationale Contre Le Cancer tumor lymph node metastasis stage (I or II), neutrophil lymphocytic ratio (<2.1) and the frequency of MDSCs (<30.5 %) as factors that prolonged overall survival time after HAIC. Even in the group adjusted with progressive levels of tumors, patients with a low frequency of MDSCs had a significantly longer overall survival time. In conclusion, the frequency of MDSCs before the treatment is a prognostic factor in HAIC against HCC.
Collapse
Affiliation(s)
- Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Takeshi Terashima
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Masaaki Kitahara
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hidetoshi Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Noriho Iida
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazumi Fushimi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa, 920-8641, Japan.
| |
Collapse
|
108
|
Hanoteau A, Henin C, Moser M. L’immunothérapie au service de la chimiothérapie, de nouvelles avancées. Med Sci (Paris) 2016; 32:353-61. [DOI: 10.1051/medsci/20163204013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
109
|
Beavis PA, Slaney CY, Kershaw MH, Gyorki D, Neeson PJ, Darcy PK. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Semin Immunol 2016; 28:64-72. [DOI: 10.1016/j.smim.2015.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
|
110
|
Suzuki S, Ishida T, Yoshikawa K, Ueda R. Current status of immunotherapy. Jpn J Clin Oncol 2016; 46:191-203. [PMID: 26819277 DOI: 10.1093/jjco/hyv201] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/12/2015] [Indexed: 02/07/2023] Open
Abstract
The successful use of immune checkpoint inhibitors has been big breakthrough in the development of cancer immunotherapy. Anti-CTLA-4 monoclonal antibody, ipilimumab, is the first-approved immune checkpoint inhibitor and has shown durable objective responses for advanced melanoma beyond the effect of dacarbazine. Anti-PD-1 monoclonal antibodies, nivolumab and pembrolizumab, are other immune checkpoint inhibitors that have demonstrated more effective results than conventional drugs in clinical trials for a variety of advanced solid tumors including melanoma, non-small cell lung carcinoma and renal carcinoma. These studies have indicated that the enhancement of anti-cancer immunity by controlling the immune suppressive environment in cancer tissues is an important issue for the development of cancer immune-therapy. Accordingly, in recent years, the enthusiasm for research of cancer immunology has shifted to studies regarding the formation of the immune suppressive environment, immune suppression mechanisms in cancer tissues and the molecules and cells involved in these pathways. Novel findings from these studies might lead to the development of cancer immunotherapy based on control of the immune suppressive environment.
Collapse
Affiliation(s)
- Susumu Suzuki
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute
| | - Takashi Ishida
- Department of Hematology and Oncology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya
| | - Kazuhiro Yoshikawa
- Center for Advanced Medical Research, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Ryuzo Ueda
- Department of Tumor Immunology, Aichi Medical University School of Medicine, Nagakute
| |
Collapse
|
111
|
Simpson GR, Relph K, Harrington K, Melcher A, Pandha H. Cancer immunotherapy via combining oncolytic virotherapy with chemotherapy: recent advances. Oncolytic Virother 2016; 5:1-13. [PMID: 27579292 PMCID: PMC4996257 DOI: 10.2147/ov.s66083] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses are multifunctional anticancer agents with huge clinical potential, and have recently passed the randomized Phase III clinical trial hurdle. Both wild-type and engineered viruses have been selected for targeting of specific cancers, to elicit cytotoxicity, and also to generate antitumor immunity. Single-agent oncolytic virotherapy treatments have resulted in modest effects in the clinic. There is increasing interest in their combination with cytotoxic agents, radiotherapy and immune-checkpoint inhibitors. Similarly to oncolytic viruses, the benefits of chemotherapeutic agents may be that they induce systemic antitumor immunity through the induction of immunogenic cell death of cancer cells. Combining these two treatment modalities has to date resulted in significant potential in vitro and in vivo synergies through various mechanisms without any apparent additional toxicities. Chemotherapy has been and will continue to be integral to the management of advanced cancers. This review therefore focuses on the potential for a number of common cytotoxic agents to be combined with clinically relevant oncolytic viruses. In many cases, this combined approach has already advanced to the clinical trial arena.
Collapse
Affiliation(s)
- Guy R Simpson
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kate Relph
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| | - Kevin Harrington
- Targeted Therapy, The Institute of Cancer Research/The Royal Marsden NIHR Biomedical Research Centre, London
| | - Alan Melcher
- Targeted and Biological Therapies, Oncology and Clinical Research, Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Hardev Pandha
- Department of Clinical and Experimental Medicine, Targeted Cancer Therapy, Faculty of Health and Medical Sciences, University of Surrey, Guildford
| |
Collapse
|
112
|
Tsun A, Miao XN, Wang CM, Yu DC. Oncolytic Immunotherapy for Treatment of Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 909:241-83. [PMID: 27240460 DOI: 10.1007/978-94-017-7555-7_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Immunotherapy entails the treatment of disease by modulation of the immune system. As detailed in the previous chapters, the different modes of achieving immune modulation are many, including the use of small/large molecules, cellular therapy, and radiation. Oncolytic viruses that can specifically attack, replicate within, and destroy tumors represent one of the most promising classes of agents for cancer immunotherapy (recently termed as oncolytic immunotherapy). The notion of oncolytic immunotherapy is considered as the way in which virus-induced tumor cell death (known as immunogenic cancer cell death (ICD)) allows the immune system to recognize tumor cells and provide long-lasting antitumor immunity. Both immune responses toward the virus and ICD together contribute toward successful antitumor efficacy. What is now becoming increasingly clear is that monotherapies, through any of the modalities detailed in this book, are neither sufficient in eradicating tumors nor in providing long-lasting antitumor immune responses and that combination therapies may deliver enhanced efficacy. After the rise of the genetic engineering era, it has been possible to engineer viruses to harbor combination-like characteristics to enhance their potency in cancer immunotherapy. This chapter provides a historical background on oncolytic virotherapy and its future application in cancer immunotherapy, especially as a combination therapy with other treatment modalities.
Collapse
Affiliation(s)
- A Tsun
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - X N Miao
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - C M Wang
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China
| | - D C Yu
- Innovent Biologics, Inc., 168 Dongping Street, Suzhou Industrial Park, 215123, China.
| |
Collapse
|
113
|
Martin K, Schreiner J, Zippelius A. Modulation of APC Function and Anti-Tumor Immunity by Anti-Cancer Drugs. Front Immunol 2015; 6:501. [PMID: 26483791 PMCID: PMC4586505 DOI: 10.3389/fimmu.2015.00501] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/14/2015] [Indexed: 12/22/2022] Open
Abstract
Professional antigen-presenting cells (APCs), such as dendritic cells (DCs), are central to the initiation and regulation of anti-cancer immunity. However, in the immunosuppressive environment within a tumor APCs may antagonize anti-tumor immunity by inducing regulatory T cells (Tregs) or anergy of effector T cells due to lack of efficient costimulation. Hence, in an optimal setting, anti-cancer drugs have the power to reduce tumor size and thereby may induce the release of tumor antigens and, at the same time, modulate APC function toward efficient priming of antigen-specific effector T cells. Selected cytotoxic agents may revert APC dysfunction either by directly maturing DCs or through induction of immunogenic tumor cell death. Furthermore, specific cytotoxic agents may support adaptive immunity by selectively depleting regulatory subsets, such as Tregs or myeloid-derived suppressor cells. Perspectively, this will allow developing effective combination strategies with novel immunotherapies to exert complementary pressure on tumors via direct toxicity as well as immune activation. We, here, review our current knowledge on the capacity of anti-cancer drugs to modulate APC functions to promote durable anti-cancer immune responses.
Collapse
Affiliation(s)
- Kea Martin
- Department of Biomedicine, University Hospital Basel, University of Basel , Basel , Switzerland
| | - Jens Schreiner
- Department of Biomedicine, University Hospital Basel, University of Basel , Basel , Switzerland
| | - Alfred Zippelius
- Department of Biomedicine, University Hospital Basel, University of Basel , Basel , Switzerland ; Department of Medical Oncology, University Hospital Basel , Basel , Switzerland
| |
Collapse
|
114
|
Rébé C, Ghiringhelli F. Cytotoxic effects of chemotherapy on cancer and immune cells: how can it be modulated to generate novel therapeutic strategies? Future Oncol 2015; 11:2645-2654. [PMID: 26376787 DOI: 10.2217/fon.15.198] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The first objective to use chemotherapy is to kill cancer cells. However, it is common knowledge that these drugs can also damage healthy host cells, especially immune cells, and thus impair the endogenous antitumor response. Here, we focus on the cytotoxic effects of chemotherapy on tumor cells and immune cells. It is not enough to simply kill cancer cells, and causing immunogenic cell death will impair the adaptive immune system's ability to fight the remaining cancer cells. On the other hand, the killing of immune cells can also enhance tumor growth. A study of the repercussions of the cytotoxic effects of chemotherapy is of great importance to evaluate the antitumor response. Strategies can be proposed to promote the 'good way' for cancer cells to die and to avoid the adverse side effects of chemotherapy on immune cells in order to strengthen the role of the immune system in the antitumor response.
Collapse
Affiliation(s)
- Cédric Rébé
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 866, Dijon, 21079, France.,Centre Georges François Leclerc, Dijon, 21000, France
| | - François Ghiringhelli
- Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 866, Dijon, 21079, France.,Centre Georges François Leclerc, Dijon, 21000, France.,Faculté de Médecine et de Pharmacie, Université de Bourgogne, Dijon, 21000, France
| |
Collapse
|
115
|
Mizukoshi E, Nakagawa H, Kitahara M, Yamashita T, Arai K, Sunagozaka H, Iida N, Fushimi K, Kaneko S. Phase I trial of multidrug resistance-associated protein 3-derived peptide in patients with hepatocellular carcinoma. Cancer Lett 2015; 369:242-9. [PMID: 26325606 DOI: 10.1016/j.canlet.2015.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/24/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
Multidrug resistance-associated protein 3 (MRP3) is a carrier-type transport protein belonging to the ABC transporters. In this study, we investigated the safety and immunogenicity of a MRP3-derived peptide (MRP3765) as a vaccine and characterized the MRP3-specific T cell responses induced. Twelve hepatocellular carcinoma (HCC) patients treated with hepatic arterial infusion chemotherapy (HAIC) were enrolled. The MRP3-derived peptide was emulsified in incomplete Freund's adjuvant and administered via subcutaneous immunization three times weekly. No serious adverse drug reactions to the peptide vaccine were observed, and the vaccination was well tolerated. The vaccination induced MRP3-specific immunity in 72.7% of the patients. In a phenotypic analysis, the largest post-vaccinated increase in MRP3-specific T cells was due to an increase in cells with the effector memory phenotype. Among the 12 patients, one patient showed a partial response, nine showed a stable disease, and two showed a progressive disease. The median overall survival time was 14.0 months. In conclusion, the safety, effects of immune boosting, and possible prolongation of overall survival by the MRP3-derived peptide demonstrate the potential of the peptide to provide clinical benefit in HCC patients.
Collapse
Affiliation(s)
- Eishiro Mizukoshi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hidetoshi Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Masaaki Kitahara
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Tatsuya Yamashita
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kuniaki Arai
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Hajime Sunagozaka
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Noriho Iida
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Kazumi Fushimi
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan
| | - Shuichi Kaneko
- Department of Gastroenterology, Graduate School of Medicine, Kanazawa University, Kanazawa, Ishikawa 920-8641, Japan.
| |
Collapse
|
116
|
Dushyanthen S, Beavis PA, Savas P, Teo ZL, Zhou C, Mansour M, Darcy PK, Loi S. Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Med 2015; 13:202. [PMID: 26300242 PMCID: PMC4547422 DOI: 10.1186/s12916-015-0431-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/22/2015] [Indexed: 12/13/2022] Open
Abstract
While breast cancer has not been considered a cancer amenable to immunotherapeutic approaches, recent studies have demonstrated evidence of significant immune cell infiltration via tumor-infiltrating lymphocytes in a subset of patient tumors. In this review we present the current evidence highlighting the clinical relevance and utility of tumor-infiltrating lymphocytes in breast cancer. Retrospective and prospective studies have shown that the presence of tumor-infiltrating lymphocytes is a prognostic marker for higher responses to neoadjuvant chemotherapy and better survival, particularly in triple negative and HER2-positive early breast cancer. Further work is required to determine the immune subsets important in this response and to discover ways of encouraging immune infiltrate in tumor-infiltrating lymphocytes-negative patients.
Collapse
Affiliation(s)
- Sathana Dushyanthen
- Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Paul A Beavis
- Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Peter Savas
- Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Zhi Ling Teo
- Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Chenhao Zhou
- Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Mariam Mansour
- Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia
| | - Phillip K Darcy
- Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
| | - Sherene Loi
- Division of Research and Cancer Medicine, Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia. .,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia. .,Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia.
| |
Collapse
|
117
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
118
|
Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015. [PMID: 26137480 DOI: 10.1155/2015/413076]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
|
119
|
Kampan NC, Madondo MT, McNally OM, Quinn M, Plebanski M. Paclitaxel and Its Evolving Role in the Management of Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2015; 2015:413076. [PMID: 26137480 PMCID: PMC4475536 DOI: 10.1155/2015/413076] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023]
Abstract
Paclitaxel, a class of taxane with microtubule stabilising ability, has remained with platinum based therapy, the standard care for primary ovarian cancer management. A deeper understanding of the immunological basis and other potential mechanisms of action together with new dosing schedules and/or routes of administration may potentiate its clinical benefit. Newer forms of taxanes, with better safety profiles and higher intratumoural cytotoxicity, have yet to demonstrate clinical superiority over the parent compound.
Collapse
Affiliation(s)
- Nirmala Chandralega Kampan
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
| | - Mutsa Tatenda Madondo
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| | - Orla M. McNally
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michael Quinn
- Gynaeoncology Unit, Royal Women's Hospital, 20 Flemington Road, Parkville, Melbourne, VIC 3052, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Magdalena Plebanski
- Department of Immunology, Monash University, Level 6, The Alfred, Commercial Road, Melbourne, VIC 3181, Australia
| |
Collapse
|
120
|
Yang J, Li W, Luo F, Zhao N, Zhang W, Zhang D, Qian J, Yu Y, Zheng X, Wang Y, Feng Y, Liu T, Chu Y. Low percentage of CD24hiCD27+CD19+ B cells decelerates gastric cancer progression in XELOX-treated patients. Int Immunopharmacol 2015; 26:322-7. [DOI: 10.1016/j.intimp.2015.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Revised: 03/23/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
|
121
|
Beavis PA, Slaney CY, Kershaw MH, Neeson PJ, Darcy PK. Enhancing the efficacy of adoptive cellular therapy by targeting tumor-induced immunosuppression. Immunotherapy 2015; 7:499-512. [DOI: 10.2217/imt.15.16] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Strategies aimed at stimulating the immune system against cancer have signaled a new era for designing new effective therapies for patients. Recent breakthroughs in adoptive cellular therapy and in using checkpoint inhibitors for some patients have renewed much enthusiasm in this field. However, it has become apparent that tumors can use a multitude of inhibitory networks to effectively reduce antitumor immunity. This review discusses our current knowledge of these immune suppressive mechanisms used by tumors and describes potential new strategies that may counteract this problem resulting in significantly increasing therapeutic outcomes of adoptive immunotherapy in a higher proportion of patients.
Collapse
Affiliation(s)
- Paul A Beavis
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Australia
| | - Clare Y Slaney
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Australia
- Department of Pathology, University of Melbourne, Parkville, Australia
- Department of Immunology, Monash University, Clayton, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Australia
| | - Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Australia
- Department of Pathology, University of Melbourne, Parkville, Australia
- Department of Immunology, Monash University, Clayton, Australia
| |
Collapse
|
122
|
Apetoh L, Ladoire S, Coukos G, Ghiringhelli F. Combining immunotherapy and anticancer agents: the right path to achieve cancer cure? Ann Oncol 2015; 26:1813-1823. [PMID: 25922066 DOI: 10.1093/annonc/mdv209] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/17/2015] [Indexed: 12/31/2022] Open
Abstract
Recent clinical trials revealed the impressive efficacy of immunological checkpoint blockade in different types of metastatic cancers. Such data underscore that immunotherapy is one of the most promising strategies for cancer treatment. In addition, preclinical studies provide evidence that some cytotoxic drugs have the ability to stimulate the immune system, resulting in anti-tumor immune responses that contribute to clinical efficacy of these agents. These observations raise the hypothesis that the next step for cancer treatment is the combination of cytotoxic agents and immunotherapies. The present review aims to summarize the immune-mediated effects of chemotherapeutic agents and their clinical relevance, the biological and clinical features of immune checkpoint blockers and finally, the preclinical and clinical rationale for novel therapeutic strategies combining anticancer agents and immune checkpoint blockers.
Collapse
Affiliation(s)
- L Apetoh
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France
| | - S Ladoire
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France
| | - G Coukos
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
| | - F Ghiringhelli
- Lipids, Nutrition, Cancer, INSERM, U866, Dijon; Department of Medicine, Université de Bourgogne, Dijon; Department of Oncology, Centre Georges François Leclerc, Dijon, France.
| |
Collapse
|
123
|
Sundar R, Cho BC, Brahmer JR, Soo RA. Nivolumab in NSCLC: latest evidence and clinical potential. Ther Adv Med Oncol 2015; 7:85-96. [PMID: 25755681 PMCID: PMC4346216 DOI: 10.1177/1758834014567470] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
New insight on the interaction between the immune system and tumor has identified the programmed death-1/programmed death-1 ligand pathway to be a key player in evading host immune response. The immune checkpoint modulator, nivolumab (BMS-936558/ONO-4538), is the first PD-1 inhibitor to gain regulatory approval, for the treatment of patients with unresectable melanoma. This review will discuss results from early phase studies of nivolumab in solid tumors including non-small cell lung cancer (NSCLC) as well as studies of nivolumab in combination with chemotherapy, other immune modulators and molecular targeted therapy in patients with NSCLC.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, Singapore
| | - Byoung-Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Seoul, South Korea
| | - Julie R Brahmer
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins, Baltimore, MD, USA
| | - Ross A Soo
- Department of Haematology-Oncology, National University Cancer Institute, National University Health System, 1E Kent Ridge Road, NUHS Tower Block Level 7, Singapore 119228
| |
Collapse
|
124
|
Chen C, Chen Z, Chen D, Zhang B, Wang Z, Le H. Suppressive effects of gemcitabine plus cisplatin chemotherapy on regulatory T cells in nonsmall-cell lung cancer. J Int Med Res 2015; 43:180-7. [PMID: 25659373 DOI: 10.1177/0300060514561504] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To investigate the effect of gemcitabine plus cisplatin chemotherapy on the percentage of CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) regulatory T cells (Tregs) in the peripheral blood of patients with nonsmall-cell lung cancer (NSCLC). METHODS Peripheral blood was taken from patients with NCSLC (before and after chemotherapy) and control subjects with nonmalignant disease. The percentages of CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) Tregs were analysed using flow cytometry. RESULTS Patients (n = 40) had significantly higher CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) percentages than control subjects (n = 24). CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) percentages increased with tumour progression, fell significantly after chemotherapy, but remained significantly higher than control values. CONCLUSIONS CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) Treg percentages were higher in patients with NSCLC than control subjects, and increased in line with tumour progression. Percentages of CD4(+)CD25(+)FOXP3(+) and CD8(+)CD28(-) Tregs were significantly reduced following gemcitabine plus cisplatin chemotherapy.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Zhijun Chen
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Dongdong Chen
- Joint Laboratory of Immunogenomics, Zhoushan Hospital, Zhoushan, China
| | - Binjie Zhang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Zhaoye Wang
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| | - Hanbo Le
- Department of Cardiothoracic Surgery, Zhoushan Hospital, Zhoushan, China
| |
Collapse
|
125
|
Nguyen A, Ho L, Wan Y. Chemotherapy and Oncolytic Virotherapy: Advanced Tactics in the War against Cancer. Front Oncol 2014; 4:145. [PMID: 24967214 PMCID: PMC4052116 DOI: 10.3389/fonc.2014.00145] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 05/28/2014] [Indexed: 01/10/2023] Open
Abstract
Cancer is a traitorous archenemy that threatens our survival. Its ability to evade detection and adapt to various cancer therapies means that it is a moving target that becomes increasingly difficult to attack. Through technological advancements, we have developed sophisticated weapons to fight off tumor growth and invasion. However, if we are to stand a chance in this war against cancer, advanced tactics will be required to maximize the use of our available resources. Oncolytic viruses (OVs) are multi-functional cancer-fighters that can be engineered to suit many different strategies; in particular, their retooling can facilitate increased capacity for direct tumor killing (oncolytic virotherapy) and elicit adaptive antitumor immune responses (oncolytic immunotherapy). However, administration of these modified OVs alone, rarely induces successful regression of established tumors. This may be attributed to host antiviral immunity that acts to eliminate viral particles, as well as the capacity for tumors to adapt to therapeutic selective pressure. It has been shown that various chemotherapeutic drugs with distinct functional properties can potentiate the antitumor efficacy of OVs. In this review, we summarize the chemotherapeutic combinatorial strategies used to optimize virally induced destruction of tumors. With a particular focus on pharmaceutical immunomodulators, we discuss how specific therapeutic contexts may alter the effects of these synergistic combinations and their implications for future clinical use.
Collapse
Affiliation(s)
- Andrew Nguyen
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, ON , Canada
| | - Louisa Ho
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, ON , Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University , Hamilton, ON , Canada
| |
Collapse
|
126
|
Feng Z, Hao W, Lin X, Fan D, Zhou J. Antitumor activity of total flavonoids from Tetrastigma hemsleyanum Diels et Gilg is associated with the inhibition of regulatory T cells in mice. Onco Targets Ther 2014; 7:947-56. [PMID: 24959081 PMCID: PMC4061169 DOI: 10.2147/ott.s61794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective To determine the antitumor activity of Radix tetrastigmae flavonoids and their inhibitory effect on regulatory T cells (Tregs) in mice. Materials and methods Total flavonoids were isolated from Radix tetrastigmae, the root of Tetrastigma hemsleyanum Diels et Gilg, and administered to C57BL/6 mice by oral gavage after inoculation with Lewis lung carcinoma (LLC) cells. The effects of total flavonoids on tumor growth in vivo were examined. Flow cytometry was used to study the effects on Tregs, and enzyme-linked immunosorbent assay was used to analyze the changes in the serum levels of transforming growth factor β, prostaglandin E2, and cyclooxygenase 2 after tumor inoculation and flavonoid administration. Results Total flavonoids from T. hemsleyanum Diels et Gilg significantly inhibited tumor growth in C57BL/6 mice inoculated with LLCs. These flavonoids dramatically suppressed regulatory T-cell development in tumor-bearing mice. Further studies revealed that total flavonoids significantly decreased the serum levels of transforming growth factor β, prostaglandin E2, and cyclooxygenase 2 in tumor-bearing mice, which may be responsible for the inhibition of Tregs. Conclusion The antitumor activity of total flavonoids from T. hemsleyanum Diels et Gilg is associated with the inhibition of Tregs in a mouse tumor model. Total flavonoids from T. hemsleyanum Diels et Gilg may be used as antitumor agents in cancer prevention and treatment.
Collapse
Affiliation(s)
- Zhengquan Feng
- Department of Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, People's Republic of China ; Department of Oncology, Guang An Men Hospital, China Academy of Chinese Medical Sciences, Beijing, People's Republic of China
| | - Wanrong Hao
- Department of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyang Lin
- Department of Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, People's Republic of China
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Juhua Zhou
- Institute for Tumor Immunology, Ludong University College of Life Sciences, Yantai, Shandong, People's Republic of China
| |
Collapse
|
127
|
Combination of Sasa quelpaertensis Nakai Leaf Extract and Cisplatin Suppresses the Cancer Stemness and Invasion of Human Lung Cancer Cells. Integr Cancer Ther 2014; 13:529-40. [DOI: 10.1177/1534735414534462] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide, and most chemotherapeutic drugs have limited success in treating this disease. Furthermore, some drugs show undesirable side effects due to the enrichment of cancer stem cells (CSCs) that are present, leading to resistance to conventional chemotherapy and tumor relapse. CSCs possess self-renewal characteristics, aggressive tumor initiating activity, and ability to facilitate tumor metastasis. Therefore, development of nontoxic agents that can potentiate chemotherapy and eliminate CSCs would be highly desirable. In the present study, we investigated whether Sasa quelpaertensis leaf extracts (SQE) and cisplatin (CIS), individually or in combination, would exert anti-CSC and antimetastatic effect in H1299 and A549 human lung cancer cells. Following these treatments, cell growth, phosphorylation of phosphoinositide-3 kinase, and activation of the mammalian target of rapamycin were inhibited. Decreased serial sphere formation, clonogenicity, and expression of major stem cell markers, such as CD44 and SOX-2, in CD44+ cancer stem cells were also observed. In addition, inhibition of cell migration and invasion in both cell lines as well as inhibition of matrix metalloproteinase-2 activity and expression were detected. Importantly, the anticancer stemness and antimetastasis effects in each of these assays were greater for the combined treatment with SQE and CIS than with each treatment individually. In conclusion, the data suggest that SQE alone, or in combination with CIS, represents a promising therapeutic strategy for eliminating cancer stemness and cell invasion potential of CSCs, thereby treating and preventing metastatic lung cancer cells.
Collapse
|
128
|
Abstract
The expansion of immunosuppressive cells represents a cardinal strategy deployed by tumors to escape from detection and elimination by the immune system. Regulatory T lymphocytes (Treg) and myeloid-derived suppressor cells (MDSC), major components of these inhibitory cellular networks, have drawn intense scrutiny in recent years. In patients with cancer and in animal tumor models, these suppressor cells accumulate in the tumor microenvironment, secondary lymphoid tissues, and in the blood. Equipped with the ability to suppress innate and adaptive anticancer immunity, these cells also foster disease development by promoting tumor neoangiogenesis and by enhancing cancer metastasis. They therefore represent major impediments for anticancer therapies, particularly for immune-based interventions. Recent work has provided evidence that beyond their direct cytotoxic or cytostatic effects on cancer cells, several conventional chemotherapeutic drugs and agents used in targeted therapies can promote the elimination or inactivation of suppressive Tregs or MDSCs, resulting in enhanced antitumor immunity. We analyze findings pertinent to this concept, discuss the possible molecular bases underlying the selective targeting of these immunosuppressive cells by antineoplastic agents, and consider current challenges and future prospects related to the integration of these molecules into more efficient anticancer chemoimmunotherapeutic strategies.
Collapse
Affiliation(s)
- Darya Alizadeh
- Authors' Affiliations: Cancer Biology Graduate Program; and Arizona Cancer Center, Department of Pediatrics and Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| | - Nicolas Larmonier
- Authors' Affiliations: Cancer Biology Graduate Program; and Arizona Cancer Center, Department of Pediatrics and Immunobiology, College of Medicine, University of Arizona, Tucson, ArizonaAuthors' Affiliations: Cancer Biology Graduate Program; and Arizona Cancer Center, Department of Pediatrics and Immunobiology, College of Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
129
|
|
130
|
Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 2014; 21:15-25. [PMID: 23787994 PMCID: PMC3857622 DOI: 10.1038/cdd.2013.67] [Citation(s) in RCA: 649] [Impact Index Per Article: 64.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 02/06/2023] Open
Abstract
Conventional anticancer chemotherapy has been historically thought to act through direct killing of tumor cells. This concept stems from the fact that cytotoxic drugs interfere with DNA synthesis and replication. Accumulating evidence, however, indicates that the antitumor activities of chemotherapy also rely on several off-target effects, especially directed to the host immune system, that cooperate for successful tumor eradication. Chemotherapeutic agents stimulate both the innate and adaptive arms of the immune system through several modalities: (i) by promoting specific rearrangements on dying tumor cells, which render them visible to the immune system; (ii) by influencing the homeostasis of the hematopoietic compartment through transient lymphodepletion followed by rebound replenishment of immune cell pools; (iii) by subverting tumor-induced immunosuppressive mechanisms and (iv) by exerting direct or indirect stimulatory effects on immune effectors. Among the indirect ways of immune cell stimulation, some cytotoxic drugs have been shown to induce an immunogenic type of cell death in tumor cells, resulting in the emission of specific signals that trigger phagocytosis of cell debris and promote the maturation of dendritic cells, ultimately resulting in the induction of potent antitumor responses. Here, we provide an extensive overview of the multiple immune-based mechanisms exploited by the most commonly employed cytotoxic drugs, with the final aim of identifying prerequisites for optimal combination with immunotherapy strategies for the development of more effective treatments against cancer.
Collapse
Affiliation(s)
- L Bracci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - G Schiavoni
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - A Sistigu
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - F Belardelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
131
|
Changes in the immune cell population and cell proliferation in peripheral blood after gemcitabine-based chemotherapy for pancreatic cancer. Clin Transl Oncol 2013; 16:330-5. [PMID: 23860726 DOI: 10.1007/s12094-013-1079-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/07/2013] [Indexed: 01/04/2023]
Abstract
PURPOSE Regulatory T cells (Tregs) play a role in the immunosuppressive state in pancreatic cancer patients. We aimed to evaluate the changes of immune cells population including Tregs caused by gemcitabine (GEM)-based chemotherapy. METHODS Fifty-three patients with pancreatic cancer were enrolled in this study, of which 32 received GEM- based chemotherapy. Blood samples were collected before and at least 2 weeks after the last dose of chemotherapy. The peripheral blood mononuclear cells (PBMCs) were subjected to flow cytometry analysis after labeling with anti-CD4, anti-CD25, and anti-Foxp3 antibodies. Other lymphocytes and NK cell markers were also measured. The proliferative capacity of PBMCs stimulated with anti-CD3 was analyzed using H(3) thymidine. RESULTS The percentage and number of Tregs were significantly decreased after chemotherapy (p = 0.032, p = 0.003, respectively). The other immune cells and the proliferative capacity did not change. CONCLUSION This study showed that GEM-based chemotherapy produced an immunomodulatory effect via the depletion of Tregs.
Collapse
|
132
|
Abstract
While therapeutic vaccines for ovarian cancer represent only a small fraction of active clinical trials, growing interest in this area and the accumulated data supporting the use of vaccines in cancer treatment portend further expansion of trials incorporating these strategies. This review explores the rationale for the use of vaccines for the treatment of ovarian cancer. It examines vaccine platforms that have been investigated and reviews the data from these studies. We also highlight recently reported phase 2 and 3 clinical trials with clinical outcomes as endpoints. Finally, we consider directions for the next generation of vaccines in light of these findings and our emerging understanding of agents that may augment vaccine responses by targeting the immunosuppressive impact of the tumor microenvironment.
Collapse
|
133
|
Dronca RS, Leontovich AA, Nevala WK, Markovic SN. Personalized therapy for metastatic melanoma: could timing be everything? Future Oncol 2013; 8:1401-6. [PMID: 23148614 DOI: 10.2217/fon.12.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
There is ample evidence that immune-related processes in humans are under temporal regulation. The circadian variation of humoral and cellular immunity is well documented and appears to be hormonally modulated via the hypothalamic-pituitary-adrenal axis. In advanced melanoma, it has recently been demonstrated that systemic immunity is repolarized toward a global state of chronic inflammation (Th2 dominance) and appears to be governed by infradian biorhythms of cytokines and immune cell subsets, which extend beyond the 24-h circadian variability reported in healthy volunteers. It is suggested that synchronizing administration of lymphodepleting chemotherapy (temozolomide) with these endogenous (individualized) immune dynamics (biorhythms) in patients with advanced/metastatic melanoma improves clinical outcomes compared with temozolomide used in a conventional 'random delivery' fashion.
Collapse
Affiliation(s)
- Roxana S Dronca
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, USA.
| | | | | | | |
Collapse
|
134
|
Ramakrishnan R, Gabrilovich DI. Novel mechanism of synergistic effects of conventional chemotherapy and immune therapy of cancer. Cancer Immunol Immunother 2013; 62:405-10. [PMID: 23423351 PMCID: PMC11029489 DOI: 10.1007/s00262-012-1390-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/24/2012] [Indexed: 12/12/2022]
Abstract
There is mounting evidence to support the use of a combination of immunotherapy with chemotherapy in the treatment of various types of cancers. However, the mechanism(s), by which these modalities are synergized, are not fully understood. In this review, we discuss several possible mechanisms of the combined effect of immunotherapy and chemotherapy of cancer. We will examine various aspects of this issue such as the combination of different treatment options, the dosage for each arm of treatment, and, more importantly, the timing and sequence of the administration of these treatments.
Collapse
Affiliation(s)
- Rupal Ramakrishnan
- H. Lee Moffitt Cancer Center and Research Institute, MRC 2067, 12902 Magnolia Dr., Tampa, FL 33612 USA
| | - Dmitry I. Gabrilovich
- H. Lee Moffitt Cancer Center and Research Institute, MRC 2067, 12902 Magnolia Dr., Tampa, FL 33612 USA
| |
Collapse
|
135
|
Diaz Y, Tundidor Y, Lopez A, Leon K. Concomitant combination of active immunotherapy and carboplatin- or paclitaxel-based chemotherapy improves anti-tumor response. Cancer Immunol Immunother 2013; 62:455-69. [PMID: 22941039 PMCID: PMC11028977 DOI: 10.1007/s00262-012-1345-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 08/16/2012] [Indexed: 12/22/2022]
Abstract
Recent preclinical evidence substantially supports the successful combination of chemotherapies and active immunotherapy for cancer treatment. These data sustain the effect of sequential combination schemes (vaccine plus chemotherapy or vice versa), which could be difficult to implement in clinical practice. Since chemotherapy is the standard treatment for most cancers, ethical issues forbid its delay and make difficult the evaluation of other treatments such as using an immunotherapeutic agent. Besides, vaccines must be applied as soon as possible to advanced cancer patients, in order to give them time to develop an effective immune response. Thus, a clinically attractive scenario is the concomitant application of treatments. However, little is known about the specific effect of different chemotherapeutic agents when combined with a cancer vaccine in such concomitant treatment. In this work, we analyze the influence of high-dose carboplatin or paclitaxel in the generation of a specific immune response when administered concomitantly with an OVA vaccine. Interestingly, neither carboplatin nor paclitaxel affects the humoral and CTL in vivo response generated by the vaccine. Moreover, an enhancement of the overall anti-tumor effect was observed in animals treated with OVA/CF vaccine combined with cytotoxic drugs. Moreover, the effect of the concomitant treatment was tested using a tumor-related antigen, the epidermal growth factor (EGF). Animals administered with EGF-P64k/Montanide and cytotoxic agents showed an antibody response similar to that from control animals. Therefore, our study suggests that carboplatin and paclitaxel can be concomitantly combined with active immunotherapies in the clinical practice of advanced cancer patients.
Collapse
Affiliation(s)
- Y Diaz
- Systems Biology Department, Center of Molecular Immunology, P.O. Box 16040, 11600, Havana, Cuba.
| | | | | | | |
Collapse
|
136
|
Oleinika K, Nibbs RJ, Graham GJ, Fraser AR. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 2013. [PMID: 23199321 DOI: 10.1111/j.1365-2249.2012.04657.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Regulatory T cells (T(regs) ) are crucial in mediating immune homeostasis and promoting the establishment and maintenance of peripheral tolerance. However, in the context of cancer their role is more complex, and they are thought to contribute to the progress of many tumours. As cancer cells express both self- and tumour-associated antigens, T(regs) are key to dampening effector cell responses, and therefore represent one of the main obstacles to effective anti-tumour responses. Suppression mechanisms employed by T(regs) are thought to contribute significantly to the failure of current therapies that rely on induction or potentiation of anti-tumour responses. This review will focus on the current evidence supporting the central role of T(regs) in establishing tumour-specific tolerance and promoting cancer escape. We outline the mechanisms underlying their suppressive function and discuss the potential routes of T(regs) accumulation within the tumour, including enhanced recruitment, in-situ or local proliferation, and de-novo differentiation. In addition, we review some of the cancer treatment strategies that act, at least in part, to eliminate or interfere with the function of T(regs) . The role of T(regs) is being recognized increasingly in cancer, and controlling the function of these suppressive cells in the tumour microenvironment without compromising peripheral tolerance represents a significant challenge for cancer therapies.
Collapse
Affiliation(s)
- K Oleinika
- Chemokine Research Group, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | |
Collapse
|
137
|
Chen G, Emens LA. Chemoimmunotherapy: reengineering tumor immunity. Cancer Immunol Immunother 2013; 62:203-16. [PMID: 23389507 PMCID: PMC3608094 DOI: 10.1007/s00262-012-1388-0] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/13/2012] [Indexed: 12/30/2022]
Abstract
Cancer chemotherapy drugs have long been considered immune suppressive. However, more recent data indicate that some cytotoxic drugs effectively treat cancer in part by facilitating an immune response to the tumor when given at the standard dose and schedule. These drugs induce a form of tumor cell death that is immunologically active, thereby inducing an adaptive immune response specific for the tumor. In addition, cancer chemotherapy drugs can promote tumor immunity through ancillary and largely unappreciated immunologic effects on both the malignant and normal host cells present within the tumor microenvironment. These more subtle immunomodulatory effects are dependent on the drug itself, its dose, and its schedule in relation to an immune-based intervention. The recent approvals of two new immune-based therapies for prostate cancer and melanoma herald a new era in cancer treatment and have led to heightened interest in immunotherapy as a valid approach to cancer treatment. A detailed understanding of the cellular and molecular basis of interactions between chemotherapy drugs and the immune system is essential for devising the optimal strategy for integrating new immune-based therapies into the standard of care for various cancers, resulting in the greatest long-term clinical benefit for cancer patients.
Collapse
Affiliation(s)
- Gang Chen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231-1000, USA
| | | |
Collapse
|
138
|
Park A, Govindaraj C, Xiang SD, Halo J, Quinn M, Scalzo-Inguanti K, Plebanski M. Substantially modified ratios of effector to regulatory T cells during chemotherapy in ovarian cancer patients return to pre-treatment levels at completion: implications for immunotherapy. Cancers (Basel) 2012; 4:581-600. [PMID: 24213326 PMCID: PMC3712704 DOI: 10.3390/cancers4020581] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/28/2022] Open
Abstract
Ovarian cancer is the leading cause of death from gynaecological malignancy. Despite improved detection and treatment options, relapse rates remain high. Combining immunotherapy with the current standard treatments may provide an improved prognosis, however, little is known about how standard chemotherapy affects immune potential (particularly T cells) over time, and hence, when to optimally combine it with immunotherapy (e.g., vaccines). Herein, we assess the frequency and ratio of CD8+ central memory and effector T cells as well as CD4+ effector and regulatory T cells (Tregs) during the first 18 weeks of standard chemotherapy for ovarian cancer patients. In this pilot study, we observed increased levels of recently activated Tregs with tumor migrating ability (CD4+CD25hiFoxp3+CD127−CCR4+CD38+ cells) in patients when compared to controls. Although frequency changes of Tregs as well as the ratio of effector T cells to Tregs were observed during treatment, the Tregs consistently returned to pre-chemotherapy levels at the end of treatment. These results indicate T cell subset distributions associated with recurrence may be largely resistant to being “re-set” to healthy control homeostatic levels following standard treatments. However, it may be possible to enhance T effector to Treg ratios transiently during chemotherapy. These results suggest personalized immune monitoring maybe beneficial when combining novel immuno-therapeutics with standard treatment for ovarian cancer patients.
Collapse
Affiliation(s)
- Anthony Park
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
| | - Chindu Govindaraj
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
| | - Sue D. Xiang
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
- Authors to whom correspondence should be addressed; E-Mails: (S.X.); (M.P.); Tel.: +61-3-9903-0627 (S.X.); Fax: +61-3-9903-0038 (S.X.)
| | - Julene Halo
- Department of Oncology, Royal Women’s Hospital, Melbourne, Victoria 3052, Australia; E-Mails: (J.H.); (M.Q.)
| | - Michael Quinn
- Department of Oncology, Royal Women’s Hospital, Melbourne, Victoria 3052, Australia; E-Mails: (J.H.); (M.Q.)
| | - Karen Scalzo-Inguanti
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
| | - Magdalena Plebanski
- Department of Immunology, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria 3004, Australia; E-Mails: (A.P.); (C.G.); (K.S.-I.)
- Authors to whom correspondence should be addressed; E-Mails: (S.X.); (M.P.); Tel.: +61-3-9903-0627 (S.X.); Fax: +61-3-9903-0038 (S.X.)
| |
Collapse
|
139
|
Ménétrier-Caux C, Curiel T, Faget J, Manuel M, Caux C, Zou W. Targeting regulatory T cells. Target Oncol 2012; 7:15-28. [PMID: 22327882 DOI: 10.1007/s11523-012-0208-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 01/13/2012] [Indexed: 01/08/2023]
Abstract
Cancers express tumor-associated antigens that should elicit immune response to antagonize the tumor growth, but spontaneous immune rejection of established cancer is rare, suggesting an immunosuppressive environment hindering host antitumor immunity. Among the specific and active tumor-mediated mechanisms, CD4(+)CD25(high) T regulatory cells (Treg) are important mediators of active immune evasion in cancer. In this review, we will discuss Treg subpopulations and the mechanisms of their suppressive functions. Treg depletion improves endogenous antitumor immunity and the efficacy of active immunotherapy in animal models for cancer, suggesting that inhibiting Treg function could also improve the limited successes of human cancer immunotherapy. We will also discuss specific strategies for devising effective cancer immunotherapy targeting Treg.
Collapse
|
140
|
Alterations of lymphocyte subpopulations in healthy dogs with aging and in dogs with cancer. Vet Immunol Immunopathol 2011; 142:189-200. [DOI: 10.1016/j.vetimm.2011.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 04/10/2011] [Accepted: 05/03/2011] [Indexed: 11/18/2022]
|
141
|
He Q, Li J, Yin W, Song Z, Zhang Z, Yi T, Tang J, Wu D, Lu Y, Wang Z, Liu D, Zhang X, Hu Z, Gao J. Low-dose paclitaxel enhances the anti-tumor efficacy of GM-CSF surface-modified whole-tumor-cell vaccine in mouse model of prostate cancer. Cancer Immunol Immunother 2011; 60:715-30. [PMID: 21331814 PMCID: PMC11028932 DOI: 10.1007/s00262-011-0988-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 01/11/2011] [Indexed: 12/30/2022]
Abstract
Chemotherapy combined with a tumor vaccine is an attractive approach in cancer therapy. This study was designed to investigate the optimal schedule and mechanisms of action of a novel GM-CSF (granulocyte-macrophage colony-stimulating factor) surface-modified tumor-cell vaccine in combination with paclitaxel in the treatment of mouse RM-1 prostate cancer. First, the anti-tumor efficiencies of various dosage of paclitaxel (4, 20, 40 mg/kg) in combination with the vaccine in different administration sequences were examined in the mouse RM-1 prostate cancer model. Then, the in vivo and in vitro effects of various dosage of paclitaxel on RM-1 cells, T cells, and DCs (dendritic cells) were evaluated. The results showed that: (a) the GM-CSF-surface-modified tumor-cell vaccine was more potent at inducing the uptake of tumor antigens by DCs than irradiated tumor cells plus free GM-CSF; (b) 4 mg/kg paclitaxel combined with the GM-CSF-surface-modified tumor-cell vaccine was the most effective at enhancing tumor regression in RM-1 prostate cancer mice when the vaccine was administrated 2 days after paclitaxel; and (c) administration of 4 mg/kg paclitaxel followed by the vaccine induced the highest degree of CD8(+) T-cell infiltration in tumor tissue, suggesting that the induction of tumor-specific immune response had occurred. These findings suggested that the GM-CSF-surface-modified tumor-cell vaccine may have potential clinical benefit for patients with prostate cancer when it is combined with paclitaxel. Furthermore, the effect of immunochemotherapy depends on careful selection of paclitaxel dosage and the sequence of paclitaxel/vaccine administration.
Collapse
Affiliation(s)
- Qiushan He
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, 325035 Wenzhou, China
- Department of Oncology, Affiliated Xiangfan Hospital, Tongji Medical College, Huazhong Scientific and Technical University, Xiangfan, China
| | - Jinlong Li
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Weihua Yin
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Zhichun Song
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, 325035 Wenzhou, China
| | - Zhen Zhang
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, China
| | - Tienan Yi
- Department of Oncology, Affiliated Xiangfan Hospital, Tongji Medical College, Huazhong Scientific and Technical University, Xiangfan, China
| | - Jia Tang
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, 325035 Wenzhou, China
| | - Demin Wu
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, 325035 Wenzhou, China
| | - Yue Lu
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, 325035 Wenzhou, China
| | - Zhen Wang
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, 325035 Wenzhou, China
| | - Dan Liu
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, 325035 Wenzhou, China
| | - Xiaoren Zhang
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, 325035 Wenzhou, China
| | - Zhiming Hu
- Institute of Biotherapy, School of Biotechnology, Southern Medical University, Guangzhou, China
- 1838 Guangzhou da dao bei, Guangzhou, 510515 China
| | - Jimin Gao
- Zhejiang Provincial Key Lab for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, University Park, 325035 Wenzhou, China
| |
Collapse
|
142
|
Immunological and clinical effects of vaccines targeting p53-overexpressing malignancies. J Biomed Biotechnol 2011; 2011:702146. [PMID: 21541192 PMCID: PMC3085500 DOI: 10.1155/2011/702146] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/13/2010] [Accepted: 01/18/2011] [Indexed: 12/20/2022] Open
Abstract
Approximately 50% of human malignancies carry p53 mutations, which makes it a potential antigenic target for cancer immunotherapy. Adoptive transfer with p53-specific cytotoxic T-lymphocytes (CTL) and CD4+ T-helper cells eradicates p53-overexpressing tumors in mice. Furthermore, p53 antibodies and p53-specific CTLs can be detected in cancer patients, indicating that p53 is immunogenic. Based on these results, clinical trials were initiated. In this paper, we review immunological and clinical responses observed in cancer patients vaccinated with p53 targeting vaccines. In most trials, p53-specific vaccine-induced immunological responses were observed. Unfortunately, no clinical responses with significant reduction of tumor-burden have occurred. We will elaborate on possible explanations for this lack of clinical effectiveness. In the second part of this paper, we summarize several immunopotentiating combination strategies suitable for clinical use. In our opinion, future p53-vaccine studies should focus on addition of these immunopotentiating regimens to achieve clinically effective therapeutic vaccination strategies for cancer patients.
Collapse
|
143
|
Zhu Y, Liu N, Xiong SD, Zheng YJ, Chu YW. CD4+Foxp3+ Regulatory T-cell Impairment by Paclitaxel is Independent of Toll-like Receptor 4. Scand J Immunol 2011; 73:301-8. [DOI: 10.1111/j.1365-3083.2011.02514.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
144
|
Cannon MJ, Goyne H, Stone PJB, Chiriva-Internati M. Dendritic cell vaccination against ovarian cancer--tipping the Treg/TH17 balance to therapeutic advantage? Expert Opin Biol Ther 2011; 11:441-5. [PMID: 21271951 DOI: 10.1517/14712598.2011.554812] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pathology of ovarian cancer is characterized by profound immunosuppression in the tumor microenvironment. Mechanisms that contribute to the immunosuppressed state include tumor infiltration by regulatory T cells (Treg), expression of B7-H1 (PDL-1), which can promote T cell anergy and apoptosis through engagement of PD-1 expressed by effector T cells, and expression of indoleamine 2,3-dioxygenase (IDO), which can also contribute to effector T cell anergy. Expression of both B7-H1 and IDO has been associated with differentiation and recruitment of Treg, and clinical studies have shown that each of these mechanisms correlates independently with increased morbidity and mortality in patients with ovarian cancer. In a remarkable counterpoint to these observations, ovarian tumor infiltration with T(H)17 cells correlates with markedly improved clinical outcomes. In this Future Perspectives review, we argue that dendritic cell (DC) vaccination designed to drive tumor-antigen-specific T(H)17 T cell responses, combined with adjuvant treatments that abrogate immunosuppressive mechanisms operative in the tumor microenvironment, offers the potential for clinical benefit in the treatment of ovarian cancer. We also discuss pharmacological approaches to modulation of MAP kinase signaling for manipulation of the functional plasticity of DC, such that they may be directed to promote T(H)17 responses following DC vaccination.
Collapse
|
145
|
McDonnell AM, Nowak AK, Lake RA. Contribution of the immune system to the chemotherapeutic response. Semin Immunopathol 2011; 33:353-67. [PMID: 21274535 DOI: 10.1007/s00281-011-0246-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/11/2011] [Indexed: 01/28/2023]
Abstract
The immune system plays an important role in the surveillance of neoplastic cells by eliminating them before they manifest as full-blown cancer. Despite this, tumors do develop in the presence of a functioning immune system. Conventional chemotherapy and its ability to directly kill tumor cells is one of the most effective weapons in the fight against cancer, however, increasing evidence suggests that the therapeutic efficacy of some cytotoxic drugs relies on their capacity to interact with the immune system. Killing of tumor cells in a manner that favors their capture by immune cells or selective targeting of immunosuppressive pathways by specific chemotherapies promotes the generation of an effective anti-cancer response; however, this alone is rarely sufficient to cause elimination of advanced disease. An understanding of the immunological events occurring in both animal models and patients undergoing chemotherapy will guide decisions for the development of appropriate combinations and scheduling for the integration of chemotherapy with immunotherapy.
Collapse
Affiliation(s)
- Alison M McDonnell
- National Centre for Asbestos-Related Diseases and School of Medicine and Pharmacology, The University of Western Australia, Perth, 6009 Western Australia, Australia
| | | | | |
Collapse
|
146
|
Abstract
Cancer chemotherapy drugs are historically regarded as detrimental to immunity because of their myelosuppressive effects. However, accumulating data suggest that the antitumor activity of conventional cancer chemotherapy results in part from its ability to harness the innate and adaptive immune systems by inducing immunologically active tumor cell death. Additional data broaden the immunologic effect of cancer chemotherapy drugs, demonstrating that some drugs have the ability to disrupt pathways of immune suppression and immune tolerance in a manner that depends on the drug dose, and the timing of its administration in relation to immunotherapy. Understanding the cellular and molecular basis of the interactions between chemotherapy drugs and the immune system will facilitate the strategic development of chemoimmunotherapy treatment regimens that both maximize tumor regression and the antitumor immune response for the long-term clinical benefit of cancer patients.
Collapse
|
147
|
Liu N, Zheng Y, Zhu Y, Xiong S, Chu Y. Selective impairment of CD4+CD25+Foxp3+ regulatory T cells by paclitaxel is explained by Bcl-2/Bax mediated apoptosis. Int Immunopharmacol 2010; 11:212-9. [PMID: 21115120 DOI: 10.1016/j.intimp.2010.11.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/03/2010] [Accepted: 11/10/2010] [Indexed: 10/18/2022]
Abstract
Paclitaxel has become one of the most effective and widely used chemotherapeutic agents over the past decades. Although it has shown promise to selectively deplete regulatory T (Treg) cells in our previous study, the underlying molecular mechanism remains to be further elucidated. The present study focused on the effect of paclitaxel on Treg cells in 3LL Lewis tumor model and explored the possible molecular pathways involved in this process. We found that paclitaxel significantly decreased the percentage of Treg cells in CD4(+) cells and impaired their suppressive functions, but effector T (Teff) cells remained unaffected. Compared with Teff cells, Treg cells exhibited a high sensitivity to paclitaxel-mediated apoptosis in vitro. Interestingly, though paclitaxel has been characterized as a mitotic inhibitor, tubulin was not involved in the selective function of paclitaxel. Treg cells exposed to paclitaxel displayed downregulation of Bcl-2 and upregulation of Bax. Blocking the Bcl-2 pathway eliminated the difference between Treg and Teff cells responding to paclitaxel. These results suggest that Bcl-2 rather than tubulin contributes to the distinctive effect of paclitaxel on Treg cells. Therefore, we here identify a molecular pathway through which paclitaxel selectively ablates Treg cells.
Collapse
Affiliation(s)
- Nan Liu
- Department of Immunology, Shanghai Medical College, Key Laboratory of Molecular Medicine of Ministry of Education, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
148
|
Therapeutic cancer vaccines in combination with conventional therapy. J Biomed Biotechnol 2010; 2010:237623. [PMID: 20617155 PMCID: PMC2896846 DOI: 10.1155/2010/237623] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 05/05/2010] [Accepted: 05/17/2010] [Indexed: 12/16/2022] Open
Abstract
The clinical efficacy of most therapeutic vaccines against cancer has not yet met its promise. Data are emerging that strongly support the notion that combining immunotherapy with conventional therapies, for example, radiation and chemotherapy may improve efficacy. In particular combination with chemotherapy may lead to improved clinical efficacy by clearing suppressor cells, reboot of the immune system, by rendering tumor cells more susceptible to immune mediated killing, or by activation of cells of the immune system. In addition, a range of tumor antigens have been characterized to allow targeting of proteins coupled to intrinsic properties of cancer cells. For example, proteins associated with drug resistance can be targeted, and form ideal target structures for use in combination with chemotherapy for killing of surviving drug resistant cancer cells. Proteins associated with the malignant phenotype can be targeted to specifically target cancer cells, but proteins targeted by immunotherapy may also simultaneously target cancer cells as well as suppressive cells in the tumor stroma.
Collapse
|
149
|
Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, Altiok S, Celis E, Gabrilovich DI. Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 2010; 120:1111-24. [PMID: 20234093 DOI: 10.1172/jci40269] [Citation(s) in RCA: 355] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 01/13/2010] [Indexed: 12/16/2022] Open
Abstract
Cancer immunotherapy faces a serious challenge because of low clinical efficacy. Recently, a number of clinical studies have reported the serendipitous finding of high rates of objective clinical response when cancer vaccines are combined with chemotherapy in patients with different types of cancers. However, the mechanism of this phenomenon remains unclear. Here, we tested in mice several cancer vaccines and an adoptive T cell transfer approach to cancer immunotherapy in combination with several widely used chemotherapeutic drugs. We found that chemotherapy made tumor cells more susceptible to the cytotoxic effect of CTLs through a dramatic perforin-independent increase in permeability to GrzB released by the CTLs. This effect was mediated via upregulation of mannose-6-phosphate receptors on the surface of tumor cells and was observed in mouse and human cells. When combined with chemotherapy, CTLs raised against specific antigens were able to induce apoptosis in neighboring tumor cells that did not express those antigens. These data suggest that small numbers of CTLs could mediate a potent antitumor effect when combined with chemotherapy. In addition, these results provide a strong rationale for combining these modalities for the treatment of patients with advanced cancers.
Collapse
Affiliation(s)
- Rupal Ramakrishnan
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Enhancement of antitumor immunity by low-dose total body irradiationis associated with selectively decreasing the proportion and number of T regulatory cells. Cell Mol Immunol 2010; 7:157-62. [PMID: 20140010 DOI: 10.1038/cmi.2009.117] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Low-dose total body irradiation (LTBI) is used in the treatment of some cancers mainly for immune enhancement rather than cell killing. However, the mechanism underlying LTBI remains unknown. In this study, by analyzing the immune patterns of lymphocytes, we found that the percentage and absolute number of CD4(+)CD25(+)Foxp3(+) regulatory T cells are markedly decreased in naive mice following treatment with LTBI. On the contrary, the CD4(+)CD44(+)/CD8(+)CD44(+) effect or-memory T cells are greatly increased. Importantly, naive mice treated with dendritic cell-gp 100 tumor vaccines under LTBI induced an enhancement of antigen-specific proliferation and cytotoxicity as well as interferon-gamma (IFN-gamma) secretion against F10 melanoma tumor challenge, compared to treatment with either the tumor vaccine or LTBI alone. Consequently, the treatment resulted in a reduced tumor burden and prolonged mouse survival. Our data demonstrate that LTBI's enhancement of antitumor immunity was mainly associated with selectively decreasing the proportion and number of T regulatory cells,implying the potential application of the combination of LTBI and a tumor vaccine in antitumor therapy.
Collapse
|