101
|
Rodríguez-Molina V, Vargas MA, Joseph-Bravo P, Charli JL. NMDA receptor up-regulates pyroglutamyl peptidase II activity in the rat hippocampus. Neurosci Lett 2008; 449:211-4. [PMID: 19013213 DOI: 10.1016/j.neulet.2008.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/18/2008] [Accepted: 11/04/2008] [Indexed: 11/29/2022]
Abstract
Ecto-peptidases hydrolyze peptides in the extracellular fluid of the brain. This process is critical for defining the strength of peptidergic communication. A few studies suggest that brain ecto-peptidase activities are regulated by brain function but the extracellular messengers involved are generally unknown. Pyroglutamyl peptidase II (PPII) is specific for thyrotropin releasing hormone (TRH), a tripeptide with multiple homeostatic functions in brain. The purpose of this study was to identify regulators of brain PPII activity. Electrical stimulation (multiple tetani) did not change PPII activity in cortical or hippocampal slices. However, in hippocampal slices, blockade of calcium channels with high magnesium, or of L-type calcium channels (LTCC) or NMDA receptors, decreased PPII activity, while blockade of AMPA or GABA(A) receptors did not. Blockade of NMDA receptors did not change PPII mRNA levels but decreased PPII levels. The activity of another ecto-peptidase, aminopeptidase N, was also down regulated by a magnesium blockade, not regulated by NMDA receptor blockade and increased by LTCC blockade. The data show a differential regulation of the activity of ecto-peptidases by that of Ca(2+) channel and that synaptic activity, through the NMDA receptor, specifically regulates that of pyroglutamyl peptidase II.
Collapse
|
102
|
Hanley JG. AMPA receptor trafficking pathways and links to dendritic spine morphogenesis. Cell Adh Migr 2008; 2:276-82. [PMID: 19262155 DOI: 10.4161/cam.2.4.6510] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Jonathan G Hanley
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol, Bristol, UK.
| |
Collapse
|
103
|
Penzes P, Cahill ME, Jones KA, Srivastava DP. Convergent CaMK and RacGEF signals control dendritic structure and function. Trends Cell Biol 2008; 18:405-13. [PMID: 18701290 DOI: 10.1016/j.tcb.2008.07.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 06/30/2008] [Accepted: 07/02/2008] [Indexed: 12/25/2022]
Abstract
Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity and behavior, and its malfunction underlies many neurodevelopmental and psychiatric disorders. However, the molecular mechanisms that control dendritic spine morphogenesis have only recently emerged. We summarize recent work that has revealed an important connection between calcium/calmodulin-dependent kinases (CaMKs) and guanine-nucleotide-exchange factors (GEFs) that activate the small GTPase Rac (RacGEFs) in controlling dendritic spine morphogenesis. These two groups of molecules function in neurons as a unique signaling cassette that transduces calcium influx into small GTPase activity and, thence, actin reorganization and spine morphogenesis. Through this pathway, CaMKs and RacGEFs amplify calcium signals and translate them into spatially and temporally regulated structural remodeling of dendritic spines.
Collapse
Affiliation(s)
- Peter Penzes
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
104
|
Cortical adenylyl cyclase 1 is required for thalamocortical synapse maturation and aspects of layer IV barrel development. J Neurosci 2008; 28:5931-43. [PMID: 18524897 DOI: 10.1523/jneurosci.0815-08.2008] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Experimental evidence from mutant or genetically altered mice indicates that the formation of barrels and the proper maturation of thalamocortical (TC) synapses in the primary somatosensory (barrel) cortex depend on mechanisms mediated by neural activity. Type 1 adenylyl cyclase (AC1), which catalyzes the formation of cAMP, is stimulated by increases in intracellular Ca(2+) levels in an activity-dependent manner. The AC1 mutant mouse, barrelless (brl), lacks typical barrel cytoarchitecture, and displays presynaptic and postsynaptic functional defects at TC synapses. However, because AC1 is expressed throughout the trigeminal pathway, the barrel cortex phenotype of brl mice may be a consequence of AC1 disruption in cortical or subcortical regions. To examine the role of cortical AC1 in the development of morphological barrels and TC synapses, we generated cortex-specific AC1 knock-out (CxAC1KO) mice. We found that neurons in layer IV form grossly normal barrels and TC axons fill barrel hollows in CxAC1KO mice. In addition, whisker lesion-induced critical period plasticity was not impaired in these mice. However, we found quantitative reductions in the quality of cortical barrel cytoarchitecture and dendritic asymmetry of layer IV barrel neurons in CxAC1KO mice. Electrophysiologically, CxAC1KO mice have deficits in the postsynaptic but not in the presynaptic maturation of TC synapses. These results suggest that activity-dependent postsynaptic AC1-cAMP signaling is required for functional maturation of TC synapses and the development of normal barrel cortex cytoarchitecture. They also suggest that the formation of the gross morphological features of barrels is independent of postsynaptic AC1 in the barrel cortex.
Collapse
|
105
|
|
106
|
Domoic acid toxicologic pathology: a review. Mar Drugs 2008; 6:180-219. [PMID: 18728725 PMCID: PMC2525487 DOI: 10.3390/md20080010] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 12/29/2022] Open
Abstract
Domoic acid was identified as the toxin responsible for an outbreak of human poisoning that occurred in Canada in 1987 following consumption of contaminated blue mussels [Mytilus edulis]. The poisoning was characterized by a constellation of clinical symptoms and signs. Among the most prominent features described was memory impairment which led to the name Amnesic Shellfish Poisoning [ASP]. Domoic acid is produced by certain marine organisms, such as the red alga Chondria armata and planktonic diatom of the genus Pseudo-nitzschia. Since 1987, monitoring programs have been successful in preventing other human incidents of ASP. However, there are documented cases of domoic acid intoxication in wild animals and outbreaks of coastal water contamination in many regions world-wide. Hence domoic acid continues to pose a global risk to the health and safety of humans and wildlife. Several mechanisms have been implicated as mediators for the effects of domoic acid. Of particular importance is the role played by glutamate receptors as mediators of excitatory neurotransmission and the demonstration of a wide distribution of these receptors outside the central nervous system, prompting the attention to other tissues as potential target sites. The aim of this document is to provide a comprehensive review of ASP, DOM induced pathology including ultrastructural changes associated to subchronic oral exposure, and discussion of key proposed mechanisms of cell/tissue injury involved in DOM induced brain pathology and considerations relevant to food safety and human health.
Collapse
|
107
|
Johnston D, Narayanan R. Active dendrites: colorful wings of the mysterious butterflies. Trends Neurosci 2008; 31:309-16. [PMID: 18471907 DOI: 10.1016/j.tins.2008.03.004] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 03/18/2008] [Accepted: 03/25/2008] [Indexed: 02/02/2023]
Abstract
Santiago Ramón y Cajal had referred to neurons as the 'mysterious butterflies of the soul.' Wings of these butterflies--their dendrites--were traditionally considered as passive integrators of synaptic information. Owing to a growing body of experimental evidence, it is now widely accepted that these wings are colorful, endowed with a plethora of active conductances, with each family of these butterflies made of distinct hues and shades. Furthermore, rapidly evolving recent literature also provides direct and indirect demonstrations for activity-dependent plasticity of these active conductances, pointing toward chameleonic adaptability in these hues. These experimental findings firmly establish the immense computational power of a single neuron, and thus constitute a turning point toward the understanding of various aspects of neuronal information processing. In this brief historical perspective, we track important milestones in the chameleonic transmogrification of these mysterious butterflies.
Collapse
Affiliation(s)
- Daniel Johnston
- Center for Learning and Memory, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
108
|
Xu J, Weerapura M, Ali MK, Jackson MF, Li H, Lei G, Xue S, Kwan CL, Manolson MF, Yang K, Macdonald JF, Yu XM. Control of excitatory synaptic transmission by C-terminal Src kinase. J Biol Chem 2008; 283:17503-14. [PMID: 18445593 DOI: 10.1074/jbc.m800917200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The induction of long-term potentiation at CA3-CA1 synapses is caused by an N-methyl-d-aspartate (NMDA) receptordependent accumulation of intracellular Ca(2+), followed by Src family kinase activation and a positive feedback enhancement of NMDA receptors (NMDARs). Nevertheless, the amplitude of baseline transmission remains remarkably constant even though low frequency stimulation is also associated with an NMDAR-dependent influx of Ca(2+) into dendritic spines. We show here that an interaction between C-terminal Src kinase (Csk) and NMDARs controls the Src-dependent regulation of NMDAR activity. Csk associates with the NMDAR signaling complex in the adult brain, inhibiting the Src-dependent potentiation of NMDARs in CA1 neurons and attenuating the Src-dependent induction of long-term potentiation. Csk associates directly with Src-phosphorylated NR2 subunits in vitro. An inhibitory antibody for Csk disrupts this physical association, potentiates NMDAR mediated excitatory postsynaptic currents, and induces long-term potentiation at CA3-CA1 synapses. Thus, Csk serves to maintain the constancy of baseline excitatory synaptic transmission by inhibiting Src kinase-dependent synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Jindong Xu
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Rodriguez A, Ehlenberger DB, Dickstein DL, Hof PR, Wearne SL. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 2008; 3:e1997. [PMID: 18431482 PMCID: PMC2292261 DOI: 10.1371/journal.pone.0001997] [Citation(s) in RCA: 441] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 03/04/2008] [Indexed: 11/18/2022] Open
Abstract
A fundamental challenge in understanding how dendritic spine morphology controls learning and memory has been quantifying three-dimensional (3D) spine shapes with sufficient precision to distinguish morphologic types, and sufficient throughput for robust statistical analysis. The necessity to analyze large volumetric data sets accurately, efficiently, and in true 3D has been a major bottleneck in deriving reliable relationships between altered neuronal function and changes in spine morphology. We introduce a novel system for automated detection, shape analysis and classification of dendritic spines from laser scanning microscopy (LSM) images that directly addresses these limitations. The system is more accurate, and at least an order of magnitude faster, than existing technologies. By operating fully in 3D the algorithm resolves spines that are undetectable with standard two-dimensional (2D) tools. Adaptive local thresholding, voxel clustering and Rayburst Sampling generate a profile of diameter estimates used to classify spines into morphologic types, while minimizing optical smear and quantization artifacts. The technique opens new horizons on the objective evaluation of spine changes with synaptic plasticity, normal development and aging, and with neurodegenerative disorders that impair cognitive function.
Collapse
Affiliation(s)
- Alfredo Rodriguez
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- Laboratory of Biomathematics, Mount Sinai School of Medicine, New York, New York, United States of America
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Douglas B. Ehlenberger
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- Laboratory of Biomathematics, Mount Sinai School of Medicine, New York, New York, United States of America
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Dara L. Dickstein
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Susan L. Wearne
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York, United States of America
- Laboratory of Biomathematics, Mount Sinai School of Medicine, New York, New York, United States of America
- Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
110
|
Raymond CR. Different requirements for action potentials in the induction of different forms of long-term potentiation. J Physiol 2008; 586:1859-65. [PMID: 18276728 DOI: 10.1113/jphysiol.2008.151035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of postsynaptic action potentials (APs) in the induction of long-term potentiation (LTP) remains unclear, but has important implications for theories of associative learning in the brain. In area CA1 of hippocampus, at least three discrete forms of LTP coexist, each displaying unique decay kinetics and involving different signalling and effector systems. The present work investigates whether these forms of LTP also differ in their requirement for postsynaptic APs. Inhibition of APs during theta-burst stimulation (TBS) had no effect on the persistence of short-lasting LTP (LTP 1), but reduced the persistence of more durable forms (LTP 2 and 3). Calcium imaging revealed different requirements for APs in generating calcium signals in spines, dendrites, and somata, consistent with their known roles in the induction of each form of LTP. Finally, short-lasting LTP was endowed with dramatically enhanced persistence by the presentation of TBS-patterned APs alone. These data reveal that the requirement for APs in LTP induction is dependent on the form of LTP under investigation, supporting the contention that different neuronal learning mechanisms coexist in hippocampal area CA1.
Collapse
Affiliation(s)
- Clarke R Raymond
- Division of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
111
|
Bloodgood BL, Sabatini BL. Regulation of synaptic signalling by postsynaptic, non-glutamate receptor ion channels. J Physiol 2007; 586:1475-80. [PMID: 18096597 DOI: 10.1113/jphysiol.2007.148353] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Activation of glutamatergic synapses onto pyramidal neurons produces a synaptic depolarization as well as a buildup of intracellular calcium (Ca(2+)). The synaptic depolarization propagates through the dendritic arbor and can be detected at the soma with a recording electrode. Current influx through AMPA-type glutamate receptors (AMPARs) provides the depolarizing drive, and the amplitudes of synaptic potentials are generally thought to reflect the number and properties of these receptors at each synapse. In contrast, synaptically evoked Ca(2+) transients are limited to the spine containing the active synapse and result primarily from Ca(2+) influx through NMDA-type glutamate receptors (NMDARs). Here we review recent studies that reveal that both synaptic depolarizations and spine head Ca(2+) transients are strongly regulated by the activity of postsynaptic, non-glutamate receptor ion channels. In hippocampal pyramidal neurons, voltage- and Ca(2+)-gated ion channels located in dendritic spines open as downstream consequences of glutamate receptor activation and act within a complex signalling loop that feeds back to regulate synaptic signals. Dynamic regulation of these ion channels offers a powerful mechanism of synaptic plasticity that is independent of direct modulation of glutamate receptors.
Collapse
Affiliation(s)
- Brenda L Bloodgood
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
112
|
Tada T, Simonetta A, Batterton M, Kinoshita M, Edbauer D, Sheng M. Role of Septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol 2007; 17:1752-8. [PMID: 17935993 PMCID: PMC2194646 DOI: 10.1016/j.cub.2007.09.039] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 08/21/2007] [Accepted: 09/13/2007] [Indexed: 11/19/2022]
Abstract
Septins are GTP-binding proteins that polymerize into heteromeric filaments and form microscopic bundles or ring structures in vitro and in vivo. Because of these properties and their ability to associate with membrane, F-actin, and microtubules, septins have been generally regarded as cytoskeletal components [1, 2]. Septins are known to play roles in cytokinesis, in membrane trafficking, and as structural scaffolds; however, their function in neurons is poorly understood. Many members of the septin family, including Septin 7 (Sept7), were found by mass-spectrometry analysis of postsynaptic density (PSD) fractions of the brain [3, 4], suggesting a possible postsynaptic function of septins in neurons. We report that Sept7 is localized at the base of dendritic protrusions and at dendritic branch points in cultured hippocampal neurons--a distribution reminiscent of septin localization in the bud neck of budding yeast. Overexpression of Sept7 increased dendrite branching and the density of dendritic protrusions, whereas RNA interference (RNAi)-mediated knockdown of Sept7 led to reduced dendrite arborization and a greater proportion of immature protrusions. These data suggest that Sept7 is critical for spine morphogenesis and dendrite development during neuronal maturation.
Collapse
Affiliation(s)
- Tomoko Tada
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02446, USA
| | - Alyson Simonetta
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02446, USA
| | - Matthew Batterton
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02446, USA
| | - Makoto Kinoshita
- Biochemistry and Cell Biology Unit, HMRO, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Dieter Edbauer
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02446, USA
| | - Morgan Sheng
- The Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02446, USA
- * Corresponding author: Morgan Sheng, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Ave (46-4303A), Cambridge, MA 02139. , Phone 617.452.3716; Fax 617.452.3692
| |
Collapse
|